Nothing Special   »   [go: up one dir, main page]

JP4874781B2 - Magnetic sensor and magnetic encoder using the same - Google Patents

Magnetic sensor and magnetic encoder using the same Download PDF

Info

Publication number
JP4874781B2
JP4874781B2 JP2006343031A JP2006343031A JP4874781B2 JP 4874781 B2 JP4874781 B2 JP 4874781B2 JP 2006343031 A JP2006343031 A JP 2006343031A JP 2006343031 A JP2006343031 A JP 2006343031A JP 4874781 B2 JP4874781 B2 JP 4874781B2
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
magnetic
magnetic field
magnetoresistive
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006343031A
Other languages
Japanese (ja)
Other versions
JP2008151759A (en
Inventor
孝二 倉田
一郎 徳永
拓哉 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006343031A priority Critical patent/JP4874781B2/en
Publication of JP2008151759A publication Critical patent/JP2008151759A/en
Application granted granted Critical
Publication of JP4874781B2 publication Critical patent/JP4874781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、特に、出力波形の安定化を図ることができる等、検出精度を向上させることが可能な磁気センサ及びそれを用いた磁気エンコーダに関する。   In particular, the present invention relates to a magnetic sensor capable of improving detection accuracy, such as stabilization of an output waveform, and a magnetic encoder using the same.

巨大磁気抵抗効果(GMR効果)を利用した磁気抵抗効果素子(GMR素子)は、磁気エンコーダに使用できる。   A magnetoresistive effect element (GMR element) using the giant magnetoresistive effect (GMR effect) can be used for a magnetic encoder.

図10は、従来における磁気エンコーダの部分断面図である。図10に示す磁石1の表面は、磁気センサ2の相対移動方向に向けてN極とS極とが交互に配列された着磁面となっている。   FIG. 10 is a partial cross-sectional view of a conventional magnetic encoder. The surface of the magnet 1 shown in FIG. 10 is a magnetized surface in which N and S poles are alternately arranged in the relative movement direction of the magnetic sensor 2.

図10に示すように、前記磁気センサ2は、基板3と前記基板3の表面に形成された磁気抵抗効果素子4,5とを有して構成される。   As shown in FIG. 10, the magnetic sensor 2 includes a substrate 3 and magnetoresistive elements 4 and 5 formed on the surface of the substrate 3.

前記磁気抵抗効果素子4,5は直列接続されている。前記磁石1のN極とS極間の中心幅(ピッチ)は、λ(図11を参照)である。また直列接続された前記磁気抵抗効果素子4,5の中心間の間隔もλとなっている。前記磁気抵抗効果素子4,5は共に同じ積層体6で構成される。前記積層体6は下から反強磁性層7、固定磁性層8、非磁性材料層9、フリー磁性層10及び保護層11の順で積層される。   The magnetoresistive elements 4 and 5 are connected in series. The center width (pitch) between the N pole and the S pole of the magnet 1 is λ (see FIG. 11). The interval between the centers of the magnetoresistive elements 4 and 5 connected in series is also λ. The magnetoresistive elements 4 and 5 are composed of the same laminate 6. The laminate 6 is laminated in order of an antiferromagnetic layer 7, a pinned magnetic layer 8, a nonmagnetic material layer 9, a free magnetic layer 10 and a protective layer 11 from the bottom.

図10に示すように、前記固定磁性層8は、前記反強磁性層7との間で生じる交換結合磁界(Hex)により図示X1方向に磁化固定されている。図10には前記固定磁性層8の磁化方向が「PIN」と表示されている。   As shown in FIG. 10, the pinned magnetic layer 8 is pinned in the X1 direction by an exchange coupling magnetic field (Hex) generated between the pinned magnetic layer 8 and the antiferromagnetic layer 7. In FIG. 10, the magnetization direction of the pinned magnetic layer 8 is displayed as “PIN”.

また前記フリー磁性層10と前記固定磁性層8との間には層間結合磁界Hinが生じており、前記フリー磁性層10は前記層間結合磁界Hinの方向に磁化されている。前記層間結合磁界Hinは前記固定磁性層8の磁化方向と平行方向あるいは反平行方向のどちらかに生じる。図10では前記層間結合磁界Hinは前記固定磁性層8の磁化方向と平行な方向に生じている。   An interlayer coupling magnetic field Hin is generated between the free magnetic layer 10 and the pinned magnetic layer 8, and the free magnetic layer 10 is magnetized in the direction of the interlayer coupling magnetic field Hin. The interlayer coupling magnetic field Hin is generated either in the direction parallel to the magnetization direction of the pinned magnetic layer 8 or in the antiparallel direction. In FIG. 10, the interlayer coupling magnetic field Hin is generated in a direction parallel to the magnetization direction of the pinned magnetic layer 8.

