Nothing Special   »   [go: up one dir, main page]

JP4879696B2 - High yield strength, high toughness, flux-cored wire for gas shielded arc welding - Google Patents

High yield strength, high toughness, flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP4879696B2
JP4879696B2 JP2006279758A JP2006279758A JP4879696B2 JP 4879696 B2 JP4879696 B2 JP 4879696B2 JP 2006279758 A JP2006279758 A JP 2006279758A JP 2006279758 A JP2006279758 A JP 2006279758A JP 4879696 B2 JP4879696 B2 JP 4879696B2
Authority
JP
Japan
Prior art keywords
wire
flux
weld metal
toughness
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006279758A
Other languages
Japanese (ja)
Other versions
JP2008093715A (en
Inventor
俊永 長谷川
茂 大北
勇 木本
竜一 志村
大輔 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006279758A priority Critical patent/JP4879696B2/en
Publication of JP2008093715A publication Critical patent/JP2008093715A/en
Application granted granted Critical
Publication of JP4879696B2 publication Critical patent/JP4879696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、建設機械および産業機械などの用途に適用される引張強度さTSが950〜1400MPa級程度の超高張力鋼板をガスシールドアーク溶接する際に用いられる溶接ワイヤであって、特に引張強さTSが1200MPa以上で、降伏強度YPが1000MPa以上、かつ、靭性が−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE-40で27J以上である溶接金属が得られる、高強度高靭性ガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention is a welding wire used for gas shielded arc welding of an ultra-high strength steel sheet having a tensile strength TS of about 950 to 1400 MPa applied to applications such as construction machinery and industrial machinery. High strength and high toughness gas with which a weld metal having a thickness TS of 1200 MPa or more, a yield strength YP of 1000 MPa or more, and an absorption energy vE- 40 of 27 J or more in a 2 mm V notch Charpy impact test at −40 ° C. is obtained. The present invention relates to a flux-cored wire for shielded arc welding.

近年、建設機械および産業機械などの構造物の大型化や軽量化の要求が多くなるにともない、使用される鋼板の高張力化が進み、最近では引張強さTSが780MPa級以上の高張力鋼が一般的に使用されるようになり、今後は引張強さTSが950MPa以上、さらには引張強さTSが1200MPa以上の超高張力鋼の使用も増えてくると考えられる。   In recent years, as the demand for larger and lighter structures such as construction machinery and industrial machinery has increased, the steel plates used have been increased in tension, and recently, high tensile strength steels with a tensile strength TS of 780 MPa or higher. It is considered that the use of ultra high strength steel having a tensile strength TS of 950 MPa or more and further a tensile strength TS of 1200 MPa or more will increase in the future.

また、鋼構造用鋼板の強度として、引張強さTSと同様に降伏応力YPの向上も要求され、引張強さTSが950MPa以上の高張力鋼板に対して、降伏応力YPは850MPa以上、引張強さTSが1200MPa以上の超高張力鋼では、降伏応力YPで1100MPa以上であることが望まれている。   Further, as the strength of the steel plate for steel structure, it is required to improve the yield stress YP as well as the tensile strength TS. For a high strength steel plate having a tensile strength TS of 950 MPa or more, the yield stress YP is 850 MPa or more. In the ultra high strength steel having a thickness TS of 1200 MPa or more, it is desired that the yield stress YP is 1100 MPa or more.

このような引張強さTSと降伏強さが共に高い高張力鋼板を溶接して鋼構造物を製造する場合には、高張力鋼板と同様に溶接継手部、特に溶接金属の引張強さTS及び降伏応力YPの向上が要求される。通常の溶接継手においては溶接金属の強度が母材よりも高い、オーバーマッチングに設計されることが多いため、溶接金属の強度は、鋼板の引張強さと同等以上に高強度化する必要がある。   When a steel structure is manufactured by welding such a high-tensile steel plate having a high tensile strength TS and a high yield strength, a welded joint, particularly a weld metal tensile strength TS and Improvement of the yield stress YP is required. In ordinary welded joints, the strength of the weld metal is often higher than that of the base material and is designed to be overmatched. Therefore, the strength of the weld metal needs to be higher than or equal to the tensile strength of the steel plate.

また、鋼構造物は、高強度化と同時に低温靱性が要求される用途に適用されることが多い。引張強度が950MPa級以上の高張力鋼板を用いて溶接継手を作製する場合には、溶接金属の靭性は低下し、高強度・高靱性の溶接金属を得ることは困難となる。また、高強度の鋼板、溶接金属では溶接金属中の含有水素による低温割れの発生が懸念される。一般に溶接金属の低温割れや靭性の観点からは、溶接金属中の水素量を低減でき、かつ、高強度・高靱性の溶接継手を得ることができる、MIG溶接、MAG溶接(Ar+CO2溶接あるいはCO2溶接)、TIG溶接などのガスシールドアーク溶接が好ましい。これらの中で、TIG溶接は特に溶接金属の靱性を向上させるためには好適であるが、MIG溶接、MAG溶接に比べて溶接施工効率は劣るため、実用的にはMIG溶接、MAG溶接により、溶接部の低温割れの発生を抑制しつつ、高強度・高靱性の溶接継手を効率的に作製できることが要望されている。 Steel structures are often applied to applications that require high-temperature toughness as well as high strength. When producing a welded joint using a high-strength steel sheet having a tensile strength of 950 MPa or higher, the toughness of the weld metal is lowered, and it becomes difficult to obtain a weld metal with high strength and high toughness. Moreover, in high strength steel plates and weld metals, there is concern about the occurrence of cold cracking due to hydrogen contained in the weld metal. In general, from the viewpoint of cold cracking and toughness of the weld metal, the amount of hydrogen in the weld metal can be reduced, and a weld joint with high strength and toughness can be obtained. MIG welding, MAG welding (Ar + CO 2 welding or CO 2 welding), gas shield arc welding such as TIG welding is preferable. Among these, TIG welding is particularly suitable for improving the toughness of the weld metal, but since the welding efficiency is inferior to MIG welding and MAG welding, practically by MIG welding and MAG welding, There is a demand for efficiently producing a high-strength, high-toughness welded joint while suppressing the occurrence of cold cracks in the weld.

引張強度が780〜900MPa級の高張力厚鋼板をガスシールドアーク溶接する際に、高強度、高靱性の溶接継手を達成するための手段は従来から検討されている。   Means for achieving a high-strength, high-toughness welded joint when gas-shielded arc welding is performed on a high-tensile steel plate having a tensile strength of 780 to 900 MPa class has been studied.

例えば、板厚が50mm以上、引張強度が900MPa以上の厚肉高張力鋼板をガスシールドアーク溶接する際に、溶接金属の引張強さを鋼板の引張強さの0.95倍以下にし、継手部断面における溶接金属の表面幅と裏面幅を板厚の0.45倍未満とし、かつ溶接金属の断面積と板厚の2乗の比を0.4未満とすることにより、引張強さTSが1070MPaの鋼板に対して、引張強さTSが988MPaで、20℃でのシャルピー吸収エネルギー(vE-20)が74Jの溶接金属を形成する靱性・靭性に優れた溶接継手を得る方法が提案されている(例えば、特許文献1参照)。この方法は板厚が50mm以上、引張強さが900MPa以上の高強度鋼板を溶接する際に、靱性低下の原因となるマルテンサイトとベイナイトの混合組織を抑制するために溶接金属の引張強さを鋼板の引張強さより低く(アンダーマッチング)し、かつ継手強度を確保するために溶接金属(溶接ビード)の幅および断面積を板厚との関係から制限するものである。しかし、この方法では溶接条件を制約するため、溶接施工効率が低下するとともに、引張強さTSが1100MPa以上の溶接金属を有する靭性に優れた溶接継手を達成することは困難である。 For example, when gas shielded arc welding is performed on a thick high-strength steel sheet having a thickness of 50 mm or more and a tensile strength of 900 MPa or more, the tensile strength of the weld metal is 0.95 times or less of the tensile strength of the steel sheet, By setting the surface width and the back surface width of the weld metal in the cross section to less than 0.45 times the plate thickness and the ratio of the square of the cross section of the weld metal to the plate thickness to less than 0.4, the tensile strength TS is A method for obtaining a welded joint excellent in toughness and toughness for forming a weld metal having a tensile strength TS of 988 MPa and a Charpy absorbed energy (vE -20 ) of 74 J at 20 ° C. with respect to a 1070 MPa steel plate has been proposed. (For example, refer to Patent Document 1). In this method, when welding a high-strength steel sheet having a thickness of 50 mm or more and a tensile strength of 900 MPa or more, the tensile strength of the weld metal is reduced in order to suppress the mixed structure of martensite and bainite, which causes a decrease in toughness. The width and cross-sectional area of the weld metal (weld bead) are restricted from the relationship with the plate thickness in order to lower the tensile strength of the steel plate (undermatching) and ensure the joint strength. However, in this method, since welding conditions are restricted, it is difficult to achieve a welded joint excellent in toughness having a weld metal having a tensile strength TS of 1100 MPa or more, while lowering the welding construction efficiency.

一方、溶接条件の制約に寄らずに、溶接ワイヤの成分設計により溶接金属の強度及び靭性を向上させる方法も検討されており、例えば、C、Si、Mn、P、S、Al、Ti、Ni及びMgを所定量含有し、さらに、Mo、W、Nb、V及びTaのうちの1種または2種以上を所定量含有し、かつ炭素当量(Ceq.)及びNb当量(Nbeq.)を所定範囲内に制御することにより、引張強さTSが950〜1500MPa、降伏応力YSが900〜1400MPa、靭性がシャルピー吸収エネルギーvE-40で40〜127Jの溶接金属が得られる、ソリッドワイヤが提案されている(例えば特許文献2、参照)。このワイヤは、強度と靭性を共に維持する効果が大きいNiを比較的多く含有させ、焼入れ成分性を確保した条件で、Mo、W、Nb、V、Taの1種または2種以上の析出元素を添加し、溶接金属中に炭窒化物を析出させることで、マルテンサイト主体組織中の可動転位密度の移動をピン止めし、残留オーステナイトの生成を抑制することにより、溶接金属の引張強さTS、降伏応力YS、靭性vE-40を共に向上させるものである。 On the other hand, a method for improving the strength and toughness of the weld metal by designing the composition of the welding wire without depending on the restriction of the welding conditions has been studied. For example, C, Si, Mn, P, S, Al, Ti, Ni And Mg are contained in a predetermined amount, and further one or more of Mo, W, Nb, V and Ta are contained in a predetermined amount, and carbon equivalent (Ceq.) And Nb equivalent (Nbeq.) Are predetermined. By controlling within the range, a solid wire is proposed in which a weld metal with a tensile strength TS of 950 to 1500 MPa, a yield stress YS of 900 to 1400 MPa, and a toughness of 40 to 127 J with Charpy absorbed energy vE- 40 can be obtained. (For example, refer to Patent Document 2). This wire contains a relatively large amount of Ni, which has a large effect of maintaining both strength and toughness, and is a precipitating element of one or more of Mo, W, Nb, V, and Ta under conditions that ensure quenching component properties. To precipitate the carbonitride in the weld metal, thereby pinning the movement of the mobile dislocation density in the martensite main structure and suppressing the formation of retained austenite, thereby reducing the tensile strength TS of the weld metal. , Yield stress YS and toughness vE- 40 are both improved.

このソリッドワイヤによれば、溶接金属の引張強さTS、降伏応力YSおよび靭性vE-40を共に向上することができる。しかし、ワイヤ製造に用いる素材の強度が高くなり、さらに、伸線時の加工硬化も加わって、伸線工程における断線発生の頻度が増加するため、この対策として、所定の径に伸線する毎に素材の軟質化のための焼鈍処理を行う必要がある。しかし、この焼鈍処理工程はワイヤ製造時の生産性や製造コストを低下させる原因となるため、ワイヤ製造の生産性を向上するために焼鈍処理工程などの素材の軟化処理を省略できることが好ましい。 According to this solid wire, the tensile strength TS, yield stress YS, and toughness vE- 40 of the weld metal can be improved together. However, since the strength of the material used for wire manufacture increases and work hardening at the time of wire drawing is added, the frequency of occurrence of wire breakage in the wire drawing process increases. In addition, it is necessary to perform an annealing process for softening the material. However, since this annealing treatment step causes a reduction in productivity and manufacturing cost during wire production, it is preferable that the softening treatment of the material such as the annealing treatment step can be omitted in order to improve the productivity of wire production.

一般にフラックス入りワイヤは鋼製外皮の鋼材成分を大きく変えずに、鋼製外皮内に充填されるフラックス中に金属または合金を多く含有させることができるため、ソリッドワイヤに比べてワイヤの生産性を低下させずにワイヤ中に焼入れ元素を多く含有させることができる。   In general, flux-cored wire can contain a large amount of metal or alloy in the flux filled in the steel outer sheath without greatly changing the steel material composition of the steel outer sheath. A lot of quenching elements can be contained in the wire without lowering.

しかし、フラックス入りワイヤのフラックス中に金属または合金の粉末状態で焼入れ元素を多量に含有させる場合には、ソリッドワイヤには問題にならない以下のフラックス入りワイヤ特有の技術的課題がある。つまり、フラックス入りワイヤを製造する場合には、ソリッドワイヤにはない、フラックス配合、造粒工程が必要になる。この際、フラックス中に金属または合金の粉末状態で焼入れ元素を多量に配合した場合には、金属または合金の微粉粒子表面が酸化し、または、金属または合金の粉末表面に酸素分子または原子で吸着し、これらの原因でソリッドワイヤに比べてワイヤ中の酸素含有量が増加しやすくなる。また、フラックス配合、造粒工程では、金属または合金の粉末中に大気中の水分を吸湿するため、ソリッドワイヤでは問題とならない水素の含有量の増加が顕著となる。   However, when a large amount of quenching elements are contained in the flux of the flux-cored wire in a powder state of metal or alloy, there are the following technical problems specific to the flux-cored wire that are not a problem for the solid wire. That is, when manufacturing a flux-cored wire, a flux blending and granulating step not required for a solid wire is required. At this time, if a large amount of quenching element is mixed in the flux in the powder state of the metal or alloy, the fine powder particle surface of the metal or alloy is oxidized or adsorbed by oxygen molecules or atoms on the metal or alloy powder surface. However, due to these causes, the oxygen content in the wire is likely to increase as compared with the solid wire. Further, in the flux blending and granulating process, moisture in the atmosphere is absorbed into the metal or alloy powder, so that the increase in the hydrogen content, which is not a problem with the solid wire, becomes significant.

