Nothing Special   »   [go: up one dir, main page]

JP4875563B2 - Trochoid gear and reducer - Google Patents

Trochoid gear and reducer Download PDF

Info

Publication number
JP4875563B2
JP4875563B2 JP2007191020A JP2007191020A JP4875563B2 JP 4875563 B2 JP4875563 B2 JP 4875563B2 JP 2007191020 A JP2007191020 A JP 2007191020A JP 2007191020 A JP2007191020 A JP 2007191020A JP 4875563 B2 JP4875563 B2 JP 4875563B2
Authority
JP
Japan
Prior art keywords
gear
curve
tooth
internal gear
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007191020A
Other languages
Japanese (ja)
Other versions
JP2009024841A (en
Inventor
雅幸 掃部
雅隆 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2007191020A priority Critical patent/JP4875563B2/en
Publication of JP2009024841A publication Critical patent/JP2009024841A/en
Application granted granted Critical
Publication of JP4875563B2 publication Critical patent/JP4875563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Description

請求項に係る発明は、減速機やギヤポンプ等において内接噛合式遊星歯車として使用されるトロコイド歯車、およびそれを使用する減速機に関するものである。   The invention according to the claims relates to a trochoid gear used as an intermeshing planetary gear in a reduction gear, a gear pump, and the like, and a reduction gear using the same.

内接噛合式遊星歯車においては、従来、エピトロコイド歯形の外歯車(外歯歯車)と、複数の円柱状のピン(またはローラ)を回転(自転)可能なようにホルダーに取り付けた内歯車(内歯歯車。ピン分離型)とによって内接噛み合いを実現している。そうした遊星歯車を有する減速機では、外歯車は内歯車よりも歯数が1だけ少なく、減速比は、内歯車とする上記ピンの数に相当する。そのようなピンを有するトロコイド歯車やそれを利用する減速機の例は、たとえば下記の特許文献1〜2に示されている。
なお、「エピトロコイド」とは、図7(の上部)のように基円の外側を滑らずに転がる円上の一点が描く軌跡をいう。また、後述の「ハイポトロコイド」とは、図7(の下部)のように基円の内側を滑らずに転がる円上の一点が描く軌跡をいう。
In an internally meshing planetary gear, an internal gear (external gear) having an epitrochoidal tooth shape and a plurality of cylindrical pins (or rollers) attached to a holder so as to be able to rotate (rotate) ( Internal gearing is achieved with an internal gear (pin separation type). In a reduction gear having such a planetary gear, the external gear has one fewer teeth than the internal gear, and the reduction ratio corresponds to the number of pins used as the internal gear. Examples of trochoidal gears having such pins and reduction gears using the same are shown in, for example, Patent Documents 1 and 2 below.
The “epitrochoid” refers to a locus drawn by a point on a circle that rolls without slipping outside the base circle as shown in FIG. 7 (upper part). Further, “hypotrochoid” described later refers to a locus drawn by a point on a circle that rolls without slipping inside the base circle as shown in FIG. 7 (lower part).

上のような減速機において大きな減速比を得るためには、内歯車のホルダーに多数のピンを取り付ける必要があり、部品数が多くなるとともに組み立てが煩雑になって製造コストが上昇するため、ピンとホルダーとを一体化した内歯車を採用する例が多くなった。しかし、トロコイド歯車は、噛み合い時の相対滑りが大きいため、ピンをホルダーに一体化させた内歯車に従来と同様のトルク(ピン分離型の内歯車にて伝達可能であったトルク)を負荷すると、摩耗が増大し、伝達効率が低下し、または焼き付きが発生する等、不具合が生じがちである。   In order to obtain a large reduction ratio in the reducer as described above, it is necessary to attach a large number of pins to the holder of the internal gear, and the number of parts increases and the assembly becomes complicated and the manufacturing cost increases. More and more examples have adopted internal gears that are integrated with the holder. However, since the trochoid gear has a large relative slip when engaged, if the same torque (torque that can be transmitted by the pin-separated type internal gear) is applied to the internal gear in which the pin is integrated with the holder, In addition, the wear tends to increase, the transmission efficiency decreases, or seizure occurs.

下記の特許文献3〜5には、そうした不具合を一部解消することのできる歯車が提案されている。
特開昭61−136041号公報 特開平4−282047号公報 特公昭63−4056号公報 特開平6−50394号公報 特開平4−29645号公報
The following Patent Documents 3 to 5 propose gears that can partially eliminate such problems.
JP-A-61-136041 Japanese Patent Laid-Open No. 4-28047 Japanese Examined Patent Publication No. 63-4056 JP-A-6-50394 JP-A-4-29645

特許文献3・4に記載の技術は、図8(a)に示す遊星歯車減速機においてb−b断面の部分に使用される図8(b)のようなトロコイド歯車に関するもので、内歯車としてピンとホルダーとを一体化したものを採用した例である。そして、外歯車2’には従来のエピトロコイド歯形を採用し、内歯車3’は、歯先部を円弧にし、歯元部は外歯車歯形の包絡曲線にて形成している。これによれば、トルク伝達に大きく寄与する重要な領域では、内外各歯車2’・3’における各歯が、歯先部と歯元部との両方で相手歯車と接触することになり、接触点での面圧低下が期待でき、上記不具合の一部を解消することができる。   The techniques described in Patent Documents 3 and 4 relate to the trochoidal gear as shown in FIG. 8B used in the section of the bb cross section in the planetary gear speed reducer shown in FIG. This is an example in which a pin and a holder are integrated. The external gear 2 'employs a conventional epitrochoid tooth profile, the internal gear 3' has a tooth tip portion formed in an arc, and the tooth root portion is formed by an envelope curve of the external gear tooth shape. According to this, in an important region that greatly contributes to torque transmission, each tooth in each of the inner and outer gears 2 'and 3' comes into contact with the mating gear at both the tooth tip portion and the tooth root portion. A decrease in surface pressure at a point can be expected, and some of the above problems can be solved.

しかし、遊星運動する外歯車歯形(エピトロコイド曲線)の包絡曲線を設計することは容易ではない。その設計のためには、たとえばCAD上で、遊星運動時の歯先点(トロコイド曲線の凸点)の軌跡を求め、さらにそこから少し歯元側の点の軌跡を求め、これを繰り返し実施して、全ての軌跡の最も外側の領域だけを取り出す、といった作業が必要になる。その場合、噛み合い理論に基づいた設計が展開できず、また設計に要する時間や手間も膨大となる。   However, it is not easy to design an envelope curve of an external gear tooth profile (epitrochoid curve) that moves in a planetary motion. For the design, for example, on CAD, the locus of the tip of the tooth tip (convex point of the trochoid curve) during planetary movement is obtained, and further, the locus of the point on the tooth root side is obtained from it, and this is repeated. Thus, it is necessary to take out only the outermost area of all the trajectories. In that case, the design based on the meshing theory cannot be developed, and the time and labor required for the design become enormous.