図10に示すように、前記磁気抵抗効果素子4,5が、夫々、磁石1のN極とS極との境界部の真下に位置すると、前記磁気抵抗効果素子4には、前記磁石1から図示X2方向に向う外部磁界H1が支配的に流入し、前記磁気抵抗効果素子5には、前記磁石1から図示X1方向に向う外部磁界H2が支配的に流入する。   As shown in FIG. 10, when the magnetoresistive effect elements 4 and 5 are respectively located directly below the boundary between the north pole and the south pole of the magnet 1, the magnetoresistive effect element 4 includes the magnet 1 from the magnet 1. An external magnetic field H1 directed in the X2 direction in the figure flows dominantly, and an external magnetic field H2 in the X1 direction in the figure from the magnet 1 dominantly flows into the magnetoresistive effect element 5.

前記磁気センサ2が前記磁石1に対し図示X1方向に向けて相対移動すると、前記磁気抵抗効果素子4,5に流入する外部磁界Hの方向が変化することで、各磁気抵抗効果素子4,5の電気抵抗値が変化する。前記電気抵抗値の変化に基づく電圧変化は、略矩形状の出力波形として得られ、前記出力波形により、前記磁石1の移動速度や移動距離等を知ることが可能となっている。
特開2003−60256号公報
When the magnetic sensor 2 moves relative to the magnet 1 in the X1 direction in the figure, the direction of the external magnetic field H flowing into the magnetoresistive elements 4 and 5 changes, so that each of the magnetoresistive elements 4 and 5 The electrical resistance value changes. The voltage change based on the change in the electric resistance value is obtained as a substantially rectangular output waveform, and it is possible to know the moving speed and moving distance of the magnet 1 from the output waveform.
JP 2003-60256 A

しかしながら、前記フリー磁性層10には、前記固定磁性層8の磁化方向(PIN方向)と同じ方向である図示X1方向に層間結合磁界Hinが生じているので、図示X1方向に外部磁界H2が作用しても、図10に示す前記磁気抵抗効果素子5の電気抵抗値は変化しない。   However, an interlayer coupling magnetic field Hin is generated in the free magnetic layer 10 in the X1 direction, which is the same direction as the magnetization direction (PIN direction) of the pinned magnetic layer 8, so that an external magnetic field H2 acts in the X1 direction. Even so, the electrical resistance value of the magnetoresistive element 5 shown in FIG. 10 does not change.

すなわち前記磁気抵抗効果素子4,5を構成するフリー磁性層10は、外部磁界Hの方向によって向きやすさ(感度)が異なっている。よって図10に示す従来構成では、検出精度を適切に向上させることが出来なかった。   That is, the easiness (sensitivity) of the free magnetic layer 10 constituting the magnetoresistive effect elements 4 and 5 differs depending on the direction of the external magnetic field H. Therefore, in the conventional configuration shown in FIG. 10, the detection accuracy cannot be improved appropriately.

一方、図11に示すように、磁気抵抗効果素子4,5の固定磁性層8の磁化方向(PIN方向)を図示X1方向に固定しておき、前記固定磁性層8とフリー磁性層10との間に生じる層間結合磁界Hinをゼロになるように調整する構成も考えられる。前記層間結合磁界Hinは、例えば、前記固定磁性層8と前記フリー磁性層10との間に設けられる非磁性材料層9の膜厚によって調整できる。   On the other hand, as shown in FIG. 11, the magnetization direction (PIN direction) of the pinned magnetic layer 8 of the magnetoresistive effect elements 4 and 5 is pinned in the X1 direction, and the pinned magnetic layer 8 and the free magnetic layer 10 are A configuration is also conceivable in which the interlayer coupling magnetic field Hin generated therebetween is adjusted to zero. The interlayer coupling magnetic field Hin can be adjusted by, for example, the film thickness of the nonmagnetic material layer 9 provided between the pinned magnetic layer 8 and the free magnetic layer 10.