フラックス入りワイヤ中の酸素含有量の増加は、特に溶接金属の降伏応力YPが1000MPa以上、引張強さTSが1200MPa以上となるような高強度の溶接金属の場合には、溶接金属の延性特性を低下させ、実用上問題となる加工性の低下や組成変形能の劣化につながるだけでなく、溶接継手における脆性破壊特性の大幅な劣化も招く可能性が高くなる。   The increase in the oxygen content in the flux-cored wire is particularly high in the case of a high strength weld metal in which the yield stress YP of the weld metal is 1000 MPa or more and the tensile strength TS is 1200 MPa or more. Not only does this lead to a decrease in workability and compositional deformability, which are practically problematic, but also increases the possibility of significant deterioration in brittle fracture characteristics in welded joints.

また、フラックス入りワイヤ中の水素含有量の増加は、低温割れ感受性が極めて大きくなる、降伏応力YPが1000MPa以上、引張強さTSが1200MPa以上の場合には、溶接時の溶接金属中の拡散性水素の増加により、溶接金属の低温割れを顕著に発生させる原因となる。   Further, the increase in the hydrogen content in the flux-cored wire is that the susceptibility to low-temperature cracking is extremely high. When the yield stress YP is 1000 MPa or more and the tensile strength TS is 1200 MPa or more, the diffusibility in the weld metal during welding is increased. The increase in hydrogen causes the cold cracking of the weld metal to occur remarkably.

以上のとおり、最近、高強度ワイヤの技術開発により、特許文献2に示すような引張強さTSが950MPa以上、降伏応力YSが900MPa以上で、靭性vE-40が良好な溶接金属が得られるソリッドワイヤは実現されつつある。しかし、フラックス入りワイヤでは、上記のようなワイヤ中の酸素および水素の含有量の増加に起因する、溶接金属の低温割れや、靭性及び延性低下などの技術的課題があるため、これらの問題を防止しつつ、従来のソリッドワイヤと同等以上の引張強さTS、降伏応力YS、靭性vE-40を発揮できる、フラックス入りワイヤはまだ実現できていないのが現状である。 As described above, a solid that can obtain a weld metal having a tensile strength TS of 950 MPa or more, a yield stress YS of 900 MPa or more, and a good toughness vE- 40 as shown in Patent Document 2 by recent technological development of a high-strength wire. Wire is being realized. However, flux-cored wires have technical problems such as cold cracking of weld metal and reduced toughness and ductility due to the increase in oxygen and hydrogen content in the wire as described above. At present, a flux-cored wire that can exhibit tensile strength TS, yield stress YS, and toughness vE- 40 equal to or higher than that of a conventional solid wire while preventing it has not been realized yet.

特開2001−1148号公報JP 2001-1148 A 特開2006−110581号公報JP 2006-110581 A

上記背景技術に鑑み、本発明は、引張強さTSが950MPa級以上の高張力鋼板をMIG溶接、MAG溶接(Ar+CO溶接あるいはCO溶接)等に用いられるガスシールドアーク溶接用ワイヤとして、ソリッドワイヤに比べて生産性に優れたフラックスワイヤであって、引張強さが1200MPa以上、降伏強度が1000MPa以上、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーが27J以上の溶接金属を達成でき、かつ溶接金属のy型溶接割れ試験における低温割れ停止温度が150℃以下の耐低温割れ性を実現できる、フラックス入りワイヤを提供することを目的とする。 In view of the above background art, the present invention provides a solid steel as a gas shielded arc welding wire used for MIG welding, MAG welding (Ar + CO 2 welding or CO 2 welding), etc., of a high-tensile steel sheet having a tensile strength TS of 950 MPa class or higher. It is a flux wire with excellent productivity compared to wires, and can achieve a weld metal with a tensile strength of 1200 MPa or more, a yield strength of 1000 MPa or more, and an absorbed energy of 27 J or more in a 2 mmV notch Charpy impact test at -40 ° C. And it aims at providing the flux cored wire which can implement | achieve the low temperature crack-proof property whose cold crack stop temperature in the y-type weld crack test of a weld metal is 150 degrees C or less.

本発明は、上記技術的課題を解決するものであり、その発明の要件は下記の通りである。   The present invention solves the above technical problems, and the requirements of the invention are as follows.

(1)鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤにおいて、
前記鋼製外皮およびフラックス中に、金属または合金として、ワイヤ全質量に対する質量%の合計で、
C:0.08〜0.3%、
Si:0.2〜2%、
Mn:0.5〜2.5%、
P:0.02%以下、
S:0.01%以下、
Al:0.002〜0.3%、
Ti:0.005〜0.3%、
Ni:0.5〜11%、
Mg:0.012〜0.5%、
を含み、かつ、下記(1)式で示される炭素当量(Ceq.)が0.7〜2%、下記(2)式で示される脱酸元素当量(Aleq.)が0.2〜0.6%であり、さらに、
Mo:0.1〜4%、
W:0.1〜3%、
Nb:0.005〜0.1%、
V:0.005〜0.5%、および、
Ta:0.005〜0.5%、
のうちの1種または2種以上を含有し、かつ、下記(3)式で示されるNb当量(Nbeq.)が0.05〜0.5%であり、かつ、前記フラックス中に含有するスラグ形成剤およびアーク安定剤の含有量の合計を、ワイヤ全質量に対する質量%で、20%以下に制限し、残部がFeおよび不可避的不純物であり、かつ前記鋼製外皮はシームレスパイプであることを特徴とする高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Ceq.=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Mo%]/4+[W%]/8 ・・・(1)
Aleq.=[Al%]+[Mg%]+[Ti%]/10%+([Si%]+[Mn%])/30 ・・・(2)
Nbeq.=[Nb%]+[V%]/5+[Mo%]/20+[W%]/10+[Ta%]/5 ・・・(3)
ただし、上記[C%]、[Mn%]、[Si%]、[Ni%]、[Mo%]、[W%]、[Al%]、[Mg%]、[Ti%]、[Nb%]、[V%]および[Ta%]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するC、Mn、Si、Ni、Mo、W、Al、Mg、Ti、Nb、VおよびTaのワイヤ全質量に対する質量%の合計を示す。
(2)前記鋼製外皮およびフラックス中に、金属または合金として、さらに、ワイヤ全質量に対する質量%の合計で、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Co:0.01〜6%、および、
B:0.001〜0.015%、
のうちの1種または2種以上を含有し、かつ下記(4)式で示される炭素当量(Ceq.)が0.7〜2%であることを特徴とする前記(1)に記載の高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Ceq.=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Cr%]/5+[Mo%]/4+[W%]/8 ・・・(4)
ただし、上記[C%]、[Mn%]、[Si%]、[Ni%]、[Cr%]、[Mo%]および[W%]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するC、Mn、Si、Ni、Cr、MoおよびWのワイヤ全質量に対する質量%の合計を示す。
(3)質量%で、
Ca:0.0002〜0.01%、および、
REM:0.0002〜0.01%
のうちの1種または2種を含有し、かつ下記(5)式で示される脱酸元素当量(Aleq.)が0.2〜0.6%であることを特徴とする前記(1)または(2)に記載の高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Aleq.=[Al%]+[Mg%]+[Ca%]+[REM%]/5+[Ti%]/10%+([Si%]+[Mn%])/30 ・・・(5)
ただし、上記[Al%]、[Mg%]、[Ca%]、[REM%]、[Ti]、[Si]および[Mn]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するAl、Mg、Ca、REM、Ti、SiおよびMnのワイヤ全質量に対する質量%の合計を示す。
(4)上記(1)〜(3)の何れかに記載のフラックス入りワイヤは、前記鋼製外皮中に前記フラックスを充填した後、伸線途中または伸線後、600〜1100℃の加熱温度で焼鈍処理をしたものであることを特徴とする高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
(1) In a flux-cored wire in which a flux is filled inside a steel outer sheath,
In the steel outer shell and the flux, as a metal or an alloy, in a total mass% based on the total mass of the wire,
C: 0.08 to 0.3%,
Si: 0.2-2%
Mn: 0.5 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Al: 0.002 to 0.3%,
Ti: 0.005 to 0.3%,
Ni: 0.5 to 11%,
Mg: 0.012-0.5%,
And a carbon equivalent (Ceq.) Represented by the following formula (1) is 0.7 to 2%, and a deoxidizing element equivalent (Aleq.) Represented by the following formula (2) is 0.2 to 0. 6%, and
Mo: 0.1 to 4%
W: 0.1 to 3%
Nb: 0.005 to 0.1%,
V: 0.005-0.5% and
Ta: 0.005 to 0.5%,
1 or 2 or more of them, and the Nb equivalent (Nbeq.) Represented by the following formula (3) is 0.05 to 0.5%, and the slag contained in the flux The total content of the forming agent and the arc stabilizer is limited to 20% or less by mass% with respect to the total mass of the wire, the balance is Fe and inevitable impurities, and the steel outer shell is a seamless pipe. High yield strength, high toughness, flux-cored wire for gas shielded arc welding.
Ceq. = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Mo%] / 4+ [W%] / 8 (1)
Aleq. = [Al%] + [Mg%] + [Ti%] / 10% + ([Si%] + [Mn%]) / 30 (2)
Nbeq. = [Nb%] + [V%] / 5+ [Mo%] / 20+ [W%] / 10+ [Ta%] / 5 (3)
However, the above [C%], [Mn%], [Si%], [Ni%], [Mo%], [W%], [Al%], [Mg%], [Ti%], [Nb] %], [V%], and [Ta%] are the contents of C, Mn, Si, Ni, Mo, W, Al, Mg, Ti, Nb, V, and Ta contained in the steel outer sheath and flux in the wire, respectively. The sum of mass% with respect to the total mass of the wire is shown.
(2) In the steel outer shell and flux, as a metal or an alloy, further, in a total of mass% with respect to the total mass of the wire,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Co: 0.01-6%, and
B: 0.001 to 0.015%,
1 or 2 or more, and the carbon equivalent (Ceq.) Represented by the following formula (4) is 0.7 to 2%: Yield strength high toughness flux cored wire for gas shielded arc welding.
Ceq. = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Cr%] / 5+ [Mo%] / 4+ [W%] / 8 (4)
However, the above [C%], [Mn%], [Si%], [Ni%], [Cr%], [Mo%] and [W%] are contained in the steel outer sheath and the flux in the wire, respectively. The total of the mass% with respect to the total mass of the wire of C, Mn, Si, Ni, Cr, Mo, and W is shown.
(3) In mass%,
Ca: 0.0002 to 0.01%, and
REM: 0.0002 to 0.01%
The deoxidizing element equivalent (Aleq.) Represented by the following formula (5) is 0.2 to 0.6%: The flux cored wire for high yield strength and toughness gas shielded arc welding as described in (2).
Aleq. = [Al%] + [Mg%] + [Ca%] + [REM%] / 5+ [Ti%] / 10% + ([Si%] + [Mn%]) / 30 (5)
However, the above [Al%], [Mg%], [Ca%], [REM%], [Ti], [Si], and [Mn] are Al contained in the steel outer sheath and flux in the wire, respectively. The total of the mass% with respect to the wire total mass of Mg, Ca, REM, Ti, Si, and Mn is shown.
(4) The flux-cored wire according to any one of the above (1) to (3) is a heating temperature of 600 to 1100 ° C. after the flux is filled in the steel outer shell, or during or after wire drawing. A flux cored wire for high yield strength, high toughness, gas shielded arc welding, characterized by being annealed with.

本発明によれば、引張強度が950MPa級以上の高張力鋼板におけるMIG溶接、MAG溶接(Ar+CO2溶接あるいはCO2溶接)等に用いられるガスシールドアーク溶接用ワイヤとして、ソリッドワイヤに比べて生産性に優れたフラックスワイヤであって、引張強さTSが1200MPa以上で、降伏強度YPが1000MPa以上で、かつ、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE-40が27J以上の溶接金属を達成でき、かつ、かつ溶接金属のy型溶接割れ試験における低温割れ停止温度が150℃以下の耐低温割れを実現できる、フラックス入りワイヤを提供することが可能であり、産業上の効果は極めて大きい。 According to the present invention, as a wire for gas shielded arc welding used for MIG welding, MAG welding (Ar + CO 2 welding or CO 2 welding), etc., in a high-tensile steel sheet having a tensile strength of 950 MPa or more, productivity is higher than that of a solid wire. Weld metal with a tensile strength TS of 1200 MPa or more, a yield strength YP of 1000 MPa or more, and an absorbed energy vE- 40 in a 2 mm V notch Charpy impact test at −40 ° C. of 27 J or more. In addition, it is possible to provide a flux-cored wire that can achieve low-temperature cracking resistance with a low-temperature cracking stop temperature in a y-type weld cracking test of a weld metal of 150 ° C. or lower. large.

以下に本発明の実施の形態について説明をする。
溶接金属は基本的に凝固まま組織であり、鋼板のように熱間圧延等による細粒化工程や組織全体の焼戻し処理工程により組織制御することができず、明確な降伏現象を示さないため、引張強さの上昇に比例して降伏応力を高めることが困難である。
Embodiments of the present invention will be described below.
Since the weld metal is basically a solidified structure, it cannot be controlled by the fine graining process such as hot rolling or the tempering process of the entire structure like a steel sheet, and does not show a clear yield phenomenon. It is difficult to increase the yield stress in proportion to the increase in tensile strength.

引張強さTSが1200MPa以上の溶接金属は、合金元素の添加により焼入れ性を高めてマルテンサイト単相の硬質組織とすることで実現できる。しかし、溶接金属中のマルテンサイト主体組織の生成に起因して、降伏応力YPと靭性vE-40を低下させる原因となる可動転位密度が増加し、また、靭性vE-40を低下させる原因となる溶接金属中の残留オーステナイトの生成する。このため、従来の引張強さTSが1200MPa以上の溶接金属では、降伏強度YPが1000MPa以上で、かつ−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE-40が27J以上の溶接金属を実現することはできなかった。 A weld metal having a tensile strength TS of 1200 MPa or more can be realized by increasing the hardenability by adding an alloy element to form a martensite single-phase hard structure. However, due to the formation of the martensite main structure in the weld metal, the movable dislocation density that causes the yield stress YP and the toughness vE- 40 to decrease increases, and the toughness vE- 40 decreases. Residual austenite is generated in the weld metal. Therefore, a conventional weld metal with a tensile strength TS of 1200 MPa or more realizes a weld metal with a yield strength YP of 1000 MPa or more and an absorbed energy vE- 40 of 27 J or more in a 2 mm V notch Charpy impact test at −40 ° C. I couldn't.

この高強度の溶接金属の組織に起因した技術的課題に対して、本発明者らは、強度と靭性を確保するために有効なNiと、強度の確保に有効なその他の焼入れ元素を所定量添加し、さらに、析出物形成元素で、かつフェライト生成元素であるMo、W、Nb、V、及び、Taの1種以上を選択的に添加し、炭窒化物の析出により可動転位密度の移動をピン止めし、かつ残留オーステナイトの生成を抑制し、溶接金属の引張強さTSを維持しつつ、降伏強度YPと靭性vE-40を向上させることが可能なソリッドワイヤを開発した(特許文献2、参照)。本発明も、これらのワイヤ成分設計上の技術思想を利用する。 In response to technical problems caused by the structure of this high-strength weld metal, the inventors have determined a predetermined amount of Ni effective for ensuring strength and toughness and other quenching elements effective for ensuring strength. In addition, one or more of Mo, W, Nb, V, and Ta, which are precipitate forming elements and ferrite forming elements, are selectively added, and the dislocation density shifts by precipitation of carbonitrides. A solid wire was developed that can improve yield strength YP and toughness vE- 40 while maintaining the tensile strength TS of the weld metal while suppressing the formation of retained austenite (Patent Document 2). ,reference). The present invention also utilizes these technical ideas for designing wire components.