また、特許文献5に記載の技術は、外歯車・内歯車のいずれか一方または両方にあらかじめオイルを含浸させるものである。この技術によっても前述の摩耗等の課題を一部解消することが可能だが、これによる場合には、金属粉末焼結材のような多孔質材を使用する必要があり、歯車の材料がきわめて限定的になってしまう。   The technique described in Patent Document 5 impregnates one or both of an external gear and an internal gear with oil in advance. This technology can also partially eliminate the above-mentioned problems such as wear, but in this case, it is necessary to use a porous material such as a metal powder sintered material, and the gear material is extremely limited. It becomes like.

請求項に係る発明は、以上の点を考慮してなしたもので、ピンとホルダーとが一体化された内歯車を採用しながら、特別に材料を限定することなく摩耗等の不具合を解消でき、しかも設計が容易なトロコイド歯車等を提供するものである。   The invention according to the claims was made in consideration of the above points, and while adopting an internal gear in which a pin and a holder are integrated, problems such as wear can be solved without specially limiting the material, In addition, the present invention provides a trochoid gear that is easy to design.

請求項に係る発明のトロコイド歯車は、外歯車と内歯車(たとえば外歯車より歯数が1だけ多いもの)とが噛み合うトロコイド歯車であって、
イ) 外歯車が、歯先部は円弧曲線であり歯元部はエピトロコイド曲線であって、これら二つの曲線が共通接線にて滑らかに連結された歯形を有していること、および、
ロ) 内歯車が、歯先部は円弧曲線であり歯元部はハイポトロコイド曲線であって、これら二つの曲線が共通接線にて滑らかに連結された歯形を有していること
を特徴とする。
The trochoidal gear according to the present invention is a trochoidal gear in which an external gear and an internal gear (for example, one having 1 more teeth than the external gear) mesh with each other,
B) The external gear has a tooth profile in which the tooth tip portion is an arc curve and the tooth root portion is an epitrochoid curve, and these two curves are smoothly connected by a common tangent line, and
B) The internal gear is characterized in that the tooth tip portion is an arc curve and the tooth root portion is a hypotrochoid curve, and these two curves have a tooth profile smoothly connected by a common tangent line. .

図6(a)はエピトロコイド曲線の外歯車と分離型内歯車との噛み合いを示し、図6(b)はハイポトロコイド曲線の内歯車と分離型外歯車との噛み合いを示している。いずれも、内歯車の中心を遊星運動する外歯車が、右側に偏心している状態を描いている。このような状態では、トルク伝達に大きく寄与する歯の噛み合いは、右半分に集中していると言える。
ところで、(a)・(b)いずれの歯車も、すべての歯が相手歯車と噛み合っている。ここで、噛み合いの状態を詳細に観察すると、以下がわかる。
○ (a)の外歯車は、右側で歯底部が、左側で歯先部が相手歯車と噛み合っている。
○ (a)の内歯車は、全周に渡って、歯先部が相手歯車と噛み合っている。
○ (b)の外歯車は、全周に渡って、歯先部が相手歯車と噛み合っている。
○ (b)の内歯車は、右側で歯底部が、左側で歯先部が相手歯車と噛み合っている。
このことから、歯底部がエピトロコイド曲線で、歯先部が円弧曲線の外歯車と、歯底部がハイポトロコイド曲線で、歯先部が円弧曲線の内歯車を噛み合わせれば、トルク伝達に大きく寄与する範囲(図の略右側)では、歯底部と歯先部の両方が相手歯車と噛み合い、トルク伝達にあまり寄与しない範囲(図の略左側)では、噛み合いが生じない歯車が成立すると考えられる。
そこで、上記イ)ロ)のように形成した内外歯車を噛み合わせた絵を図1に示す。この図に示されるように、両歯車の噛み合う領域において、外歯車の歯元部(エピトロコイド曲線の部分)と内歯車の歯先部(円弧曲線の部分)とが接触する(図中の小さな丸で示す接触部4a)とともに、外歯車の歯先部(円弧曲線の部分)と内歯車の歯元部(ハイポトロコイド曲線の部分)とが接触する(図中の大きな丸で示す接触部4b)。しかも、こうして外歯車と内歯車とが噛み合うのは、トルク伝達に大きく寄与する、すべり速度の小さい領域(図中の楕円で囲まれた部分等)においてのみである。これらの点から、この歯車では、トルク伝達の際の面圧が小さく、歯面の摩耗や伝達効率、焼き付き等のトラブル発生等、種々の点で利点がもたらされるといえる。
前述した特許文献3・4の歯車と比べると、外歯車の歯形を全域でエピトロコイド曲線とするのではなく、歯先部分を円弧曲線にした点で相違する。外歯車が円弧曲線であるとき、その包絡曲線はハイポトロコイド曲線となる。そのため、この発明によると、内歯車・外歯車の各歯形を数学的に定式化することができ、歯形設計が容易になる。エピトロコイド噛み合い、ハイポトロコイド噛み合いは、いずれも、歯車理論が確立された周知の事実であり、より熟考を施した設計が可能となる。なお、発明のトロコイド歯車は、引用文献3・4の歯車と同様に、図8(a)に示す遊星歯車減速機(そのb−b断面の部分)やギヤポンプ本体(図示せず)等に採用することができる。
FIG. 6A shows the meshing of the epitrochoid curve external gear and the separation-type internal gear, and FIG. 6B shows the meshing of the hypotrochoid curve internal gear and the separation-type external gear. In both cases, the external gear that performs planetary motion in the center of the internal gear is depicted as being eccentric to the right. In such a state, it can be said that the meshing of teeth that greatly contributes to torque transmission is concentrated in the right half.
By the way, in both gears (a) and (b), all teeth are engaged with the mating gear. Here, when the state of meshing is observed in detail, the following can be understood.
○ The external gear of (a) meshes with the mating gear on the right side and the tooth tip on the left side.
○ In the internal gear of (a), the tooth tip part meshes with the counterpart gear over the entire circumference.
○ In the external gear of (b), the tooth tip part meshes with the mating gear over the entire circumference.
○ In the internal gear of (b), the tooth bottom portion meshes with the mating gear on the right side and the tooth tip portion on the left side.
For this reason, if the tooth bottom part is an epitrochoid curve, the tooth tip part is an arcuate curve external gear, and the tooth bottom part is a hypotrochoid curve and the tooth tip part is an arcuate curve internal gear, it greatly contributes to torque transmission. In the range (substantially right side in the figure), both the tooth bottom part and the tooth tip part mesh with the mating gear, and in the range (substantially left side in the figure) that does not contribute much to torque transmission, it is considered that a gear that does not engage is established.
Therefore, FIG. 1 shows a picture in which the internal and external gears formed as in the above (a) and b) are engaged. As shown in this figure, in the region where both gears mesh with each other, the tooth base part of the external gear (the epitrochoid curve part) and the tooth tip part of the internal gear (the arc curve part) are in contact (small in the figure). In addition to the contact portion 4a) indicated by a circle, the tooth tip portion (arc curve portion) of the external gear and the tooth root portion (hypotrochoid curve portion) of the internal gear contact (contact portion 4b indicated by a large circle in the figure). ). In addition, the external gear and the internal gear mesh with each other only in a region where the sliding speed is small (such as a portion surrounded by an ellipse in the figure) that greatly contributes to torque transmission. From these points, it can be said that this gear has advantages in various points, such as a small surface pressure during torque transmission, and tooth surface wear and transmission efficiency, troubles such as seizure.
Compared with the gears of Patent Documents 3 and 4 described above, the difference is that the tooth profile of the external gear is not an epitrochoid curve in the entire region, but the tooth tip portion is an arc curve. When the external gear is an arc curve, the envelope curve is a hypotrochoid curve. Therefore, according to this invention, each tooth form of an internal gear and an external gear can be formulated mathematically, and tooth form design becomes easy. Both epitrochoid meshing and hypotrochoid meshing are well-known facts that the gear theory has been established, and a more devised design is possible. The trochoid gear of the invention is used in the planetary gear reducer (part of the bb cross section) shown in FIG. 8 (a), the gear pump main body (not shown), etc., like the gears of the cited documents 3 and 4. can do.