図12は、図11に示す層間結合磁界Hinをゼロに調整した磁気抵抗効果素子4,5のR−H曲線12を示している。   FIG. 12 shows an RH curve 12 of the magnetoresistive effect elements 4 and 5 in which the interlayer coupling magnetic field Hin shown in FIG. 11 is adjusted to zero.

図12に示すようにR−H曲線12のループ部13は横軸方向(外部磁界H方向)に所定幅を有しており、この所定幅がヒステリシスである。   As shown in FIG. 12, the loop portion 13 of the RH curve 12 has a predetermined width in the horizontal axis direction (external magnetic field H direction), and this predetermined width is hysteresis.

図11に示すように、磁気抵抗効果素子4,5の真上に磁石1の各磁極中心が位置したとき、前記磁気抵抗効果素子4,5には膜面と垂直方向(図示Z1方向、あるいは図示Z2方向)から外部磁界H3,H4が作用する。   As shown in FIG. 11, when each magnetic pole center of the magnet 1 is positioned directly above the magnetoresistive effect elements 4 and 5, the magnetoresistive effect elements 4 and 5 have a direction perpendicular to the film surface (Z1 direction shown in FIG. External magnetic fields H3 and H4 act from the Z2 direction in the figure.

前記磁気抵抗効果素子4,5のフリー磁性層10は前記外部磁界H3,H4に対して磁化変動しない。すなわち前記磁気抵抗効果素子4,5に外部磁界Hが作用していない無磁場状態と同じ状態となる。   The free magnetic layer 10 of the magnetoresistive elements 4 and 5 does not fluctuate with respect to the external magnetic fields H3 and H4. That is, the magnetoresistive effect elements 4 and 5 are in the same state as the no magnetic field state in which the external magnetic field H is not acting.

無磁場状態における磁気抵抗効果素子4,5の電気抵抗値を、図12に示すR−Hグラフで見ると、磁気抵抗効果素子4,5の電気抵抗値はR1かR2となっている。すなわち、無磁場状態では、磁気抵抗効果素子4,5の電気抵抗値は一定にならず、不安定となっている。   When the electric resistance values of the magnetoresistive effect elements 4 and 5 in the non-magnetic field state are viewed in the RH graph shown in FIG. 12, the electric resistance values of the magnetoresistive effect elements 4 and 5 are R1 or R2. That is, in the absence of a magnetic field, the electric resistance values of the magnetoresistive elements 4 and 5 are not constant and are unstable.

そして層間結合磁界Hinがゼロに調整された磁気抵抗効果素子4,5を有する磁気センサ2の出力波形を調べると、平滑でなく乱れが生じており(波打っており)、出力波形が不安定となることがわかった。   When the output waveform of the magnetic sensor 2 having the magnetoresistive elements 4 and 5 in which the interlayer coupling magnetic field Hin is adjusted to zero is examined, the output waveform is not smooth but turbulent (wavy), and the output waveform is unstable. I found out that

特許文献1に記載された発明では、磁気エンコーダの上記した問題点について何ら言及していない。加えて、特許文献1では、特許文献1の図6に示すように、フリー磁性層の磁化方向と固定磁性層の磁化方向とが平行あるいは反平行であり、図10で指摘した磁化方向と同じである。   The invention described in Patent Document 1 makes no mention of the above-described problems of the magnetic encoder. In addition, in Patent Document 1, as shown in FIG. 6 of Patent Document 1, the magnetization direction of the free magnetic layer and the magnetization direction of the pinned magnetic layer are parallel or antiparallel, which is the same as the magnetization direction pointed out in FIG. It is.

そこで本発明は上記従来の課題を解決するためのものであり、特に、簡単な構成で、出力波形の安定化を図ることができる等、検出精度を向上させることが可能な磁気センサ及びそれを用いた磁気エンコーダを提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, a magnetic sensor capable of improving detection accuracy, such as being capable of stabilizing the output waveform with a simple configuration, and the like. It aims at providing the used magnetic encoder.