このソリッドワイヤによれば、高張力鋼板のガスシールドアーク溶接の際に、引張強さTSが1200MPa以上、降伏応力YPが1000MPa以上で、かつ−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE-40が27J以上の溶接金属を得ることが可能となるが、ワイヤの生産性の点で以下の問題があった。 According to this solid wire, during gas shielded arc welding of a high-strength steel sheet, the absorbed energy vE by a 2 mmV notch Charpy impact test at −40 ° C. when the tensile strength TS is 1200 MPa or more, the yield stress YP is 1000 MPa or more. Although it becomes possible to obtain a weld metal having -40 of 27 J or more, there are the following problems in terms of wire productivity.

つまり、上記成分組成のソリッドワイヤを製造する場合には、素材中に含有する多量の合金元素に起因して素材強度が高くなり、さらに、伸線時の加工硬化も加わって、冷間での伸線工程において断線の発生頻度が増加しやすくなる。このため、冷間での伸線を良好に行うためには、素材を軟質化するための焼鈍処理を繰り返し行う必要があり、ワイヤ生産性の低下や製造コストの増大を招く原因となる。   In other words, when manufacturing a solid wire with the above composition, the strength of the material is increased due to the large amount of alloying elements contained in the material, and further, work hardening during wire drawing is added, so In the wire drawing process, the frequency of occurrence of disconnection tends to increase. For this reason, in order to perform cold wire | line drawing favorably, it is necessary to repeat the annealing process for softening a raw material, and causes a fall of wire productivity and an increase in manufacturing cost.

そこで、本発明者らは、上記技術思想の基に成分設計した高強度ソリッドワイヤの製造上の問題点に鑑みて、フラックス入りワイヤを採用し、その鋼製外皮中の焼入性元素を高めずに、焼入性元素は外皮内に充填されるフラックス中に金属または合金として多く含有させることで、ソリッドワイヤに比べてワイヤの生産性を向上させることを前提し、このワイヤの設計上の検討を行った。   In view of the problems in manufacturing a high-strength solid wire that has been designed based on the above technical idea, the present inventors have adopted a flux-cored wire and increased the hardenability element in the steel outer sheath. In the design of this wire, it is assumed that hardenable elements are contained in the flux filled in the outer shell as a metal or an alloy, thereby improving the productivity of the wire compared to the solid wire. Study was carried out.

その結果、フラックス入りワイヤの鋼製外皮内に充填するフラックスとして、焼入れ元素を金属または合金の粉末状態で多量に含有させる場合には、ソリッドワイヤでは問題とならない、以下に示すような酸素含有量及び水素含有量の増加に起因する、溶接金属の靭性及び延性の低下や、低温割れの発生の新たな問題が生じることを確認した。   As a result, when a large amount of quenching element is contained in the powder state of a metal or alloy as a flux to be filled in the steel sheath of the flux-cored wire, the oxygen content as shown below is not a problem with a solid wire. In addition, it was confirmed that new problems such as a decrease in the toughness and ductility of weld metal and the occurrence of cold cracking due to an increase in hydrogen content occurred.

つまり、フラックス入りワイヤを製造する場合には、ソリッドワイヤにはない、フラックス配合、造粒工程が必要となる。この際、引張強さTSが1200MPa以上の溶接金属を達成するために必要となる焼入れ元素を、フラックス中に金属または合金の粉末状態で多量に配合した場合には、金属または合金の微粉粒子表面に酸化物を形成し、または、金属または合金の粉末中に酸素分子または原子で吸着することにより、ソリッドワイヤに比べてワイヤ中の酸素含有量が増加しやすくなる。   That is, when manufacturing a flux-cored wire, a flux blending and granulating step not required for a solid wire is required. At this time, when a large amount of a quenching element necessary for achieving a weld metal having a tensile strength TS of 1200 MPa or more is mixed in the powder in a metal or alloy powder state, the surface of fine metal particles of the metal or alloy By forming an oxide in the metal or adsorbing with oxygen molecules or atoms in a metal or alloy powder, the oxygen content in the wire is likely to increase as compared with a solid wire.

また、フラックス配合、造粒工程、さらに、ワイヤ製造後の保管期間に、金属または合金の粉末が大気中の水分を吸湿するため、ソリッドワイヤに比べてワイヤ中の水素含有量の増加が顕著となる。   In addition, during the blending and granulation process of the flux, and during the storage period after manufacturing the wire, the metal or alloy powder absorbs moisture in the atmosphere, so the increase in hydrogen content in the wire is significant compared to solid wire. Become.

本発明者らは、特に引張強さTSが1200MPa以上の溶接金属では、靭性及び延性の許容範囲が狭く、また、低温割れ感受性が極めて大きくなるため、溶接時に溶接金属中の酸素量が増加すると靭性及び延性は大きく低下し、拡散性水素が増加すると低温割れの発生を招くことを確認している。   The present inventors, in particular, have a weld metal with a tensile strength TS of 1200 MPa or more, and the allowable ranges of toughness and ductility are narrow, and the sensitivity to cold cracking is extremely high, so that the amount of oxygen in the weld metal increases during welding. It has been confirmed that toughness and ductility are greatly reduced, and cold cracking occurs when diffusible hydrogen increases.

本発明は、このワイヤ中の酸素及び拡散性水素に関する技術的課題に対して、フラックス入りワイヤの鋼製外皮をシームレスパイプとし、鋼製外皮からフラックス中への大気中の酸素、水分の侵入を防止するとともに、ワイヤ中に脱酸元素であるSi、Mn、Al、Ti、Mgを適正量含有させ、かつ上記(2)式で示される脱酸元素当量(Aleq.)を所定範囲にすることにより、溶接時の溶接金属中の酸素及び拡散性水素に起因する溶接金属の靭性及び延性の低下や、低温割れの発生を防止することを技術思想とする。   In the present invention, in response to the technical problem related to oxygen and diffusible hydrogen in the wire, the steel outer sheath of the flux-cored wire is used as a seamless pipe, and oxygen and water intrusion into the flux from the steel outer sheath is prevented. In addition to preventing, an appropriate amount of deoxidizing elements such as Si, Mn, Al, Ti, and Mg is contained in the wire, and the deoxidizing element equivalent (Aleq.) Expressed by the above formula (2) is within a predetermined range. Therefore, the technical idea is to prevent the deterioration of the toughness and ductility of the weld metal and the occurrence of cold cracking due to oxygen and diffusible hydrogen in the weld metal during welding.

なお、本発明の目的とする高強度鋼用の溶接金属においては、溶接金属の合金元素量および硬さが鋼材の熱影響部や母材よりも高くなるため、低温割れが生じる場合は鋼材側ではなく、溶接金属で生じる。そのため、溶接金属の低温割れ感受性は、y型溶接割れ試験における割れ停止温度により相対的に比較評価することができる。   In the weld metal for high-strength steel that is the object of the present invention, the alloy element amount and hardness of the weld metal are higher than the heat-affected zone and the base material of the steel material. But not with weld metal. Therefore, the low temperature cracking susceptibility of the weld metal can be relatively compared and evaluated by the crack stop temperature in the y-type weld cracking test.

以下に、本発明のフラックス入りワイヤの特徴とする技術要件の限定理由について説明する。   The reason for limiting the technical requirements that characterize the flux-cored wire of the present invention will be described below.

先ず、フラックス入りワイヤを構成する鋼製外皮およびフラックス中に金属または合金として含有する成分およびその含有量の限定理由について説明する。   First, a description will be given of the components contained as a metal or alloy in the steel outer shell and the flux constituting the flux-cored wire, and the reasons for limiting the content thereof.

なお、以下に示す各成分の含有量は、鋼製外皮およびフラックスをそれぞれ成分分析して測定された鋼製外皮中の成分含有量およびフラックス中の成分含有量と、フラックスの充填率(ワイヤ全質量に対するフラックス全質量の質量%)を基に、下記(6)式により求めることができる。
ワイヤ中の成分iの含有量の合計(質量%)=鋼製外皮中の成分iの含有量(質量%)×(1−充填率)+フラックス中の成分iの含有量(質量%)×充填率・・・(6)
なお、上記フラックス全質量は、金属または合金として添加する元素の他に、スラグ形成剤およびアーク安定剤を含んだフラックス中の成分含有量の合計量を意味する。また、フラックス中の成分含有量とは、フラックス全質量に対する、溶接金属組成に寄与する金属、合金中の元素量の割合を意味する。
In addition, the content of each component shown below includes the component content in the steel sheath and the component content in the flux measured by component analysis of the steel sheath and the flux, and the filling rate of the flux (total wire Based on (mass% of the total mass of the flux with respect to the mass)), it can be obtained by the following equation (6).
Total content (% by mass) of component i in wire = content (% by mass) of component i in steel outer sheath × (1−filling rate) + content (% by mass) of component i in flux × Filling ratio (6)
In addition, the said flux total mass means the total amount of the component content in the flux containing the slag formation agent and the arc stabilizer other than the element added as a metal or an alloy. Moreover, the component content in a flux means the ratio of the element amount in the metal and alloy which contribute to a weld metal composition with respect to the flux total mass.

また、上記の計算方法を用いず、フラックス入りワイヤ製造工程で、伸線したフラックス入りワイヤから採取し、成分分析により測定することでも上記各成分の含有量を測定することができる。   Moreover, it is possible to measure the content of each of the above components by using a flux-cored wire manufacturing process and collecting from the drawn flux-cored wire and measuring by component analysis without using the above calculation method.

また、以下の説明において、「%」は特に説明がない限り、「質量%」を意味し、各成分の含有量は、上記で説明した、ワイヤ全質量に対する鋼製外皮およびフラックス中の各成分の質量%の合計となる成分含有量を意味するものとする。   In the following description, “%” means “% by mass” unless otherwise specified, and the content of each component is as described above for each component in the steel outer sheath and flux with respect to the total mass of the wire. It means the component content that is the total of the mass%.

(C:0.08〜0.3%)
Cは、強度を向上させる元素であり、溶接金属の降伏強度を1000MPa以上とするためには、溶接ワイヤ中に0.08%以上含有させる必要がある。
(C: 0.08 to 0.3%)
C is an element that improves the strength, and in order to make the yield strength of the weld metal 1000 MPa or more, it is necessary to contain 0.08% or more in the welding wire.

溶接ワイヤ中のC含有量は多いほど溶接金属中のC含有量も増加し、溶接金属の強度を高める上で好ましいが、靱性の劣化が著しくなる。また、溶接金属の高温割れ、低温割れともに感受性が著しく高まる。靱性と耐割れ性を確保するためには溶接ワイヤのC含有量の上限を0.3%とする必要がある。   The higher the C content in the welding wire, the higher the C content in the weld metal, which is preferable for increasing the strength of the weld metal, but the toughness is significantly deteriorated. In addition, the sensitivity of both weld metal hot cracks and cold cracks is significantly increased. In order to ensure toughness and crack resistance, the upper limit of the C content of the welding wire needs to be 0.3%.

これらの理由から、本発明においては溶接ワイヤ中のC含有量は0.08〜0.3%とする。   For these reasons, the C content in the welding wire is 0.08 to 0.3% in the present invention.

(Si:0.2〜2%)
Siは、脱酸元素であり、溶接金属のO量を低減して清浄度を高めるために必要である。そのためには溶接ワイヤ中の含有量で最低限0.2%以上必要である。ただし、溶接ワイヤ中の含有量が2%を超えて過剰になると、溶接金属の靱性を著しく劣化させるため、本発明においては溶接ワイヤ中のSi含有量は0.2〜2%とする。
(Si: 0.2-2%)
Si is a deoxidizing element and is necessary to reduce the amount of O in the weld metal and increase the cleanliness. For that purpose, the content in the welding wire needs to be at least 0.2%. However, if the content in the welding wire exceeds 2% and becomes excessive, the toughness of the weld metal is remarkably deteriorated. Therefore, in the present invention, the Si content in the welding wire is set to 0.2 to 2%.

(Mn:0.5〜2.5%)
Mnは、焼入性を確保して強度を高めるために必須の元素である。強度向上効果を確実に発揮するためには、0.5%以上溶接ワイヤに含有させる必要がある。一方、溶接ワイヤに2.5%以上含有させると、残留オーステナイトが過剰に生成して降伏強度が含有量の割に向上しない上、粒界脆化感受性が増加して溶接金属の靱性劣化、耐溶接割れ性劣化の可能性が高くなるため、本発明においては、溶接ワイヤ中のMn含有量は0.5〜2.5%に限定する。
(Mn: 0.5-2.5%)
Mn is an essential element for ensuring hardenability and increasing strength. In order to exhibit the strength improvement effect reliably, it is necessary to make it contain 0.5% or more in a welding wire. On the other hand, if the content is 2.5% or more in the welding wire, the retained austenite is excessively generated and the yield strength does not improve relative to the content. In the present invention, the Mn content in the welding wire is limited to 0.5 to 2.5% because the possibility of weld cracking deterioration increases.

(P:0.02%以下)
Pは不純物元素であり、靱性を阻害するため極力低減する必要があるが、溶接ワイヤ中の含有量が0.02%以下では靱性への悪影響が許容できるため、本発明では溶接ワイヤ中のP含有量は0.02%以下とする。
(P: 0.02% or less)
P is an impurity element and needs to be reduced as much as possible to inhibit toughness. However, if the content in the welding wire is 0.02% or less, adverse effects on toughness can be tolerated. Therefore, in the present invention, P in the welding wire is acceptable. The content is 0.02% or less.

(S:0.01%以下)
Sも不純物元素であり、溶接金属中に過大に存在すると靱性と延性とをともに劣化させるため、極力低減することが好ましい。溶接ワイヤ中の含有量が0.01%以下では靱性、延性への悪影響が許容できるため、本発明では溶接ワイヤ中のS含有量は0.01%以下とする。降伏強度が1100MPa以上となるような、特に高強度の溶接金属においては、Sの延性、靭性への悪影響がより顕著に表れるため、溶接ワイヤ中の含有量を0.005%以下にする方がより好ましい。
(S: 0.01% or less)
S is also an impurity element, and if it is excessively present in the weld metal, it deteriorates both toughness and ductility, so it is preferable to reduce it as much as possible. If the content in the welding wire is 0.01% or less, adverse effects on toughness and ductility can be tolerated. Therefore, in the present invention, the S content in the welding wire is 0.01% or less. In particularly high-strength weld metals with a yield strength of 1100 MPa or more, the adverse effect on ductility and toughness of S is more prominent, so the content in the welding wire should be 0.005% or less. More preferred.