外歯車および内歯車において、上記各二つの曲線(外歯車では円弧曲線とエピトロコイド曲線との二つをさし、内歯車では円弧曲線とハイポトロコイド曲線との二つをさす)の連結部分は、エピトロコイド曲線またはハイポトロコイド曲線のうちトルク伝達効率の最大点付近に一致するようにするのが好ましい。具体的には、外歯車と内歯車との間の偏心量を適切に定めることによって、連結部分がトルク伝達効率の最大点に一致するようにするとよい。
二つの歯車が噛み合うときのトロコイド曲線と円弧との接触点は噛み合い運動によって変化し、接触点が歯先点から最も離れたとき、内外歯車間でのトルクの伝達効率は最大となる。すなわち、内外歯車間が噛み合う領域内のうち最も端にある接触点(図1における符号Xの部分)がトルク伝達効率の最大点である。上記各二つの曲線の連結部分を、エピトロコイド曲線またはハイポトロコイド曲線のうちこうしたトルク伝達効率最大点付近に一致させると、相手側歯車における接触点が円弧曲線の範囲内のみでの変化にとどまり、ハイポトロコイド曲線またはエピトロコイド曲線の範囲にまでは移動しない。そのため、この歯車によれば、外歯車と内歯車との噛み合いがとくに安定的になるという効果が得られる。
In the external gear and the internal gear, the connecting parts of the above two curves (the external gear indicates the arc curve and the epitrochoid curve, and the internal gear indicates the arc curve and the hypotrochoid curve) The epitrochoid curve or the hypotrochoid curve preferably matches the vicinity of the maximum point of torque transmission efficiency. Specifically, it is preferable that the amount of eccentricity between the external gear and the internal gear is appropriately determined so that the connecting portion matches the maximum point of torque transmission efficiency.
When the two gears mesh with each other, the contact point between the trochoid curve and the arc changes by the meshing movement, and when the contact point is farthest from the tooth tip point, the torque transmission efficiency between the internal and external gears is maximized. That is, the contact point at the end (portion X in FIG. 1) in the region where the inner and outer gears mesh with each other is the maximum point of torque transmission efficiency. When the connecting part of each of the two curves is matched with the epitrochoid curve or the hypotrochoid curve in the vicinity of the maximum torque transmission efficiency point, the contact point of the counter gear stays only within the range of the arc curve, It does not move to the range of the hypotrochoid curve or epitrochoid curve. Therefore, according to this gear, an effect that the meshing between the external gear and the internal gear becomes particularly stable can be obtained.

上記のように構成した歯車において、とくに、外歯車と内歯車とが噛み合う領域の中央部分から180°離れた部分で外歯車と内歯車との凸点同士が接するように構成するのも好ましい。
つまり、図1のように、トルク伝達に大きく寄与する領域(図中の楕円で囲まれた部分等)のほかに、その領域の中央部分から180°離れた部分(図中の符号Yの部分)でも外歯車と内歯車との凸点同士が接するように、内・外歯車間の偏心量や、内・外歯車のPCD、円弧径、歯数を定めるのである。外歯車と内歯車とは、トルク伝達に寄与する上記の領域と、符号Yの部分の一点とのみで接触する。この場合、歯形の設計と製作がとくに簡単化され容易になる点で有利である。
In the gear configured as described above, it is particularly preferable that the convex points of the external gear and the internal gear are in contact with each other at a portion 180 ° away from the central portion of the region where the external gear and the internal gear mesh.
That is, as shown in FIG. 1, in addition to a region that greatly contributes to torque transmission (portion surrounded by an ellipse in the drawing), a portion that is 180 ° away from the central portion of the region (portion Y in the drawing) However, the amount of eccentricity between the internal and external gears, the PCD of the internal and external gears, the arc diameter, and the number of teeth are determined so that the convex points of the external gear and the internal gear are in contact with each other. The external gear and the internal gear are in contact with each other only at the above-mentioned region that contributes to torque transmission and at one point indicated by the symbol Y. This is advantageous in that the design and production of the tooth profile is particularly simplified and easy.

その一方、上記のように(つまり、外歯車と内歯車とが噛み合う領域の中央部分から180°離れた部分において外歯車と内歯車との凸点同士が接するように)寸法および歯数を定めたうえ、歯先の面取りによって、当該凸点同士が接することがないように構成するのもよい。
そうすれば、トルク伝達に寄与する上記の領域以外の部分において歯先の干渉を回避することができる。トルク伝達に全く寄与しない凸点同士の噛み合いを回避できるので、無駄な摩耗や伝達効率のロスを削減することができる。図5はその例を示している。
On the other hand, the dimensions and the number of teeth are determined as described above (that is, the convex points of the external gear and the internal gear are in contact with each other at a portion 180 ° away from the central portion of the region where the external gear and the internal gear mesh). In addition, the convex points may not be in contact with each other by chamfering the tooth tips.
If it does so, the interference of a tooth tip can be avoided in parts other than said area | region which contributes to torque transmission. Since it is possible to avoid meshing of the convex points that do not contribute to torque transmission at all, wasteful wear and loss of transmission efficiency can be reduced. FIG. 5 shows an example.