本発明は、基板上に、磁界発生部材からの外部磁界に対して電気抵抗値が変化する磁気抵抗効果を利用した磁気抵抗効果素子を有する磁気センサであって、
前記磁気抵抗効果素子は複数個、前記基板上に設けられるとともに、磁化が一方向に固定された固定磁性層と、前記外部磁界に対して磁化変動するフリー磁性層とが、非磁性材料層を介して積層された積層部分を有し、
全ての前記磁気抵抗効果素子における前記固定磁性層の磁化方向は平行であるか、あるいは少なくとも一つの前記磁気抵抗効果素子における前記固定磁性層の磁化方向が、残りの前記磁気抵抗効果素子における前記固定磁性層の磁化方向に対して反平行であり、
前記磁気抵抗効果素子と離れた位置に永久磁石が設けられ、前記磁界発生部材からの外部磁界が作用しない無磁場状態において、全ての前記磁気抵抗効果素子の前記フリー磁性層が、前記永久磁石からの同じバイアス磁界によって、前記固定磁性層の磁化方向と直交方向で且つ前記バイアス磁界の作用方向と同一方向に、磁化されていることを特徴とするものである。
The present invention is a magnetic sensor having a magnetoresistive effect element utilizing a magnetoresistive effect in which an electric resistance value changes with respect to an external magnetic field from a magnetic field generating member on a substrate,
A plurality of the magnetoresistive effect elements are provided on the substrate, and a fixed magnetic layer whose magnetization is fixed in one direction and a free magnetic layer whose magnetization is fluctuated with respect to the external magnetic field are a nonmagnetic material layer. Having a laminated portion laminated through,
The magnetization direction of the pinned magnetic layer in all the magnetoresistive effect elements is parallel, or the magnetization direction of the pinned magnetic layer in at least one of the magnetoresistive effect elements is the pinned in the remaining magnetoresistive effect elements. Antiparallel to the magnetization direction of the magnetic layer,
A permanent magnet is provided at a position away from the magnetoresistive effect element, and the free magnetic layer of all the magnetoresistive effect elements is separated from the permanent magnet in a no-magnetic field state where an external magnetic field from the magnetic field generating member does not act. Are magnetized in the direction perpendicular to the magnetization direction of the pinned magnetic layer and in the same direction as the action direction of the bias magnetic field .

本発明では、各磁気抵抗効果素子のフリー磁性層の磁化方向を前記固定磁性層の固定磁化方向に対して直交する方向に向けている。特に、永久磁石を用いて、全ての前記磁気抵抗効果素子の前記フリー磁性層を、前記永久磁石からの同じバイアス磁界によって同一方向に向けているので、簡単な構成で、前記フリー磁性層の磁化調整を行うことが可能である。   In the present invention, the magnetization direction of the free magnetic layer of each magnetoresistive effect element is oriented in a direction orthogonal to the fixed magnetization direction of the fixed magnetic layer. In particular, since the free magnetic layers of all the magnetoresistive effect elements are directed in the same direction by the same bias magnetic field from the permanent magnets using permanent magnets, the magnetization of the free magnetic layers can be performed with a simple configuration. Adjustments can be made.

このように全ての磁気抵抗効果素子のフリー磁性層の磁化を固定磁性層の固定磁化方向に対して直交させることで、出力波形の乱れを従来に比べて改善でき、また外部磁界の作用方向に対する磁気感度の違いを改善でき、したがって従来に比べて検出精度を向上できる。   Thus, by making the magnetization of the free magnetic layer of all the magnetoresistive effect elements orthogonal to the fixed magnetization direction of the fixed magnetic layer, the disturbance of the output waveform can be improved as compared with the conventional one, and the direction of the external magnetic field is affected. The difference in magnetic sensitivity can be improved, and therefore the detection accuracy can be improved as compared with the conventional case.

本発明では、前記基板の表面に前記磁気抵抗効果素子が設けられ、前記基板の裏面に前記永久磁石が設けられることが好ましい。これにより磁気センサの構成を簡単に出来る。   In this invention, it is preferable that the said magnetoresistive effect element is provided in the surface of the said board | substrate, and the said permanent magnet is provided in the back surface of the said board | substrate. Thereby, the configuration of the magnetic sensor can be simplified.

また本発明では、前記磁気抵抗効果素子は、幅方向の寸法よりも前記幅方向と直交する長さ方向の寸法のほうが長く形成された形状であり、前記固定磁性層が、前記幅方向に磁化固定され、フリー磁性層が前記長さ方向に磁化されている構成に特に好ましく適用できる。   In the present invention, the magnetoresistive element has a shape in which the dimension in the length direction perpendicular to the width direction is longer than the dimension in the width direction, and the pinned magnetic layer is magnetized in the width direction. The present invention can be particularly preferably applied to a configuration in which the fixed and free magnetic layer is magnetized in the length direction.