(Al:0.002〜0.3%)
Alは脱酸元素であり、Siと同様、溶接金属中のO低減、清浄度向上に効果があり、本発明のフラックス入りワイヤにおいて溶接金属中のO量を許容範囲内とするためには必須の元素である。効果を発揮するためには溶接ワイヤ中に0.002%以上含有させる必要がある。一方、溶接ワイヤ中に0.3%を超えて過剰に含有させると、溶接金属中に粗大な酸化物を形成して、この粗大酸化物が靱性を著しく劣化させるため、好ましくない。
従って、本発明においては、溶接ワイヤ中のAl含有量を0.002〜0.3%とする。
(Al: 0.002-0.3%)
Al is a deoxidizing element and, like Si, is effective in reducing O and improving cleanliness in the weld metal, and is essential for keeping the O content in the weld metal within the allowable range in the flux-cored wire of the present invention. Elements. In order to exert the effect, it is necessary to contain 0.002% or more in the welding wire. On the other hand, if the content exceeds 0.3% in the welding wire, a coarse oxide is formed in the weld metal, and this coarse oxide significantly deteriorates toughness.
Therefore, in this invention, Al content in a welding wire shall be 0.002-0.3%.

(Ti:0.005〜0.3%)
TiもAlと同様、脱酸元素として有効であり、本発明のフラックス入りワイヤにおいて溶接金属中のO量を許容範囲内とするためには必須の元素である。さらに、固溶Nを固定して固溶Nの靱性への悪影響を緩和できるため、また、さらにはTiNを形成して多層盛溶接において再加熱される領域で加熱オーステナイト粒径を微細化するため、靭性向上にも有効である。これら効果を発揮させるためには、0.005%以上溶接ワイヤ中に含有させる必要がある。ただし、溶接ワイヤ中の含有量が0.3%を超えて過剰になると、粗大な酸化物の形成に起因した靱性劣化、過度な析出強化による靱性劣化が生じる可能性が大となる。
(Ti: 0.005-0.3%)
Ti, like Al, is effective as a deoxidizing element, and is an essential element for keeping the amount of O in the weld metal within the allowable range in the flux-cored wire of the present invention. Furthermore, the solid solution N can be fixed to alleviate the adverse effect on the toughness of the solid solution N, and further, the heated austenite grain size can be refined in a region where TiN is formed and reheated in multi-layer welding. It is also effective in improving toughness. In order to exert these effects, it is necessary to contain 0.005% or more in the welding wire. However, if the content in the welding wire exceeds 0.3% and becomes excessive, there is a high possibility that toughness deterioration due to the formation of coarse oxides and toughness deterioration due to excessive precipitation strengthening will occur.

このため、本発明においては、溶接ワイヤ中のTi含有量を0.005〜0.3%とする。   For this reason, in this invention, Ti content in a welding wire shall be 0.005-0.3%.

(Ni:0.5〜11%)
Niは固溶靱化により組織、成分によらず靱性を向上できる唯一の元素であり、特に、降伏強度が1000MPa以上の高強度の溶接金属で靱性を高めるには必須の元素である。固溶靱化効果を確実に発揮するためには溶接ワイヤ中に0.5%以上含有させる必要がある。Ni含有量が多いほど靱性を向上する上で有利であるが、溶接ワイヤ中の含有量が11%を超えると、該効果が飽和するのと、残留オーステナイトが過剰に生成して降伏強度が含有量の割に向上しない上、溶接ワイヤの製造コストが過大となるため、好ましくない。そのため、本発明においては、溶接ワイヤ中のNi含有量を0.5〜11%に限定する。
(Ni: 0.5-11%)
Ni is the only element that can improve toughness regardless of the structure and components by solid solution toughening. In particular, Ni is an essential element for increasing toughness with a high strength weld metal having a yield strength of 1000 MPa or more. In order to reliably exhibit the solid solution toughening effect, it is necessary to contain 0.5% or more in the welding wire. The higher the Ni content, the more advantageous in improving toughness. However, if the content in the welding wire exceeds 11%, the effect is saturated, and residual austenite is generated excessively, resulting in yield strength. This is not preferable because the manufacturing cost of the welding wire becomes excessive as well as the amount is not improved. Therefore, in this invention, Ni content in a welding wire is limited to 0.5 to 11%.

(Mg:0.012〜0.5%)
Mgは強脱酸元素であり、Si、Mn、AlおよびTiと複合添加し、溶接金属中のO量を低減し、溶接金属の延性及び靭性を向上させるために必須な元素であり、この効果を発揮するためには溶接ワイヤ中に0.012%以上含有させる必要がある。
(Mg: 0.012-0.5%)
Mg is a strong deoxidizing element, and is an element essential for adding in combination with Si, Mn, Al and Ti, reducing the amount of O in the weld metal, and improving the ductility and toughness of the weld metal. In order to exhibit the above, it is necessary to contain 0.012% or more in the welding wire.

また、Mgは、AlやCaなどの強脱酸元素に比べて、溶接金属中で微細酸化物を均一に分散させることができるため、Mgを比較的多く含有させても、粗大酸化物の形成による溶接金属の靭性の低下はない。しかし、溶接ワイヤ中のMg含有量が0.5%を超えると、溶接金属中での粗大酸化物の形成による靭性低下が無視できなくなり、また、溶接中のアークの安定性が劣化し、ビード形状を悪化させる原因にもなる。このため、本発明においては、溶接ワイヤ中のMg含有量を0.012〜0.5%に限定する。   In addition, Mg can uniformly disperse fine oxides in the weld metal compared to strong deoxidation elements such as Al and Ca. Therefore, even if a relatively large amount of Mg is contained, formation of coarse oxides is possible. There is no decrease in the toughness of the weld metal due to. However, if the Mg content in the welding wire exceeds 0.5%, the reduction in toughness due to the formation of coarse oxides in the weld metal cannot be ignored, and the stability of the arc during welding deteriorates, resulting in beading. It also causes the shape to deteriorate. For this reason, in this invention, Mg content in a welding wire is limited to 0.012-0.5%.

また、本発明では、Mgによる微細酸化物の均一分散による作用を利用し、溶接金属の靭性を向上するために、好ましくは、Mgを0.02〜0.5%含有させた上で、Al、Tiなどのその他の脱酸元素を補完的に用いることが好ましい。   Further, in the present invention, in order to improve the toughness of the weld metal by utilizing the action of uniform dispersion of fine oxides by Mg, preferably, Mg is contained in an amount of 0.02 to 0.5%. It is preferable to supplementarily use other deoxidizing elements such as Ti.

本発明では、以上の成分に加えて、Mo、W、Nb、V、および、Taの1種または2種以上を以下の含有量の範囲で選択的に添加する必要がある。これらの元素は何れもフェライト安定化元素で、かつ析出強化元素である点で共通の作用を有し、溶接金属中で炭窒化物を析出し、マルテンサイト主体組織の可動転位密度の移動をピン止めすることにより降伏強度と靭性を向上させ、かつ残留オーステナイトの生成を抑制することにより靭性を向上させるために非常に有効な元素である。   In the present invention, in addition to the above components, it is necessary to selectively add one or more of Mo, W, Nb, V, and Ta within the following content range. All of these elements have a common effect in that they are ferrite stabilizing elements and precipitation strengthening elements, and carbonitride is precipitated in the weld metal, and the movement of the mobile dislocation density in the martensite main structure is pinned. It is an extremely effective element for improving yield strength and toughness by stopping and improving toughness by suppressing the formation of retained austenite.

(Mo:0.1〜4%)
Moは、焼入性向上元素であるが、かつ、フェライト安定化元素であるために残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により降伏強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.1%必要である。一方、4%を超えて溶接ワイヤ中に含有させると、粗大な析出物が生じて溶接金属の靭性を劣化させるため、本発明においては、溶接ワイヤ中にMoを含有させる場合の含有量は0.1〜4%とする。
(Mo: 0.1 to 4%)
Mo is a hardenability improving element and is effective in reducing retained austenite because it is a ferrite stabilizing element, and is effective in securing yield strength by forming fine carbides and precipitation strengthening. In order to exert these effects, at least 0.1% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if the content exceeds 4% in the welding wire, coarse precipitates are generated and the toughness of the weld metal is deteriorated. Therefore, in the present invention, the content when Mo is contained in the welding wire is 0. .1 to 4%.

(W:0.1〜3%)
Wも、Moとほぼ同様、焼入性向上元素であるが、かつ、フェライト安定化元素であるために残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により降伏強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.1%必要である。一方、3%を超えて溶接ワイヤ中に含有させると、靭性劣化が著しくなるため、本発明においては、溶接ワイヤ中にWを含有させる場合の含有量は0.1〜3%とする。
(W: 0.1-3%)
W, like Mo, is a hardenability-improving element and is effective in reducing retained austenite because it is a ferrite-stabilizing element. Also, it forms fine carbides and ensures yield strength by precipitation strengthening. It is effective for. In order to exert these effects, at least 0.1% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if the content exceeds 3% in the welding wire, the toughness deteriorates significantly. Therefore, in the present invention, the content in the case where W is contained in the welding wire is 0.1 to 3%.

(Nb:0.005〜0.1%)
Nbもフェライト安定化元素であり、残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により降伏強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.005%必要である。一方、0.1%を超えて溶接ワイヤ中に含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にNbを含有させる場合の含有量は0.005〜0.1%とする。
(Nb: 0.005 to 0.1%)
Nb is also a ferrite stabilizing element, and is effective in reducing retained austenite, and is effective in securing yield strength by forming fine carbides and strengthening precipitation. In order to exert these effects, a minimum of 0.005% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if it exceeds 0.1%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate toughness. Therefore, in the present invention, the content when Nb is contained in the welding wire is 0.005 to 0.1%.

(V:0.005〜0.5%)
Vもフェライト安定化元素であり、残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により降伏強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.005%必要である。一方、0.5%を超えて溶接ワイヤ中に含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にVを含有させる場合の含有量は0.005〜0.5%とする。
(V: 0.005-0.5%)
V is also a ferrite stabilizing element and is effective in reducing retained austenite, and is effective in securing yield strength by forming fine carbides and strengthening precipitation. In order to exert these effects, a minimum of 0.005% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if it exceeds 0.5%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate the toughness. Therefore, in the present invention, the content when V is contained in the welding wire is 0.005 to 0.5%.

(Ta:0.005〜0.5%)
Taもフェライト安定化元素であり、残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により降伏強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.005%必要である。一方、0.5%を超えて溶接ワイヤ中に含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にTaを含有させる場合の含有量は0.005〜0.5%とする。
(Ta: 0.005 to 0.5%)
Ta is also a ferrite stabilizing element, and is effective in reducing retained austenite, and is effective in securing yield strength by forming fine carbides and strengthening precipitation. In order to exert these effects, a minimum of 0.005% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if it exceeds 0.5%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate the toughness. Therefore, in this invention, content in the case of containing Ta in a welding wire shall be 0.005-0.5%.

本発明では、目的とする溶接金属の引張強さTS(1200MPa以上)、降伏強度YP(1000MPa以上)、靭性(−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE-40で27J以上)を達成するために、以上の成分をそれぞれの含有量の規定範囲内で添加する際に、上記(1)式で示される溶接金属の焼入性を示す炭素当量(Ceq.)、上記(2)式で示される脱酸元素による脱酸効果の指標であるAl当量(Aleq.)、および、上記(3)式で示される析出物による降伏応力向上効果の指標であるNb当量(Nbeq.)を合わせて限定する必要がある。 In the present invention, the target weld metal has tensile strength TS (1200 MPa or more), yield strength YP (1000 MPa or more), and toughness (absorbed energy vE- 40 of 27 J or more in a 2 mmV notch Charpy impact test at −40 ° C.). In order to achieve the above, when the above components are added within the specified ranges of the respective contents, the carbon equivalent (Ceq.) Indicating the hardenability of the weld metal represented by the above formula (1), the above (2) Al equivalent (Aleq.) Which is an index of the deoxidation effect by the deoxidizing element represented by the formula, and Nb equivalent (Nbeq.) Which is an index of the yield stress improvement effect by the precipitate represented by the above formula (3). It is necessary to limit together.

(炭素当量(Ceq.):0.7〜2%)
溶接金属において、引張強さTSを1200MPa以上で、かつ降伏強度を1000MPa以上に向上するためには、溶接金属の焼入性を確保して溶接金属の変態組織を基本的にはマルテンサイト単相組織とする必要がある。わずかなベイナイト組織の生成は許容されるが、マルテンサイトの割合が90%以上のマルテンサイト主体組織とする必要がある。
(Carbon equivalent (Ceq.): 0.7-2%)
In the weld metal, in order to improve the tensile strength TS to 1200 MPa and yield strength to 1000 MPa or more, the hardened property of the weld metal is ensured and the transformation structure of the weld metal is basically a martensite single phase. It needs to be an organization. Although a slight bainite structure is allowed to be generated, it is necessary to make a martensite-based structure having a martensite ratio of 90% or more.

そのためには溶接ワイヤ中のそれぞれの元素の上記含有量の範囲内に限定した上で、さらに、溶接ワイヤの焼入れ成分である、C、Si、Mn、Ni、Cr、Mo、Wの含有量に基づき、上記(2)式で示される焼入性の指標としての炭素当量(Ceq.)を0.7%以上とする必要がある。該炭素当量が大きいほど安定した焼入性が確保できるが、2%を超えて過剰になると、引張強度の上昇は飽和する上、残留オーステナイトの生成等により降伏強度は逆に減少する場合もあり、また靭性も劣化するため好ましくない。   For this purpose, the content of each element in the welding wire is limited to the above-described range, and further, the content of C, Si, Mn, Ni, Cr, Mo, and W, which are quenching components of the welding wire, is reduced. Based on this, it is necessary to set the carbon equivalent (Ceq.) As an index of hardenability represented by the above formula (2) to 0.7% or more. The larger the carbon equivalent, the more stable hardenability can be secured, but if it exceeds 2%, the increase in tensile strength will be saturated, and the yield strength may decrease due to the formation of retained austenite. Moreover, since toughness deteriorates, it is not preferable.

以上の理由により、本発明においては、溶接ワイヤの炭素当量(Ceq.)を0.7〜2%に限定する。   For the above reasons, in the present invention, the carbon equivalent (Ceq.) Of the welding wire is limited to 0.7 to 2%.