さらに、外歯車と内歯車とのうち少なくとも一方について、潤滑油を含浸されたダクタイル鋳鉄で形成し、または、表面にダイヤモンドライクカーボン皮膜を形成することとするのも有意義である。
上述したトロコイド歯車にこうした特徴を付加すると、歯面の摩耗や伝達効率の低下といった前述の課題がさらに解消される。内外各歯車におけるそれぞれの歯を歯元部と歯先部との両方で相手歯車と接触させることで噛み合い時の面圧を減らすとともに、各歯車の表面にこうして自己潤滑性をもたせることにより摩擦を低減させると、摩耗の程度等は相乗的に減少するからである。
なお、以上に示したトロコイド歯車は、減速機に組み込んで使用するのが好ましい。
Furthermore, it is also meaningful that at least one of the external gear and the internal gear is formed of ductile cast iron impregnated with lubricating oil, or a diamond-like carbon film is formed on the surface.
When such a feature is added to the above-described trochoid gear, the above-described problems such as tooth surface wear and reduced transmission efficiency are further eliminated. Each tooth in the inner and outer gears is brought into contact with the mating gear at both the tooth root part and the tooth tip part to reduce the surface pressure at the time of meshing. This is because the degree of wear decreases synergistically when reduced.
The trochoidal gear shown above is preferably used by being incorporated in a reduction gear.

請求項に係る発明のトロコイド歯車によると、トルク伝達に大きく寄与する重要な領域では、内外各歯車における一つの歯が歯元部と歯先部との両方で相手歯車と接触する。トルク伝達の際の面圧が小さく、歯面の摩耗や伝達効率、焼き付き等のトラブル発生等、種々の点で利点がもたらされる。また、内歯車・外歯車の各歯形を数学的に定式化することができ、歯形設計が容易になり、より熟考を施した設計が可能になる。
外歯車および内歯車において、各二つの曲線の連結部分をトルク伝達効率の最大点付近に一致するようにすると外歯車と内歯車との噛み合いがとくに安定する。
According to the trochoid gear of the claimed invention, in an important region that greatly contributes to torque transmission, one tooth in each of the inner and outer gears contacts the mating gear at both the root portion and the tip portion. The surface pressure during torque transmission is small, and there are advantages in various respects such as tooth surface wear and transmission efficiency, troubles such as seizure. In addition, each tooth profile of the internal gear and the external gear can be mathematically formulated, and the tooth profile design becomes easy, and a more thoughtful design becomes possible.
In the external gear and the internal gear, the engagement between the external gear and the internal gear is particularly stable when the connecting portions of the two curves are made to coincide with each other in the vicinity of the maximum point of the torque transmission efficiency.

また、外歯車と内歯車とが噛み合う領域の中央部分から180°離れた部分で外歯車と内歯車との凸点同士が接するように構成すると、歯形の設計と製作がとくに簡単化され容易になる。
そうしたうえで、歯先の負転位または歯先の面取りによって当該凸点同士が接することがないように構成すると、歯形の設計・製作が容易になるとともに簡便な方法で歯先の干渉を回避でき、もって無駄な摩耗や伝達効率のロスを削減できる。
外歯車と内歯車とのうち少なくとも一方を、潤滑油を含浸されたダクタイル鋳鉄で形成し、または、表面にダイヤモンドライクカーボン皮膜を形成すると、歯面の摩耗や伝達効率の低下といった前述の課題がさらに解消されやすくなる。
上記のトロコイド歯車を組み込んだ減速機においても、上記の各特徴に基づく利点がもたらされる。
Also, if the convex points of the external gear and the internal gear are in contact with each other at a portion 180 ° away from the central portion of the region where the external gear and the internal gear mesh, the design and production of the tooth profile is particularly simplified and easy. Become.
In addition, if it is configured so that the convex points do not touch each other due to negative dislocation of the tooth tip or chamfering of the tooth tip, the tooth profile can be easily designed and manufactured and interference of the tooth tip can be avoided by a simple method. Therefore, useless wear and loss of transmission efficiency can be reduced.
If at least one of the external gear and the internal gear is made of ductile cast iron impregnated with a lubricating oil, or if a diamond-like carbon film is formed on the surface, the above-mentioned problems such as wear on the tooth surface and reduction in transmission efficiency may occur. Furthermore, it becomes easy to be eliminated.
The speed reducer incorporating the trochoidal gear also provides advantages based on the above features.

発明の実施に関する形態を、図面を用いて説明する。図1〜図5に示すトロコイド歯車(歯車対)1は、ともにトロコイド曲線を含む外歯車2と内歯車3とが噛み合うもので、内歯車3と、それよりも歯数が1だけ少ない外歯車2とを、たとえば図8(a)に示す遊星歯車減速機10(のb−b断面の部分)に組み込んで使用する。図示の減速機10に使用する場合には、入力軸11にまず偏心体12を取り付け、その偏心体12を介して偏心回転可能なように複数枚の外歯車2を設ける。そして、その外歯車2と内接噛合するように内歯車3を設けて固定配置するとともに、支軸13を介して外歯車2の自転成分のみを伝達するように出力軸14を取り付ける。こうすると、入力軸11・出力軸14間に、内歯車の歯数に等しい減速比が得られる。   Embodiments of the invention will be described with reference to the drawings. A trochoid gear (gear pair) 1 shown in FIGS. 1 to 5 is one in which an external gear 2 and an internal gear 3 that both include a trochoid curve mesh with each other, and the internal gear 3 and the external gear having one fewer teeth than that. 2 is used by being incorporated in, for example, the planetary gear speed reducer 10 (part of the bb cross section) shown in FIG. When used in the illustrated speed reducer 10, an eccentric body 12 is first attached to the input shaft 11, and a plurality of external gears 2 are provided so as to be able to rotate eccentrically via the eccentric body 12. The internal gear 3 is provided and fixedly arranged so as to be in mesh with the external gear 2, and the output shaft 14 is attached so as to transmit only the rotation component of the external gear 2 through the support shaft 13. In this way, a reduction ratio equal to the number of teeth of the internal gear is obtained between the input shaft 11 and the output shaft 14.

図1(a)・(b)のトロコイド歯車(ハイブリッドトロコイド歯車)1は、図2に示す歯形を有するものである。すなわち、外歯車2(図示右側)においては、歯先部が円弧曲線2aであり歯元部がエピトロコイド曲線2bであって、これら二つの曲線が共通接線にて滑らかに連結されて歯形が形成されている。一方、内歯車3(図示左側)は、歯先部が円弧曲線3aであり歯元部がハイポトロコイド曲線3bであって、これら二つの曲線が共通接線にて滑らかに連結されている。   A trochoid gear (hybrid trochoid gear) 1 shown in FIGS. 1A and 1B has a tooth profile shown in FIG. That is, in the external gear 2 (right side in the drawing), the tooth tip portion is an arc curve 2a and the tooth root portion is an epitrochoid curve 2b, and these two curves are smoothly connected by a common tangent to form a tooth profile. Has been. On the other hand, the internal gear 3 (left side in the figure) has a tooth tip portion of an arc curve 3a and a tooth root portion of a hypotrochoid curve 3b, and these two curves are smoothly connected by a common tangent line.