(脱酸元素当量(Aleq.):0.2〜0.6%)
上記(2)式で示される脱酸元素当量(Aleq.)は溶接金属における脱酸の効果をAl当量で表した実験データに基づく指標である。本発明の目的とする、引張強度が1200MPa以上、かつ降伏強度が1000MPa以上の高強度溶接金属において、溶接金属中のO量に起因する延性や靭性を劣化させずに、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE-40で27J以上の靭性を確保するためには、溶接金属中のO量を一定以下に抑制する必要がある。
(Deoxidizing element equivalent (Aleq.): 0.2 to 0.6%)
The deoxidation element equivalent (Aleq.) Represented by the above formula (2) is an index based on experimental data in which the effect of deoxidation in the weld metal is expressed in terms of Al equivalent. In a high strength weld metal having a tensile strength of 1200 MPa or more and a yield strength of 1000 MPa or more, which is an object of the present invention, 2 mmV at −40 ° C. without deteriorating ductility and toughness due to the amount of O in the weld metal. In order to ensure a toughness of 27 J or more with the absorbed energy vE- 40 in the notch Charpy impact test, it is necessary to suppress the amount of O in the weld metal below a certain level.

図1に、Ceq.:0.8〜0.85%、Nbeq.:0.1〜0.2%、Aleq.:0.06〜0.96の範囲にある外径1.2mmのフラックス入りワイヤを用いて、表1に示す板厚16mmの鋼板S2を、入熱1.7kJ/mmでAr+20%COのガスシールドアーク溶接を行った場合の、フラックス入りワイヤのAleq.と溶接金属の靭性vE-40との関係を示す。 In FIG. : 0.8-0.85%, Nbeq. : 0.1-0.2%, Aleq. : Using a flux-cored wire having an outer diameter of 1.2 mm in the range of 0.06 to 0.96, a steel plate S2 having a plate thickness of 16 mm shown in Table 1 is heated to 1.7 kJ / mm and Ar + 20% CO 2 . When the gas shielded arc welding is performed, the flux-cored wire Aleq. And the toughness vE- 40 of the weld metal.

なお、溶接金属は、降伏強度YPが1080〜1150MPaのマルテンサイト主体組織からなる溶接金属組織であった。   The weld metal was a weld metal structure composed of a martensite main structure having a yield strength YP of 1080 to 1150 MPa.

フラックス入りワイヤ中に含有する、Al、Mg、Ti、Si、Mgの脱酸元素は、各元素によって脱酸力が異なり、また、脱酸により生成した酸化物のサイズや分散度も違いがあるが、図1に示すように、マルテンサイト組織主体の高強度溶接金属の靭性vE-40は、(2)式で示される脱酸元素当量(Aleq.)に大きく影響し、Aleq.が0.2〜0.6%のときに−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE-40が27J以上の良好な靭性が安定して得られることが判る。ワイヤ中のAleq.が0.2%未満の場合には、溶接金属中の脱酸効果および酸化物の均一微細分散の微細効果は十分発揮できず、十分な靭性向上が達成できない。一方、ワイヤ中のAleq.が0.6%を超えると、脱酸効果が飽和する上、粗大酸化物を形成して靭性にも悪影響を及ぼすため、靭性が低下するため好ましくない。 The deoxidizing elements of Al, Mg, Ti, Si, and Mg contained in the flux-cored wire have different deoxidizing powers depending on each element, and there are also differences in the size and degree of dispersion of the oxide generated by the deoxidation. However, as shown in FIG. 1, the toughness vE- 40 of the high-strength weld metal mainly composed of the martensite structure greatly affects the deoxidizing element equivalent (Aleq.) Represented by the formula (2). It can be seen that good toughness with an absorbed energy vE- 40 in a 2 mmV notch Charpy impact test at −40 ° C. of 27 J or more can be stably obtained when the content is 0.2 to 0.6%. Aleq. If it is less than 0.2%, the deoxidation effect in the weld metal and the fine effect of uniform fine dispersion of the oxide cannot be sufficiently exhibited, and sufficient improvement in toughness cannot be achieved. On the other hand, Aleq. If it exceeds 0.6%, the deoxidation effect is saturated, and a coarse oxide is formed to adversely affect the toughness.

これらの理由から、本発明は、Si、Mn、Al、Ti、Mgの脱酸元素をワイヤ中に添加する場合には、上述したそれぞれの脱酸元素の含有範囲内で、かつ、Aleq.が0.2〜06%の範囲となるように調整して添加する必要がある。   For these reasons, when adding deoxidation elements such as Si, Mn, Al, Ti, and Mg to the wire, the present invention is within the above-described content range of each deoxidation element, and Aleq. Needs to be adjusted so as to be in the range of 0.2 to 06%.

(Nb当量(Nbeq.):0.05〜0.5%)
Mo、W、Nb、V、および、Taの析出元素による降伏強度向上効果は、溶接金属中に析出した炭窒化物が応力付加時に移動する転位の抵抗になる効果と、マルテンサイト変態時に導入された可動転位上に析出して転位を固着する効果によるものと考えられる。
(Nb equivalent (Nbeq.): 0.05 to 0.5%)
The effect of improving the yield strength by the precipitation elements of Mo, W, Nb, V and Ta is introduced at the time of martensitic transformation and the effect of becoming the resistance of dislocations when the carbonitride precipitated in the weld metal moves when stress is applied. This is considered to be due to the effect of precipitation on the movable dislocation and fixing the dislocation.

これらの元素により、引張強度が1200MPa以上のマルテンサイト単相ないしは主体組織からなる溶接金属における降伏強度を1000MPa以上とするためには、上記(3)式で示されるNb当量を0.05%以上とする必要がある。Nb当量が0.05%未満であると、Mo、W、Nb、V、Taの各々の含有量が本発明で規定する範囲を満足していても、降伏強度向上の効果が十分に得られない。   With these elements, in order to make the yield strength in a martensitic single phase or weld metal consisting of a main structure having a tensile strength of 1200 MPa or more, 1000 MPa or more, the Nb equivalent represented by the above formula (3) is 0.05% or more. It is necessary to. If the Nb equivalent is less than 0.05%, the yield strength improvement effect can be sufficiently obtained even if the contents of Mo, W, Nb, V, and Ta satisfy the range defined in the present invention. Absent.

一方、Nb当量が0.5%超では、析出物が粗大化し、溶接金属の靭性が大きく劣化するため好ましくない。   On the other hand, if the Nb equivalent is more than 0.5%, the precipitates are coarsened and the toughness of the weld metal is greatly deteriorated.

これらの理由から、本発明においては、溶接ワイヤ組成のNb当量を0.05〜0.5%に限定する。   For these reasons, the Nb equivalent of the welding wire composition is limited to 0.05 to 0.5% in the present invention.

(フラックス中のスラグ形成剤及びアーク安定剤の含有量の合計≦20%)
フラックス中のスラグ形成剤及びアーク安定剤の含有量の合計が、ワイヤ全質量に対する質量%で20%を超えると、溶接時にスラグ量が過度に増加し、溶接作業性が阻害される。
(Total content of slag former and arc stabilizer in the flux ≦ 20%)
When the total content of the slag forming agent and the arc stabilizer in the flux exceeds 20% by mass% with respect to the total mass of the wire, the amount of slag is excessively increased during welding, and welding workability is hindered.

また、スラグ形成剤及びアーク安定剤は金属酸化物であり、スラグ形成剤及びアーク安定剤の増加により、溶接金属中のO量も増加する傾向があるため、溶接金属の靭性および延性の低下を抑制する点から好ましくない。   Moreover, since the slag forming agent and the arc stabilizer are metal oxides, and the amount of O in the weld metal tends to increase due to the increase in the slag forming agent and the arc stabilizer, the toughness and ductility of the weld metal are reduced. It is not preferable from the point of suppression.

これらの理由から、本発明では、フラックス中のスラグ形成剤及びアーク安定剤の含有量の合計を、ワイヤ全質量に対する質量%で20%以下に制限する。   For these reasons, in the present invention, the total content of the slag forming agent and the arc stabilizer in the flux is limited to 20% or less by mass% based on the total mass of the wire.

なお、スラグ形成剤とは、溶接ビード形状を良好に維持する作用を有する、TiO2、SiO2、ZrO2、Al23、MnO、FeO、CaO等を意味し、また、アーク安定剤とは、溶接時のアーク安定性を高める作用を有するNa2O、K2O等を意味するが、これ以外でも同様の効果を有する酸化物、化合物の含有を妨げるものではない。 Incidentally, the slag forming agent means TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , MnO, FeO, CaO, etc., which have an action of maintaining a good weld bead shape, and an arc stabilizer and Means Na 2 O, K 2 O, etc., which have the effect of increasing arc stability during welding, but other than this does not impede the inclusion of oxides and compounds having the same effect.

以上が本発明の溶接ワイヤの基本成分元素及び制限すべき不純物の含有量の限定理由であるが、本発明の目的とする溶接金属の基本特性を阻害しない範囲内で、特定の機械的性質の調整のために、必要に応じて、さらに、Cu、Cr、Co、および、Bのうちの1種または2種以上を以下の含有量の範囲で溶接ワイヤ中に含有させることができる。   The above is the reason for limiting the content of the basic component elements and impurities to be limited in the welding wire of the present invention, but within the range that does not hinder the basic characteristics of the weld metal intended by the present invention, For adjustment, if necessary, one or more of Cu, Cr, Co, and B can be further contained in the welding wire in the following content range.

(Cu:0.01〜1.5%)
Cuは溶接ワイヤがメッキされて使用される場合には不可避的にワイヤ及び溶接金属に含有される。Cuは強度向上には有効な元素であり、効果を発揮させるためには0.01%以上含有させる必要がある。ただし、過剰に含有されると、溶接金属の靭性の劣化や耐高温割れ性の劣化を招くため好ましくない。メッキとして含有される場合、あるいは強度向上のために意図的に含有する場合とも、溶接金属の靭性の劣化や耐高温割れ性の劣化を生じない上限として、本発明においては、ワイヤのCu含有量の上限は1.5%とする。なお、Cuについてはその含有量は外皮自体やフラックス中に含有されている分に加えて、ワイヤ表面のメッキ分も含む。
(Cu: 0.01 to 1.5%)
Cu is inevitably contained in the wire and the weld metal when the welding wire is plated and used. Cu is an element effective for improving the strength, and in order to exert the effect, it is necessary to contain 0.01% or more. However, if it is contained excessively, deterioration of the toughness and hot cracking resistance of the weld metal is not preferable. In the present invention, the Cu content of the wire is the upper limit that does not cause deterioration of the toughness or hot cracking resistance of the weld metal, even if it is contained as plating or intentionally contained for strength improvement. The upper limit is 1.5%. Note that the content of Cu includes not only the content of the outer skin itself and the flux, but also the amount of plating on the wire surface.

(Cr:0.01〜2%)
Crは、焼入性を高めることにより高強度化に有効元素である。そのために溶接ワイヤ中に含有させる場合は0.01%以上必要である。一方、2%を超えて過剰に含有させると、ベイナイトやマルテンサイトを不均一に硬化させ、靱性を著しく劣化させるため、本発明においては、溶接ワイヤ中の含有量の上限を2%とする。
(Cr: 0.01-2%)
Cr is an effective element for increasing strength by enhancing hardenability. Therefore, when it contains in a welding wire, 0.01% or more is required. On the other hand, if the content exceeds 2%, bainite and martensite are hardened unevenly and the toughness is remarkably deteriorated. Therefore, in the present invention, the upper limit of the content in the welding wire is set to 2%.

(Co:0.01〜6%)
Coは、ベイナイト〜マルテンサイト組織において、極端に変態点が低下することを抑制することで、強度の調整、残留オーステナイトの生成抑制を介した降伏強度の確保に有効な元素である。該効果を確実に発揮するためには溶接ワイヤ中に0.01%以上含有させる必要がある。一方、6%を超えて含有させても効果が飽和し、製造コストが過大となるため、本発明においては、溶接ワイヤにCoを含有させる場合はその範囲を0.01〜6%とする。
(Co: 0.01-6%)
Co is an element effective in securing the yield strength through the adjustment of the strength and the suppression of the formation of retained austenite by suppressing the extremely low transformation point in the bainite-martensite structure. In order to exhibit this effect reliably, it is necessary to make it contain 0.01% or more in a welding wire. On the other hand, if the content exceeds 6%, the effect is saturated and the manufacturing cost becomes excessive. Therefore, in the present invention, when Co is contained in the welding wire, the range is set to 0.01 to 6%.

(B:0.001〜0.015%)
Bは、溶接金属中に適正量含有させると、固溶Nと結びついてBNを形成して、固溶Nの靭性に対する悪影響を減じる効果があり、また、焼入性を高めて強度向上に寄与し得る元素である。これらの効果を確実に発揮するためには、溶接ワイヤ中のB含有量は0.001%以上必要である。一方、溶接ワイヤ中のB含有量が0.015%超になると、溶接金属中のBが過剰となり、粗大なBNやFe23(C、B)6等のB化合物を形成して靭性を逆に劣化させるため、好ましくない。そこで、本発明においては、溶接ワイヤにBを含有させる場合は、0.001〜0.015%に限定する。
(B: 0.001 to 0.015%)
When B is contained in an appropriate amount in the weld metal, it has the effect of reducing the adverse effect on the toughness of the solid solution N by combining with the solid solution N and contributing to the improvement of the strength by increasing the hardenability. It is an element that can. In order to exert these effects reliably, the B content in the welding wire needs to be 0.001% or more. On the other hand, when the B content in the welding wire exceeds 0.015%, the B in the weld metal becomes excessive, forming coarse B compounds such as BN and Fe23 (C, B) 6, and reverse toughness. Since it degrades, it is not preferable. Therefore, in the present invention, when B is contained in the welding wire, the content is limited to 0.001 to 0.015%.

なお、溶接ワイヤ中に上述の基本成分に加えて、上記のCu、Cr、CoおよびBの1種または2種以上を含有させる場合は、上記(4)式で示される焼入性指標の炭素当量Ceqが0.7未満では、溶接金像の引張強さTSが1200MPa以上とするための焼入性が十分に確保できず、炭素当量Ceqが2%を超えると、降伏応力YPおよび靭性が劣化するため好ましくない。このため、上記(4)式で示される炭素当量Ceqを0.7〜2%に限定するのがこのましい。   When the welding wire contains one or more of Cu, Cr, Co and B in addition to the basic components described above, carbon of the hardenability index represented by the above formula (4). If the equivalent Ceq is less than 0.7, the hardenability for the tensile strength TS of the weld metal image to be 1200 MPa or more cannot be sufficiently secured. If the carbon equivalent Ceq exceeds 2%, the yield stress YP and toughness are Since it deteriorates, it is not preferable. For this reason, it is preferable to limit the carbon equivalent Ceq represented by the above formula (4) to 0.7 to 2%.

本発明では、上記成分に加えて、さらに、溶接金属の延性、靭性を調整する目的で、必要に応じて、Ca、および、REMのうちの1種または2種を以下の範囲内でワイヤ中に含有させることができる。   In the present invention, in addition to the above components, one or two of Ca and REM may be added to the wire within the following ranges as necessary for the purpose of adjusting the ductility and toughness of the weld metal. Can be contained.