こうした一対の外歯車2と内歯車3は、両者間を適切に偏心させて噛み合わせるとき、図1に示す好ましい噛み合いをなす。すなわち、トルク伝達に大きく寄与する重要な領域(噛み合い領域。図のように楕円で囲んだb部など)において、内外各歯車2・3における一つの歯が、歯元部と歯先部との両方で相手歯車と接触する。外歯車2の歯元部(エピトロコイド曲線の部分)と内歯車3の歯先部(円弧曲線の部分)とが図(b)中の小さな丸の部分4aで接触するとともに、外歯車2の歯先部(円弧曲線の部分)と内歯車3の歯元部(ハイポトロコイド曲線の部分)とが図(b)中の大きな丸の部分4bで接触するのである。噛み合い時の弾性変形を考慮すると、巨視的には外歯車2と内歯車3とが面で接触するとも期待される。こうした点から、トロコイド歯車1では、トルク伝達の際の面圧が小さくなり歯面の摩耗が減少する、といった効果がもたらされる。   The pair of external gear 2 and internal gear 3 form a preferable mesh shown in FIG. 1 when meshed with each other being appropriately eccentric. In other words, in an important region that greatly contributes to torque transmission (engagement region, such as a portion b surrounded by an ellipse as shown in the figure), one tooth in each of the inner and outer gears 2 and 3 is formed between the root portion and the tip portion. Both contact the mating gear. The tooth base part of the external gear 2 (the epitrochoid curve part) and the tooth tip part of the internal gear 3 (arc curve part) are in contact with each other at the small round part 4a in FIG. The tooth tip portion (arc curve portion) and the tooth root portion of the internal gear 3 (hypotrochoid curve portion) come into contact with each other at a large circular portion 4b in FIG. Considering the elastic deformation at the time of meshing, it is expected that the external gear 2 and the internal gear 3 are in contact with each other on a macroscopic basis. From these points, the trochoid gear 1 has the effect that the surface pressure during torque transmission is reduced and the tooth surface wear is reduced.

図1のトロコイド歯車1においては、上記した噛み合い領域以外の部分では外歯車2と内歯車3とが一般的には接触しない。仮に噛み合い領域以外の領域で両歯車が接触するとすれば、当該接触部分ではすべり速度が大きくて摩耗の進行が甚だしいうえ、そうした接触はトルク伝達にほとんど寄与しない。したがって図1の歯車1においては、伝達効率が改善し焼付きが防止される点でむしろ有利だといえる。   In the trochoid gear 1 of FIG. 1, the external gear 2 and the internal gear 3 are generally not in contact with each other in the portion other than the meshing region described above. If the two gears are in contact with each other in a region other than the meshing region, the sliding speed is high at the contact portion and the progress of wear is significant, and such contact hardly contributes to torque transmission. Therefore, it can be said that the gear 1 of FIG. 1 is rather advantageous in that transmission efficiency is improved and seizure is prevented.

トロコイド歯車1については、外歯車2の中心偏心量ecと内歯車3の歯数n1、内歯車円弧中心のPCDであるaeとから、α=ec・n1/aeによってトロコイド係数αが算出される。トロコイド係数αが1に近いとトロコイド曲線はサイクロイド曲線に近くなり、αが1より小さいとトロコイド曲線はサイクロイド曲線から離れた曲線となる。
このトロコイド係数αが大きいと、歯元部のすべり速度が小さくなって効率のよいトルク伝達が行えるが、同係数αが大きすぎると、二つの曲線の連結点がトルク伝達効率最大点を追い越してしまい、両歯の噛み合いが不安定になる。また、図3(a)・(b)および図4(a)・(b)に示すように(図3の例ではトロコイド係数が0.96、図4の例では同係数が0.74。歯数はいずれも80)同係数αが大きいと噛み合い領域も狭くなる(図3の例では同領域が8°で、図4の例の35°よりもかなり狭い)。そのため、適度な噛み合い領域を有するとともに連結点がちょうどトルク伝達効率最大点に一致するよう、トロコイド係数αおよび偏心量ecを設定するのが好ましい。
For the trochoid gear 1, the trochoid coefficient α is calculated from α = ec · n1 / ae from the center eccentricity ec of the external gear 2, the number of teeth n 1 of the internal gear 3, and ae which is the PCD of the internal gear arc center. . When the trochoid coefficient α is close to 1, the trochoid curve is close to a cycloid curve, and when α is less than 1, the trochoid curve is a curve away from the cycloid curve.
If this trochoid coefficient α is large, the sliding speed of the tooth root portion will be small and efficient torque transmission will be possible, but if the coefficient α is too large, the connecting point of the two curves will overtake the torque transmission efficiency maximum point. As a result, the meshing of both teeth becomes unstable. Further, as shown in FIGS. 3A and 3B and FIGS. 4A and 4B, the trochoid coefficient is 0.96 in the example of FIG. 3, and the coefficient is 0.74 in the example of FIG. The number of teeth is 80) When the coefficient α is large, the meshing area becomes narrow (in the example of FIG. 3, the area is 8 °, which is considerably narrower than 35 ° in the example of FIG. 4). For this reason, it is preferable to set the trochoid coefficient α and the eccentricity ec so as to have an appropriate meshing region and the connecting point exactly coincides with the maximum torque transmission efficiency point.

外歯車2と内歯車3とは、上記した噛み合い領域の中央部分から180°離れた部分(図1の符号Yの部分)においても両者の凸点同士が接するように各部の寸法および歯数を定めると、設計・製作を簡単化できる利点がある。しかし、歯先の摩耗を減らして伝達効率を改善する意味では、歯先の干渉を防止するのが好ましい。図5(a)・(b)・(c)・(d)は、外歯車2および内歯車3の各歯先に面取り部分2c・3cを設けることにより歯先の干渉を回避する例である。   The external gear 2 and the internal gear 3 have the dimensions and the number of teeth so that the convex points of the two portions are in contact with each other even at a portion 180 ° away from the center portion of the meshing region (the portion indicated by Y in FIG. 1). If defined, there is an advantage that the design and production can be simplified. However, it is preferable to prevent tooth tip interference in the sense of reducing tooth tip wear and improving transmission efficiency. FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are examples in which chamfered portions 2 c and 3 c are provided at the tooth tips of the external gear 2 and the internal gear 3 to avoid the interference of the tooth tips. .

以上に示したトロコイド歯車1では、外歯車歯形の包絡曲線がハイポトロコイド曲線となることから、外歯車2および内歯車3の各歯形を数学的に定式化することができ、歯形設計が容易である。すなわち、たとえば以下のようにして歯形曲線を定式化することができる。   In the trochoid gear 1 shown above, since the envelope curve of the external gear tooth profile is a hypotrochoid curve, each tooth profile of the external gear 2 and the internal gear 3 can be mathematically formulated, and the tooth profile design is easy. is there. That is, for example, the tooth profile curve can be formulated as follows.

エピトロコイド中心曲線の式は、以下のようである。
cev={cex,cey};
ここで、cexはエピトロコイド中心曲線のx座標、ceyはそのy座標である。
cex=ec Cos[q]+ae Cos[q/n1]; cey=ec Sin[q]+ae Sin[q/n1];
ae : 内歯円弧中心のPCD、ec : 外歯車の中心偏心量、re : 内歯円弧の半径、q : 媒介変数(q=2Pin1で一周期)。なお、Piはπを表す。
n0 : 外歯の歯数、n1 : 内歯の歯数(ここでは、n1=n0+1)
内歯車と噛み合わせるため、この曲線を中心方向に内歯円弧径分オフセットさせると、外歯車の歯形曲線が成立する。
sev={sex,sey};
ここで、sexは平行曲線のx座標、seyはそのy座標である。
sev=cev+re*{{Cos[Pi/2],-Sin[Pi/2]},{Sin[Pi/2],Cos[Pi/2]}}.{dex,dey}/der;
der=Sqrt[dex^2+dey^2]; dex=D[cex,q]; dey=D[cey,q];
初期点(歯先凸点)の座標は、sev(0)={ae+ec-re,0}である。
なお、D[f(q),q]は、f(q)のqによる微分を示す。
The equation for the epitrochoid center curve is as follows:
cev = {cex, cey};
Here, cex is the x coordinate of the epitrochoid center curve, and cey is its y coordinate.
cex = ec Cos [q] + ae Cos [q / n1]; cey = ec Sin [q] + ae Sin [q / n1];
ae: PCD at the center of the internal tooth arc, ec: Center eccentricity of the external gear, re: Radius of the internal tooth arc, q: Parameter (q = 2Pin1 is one cycle). Pi represents π.
n0: Number of external teeth, n1: Number of internal teeth (here, n1 = n0 + 1)
If this curve is offset in the center direction by an inner tooth arc diameter in order to mesh with the internal gear, a tooth profile curve of the external gear is established.
sev = {sex, sey};
Here, sex is the x coordinate of the parallel curve, and sey is its y coordinate.
sev = cev + re * {{Cos [Pi / 2],-Sin [Pi / 2]}, {Sin [Pi / 2], Cos [Pi / 2]}}. {dex, dey} / der;
der = Sqrt [dex ^ 2 + dey ^ 2]; dex = D [cex, q]; dey = D [cey, q];
The coordinates of the initial point (tooth tip convex point) are sev (0) = {ae + ec-re, 0}.
Note that D [f (q), q] represents the differentiation of f (q) by q.

ハイポトロコイド中心曲線chv、および、ハイポトロコイド平行曲線shvは、同様に、以下のようである。
chv={chx,chy};
ここで、chxはハイポトロコイド中心曲線のx座標、chyはそのy座標である。
chx=-ec Cos[q]+ah Cos[q/n1]; chy=+ec Sin[q]+ah Sin[q/n1];
ah : 外歯円弧中心のPCD、ec : 外歯車の中心偏心量、rh : 外歯円弧の半径、q : 媒介変数(q=2Pin1で一周期)
n1 : 外歯の歯数、n2 : 内歯の歯数(ここでは、n2=n0+2)
shv={shx,shy};
ここで、shxは平行曲線のx座標、shyはそのy座標である。
shv=chv+rh*{{Cos[Pi/2],Sin[Pi/2]},{-Sin[Pi/2],Cos[Pi/2]}}.{dhx,dhy}/dhr;
dhr=Sqrt[dhx^2+dhy^2]; dhx=D[chx,q]; dhy=D[chy,q];
Similarly, the hypotrochoid central curve chv and the hypotrochoid parallel curve shv are as follows.
chv = {chx, chy};
Here, chx is the x coordinate of the hypotrochoid center curve, and chy is its y coordinate.
chx = -ec Cos [q] + ah Cos [q / n1]; chy = + ec Sin [q] + ah Sin [q / n1];
ah: PCD at the center of the external tooth arc, ec: Center eccentricity of the external gear, rh: Radius of the external tooth arc, q: Parameter (q = 2Pin1 for one cycle)
n1: Number of external teeth, n2: Number of internal teeth (here n2 = n0 + 2)
shv = {shx, shy};
Here, shx is the x coordinate of the parallel curve, and shy is its y coordinate.
shv = chv + rh * {{Cos [Pi / 2], Sin [Pi / 2]}, {-Sin [Pi / 2], Cos [Pi / 2]}}. {dhx, dhy} / dhr;
dhr = Sqrt [dhx ^ 2 + dhy ^ 2]; dhx = D [chx, q]; dhy = D [chy, q];

トロコイド曲線と噛み合う円弧の接触点は、噛み合い運動により変化する。接触点が歯先点から最も離れるとき、内・外歯車間でのトルクの伝達効率が最大となる。この点と噛み合うトロコイド曲線上の点をトルク伝達効率最大点と呼び、以下で定式化できる。
エピ トロコイドのトルク伝達効率最大点 : qem=Pi n1/n0-n1/n0 ArcCos[(ec n1)/aa];
ハイポトロコイドのトルク伝達効率最大点 : qhm=Pi n1/n2-n1/n2 ArcCos[(ec n1)/aa];
なお、ArcCos[x]は、xの逆余弦関数である。
The contact point of the arc that meshes with the trochoid curve changes with the meshing motion. When the contact point is farthest from the tooth tip point, the torque transmission efficiency between the internal and external gears is maximized. The point on the trochoid curve that meshes with this point is called the maximum torque transmission efficiency point and can be formulated as follows.
Epitrochoid torque transmission efficiency maximum point: qem = Pi n1 / n0-n1 / n0 ArcCos [(ec n1) / aa];
Maximum torque transmission efficiency of hypotrochoid: qhm = Pi n1 / n2-n1 / n2 ArcCos [(ec n1) / aa];
ArcCos [x] is the inverse cosine function of x.