(Ca:0.0002〜0.01%、REM:0.0002〜0.01%)
Ca、REMはいずれも硫化物の構造を変化させ、また溶接金属中での硫化物、酸化物のサイズを微細化して延性及び靭性向上に有効である。その効果を発揮するための下限の含有量は、いずれも0.0002%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くため、また、溶接ビード形状の劣化、溶接性の劣化の可能性も生じるため、上限をいずれも0.01%とする。
(Ca: 0.0002 to 0.01%, REM: 0.0002 to 0.01%)
Both Ca and REM are effective in improving ductility and toughness by changing the structure of sulfides and reducing the size of sulfides and oxides in the weld metal. The lower limit content for exhibiting the effect is 0.0002%. On the other hand, excessive content causes coarsening of sulfides and oxides, leading to deterioration of ductility and toughness, and also may cause deterioration of weld bead shape and weldability. 0.01%.

溶接ワイヤ中に上記成分に加えて、上記のCa、および、REMの1種または2種を含有させる場合は、上記(5)式で示される脱酸元素当量(Aleq.)が0.02未満では、溶接金属中のO量の低減による延性および靭性の向上効果が少なくなる。一方、Aleq.が0.6%を超えると、溶接作業性やビード形状を悪化させる可能性が生じるため好ましくない。   When the welding wire contains one or two types of Ca and REM in addition to the above components, the deoxidizing element equivalent (Aleq.) Represented by the above formula (5) is less than 0.02. Then, the effect of improving ductility and toughness due to the reduction of the amount of O in the weld metal is reduced. On the other hand, Aleq. If it exceeds 0.6%, there is a possibility that the welding workability and the bead shape are deteriorated.

このため、上記のCa、および、REMの1種または2種を含有させる場合は、上記(5)式で示される脱酸元素当量(Aleq.)を0.02〜0.6%に限定するのが好ましい。   For this reason, when 1 type or 2 types of said Ca and REM are contained, the deoxidation element equivalent (Aleq.) Shown by said Formula (5) is limited to 0.02-0.6%. Is preferred.

本発明においては、上記基本成分、および、選択成分は、鋼製外皮およびフラックス中に含有させ、フラックス中に含有する場合には、Mgを除いて酸化物の形態で添加すると歩留まりが低くなるため、金属または合金の形態で添加するのが好ましい。ただし、Mgについては、酸化物でも純金属、合金と同等の効果を有するため、酸化物で含有させても構わない。   In the present invention, the basic component and the selected component are contained in the steel outer shell and the flux, and when contained in the flux, the yield is lowered when added in the form of an oxide except for Mg. It is preferable to add in the form of a metal or an alloy. However, since Mg has an effect equivalent to that of a pure metal or alloy even with an oxide, it may be contained with an oxide.

また、充填物の密度を一定以上に保つために、嵩増しのためにFe粉を含有させることもワイヤ全体としての化学組成が本発明を満足する限りは問題ない。   Moreover, in order to keep the density of the filling above a certain level, it is not a problem to include Fe powder for bulking as long as the chemical composition of the entire wire satisfies the present invention.

以上が本発明のフラックス入りワイヤの成分組成に関する限定理由であるが、本発明では、ワイヤ中の酸素含有量及び水素含有量を低減し、溶接金属の強靭及び延性の向上、さらに、溶接金属の低温割れを抑制するために、フラックス入りワイヤを構成する鋼製外皮をシームレスパイプとする必要がある。   The above is the reason for limiting the component composition of the flux-cored wire of the present invention. In the present invention, the oxygen content and hydrogen content in the wire are reduced, the weld metal is improved in toughness and ductility, and the weld metal In order to suppress cold cracking, it is necessary to make the steel outer shell constituting the flux-cored wire a seamless pipe.

鋼製外皮をシームレスパイプとすることにより、ワイヤ保管時の鋼製外皮からフラックスへの大気中の酸素及び水素の侵入を抑制することができる。特に、大気中の水分は外皮のシーム部からフラックス中に侵入しやすく、鋼製外皮のシーム部をかしめ等の機械的締結により接合した外皮では、水分等の水素源の侵入を防止することはできず、溶接時の溶接金属の低温割れの発生原因となる。これらの理由から、本発明では、フラックス入りワイヤを構成する鋼製外皮をシームレスパイプとする。   By using the steel outer shell as a seamless pipe, it is possible to suppress the intrusion of oxygen and hydrogen in the atmosphere from the steel outer shell to the flux during wire storage. In particular, moisture in the atmosphere easily enters the flux from the seam part of the outer skin, and in the outer skin where the seam part of the steel outer skin is joined by mechanical fastening such as caulking, it is not possible to prevent the entry of hydrogen sources such as moisture. This is not possible and causes cold cracking of the weld metal during welding. For these reasons, in the present invention, the steel outer shell constituting the flux-cored wire is a seamless pipe.

なお、本発明における「シームレス」とは、継ぎ目を有さない継ぎ目無しパイプの他に、シーム部に間隙がないような溶接により接合したシーム部を有するパイプも含まれる。   The “seamless” in the present invention includes a pipe having a seam portion joined by welding such that there is no gap in the seam portion, in addition to a seamless pipe without a seam.

また、鋼製外皮の鋼種は、本発明の目的とするワイヤ伸線性を良好に維持し、生産性を向上できるものであれば、特に限定する必要はなく、合金元素が少ない軟鋼のような一般鋼でも良い。   In addition, the steel type of the steel outer shell is not particularly limited as long as it can maintain the wire drawability intended for the present invention and improve the productivity, and is not limited to a general steel like a mild steel with few alloying elements. Steel can be used.

上記ワイヤ成分および鋼製外皮の規定により、本発明のフラックス入りワイヤは、同じ成分組成のソリッドワイヤと同等以上の溶接金属の耐低温割れ性が得られる。   According to the above-mentioned definition of the wire component and the steel outer sheath, the flux-cored wire of the present invention can obtain a low temperature crack resistance of a weld metal equal to or higher than that of a solid wire having the same component composition.

つまり、本発明のフラックス入りワイヤを用いて、引張強度が950MPa級の25mm厚鋼板をガスシールドアーク溶接し、降伏強度が1000MPa〜1100MPaの溶接金属を形成した場合には、JIS Z3158y形溶接割れ試験における割れ停止温度が100℃以下の耐低温割れ性を達成できる。また、本発明のフラックス入りワイヤを用いて、引張強度が1200MPa級の25mm厚鋼板をガスシールドアーク溶接し、降伏強度が1100MPa〜1200MPaの溶接金属を形成した場合には、JIS Z3158y形溶接割れ試験における割れ停止温度が150℃以下の耐低温割れ性を達成できる。   That is, when the flux-cored wire of the present invention is used to gas weld arc weld a 25 mm thick steel plate with a tensile strength of 950 MPa class to form a weld metal with a yield strength of 1000 MPa to 1100 MPa, a JIS Z3158y type weld crack test. It is possible to achieve low temperature crack resistance with a crack stop temperature of 100 ° C. or lower. When a flux-cored wire of the present invention is used to gas weld arc weld a 25 mm thick steel plate with a tensile strength of 1200 MPa class to form a weld metal with a yield strength of 1100 MPa to 1200 MPa, a JIS Z3158y type weld crack test. It is possible to achieve low temperature crack resistance with a crack stop temperature of 150 ° C. or lower.

(焼鈍処理)
ただし、より確実に、耐低温割れ停止特性を確保することを目的として、製造工程で水素減を低減するために、最終線径よりも大きな径を有するフラックス入り原線ワイヤから冷間成形により所望の線径にする製造工程において、鋼製外皮中にフラックスを充填した後の伸線途中あるいは伸線工程完了後に、加熱温度が600〜1100℃の焼鈍を少なくとも1回施すことができる。
(Annealing treatment)
However, for the purpose of ensuring the low temperature cracking resistant property more reliably, in order to reduce hydrogen loss in the manufacturing process, it is desired to perform cold forming from a flux cored wire having a diameter larger than the final wire diameter. In the manufacturing process of making the wire diameter, annealing at a heating temperature of 600 to 1100 ° C. can be performed at least once during or after completion of the drawing after filling the steel outer shell with the flux.

焼鈍温度の下限を600℃とするのは、600℃未満では脱水素効果が十分でないためであり、上限を1100℃とするのは、1100℃超では、外皮に不要な酸化が生じたり、内部のフラックスも酸化されて、ワイヤとしてのO量が増加し、そのため、溶接金属のO量が多くなって、靭性や延性を阻害する恐れがあるためである。   The lower limit of the annealing temperature is set to 600 ° C. because the dehydrogenation effect is not sufficient when the temperature is lower than 600 ° C., and the upper limit is set to 1100 ° C. If the temperature exceeds 1100 ° C., unnecessary oxidation occurs in the outer skin, This is also because the amount of O as a wire is increased and the amount of O in the weld metal is increased, which may impair toughness and ductility.

焼鈍は、例えば、パイプ状の外皮中にフラックスを添加したり、U字成形した外皮材にフラックスを充填した後、パイプ状に成形し、シーム部を溶接した段階の原線状態であっても、該原線を複数回ダイスに通して最終径とする冷間成形のダイス間の工程でも、あるいは、最終線径に加工が終了した段階でも効果は変わらない。   Annealing is, for example, in the state of the original wire at the stage where the flux is added into the pipe-shaped outer shell or the U-shaped outer shell material is filled with the flux and then molded into a pipe shape and the seam portion is welded. The effect does not change even in a process between cold forming dies in which the original wire is passed through the die a plurality of times to obtain the final diameter, or even when the processing is finished to the final wire diameter.

また、種々の段階で複数回焼鈍を行えば、その分、水素低減に有効となる。また、冷間成形中に鋼製外皮が硬化するため、これを軟化させて以降の冷間成形を用意せしめる軟化焼鈍と兼ねることも特に問題はない。焼鈍雰囲気は、焼鈍中での水素、酸素の進入、酸化を防ぐことが好ましく、その目的からは、真空、または、不活性ガス雰囲気が好ましい。   Moreover, if annealing is performed a plurality of times at various stages, it is effective for reducing hydrogen accordingly. Further, since the steel outer shell is hardened during the cold forming, there is no particular problem in softening it to serve as a soft annealing for preparing a subsequent cold forming. It is preferable that the annealing atmosphere prevents hydrogen and oxygen from entering and oxidizing during annealing, and a vacuum or an inert gas atmosphere is preferable for the purpose.

また、フラックス入りワイヤ中の酸素含有量の増加を抑制する点から、ワイヤを成形する際の温度を上記焼鈍温度の上限と同様に1100℃以下とすることが好ましく、より好ましくは冷間〜温間成形が望ましい。   Moreover, it is preferable to make the temperature at the time of shaping | molding a wire into 1100 degrees C or less similarly to the upper limit of the said annealing temperature from the point which suppresses the increase in the oxygen content in a flux cored wire, More preferably, it is cold-warm. Inter-molding is desirable.

本発明のフラックス入りワイヤを製造する場合には、上記焼鈍処理条件、成形温度以外の製造条件について、何ら制約するものではなく、通常の製造条件で、本発明の目的とする効果を発揮することが可能である。   When manufacturing the flux-cored wire of the present invention, the manufacturing conditions other than the annealing treatment conditions and the molding temperature are not restricted at all, and the effects intended by the present invention are exhibited under normal manufacturing conditions. Is possible.

本発明のワイヤは、ガスシールドアーク溶接全般、すなわち、TIG、MIG、MAG、さらにはCO2溶接全般に効果を発揮することができる。鋼板板厚が25mm以上、溶接入熱が10kJ/mm以下までは鋼材による希釈があっても効果が損なわれるものではなく、引張強度が950MPa以上の強度レベルを有する鋼材であればその組成如何によらず本発明が目的とする溶接金属特性を達成できる。さらに薄手、大入熱となって鋼材からの希釈が無視できない場合でも、鋼材組成として、C:0.06〜0.2%、Si≦1%、Mn:0.3〜2.5%、P≦0.02%、S≦0.1%、Al:0.005〜0.2%、Cu≦1%、Ni≦10%、Cr≦1.5%、Mo:0.1〜3%、Nb≦0.1%、V≦0.5%、Ti≦0.2%、B≦0.005%、及び、その他合金元素の合計が1%以下であれば、本発明の溶接金属特性に許容できない悪影響を及ぼすことはない。 The wire of the present invention can exert an effect on gas shield arc welding in general, that is, TIG, MIG, MAG, and CO 2 welding in general. Even if the steel plate thickness is 25 mm or more and the welding heat input is 10 kJ / mm or less, the effect is not impaired even if there is dilution with the steel material, and the composition of the steel material has any tensile strength of 950 MPa or more. However, the weld metal characteristics intended by the present invention can be achieved. Further, even when the dilution from the steel material cannot be ignored due to thin heat input, the steel material composition is C: 0.06 to 0.2%, Si ≦ 1%, Mn: 0.3 to 2.5%, P ≦ 0.02%, S ≦ 0.1%, Al: 0.005 to 0.2%, Cu ≦ 1%, Ni ≦ 10%, Cr ≦ 1.5%, Mo: 0.1 to 3% , Nb ≦ 0.1%, V ≦ 0.5%, Ti ≦ 0.2%, B ≦ 0.005%, and the total of other alloy elements is 1% or less, the weld metal characteristics of the present invention There is no unacceptable adverse effect on the product.

フラックスの充填率(ワイヤ全体に対する充填物全体の質量比)はワイヤ全体の組成が本発明を満足していれば特に制限をするものではないが、ワイヤの製造性を確保する観点からは、0.3以下とすることが好ましい。   The flux filling rate (mass ratio of the entire filling material to the entire wire) is not particularly limited as long as the composition of the entire wire satisfies the present invention. However, from the viewpoint of ensuring the manufacturability of the wire, it is 0. .3 or less is preferable.

本発明の効果を実施例によりさらに詳細に説明する。   The effects of the present invention will be described in more detail with reference to examples.

表1に示す、化学組成、製造方法、板厚の異なる3種類の鋼板と表4−1にワイヤの状態および焼鈍条件を、表4−2に化学組成を示す溶接ワイヤを用いて溶接を行い、溶接金属特性、耐低温割れ性を調査した。   Welding was performed using three types of steel plates having different chemical compositions, manufacturing methods, and plate thicknesses shown in Table 1, and wire conditions and annealing conditions in Table 4-1, and welding wires having chemical compositions in Table 4-2. We investigated weld metal properties and cold cracking resistance.

Figure 0004879696
Figure 0004879696

表1の鋼板はいずれも降伏強度が1100MPa以上の強度を有しているが、本発明の溶接ワイヤの効果は表1の鋼板の化学組成や強度レベルに限定されるものではない。   Although all the steel plates in Table 1 have a yield strength of 1100 MPa or more, the effect of the welding wire of the present invention is not limited to the chemical composition and strength level of the steel plates in Table 1.