外歯車の歯先部を円弧で置き換え、エピトロコイド平行曲線と滑らかに連結させることを考える。
円弧半径をrh、円弧中心位置を(ae+ec-re+dela-rh,0)とするとき、エピ曲線と円弧曲線の逸脱長delreは以下で求められる。
delre=(sex-(ae+ec-re+dela-rh))^2+sey^2-rh^2
二つの曲線の連結点qcで、二つ曲線は接するので、{delre(qc)=0, D[delre,q](qc)=0}の二式から、二曲線が滑らかに連結するための条件qcとrhが求められる。
ここで、de1a=0のとき、円弧はエピ曲線の凸点とも接する。外歯と内歯が全周に渡って干渉しないためには、de1a≧0の条件がある。de1aは、外・内歯先間のクリアランスに相当する。
また、qcで円弧rhとエピ平行曲線sevが接するので、qcに限り、delreはエピ中心曲線で書き換えることができる。
delre=(cex-(ae+ec+de1a-re-rh))^2+cey^2-(re+rh)^2
=(cex-(ae+ec+dela-rw))^2+cey^2-rw^2 where rw=re+rh
方程式の求解には、こちらを利用する方が、計算負荷低減に有利である。
得られたrwからrh=rw-reにより、ハイポ曲線の外歯円弧径が定まる。また、ah=ae+ec-rw-de1aにより、外歯円弧中心のPCDが定まる。すなわち、エピ曲線の歯形パラメータae,ec,re,n0と歯先間クリアランスde1aを定めればこのエピ曲線と噛み合う、ハイポ曲線の歯形パラメータah,ec,rh,noが、自動的に求められる。
Consider replacing the tooth tip of the external gear with a circular arc and smoothly connecting it with the epitrochoid parallel curve.
When the arc radius is rh and the arc center position is (ae + ec-re + dela-rh, 0), the deviation length delre between the epi curve and the arc curve is obtained as follows.
delre = (sex- (ae + ec-re + dela-rh)) ^ 2 + sey ^ 2-rh ^ 2
Since the two curves touch at the connection point qc of the two curves, from the two equations {delre (qc) = 0, D [delre, q] (qc) = 0} Conditions qc and rh are obtained.
Here, when de1a = 0, the arc touches the convex point of the epicurve. In order to prevent the outer teeth and the inner teeth from interfering over the entire circumference, there is a condition of de1a ≧ 0. de1a corresponds to the clearance between the external and internal tooth tips.
Further, since the arc rh and the epi parallel curve sev are in contact with each other in qc, delre can be rewritten with the epi center curve only in qc.
delre = (cex- (ae + ec + de1a-re-rh)) ^ 2 + cey ^ 2- (re + rh) ^ 2
= (cex- (ae + ec + dela-rw)) ^ 2 + cey ^ 2-rw ^ 2 where rw = re + rh
It is more advantageous to reduce calculation load if this is used for solving equations.
From the obtained rw, the external tooth arc diameter of the hypo curve is determined by rh = rw-re. Also, ah = ae + ec-rw-de1a determines the PCD of the external tooth arc center. That is, if the epicurve tooth profile parameters ae, ec, re, n0 and the inter-tooth clearance de1a are determined, the hypocurve tooth profile parameters ah, ec, rh, and no which mesh with the epicurve are automatically obtained.

α=ec n1/aeをトロコイド係数と呼び、α=1のとき二つのトロコイド曲線は共にサイクロイド曲線となる。この場合には、歯元部も円弧になる。
卜ロコイド係数が大きければ、歯元部のすべり速度が小さくなり、効率の良いトルク伝達が行える。
しかし、トロコイド係数が大きくなると、二つの曲線の連結点がトルク伝達効率最大点を追い越してしまい、両歯の噛み合いが不安定になる。また、噛み合い領域も狭くなる。
そのため、連結点がちょうどトルク伝達効率最大点に一致するよう、偏心量ecを設定する設計が効果的である。
また、二つの円弧径re,rhは、rw=re+rhの条件式より、大小の配分に自由度がある。よって、どちらか一方が極端に小さい設計よりも、両者をほぼ同等値にした設計、すなわち、面圧過大により、エピ歯面が劣化するときには、同時に、ハイポ歯面も劣化することを狙った設計が、有劾である。
α = ec n1 / ae is called a trochoid coefficient. When α = 1, the two trochoid curves are both cycloid curves. In this case, the tooth base part is also an arc.
卜 If the locoid coefficient is large, the sliding speed of the tooth root portion is reduced, and efficient torque transmission can be performed.
However, when the trochoid coefficient increases, the connecting point of the two curves overtakes the maximum torque transmission efficiency point, and the meshing of both teeth becomes unstable. Further, the meshing area is also narrowed.
For this reason, it is effective to design the eccentricity ec so that the connection point exactly matches the maximum torque transmission efficiency point.
In addition, the two arc diameters re and rh have a degree of freedom in their distribution according to the conditional expression rw = re + rh. Therefore, rather than the design where either one is extremely small, the design that both are set to almost the same value, that is, when the epi tooth surface deteriorates due to excessive surface pressure, the hypo tooth surface also deteriorates at the same time. However, it is peculiar.

発明の実施に係るトロコイド歯車1について、外歯車2と内歯車3との噛み合いを示す図である。図1(a)の歯車1におけるb部の詳細図を図1(b)に示している。It is a figure which shows mesh | engagement with the external gear 2 and the internal gear 3 about the trochoid gear 1 which concerns on implementation of invention. A detailed view of a portion b in the gear 1 of FIG. 1A is shown in FIG. 外歯車2および内歯車3の歯形曲線を説明する図である。It is a figure explaining the tooth profile curve of the external gear 2 and the internal gear 3. FIG. トロコイド係数αと、外歯車2・内歯車3の噛み合い領域等との関係を示す図である。図1(a)の歯車1におけるb部の詳細図を図1(b)に示している。It is a figure which shows the relationship between the trochoid coefficient (alpha), the meshing area | region of the external gear 2 and the internal gear 3, etc. FIG. A detailed view of a portion b in the gear 1 of FIG. 1A is shown in FIG. トロコイド係数αと、外歯車2・内歯車3の噛み合い領域等との関係を示す図である。図1(a)の歯車1におけるb部の詳細図を図1(b)に示している。It is a figure which shows the relationship between the trochoid coefficient (alpha), the meshing area | region of the external gear 2 and the internal gear 3, etc. FIG. A detailed view of a portion b in the gear 1 of FIG. 1A is shown in FIG. 図5(a)・(b)は、歯先の干渉を防止するために歯先に面取り部分を設けた例を示している。また図5(c)・(d)のそれぞれは、図5(a)・(b)におけるc部およびd部の詳細図である。FIGS. 5A and 5B show an example in which a chamfered portion is provided on the tooth tip in order to prevent interference of the tooth tip. 5 (c) and 5 (d) are detailed views of the c and d portions in FIGS. 5 (a) and 5 (b), respectively. 図6(a)はエピトロコイド曲線の外歯車と分離型内歯車との噛み合いを示し、図6(b)はハイポトロコイド曲線の内歯車と分離型外歯車との噛み合いを示す。FIG. 6A shows the meshing of the epitrochoid curve external gear and the separation-type internal gear, and FIG. 6B shows the meshing of the hypotrochoid curve internal gear and the separation-type external gear. エピトロコイドおよびハイポトロコイドを示す概念図である。It is a conceptual diagram which shows an epitrochoid and a hypotrochoid. 図8(a)は遊星歯車減速機10を示す断面図、同(b)はそのような減速機に使用される従来のトロコイド歯車を示す図であって、同(a)におけるb−b断面図である。なお、同(a)・(b)は、ともに特許文献3に記載された図である。FIG. 8A is a cross-sectional view showing the planetary gear speed reducer 10, and FIG. 8B is a view showing a conventional trochoidal gear used in such a speed reducer, with the bb cross section in FIG. FIG. In addition, both (a) and (b) are figures described in Patent Document 3.

符号の説明Explanation of symbols

1 トロコイド歯車
2 外歯車
3 内歯車
10 遊星歯車減速機
1 Trochoid gear 2 External gear 3 Internal gear 10 Planetary gear reducer

Claims (6)

外歯車と内歯車とが噛み合うトロコイド歯車であって、
外歯車が、歯先部は円弧曲線であり歯元部はエピトロコイド曲線であって、これら二つの曲線が共通接線にて滑らかに連結された歯形を有していて、
内歯車が、歯先部は円弧曲線であり歯元部はハイポトロコイド曲線であって、これら二つの曲線が共通接線にて滑らかに連結された歯形を有していること
を特徴とするトロコイド歯車。
A trochoid gear in which an external gear and an internal gear mesh with each other,
The external gear has a tooth profile in which the tooth tip is an arc curve and the tooth root is an epitrochoid curve, and these two curves are smoothly connected by a common tangent line,
The internal gear has a tooth profile in which the tooth tip portion is an arc curve and the tooth root portion is a hypotrochoid curve, and these two curves have a tooth profile smoothly connected by a common tangent line. .
外歯車および内歯車において、上記各二つの曲線の連結部分が、エピトロコイド曲線またはハイポトロコイド曲線のうちトルク伝達効率の最大点付近に一致することを特徴とする請求項1に記載のトロコイド歯車。   2. The trochoid gear according to claim 1, wherein, in the external gear and the internal gear, a connecting portion of each of the two curves coincides with the vicinity of the maximum point of the torque transmission efficiency of the epitrochoid curve or the hypotrochoid curve. 外歯車と内歯車とが噛み合う領域の中央部分から180°離れた部分において、外歯車と内歯車との凸点同士が接するように寸法および歯数が定められていることを特徴とする請求項1または2に記載のトロコイド歯車。   The dimension and the number of teeth are determined so that convex points of the external gear and the internal gear are in contact with each other at a portion 180 ° away from a central portion of a region where the external gear and the internal gear mesh with each other. The trochoid gear according to 1 or 2. 外歯車と内歯車とが噛み合う領域の中央部分から180°離れた部分において、外歯車と内歯車との凸点同士が接するように寸法および歯数が定められたうえ、歯先の面取りによって、当該凸点同士が接することがないようにされていることを特徴とする請求項3に記載のトロコイド歯車。   The dimension and the number of teeth are determined so that the convex points of the external gear and the internal gear are in contact with each other at a portion 180 ° away from the central portion of the region where the external gear and the internal gear mesh with each other. The trochoid gear according to claim 3, wherein the convex points are not in contact with each other. 外歯車と内歯車とのうち少なくとも一方が、潤滑油を含浸されたダクタイル鋳鉄で形成され、または、表面にダイヤモンドライクカーボン皮膜が形成されていることを特徴とする請求項1〜4のいずれかに記載のトロコイド歯車。   At least one of the external gear and the internal gear is formed of ductile cast iron impregnated with a lubricating oil, or a diamond-like carbon film is formed on the surface thereof. The trochoid gear described in 1. 請求項1〜5のいずれかに記載のトロコイド歯車を有することを特徴とする減速機。   A speed reducer comprising the trochoidal gear according to claim 1.
JP2007191020A 2007-07-23 2007-07-23 Trochoid gear and reducer Active JP4875563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191020A JP4875563B2 (en) 2007-07-23 2007-07-23 Trochoid gear and reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191020A JP4875563B2 (en) 2007-07-23 2007-07-23 Trochoid gear and reducer

Publications (2)

Publication Number Publication Date
JP2009024841A JP2009024841A (en) 2009-02-05
JP4875563B2 true JP4875563B2 (en) 2012-02-15

Family

ID=40396820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191020A Active JP4875563B2 (en) 2007-07-23 2007-07-23 Trochoid gear and reducer

Country Status (1)

Country Link
JP (1) JP4875563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477044B2 (en) * 2009-06-30 2014-04-23 株式会社ジェイテクト Planetary gear mechanism
JP6539831B2 (en) * 2015-03-31 2019-07-10 株式会社 神崎高級工機製作所 Trochoidal gear
KR102332610B1 (en) * 2020-04-27 2021-11-29 캄텍주식회사 An acutator for controlling electronic transmission of a vechicle
CN112377576A (en) * 2020-12-03 2021-02-19 福建思普计量检测科技有限公司 Gear accelerating transmission structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639847B2 (en) * 1989-12-08 1997-08-13 住友重機械工業株式会社 Planetary gearbox
JP4251831B2 (en) * 1997-09-04 2009-04-08 住友電工焼結合金株式会社 Internal gear oil pump
JP4557514B2 (en) * 2003-07-15 2010-10-06 住友電工焼結合金株式会社 Internal gear pump and inner rotor of the pump
JP2006022894A (en) * 2004-07-08 2006-01-26 Nissan Motor Co Ltd Highly strong gear and method of manufacturing the same
JP2007127093A (en) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd Compressor

Also Published As

Publication number Publication date
JP2009024841A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5391396B2 (en) gear
JP5733528B2 (en) Tooth profile for rotor of positive displacement type external gear pump
JP4875563B2 (en) Trochoid gear and reducer
JP3481335B2 (en) Inner mesh planetary gear
KR100988215B1 (en) Harmonic drive using profile shifted gear
CN103827543B (en) Flexible engagement gear device
JP4252614B1 (en) Volumetric flow meter and helical gear
TWI614428B (en) Dual type strain wave gearing
US20170159789A1 (en) Strain wave gearing having continuous-contact tooth profile formed using arcuate tooth profile
JP6218692B2 (en) Dual type wave gear device
WO2020238075A1 (en) Double-arc gapped meshing small-tooth-difference planetary transmission device
WO2016013383A1 (en) Dual-type wave gear device
KR101556052B1 (en) Internal gear pump and method for forming a tooth profile of an inner rotor of an internal gear pump
RU2714353C1 (en) Double-shaft transmission
JP6958002B2 (en) Inscribed meshing planetary gear mechanism
US10174825B2 (en) Passing-type-meshing negative-deflection strain wave gearing
TWI619894B (en) Strain wave gearing
JP2015518105A (en) Screw expander, screw machine design method, screw machine manufacturing method, screw machine and generator
JP2023552310A (en) Flexspline and harmonic reducer equipped with it
CN210859728U (en) Harmonic reducer and manipulator
CN110259912B (en) Wave generator, harmonic reducer and transmission system
JP6080300B2 (en) Manufacturing method of gear pump and inner rotor
JP5916078B2 (en) Inscribed gear pump
EP2050963B1 (en) Method for manufacturing trochoid pump and trochoid pump obtained
JP6011297B2 (en) Inscribed gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250