溶接はいずれもシールドガスがAr+20%CO2のMAG溶接とし、溶接金属特性評価用の継手作製には、開先角度45°、ルートギャップ7mmのV開先で、入熱は0.8〜1.7kJ/mmの多層盛溶接を用いた。予熱・パス間温度は150℃とした。y形溶接割れ試験はJIS Z3158のy形溶接割れ試験方法に準拠して実施し、板厚25mmの鋼板を用いて、溶接入熱1.7kJ/mmで種々の予熱温度で試験を行い、割れ停止温度を求めた。なお、溶接に際しては実使用を想定して、フラックス入りワイヤの吸湿等による耐水素割れ特性の経時変化を考慮するため、ワイヤ製造後、開封して大気中に約6ヶ月保管したものを溶接に供した。ただし、保管中にワイヤ表面に生じたさびは除去した。 Welding is MAG welding in which the shielding gas is Ar + 20% CO 2 , and a joint for evaluation of weld metal characteristics is a groove with a groove angle of 45 ° and a root gap of 7 mm. .7 kJ / mm multilayer overlay welding was used. The preheating / pass temperature was 150 ° C. The y-type weld cracking test is performed in accordance with the y-type weld cracking test method of JIS Z3158. Using a steel plate with a thickness of 25 mm, the test is performed at various preheating temperatures with a welding heat input of 1.7 kJ / mm. The stop temperature was determined. In order to take into account changes over time in the resistance to hydrogen cracking due to moisture absorption of flux-cored wires, etc., when welding is performed, welding is performed after opening the wire and storing it in the atmosphere for about 6 months. Provided. However, rust generated on the wire surface during storage was removed.

表4−1及び4−2のフラックス入りワイヤは、表2に化学組成を示す鋼製外皮と、表3に各元素の含有量を示すフラックスとを種々組み合わせて製造した。鋼製外皮は板厚3mmのものを用い、U字形に加工して、フラックスを所要量添加した後、断面を円形に加工しつつシーム溶接を行ってシームレスワイヤとした。ただし、一部は比較例として、かしめによる機械締結でワイヤとした場合もある。フラックスの充填率はフラックス添加量と初期ワイヤ径との組み合わせで調整した。ただし、必要に応じて嵩増しのために、Fe分を適宜添加した。溶接後のワイヤは冷間引き抜き加工により1.2mmないしは1.4mmの最終ワイヤ径とした。大半については水素源低減あるいは/及び加工硬化したワイヤの軟化を目的として冷間引き抜き加工の途中あるいは/及び加工終了後に焼鈍を施したが、一部は比較のため、焼鈍を施さなかったワイヤもある。ワイヤの一部は表面にメッキしたものもあるが、大半はCuメッキは施していない。表4−2中のCu含有量はメッキからか、外皮からか、フラックスに含有されているかは区別せずに全体の全体の含有量で示している。なお、表3のフラックス組成にはスラグ形成剤、アーク安定剤の添加割合、種類も示すが、スラグ形成剤、アーク安定剤は本発明において、溶接金属の特性や、水素割れ特性に影響を及ぼさないものである。従って、本発明は、表3のスラグ形成剤、アーク安定剤の割合や種類に何ら限定されるものではない。   The flux-cored wires shown in Tables 4-1 and 4-2 were manufactured by variously combining steel outer sheaths having chemical compositions shown in Table 2 and fluxes showing contents of respective elements in Table 3. A steel outer shell having a plate thickness of 3 mm was used, processed into a U-shape, a required amount of flux was added, and seam welding was performed while processing the cross-section into a circular shape to obtain a seamless wire. However, as a comparative example, some of the wires may be formed by mechanical fastening by caulking. The filling rate of the flux was adjusted by a combination of the flux addition amount and the initial wire diameter. However, the Fe content was appropriately added to increase the bulk as necessary. The wire after welding was made into a final wire diameter of 1.2 mm or 1.4 mm by cold drawing. Most were annealed during and / or after cold drawing for the purpose of reducing the hydrogen source and / or softening the work-hardened wire, but some wires were not annealed for comparison. is there. Some of the wires are plated on the surface, but most are not plated with Cu. The Cu content in Table 4-2 is indicated by the total content without distinguishing whether it is contained in the flux from plating, outer skin, or flux. The flux composition in Table 3 also shows the addition ratio and type of slag former and arc stabilizer, but the slag former and arc stabilizer in the present invention have an effect on the properties of the weld metal and the hydrogen cracking characteristics. There is nothing. Therefore, the present invention is not limited to the ratio and type of the slag forming agent and arc stabilizer shown in Table 3.

表4−1及び4−2のうち、ワイヤ番号YA1〜5、8、10、13〜14は本発明の要件を満足しているフラックス入りワイヤであり、ワイヤ番号YB1〜YB15は本発明の要件を満足していないフラックス入りワイヤである。
Of Tables 4-1 and 4-2, wire numbers YA1 to 5 , 8, 10, 13 to 14 are flux-cored wires that satisfy the requirements of the present invention, and wire numbers YB1 to YB15 are requirements of the present invention. It is a flux-cored wire that does not satisfy the above.

Figure 0004879696
Figure 0004879696

Figure 0004879696
Figure 0004879696

Figure 0004879696
Figure 0004879696

Figure 0004879696
Figure 0004879696

表5は溶接継手における溶接金属特性を、また、表6はy形溶接割れ試験結果を、各々溶接継手の作製条件とともに示している。溶接金属の引張特性は鋼板板厚中心部、溶接金属幅方向中央から溶接ビード長手方向に平行に採取した丸棒引張試験片により測定し、靱性は、鋼板板厚中心部、溶接金属幅方向中央がノッチ位置となるように溶接ビード長手方向に直角に採取した標準サイズの2mmVノッチシャルピー衝撃試験片を用いて評価した。   Table 5 shows the weld metal characteristics of the welded joint, and Table 6 shows the y-type weld crack test results together with the conditions for producing the welded joint. Tensile properties of weld metal were measured with a round bar tensile specimen taken in parallel to the weld bead longitudinal direction from the center of the weld metal in the width direction of the steel plate, and toughness was measured in the center of the thickness of the steel plate and in the center of the weld metal width direction. Evaluation was made using a standard size 2 mm V notch Charpy impact test specimen taken at right angles to the longitudinal direction of the weld bead so as to be a notch position.

Figure 0004879696
Figure 0004879696

表5に示す溶接金属の機械的性質あるいは/及び表6に示すy形溶接割れ試験における割れ停止温度から明らかなように、本発明を満足しているワイヤ番号YA1〜5、8、10、13〜14のワイヤにより溶接した場合には、溶接した段階で溶接金属に高温割れや低温割れ等の溶接欠陥は生じていないのはもちろん、溶接金属の強度は降伏強度で1000MPa以上、引張強度で1250MPa以上となっており、合わせて靭性は2mmVノッチシャルピー衝撃試験の−40℃における吸収エネルギーで27Jより十分高くなっており(継手番号WA1〜5、8、10、13〜14)、かつ、y形割れ試験における割れ停止温度は125℃以下であり、同程度の溶接金属強度レベルを達成できるソリッドワイヤの停止温度が150℃程度であることと比較して十分遜色のない耐低温割れ特性となっている(試験番号WYA1〜5、8、10、13〜14)。
As apparent from the mechanical properties of the weld metal shown in Table 5 and / or the crack stop temperature in the y-type weld crack test shown in Table 6, the wire numbers YA1 to 5, 8, 10, 13 satisfying the present invention. When welding with -14 wires, the weld metal has no weld defects such as hot cracks and cold cracks at the stage of welding, and the weld metal has a yield strength of 1000 MPa or more and a tensile strength of 1250 MPa. In total, the toughness is sufficiently higher than 27J in the absorbed energy at −40 ° C. in the 2 mm V notch Charpy impact test (joint numbers WA1 to 5 , 8, 10 , 13 to 14 ), and the y type The crack stop temperature in the crack test is 125 ° C or less, and the solid wire stop temperature that can achieve the same weld metal strength level is about 150 ° C. It has become a low temperature cracking properties without enough equivalent to the electrophotographic that (Test No. WYA1~ 5,8,10,13~14).

Figure 0004879696
Figure 0004879696

一方、本発明の要件を満足していないワイヤ番号YB1〜YB15のワイヤの場合には、ワイヤ製造性、継手健全性、溶接金属特性、耐低温割れ性等の少なくとも一つが本発明のワイヤに比べて大幅に劣っており、安全性を必要とする構造物を溶接し、溶接金属の降伏強度が1100MPa以上となる溶接ワイヤとしては好ましくないことは明白である。   On the other hand, in the case of wires with wire numbers YB1 to YB15 that do not satisfy the requirements of the present invention, at least one of wire manufacturability, joint soundness, weld metal characteristics, cold crack resistance, and the like is compared with the wire of the present invention. It is apparent that the welding wire is not preferable as a welding wire in which a structure requiring safety is welded and the yield strength of the weld metal is 1100 MPa or more.

すなわち、ワイヤ番号YB1及びYB2は、ワイヤがかしめにより製造されているため、保管中の吸湿等により拡散性水素量が本発明に比べて高くなっており、y形割れ試験の停止温度が250℃と高く(試験記号WYB1、WYB2)、そのため、150℃で予熱した継手では溶接後に低温割れが生じ、継手の健全性が損なわれており、好ましくない。   That is, since the wire numbers YB1 and YB2 are manufactured by caulking, the amount of diffusible hydrogen is higher than that of the present invention due to moisture absorption during storage and the like, and the stop temperature of the y-type crack test is 250 ° C. (Test symbols WYB1 and WYB2). Therefore, in the joint preheated at 150 ° C., low temperature cracking occurs after welding, and the soundness of the joint is impaired, which is not preferable.

ワイヤ番号YB3は、炭素当量(Ceq.)が過小であるため、溶接金属の降伏強度が1000MPaに達していない。また、Al当量も若干不足気味であるため、溶接金属中の酸素含有量が高めとなり、靱性が劣る(継手記号WB3)。   Since the wire number YB3 has an excessively low carbon equivalent (Ceq.), The yield strength of the weld metal does not reach 1000 MPa. Moreover, since the Al equivalent is slightly insufficient, the oxygen content in the weld metal is increased and the toughness is inferior (joint symbol WB3).

ワイヤ番号YB4は、ワイヤ中に析出強化により降伏強度を高めるNb当量式に含まれる元素が何ら含有されていないため、降伏強度が1000MPaに達しておらず、本発明に比べて劣る(継手記号WB4)。   Since the wire number YB4 does not contain any element contained in the Nb equivalent formula that increases the yield strength by precipitation strengthening in the wire, the yield strength does not reach 1000 MPa and is inferior to the present invention (joint symbol WB4). ).

ワイヤ番号YB5は、Ceq.、Aleq.、Nbeq.がいずれも本発明の下限を下回っているため、継手WB5の溶接金属は降伏強度も不十分であり、かつ、靱性も劣っており、本発明との差は明らかである。   The wire number YB5 is Ceq. , Aleq. Nbeq. However, since both are below the lower limit of the present invention, the weld metal of the joint WB5 has insufficient yield strength and inferior toughness, and the difference from the present invention is clear.

ワイヤ番号YB6は、ワイヤのCeq.が過大であるため、先ず、ワイヤ製造に当たって、変形抵抗が多いために、冷間引き抜き中に断線が生じ製造性に難がある。次に、継手を作製した段階では、高温割れ、低温割れがともに生じて、継手健全性に劣る。溶接金属の靱性も著しく劣化し(継手番号WB6)、さらには、y形溶接割れ試験でも、割れ停止温度が目標の150℃を超えて175℃になっており(試験番号WYB7)、好ましくない。   The wire number YB6 is the Ceq. First, in manufacturing a wire, since there is much deformation resistance, a wire breakage occurs during cold drawing, which is difficult to manufacture. Next, at the stage of producing the joint, both hot cracking and cold cracking occur, resulting in poor joint soundness. The toughness of the weld metal also deteriorates remarkably (joint number WB6). Further, even in the y-type weld cracking test, the crack stop temperature exceeds the target 150 ° C. and reaches 175 ° C. (test number WYB7), which is not preferable.

ワイヤ番号YB7は、ワイヤ中のMgが過大で、かつ、その結果としてAleq.も過大であるため、溶接金属に粗大な酸化物を形成して靱性の劣化が著しい(継手WB7)。   As for wire number YB7, Mg in the wire is excessive, and as a result, Aleq. Is too large, a coarse oxide is formed in the weld metal, and the toughness is significantly deteriorated (joint WB7).

ワイヤ番号YB8は、ワイヤのNbeq.が過大であるため、ワイヤ製造中に断線が生じ製造性に難がある。また、溶接金属の靱性も大幅に劣化しており(継手番号WB8)、好ましくない。   The wire number YB8 is the Nbeq. Is too large, wire breakage occurs during the manufacture of the wire, resulting in difficulty in manufacturability. Further, the toughness of the weld metal is also greatly deteriorated (joint number WB8), which is not preferable.

ワイヤ番号YB9は、ワイヤのMg含有量が過小であるため、溶接金属の酸素量が低減せず、靱性の劣化が著しい(継手番号WB9)。   In wire number YB9, since the Mg content of the wire is too small, the oxygen content of the weld metal is not reduced, and the toughness is significantly deteriorated (joint number WB9).

ワイヤ番号YB10は、ワイヤのC含有量が過小であるため、Ceq.は本発明を満足しているものの、強度が降伏強度、引張強度とも本発明に比べて大幅に低く、本発明の目的としている降伏強度≧1000MPaを達成できない(継手番号WB10)。   Since wire number YB10 has an excessively low C content in the wire, Ceq. Although the present invention satisfies the present invention, both the yield strength and the tensile strength are significantly lower than those of the present invention, and the intended yield strength of ≧ 1000 MPa cannot be achieved (joint number WB10).

ワイヤ番号YB11は、ワイヤの化学組成において、Aleq.が過小であるため、溶接金属の酸素量が低減せず、靱性の劣化が著しい(継手番号WB11)。   The wire number YB11 is the same as Aleq. Is too small, the oxygen content of the weld metal is not reduced, and the toughness is significantly deteriorated (joint number WB11).

ワイヤ番号YB12は、ワイヤの化学組成において、Nbeq.が過小であるため、溶接金属の降伏強度が引っ張り強度の割に低めとなり、1000MPaを下回っている(継手番号WB12)。   The wire number YB12 is Nbeq. Is too small, the yield strength of the weld metal is lower than the tensile strength, which is less than 1000 MPa (joint number WB12).

ワイヤ番号YB13は、ワイヤのC含有量が過大であるため、強度は十分高いが、ワイヤ製造に当たって、変形抵抗が多いために、冷間引き抜き中に断線が生じ製造性に難がある。加えて溶接金属の靱性が極めて低く(継手番号WB13)、低温割れ停止温度が200℃と高いために(試験記号WYB13)、継手作製段階で溶接金属に低温割れも生じて好ましくない。   The wire number YB13 has a sufficiently high strength because the C content of the wire is excessive. However, since there is a large amount of deformation resistance in manufacturing the wire, wire breakage occurs during cold drawing, resulting in difficulty in manufacturability. In addition, since the toughness of the weld metal is extremely low (joint number WB13) and the low temperature cracking stop temperature is as high as 200 ° C. (test symbol WYB13), low temperature cracks are also generated in the joint preparation stage, which is not preferable.

ワイヤ番号YB14は、ワイヤのNi含有量が過小であるため、溶接金属の靱性が十分確保されない(継手番号WB14)。   In the wire number YB14, since the Ni content of the wire is too small, the toughness of the weld metal is not sufficiently ensured (joint number WB14).

ワイヤ番号YB15は、Aleq.は本発明範囲内ではあるが、AlとTiの個々の含有量が過大であるため、Al、Tiを含有する粗大な酸化物が溶接金属中に形成されるため、溶接金属の靱性劣化が大きく、好ましくない(継手番号WB15)。   The wire number YB15 is Aleq. Is within the scope of the present invention, but since the individual contents of Al and Ti are excessive, coarse oxides containing Al and Ti are formed in the weld metal, so the toughness of the weld metal is greatly deteriorated. , Not preferable (joint number WB15).

以上の実施例から、本発明によれば、引張強度が950MPa級以上の高張力鋼板におけるMIG溶接、MAG溶接(Ar+CO2溶接あるいはCO2溶接)等のガスシールドアーク溶接に用いる、製造性に優れ、溶接金属の降伏強度が1000MPa以上、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーが27J以上で、かつ、y型溶接割れ試験における低温割れ停止温度が同程度の強度レベルのソリッドワイヤなみの150℃以下である、耐低温割れ性がソリッドワイヤなみのフラックス入りワイヤを得られることは、明白である。   From the above examples, according to the present invention, excellent in manufacturability and welding used for gas shielded arc welding such as MIG welding and MAG welding (Ar + CO2 welding or CO2 welding) in a high-tensile steel sheet having a tensile strength of 950 MPa or more. 150, which is similar to a solid wire with a yield strength of metal of 1000 MPa or more, an absorbed energy of 2 JV notch Charpy impact test at −40 ° C. of 27 J or more, and a cold crack stop temperature in the y-type weld crack test of the same level. It is clear that a flux-cored wire having a low temperature crack resistance equal to or lower than that of a solid wire can be obtained.

フラックス入りワイヤの脱酸元素当量Aleq.と溶接金属の靭性vE-40との関係を示す図である。Deoxidizing element equivalent of flux-cored wire Aleq. It is a figure which shows the relationship between weld metal toughness vE- 40 .

Claims (4)

鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤにおいて、
前記鋼製外皮およびフラックス中に、金属または合金として、ワイヤ全質量に対する質量%の合計で、
C:0.08〜0.3%、
Si:0.2〜2%、
Mn:0.5〜2.5%、
P:0.02%以下、
S:0.01%以下、
Al:0.002〜0.3%、
Ti:0.005〜0.3%、
Ni:0.5〜11%、
Mg:0.012〜0.5%
を含み、かつ、下記(1)式で示される炭素当量(Ceq.)が0.7〜2%、下記(2)式で示される脱酸元素当量(Aleq.)が0.2〜0.6%であり、さらに、
Mo:0.1〜4%、
W:0.1〜3%、
Nb:0.005〜0.1%、
V:0.005〜0.5%、および、
Ta:0.005〜0.5%
のうちの1種または2種以上を含有し、かつ、下記(3)式で示されるNb当量(Nbeq.)が0.05〜0.5%であり、
かつ、前記フラックス中に含有するスラグ形成剤およびアーク安定剤の含有量の合計を、ワイヤ全質量に対する質量%で、20%以下に制限し、残部がFeおよび不可避的不純物であり、
かつ前記鋼製外皮はシームレスパイプであることを特徴とする高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Ceq.=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Mo%]/4+[W%]/8 ・・・(1)
Aleq.=[Al%]+[Mg%]+[Ti%]/10%+([Si%]+[Mn%])/30 ・・・(2)
Nbeq.=[Nb%]+[V%]/5+[Mo%]/20+[W%]/10+[Ta%]/5 ・・・(3)
ただし、上記[C%]、[Mn%]、[Si%]、[Ni%]、[Mo%]、[W%]、[Al%]、[Mg%]、[Ti%]、[Nb%]、[V%]および[Ta%]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するC、Mn、Si、Ni、Mo、W、Al、Mg、Ti、Nb、VおよびTaのワイヤ全質量に対する質量%の合計を示す。
In the flux-cored wire in which the flux is filled inside the steel outer sheath,
In the steel outer shell and the flux, as a metal or an alloy, in a total mass% based on the total mass of the wire,
C: 0.08 to 0.3%,
Si: 0.2-2%
Mn: 0.5 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Al: 0.002 to 0.3%,
Ti: 0.005 to 0.3%,
Ni: 0.5 to 11%,
Mg: 0.012-0.5%
And a carbon equivalent (Ceq.) Represented by the following formula (1) is 0.7 to 2%, and a deoxidizing element equivalent (Aleq.) Represented by the following formula (2) is 0.2 to 0. 6%, and
Mo: 0.1 to 4%
W: 0.1 to 3%
Nb: 0.005 to 0.1%,
V: 0.005-0.5% and
Ta: 0.005 to 0.5%
Nb equivalent (Nbeq.) Represented by the following formula (3) is 0.05 to 0.5%:
And, the total content of the slag former and arc stabilizer contained in the flux is limited to 20% or less by mass% based on the total mass of the wire, and the balance is Fe and inevitable impurities,
And the said steel outer shell is a seamless pipe, The flux cored wire for high yield strength high toughness gas shield arc welding characterized by the above-mentioned.
Ceq. = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Mo%] / 4+ [W%] / 8 (1)
Aleq. = [Al%] + [Mg%] + [Ti%] / 10% + ([Si%] + [Mn%]) / 30 (2)
Nbeq. = [Nb%] + [V%] / 5+ [Mo%] / 20+ [W%] / 10+ [Ta%] / 5 (3)
However, the above [C%], [Mn%], [Si%], [Ni%], [Mo%], [W%], [Al%], [Mg%], [Ti%], [Nb] %], [V%], and [Ta%] are the contents of C, Mn, Si, Ni, Mo, W, Al, Mg, Ti, Nb, V, and Ta contained in the steel outer sheath and flux in the wire, respectively. The sum of mass% with respect to the total mass of the wire is shown.
前記鋼製外皮およびフラックス中に、金属または合金として、さらに、ワイヤ全質量に対する質量%の合計で、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Co:0.01〜6%、および、
B:0.001〜0.015%
のうちの1種または2種以上を含有し、かつ下記(4)式で示される炭素当量(Ceq.)が0.7〜2%であることを特徴とする請求項1に記載の高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Ceq.=[C%]+[Mn%]/6+[Si%]/24+[Ni%]/40+[Cr%]/5+[Mo%]/4+[W%]/8 ・・・(4)
ただし、上記[C%]、[Mn%]、[Si%]、[Ni%]、[Cr%]、[Mo%]および[W%]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するC、Mn、Si、Ni、Cr、MoおよびWのワイヤ全質量に対する質量%の合計を示す。
In the steel outer shell and flux, as a metal or alloy, and in addition to the total mass% of the total wire mass,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Co: 0.01-6%, and
B: 0.001 to 0.015%
The high yield according to claim 1, wherein the carbon equivalent (Ceq.) Represented by the following formula (4) is 0.7 to 2%. High strength and toughness flux-cored wire for gas shielded arc welding.
Ceq. = [C%] + [Mn%] / 6+ [Si%] / 24+ [Ni%] / 40+ [Cr%] / 5+ [Mo%] / 4+ [W%] / 8 (4)
However, the above [C%], [Mn%], [Si%], [Ni%], [Cr%], [Mo%] and [W%] are contained in the steel outer sheath and flux in the wire, respectively. The total of the mass% with respect to the total mass of the wire of C, Mn, Si, Ni, Cr, Mo, and W is shown.
質量%で、
Ca:0.0002〜0.01%、および、
REM:0.0002〜0.01%
のうちの1種または2種を含有し、かつ下記(5)式で示される脱酸元素当量(Aleq.)が0.2〜0.6%であることを特徴とする請求項1または2に記載の高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。
Aleq.=[Al%]+[Mg%]+[Ca%]+[REM%]/5+[Ti%]/10%+([Si]+[Mn])/30 ・・・(5)
ただし、上記[Al%]、[Mg%]、[Ca%]、[REM%]、[Ti]、[Si]および[Mn]はそれぞれワイヤ中の鋼製外皮およびフラックス中に含有するAl、Mg、Ca、REM、Ti、SiおよびMnのワイヤ全質量に対する質量%の合計を示す。
% By mass
Ca: 0.0002 to 0.01%, and
REM: 0.0002 to 0.01%
The deoxidizing element equivalent (Aleq.) Represented by the following formula (5) is 0.2 to 0.6%. A high yield strength high toughness flux-cored wire for gas shielded arc welding as described in 1.
Aleq. = [Al%] + [Mg%] + [Ca%] + [REM%] / 5+ [Ti%] / 10% + ([Si] + [Mn]) / 30 (5)
However, the above [Al%], [Mg%], [Ca%], [REM%], [Ti], [Si], and [Mn] are Al contained in the steel outer sheath and flux in the wire, respectively. The total of the mass% with respect to the wire total mass of Mg, Ca, REM, Ti, Si, and Mn is shown.
前記請求項1〜3の何れかに記載のフラックス入りワイヤは、前記鋼製外皮中に前記フラックスを充填した後、伸線途中または伸線後、600〜1100℃の加熱温度で焼鈍処理をしたものであることを特徴とする高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire according to any one of claims 1 to 3 is subjected to an annealing treatment at a heating temperature of 600 to 1100 ° C after filling the flux into the steel outer shell or after or after drawing. High yield strength, high toughness, flux-cored wire for gas shielded arc welding.
JP2006279758A 2006-10-13 2006-10-13 High yield strength, high toughness, flux-cored wire for gas shielded arc welding Active JP4879696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279758A JP4879696B2 (en) 2006-10-13 2006-10-13 High yield strength, high toughness, flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279758A JP4879696B2 (en) 2006-10-13 2006-10-13 High yield strength, high toughness, flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2008093715A JP2008093715A (en) 2008-04-24
JP4879696B2 true JP4879696B2 (en) 2012-02-22

Family

ID=39377115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279758A Active JP4879696B2 (en) 2006-10-13 2006-10-13 High yield strength, high toughness, flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP4879696B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310108B2 (en) * 2008-03-28 2013-10-09 新日鐵住金株式会社 Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof
JP5136466B2 (en) * 2008-03-28 2013-02-06 新日鐵住金株式会社 Flux-cored wire for welding high-strength steel and method for producing the same
JP5157606B2 (en) * 2008-04-10 2013-03-06 新日鐵住金株式会社 TIG welding method of high strength steel using flux cored wire
JP5387168B2 (en) * 2009-06-26 2014-01-15 新日鐵住金株式会社 Welding wire for high strength steel with flux and manufacturing method thereof
JP5375632B2 (en) * 2010-01-28 2013-12-25 新日鐵住金株式会社 Welding wire for electroslag welding with metal powder
JP5416605B2 (en) * 2010-02-02 2014-02-12 株式会社神戸製鋼所 Flux cored wire
JP5458923B2 (en) * 2010-02-04 2014-04-02 新日鐵住金株式会社 Welded joint with excellent brittle fracture resistance
JP5409459B2 (en) * 2010-03-17 2014-02-05 日鐵住金溶接工業株式会社 Flux-cored wire for welding austenitic stainless steel
JP5459083B2 (en) * 2010-06-04 2014-04-02 新日鐵住金株式会社 Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
KR101535399B1 (en) 2012-05-08 2015-07-08 신닛테츠스미킨 카부시키카이샤 Flux-containing wire for welding ultrahigh-tensile steel
CN104722962B (en) * 2015-04-10 2016-06-29 首钢总公司 High-strength steel high-strength tenacity gas-shielded flux-cored wire
CN106808106B (en) * 2015-12-02 2019-04-26 鞍钢股份有限公司 960MPa grade high-strength metal powder type flux-cored gas shielded welding wire
CN105345236B (en) * 2015-12-11 2017-10-27 武汉钢铁有限公司 A kind of control method of submerged-arc welding deposited metal phosphorus content
US10668572B2 (en) * 2016-11-16 2020-06-02 Lincoln Global, Inc. Welding electrode wires having alkaline earth metals
CN109719427A (en) * 2019-03-12 2019-05-07 江苏南通瑞舶莱焊业科技有限公司 A kind of low temperature resistant steel flux-cored wire
JP6969705B1 (en) * 2019-12-20 2021-11-24 Jfeスチール株式会社 Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
KR102302988B1 (en) * 2020-09-25 2021-09-17 고려용접봉 주식회사 Flux cored wire
CN115673601A (en) * 2022-11-14 2023-02-03 苏州思萃熔接技术研究所有限公司 1200 MPa-grade ultrahigh-strength gas protection solid welding wire and production process thereof
CN118385817A (en) * 2024-06-21 2024-07-26 保定蓝都焊材有限公司 High-toughness gas-shielded solid welding wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JPH0957489A (en) * 1995-08-29 1997-03-04 Nippon Steel Weld Prod & Eng Co Ltd Manufacture of welding wire
JPH09277088A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Flux cored wire for gas shielded metal-arc welding
JP3880826B2 (en) * 2001-07-16 2007-02-14 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding

Also Published As

Publication number Publication date
JP2008093715A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4879696B2 (en) High yield strength, high toughness, flux-cored wire for gas shielded arc welding
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP4564245B2 (en) Super high strength welded joint with excellent low temperature cracking property of weld metal and method for producing high strength welded steel pipe
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
EP2602351A1 (en) Ferritic stainless steel
JP5387192B2 (en) Flux-cored wire for gas shield welding
CA2860605C (en) Abrasion resistant welded steel pipe and method of producing the same
WO2018185851A1 (en) Vertical-seam-welded steel pipe
JP6191393B2 (en) Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
WO2014119189A1 (en) Coated electrode
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP5005395B2 (en) Welding wire for high strength and toughness steel
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2014050882A (en) HIGH Ni FLUX-CORED WIRE FOR GAS SHIELD ARC WELD
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
KR101937005B1 (en) Weld joint
JP2001001181A (en) Wire for gas shielded arc welding
US20200149127A1 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
WO2021153559A1 (en) Welded steel pipe and method for manufacturing same
KR20170046588A (en) Steel plate and bonded assembly
JPS62114796A (en) Submerged arc welding method by which high-toughness weld metal is obtained

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R151 Written notification of patent or utility model registration

Ref document number: 4879696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350