また本発明は、表面に、N極とS極が交互に着磁された着磁面を有する磁界発生部材と、上記のいずれかに記載された磁気センサとを備える磁気エンコーダであって、
前記N極及びS極は、前記磁気センサの相対移動方向あるいは相対回転方向に交互に配列されて、前記磁気センサには、相対移動あるいは相対回転に伴って、前記相対移動方向あるいは前記相対回転方向に向う(+)方向への外部磁界と、前記(+)方向とは逆方向の(−)方向への外部磁界とが交互に作用し、
直列接続される磁気抵抗効果素子どうしは、前記相対移動方向と平行な方向に、あるいは、前記基板の中心を相対回転方向上の接点としたときの接線方向と平行な方向に、ずれて配置され、
各磁気抵抗効果素子の固定磁性層が、夫々、前記相対移動方向と平行あるいは反平行な方向に、あるいは、前記接線方向と平行あるいは反平行な方向に磁化固定されていることを特徴とするものである。
Further, the present invention is a magnetic encoder comprising a magnetic field generating member having a magnetized surface in which N and S poles are alternately magnetized on the surface, and the magnetic sensor described in any of the above,
The N pole and the S pole are alternately arranged in the relative movement direction or the relative rotation direction of the magnetic sensor, and the relative movement direction or the relative rotation direction is provided to the magnetic sensor in accordance with the relative movement or the relative rotation. The external magnetic field in the (+) direction toward the direction and the external magnetic field in the (−) direction opposite to the (+) direction act alternately,
The magnetoresistive effect elements connected in series are displaced in a direction parallel to the relative movement direction or in a direction parallel to a tangential direction when the center of the substrate is a contact point in the relative rotation direction. ,
The pinned magnetic layer of each magnetoresistive element is fixed in magnetization in a direction parallel or antiparallel to the relative movement direction, or in a direction parallel or antiparallel to the tangential direction, respectively. It is.

本発明の磁気センサは、上記したように磁気エンコーダに好ましく適用できる。これにより出力波形の安定化を図ることができ、移動速度や移動距離を適切に検出することが出来る。   As described above, the magnetic sensor of the present invention can be preferably applied to a magnetic encoder. As a result, the output waveform can be stabilized, and the moving speed and moving distance can be detected appropriately.

本発明では、前記N極と前記S極の中心間距離をλとしたとき、直列接続される磁気抵抗効果素子どうしは、前記相対移動方向と平行な方向に、あるいは、前記接線方向と平行な方向に、λの中心間距離を空けて配置されており、
全ての磁気抵抗効果素子の前記固定磁性層が、同一方向に磁化固定されている構成に特に好ましく適用できる。
In the present invention, when the distance between the centers of the N pole and the S pole is λ, magnetoresistive elements connected in series are parallel to the relative movement direction or parallel to the tangential direction. In the direction, with a distance between the centers of λ,
The present invention can be particularly preferably applied to a configuration in which the pinned magnetic layers of all the magnetoresistive elements are fixed in magnetization in the same direction.

本発明における磁気センサ及びそれを用いた磁気エンコーダでは、簡単な構成で、出力波形の安定化を図ることができる等、検出精度を向上させることが可能である。   In the magnetic sensor and the magnetic encoder using the same according to the present invention, the detection accuracy can be improved, for example, the output waveform can be stabilized with a simple configuration.

図1は本実施形態の磁気エンコーダの部分斜視図、図2は、磁気センサの部分拡大平面図、図3は図2に示すA−A線から膜厚方向に切断し矢印方向から見た前記磁気エンコーダの部分拡大断面図、図4は、図3の状態から磁気センサが、λ/2だけ相対移動したときの前記磁気エンコーダの部分拡大断面図、図5は、図2に示すB−B線から膜厚方向に切断し矢印方向から見た前記磁気センサの拡大断面図、図6は、図5の変形例を示す磁気センサの断面図、図7は、磁気センサの回路図、図8は磁気抵抗効果素子のH//PIN方向のR−H曲線を示すグラフ、である。   FIG. 1 is a partial perspective view of the magnetic encoder of the present embodiment, FIG. 2 is a partially enlarged plan view of the magnetic sensor, and FIG. 3 is a view cut in the film thickness direction from the line AA shown in FIG. 4 is a partially enlarged sectional view of the magnetic encoder, FIG. 4 is a partially enlarged sectional view of the magnetic encoder when the magnetic sensor is relatively moved from the state of FIG. 3 by λ / 2, and FIG. 5 is a BB shown in FIG. FIG. 6 is a cross-sectional view of the magnetic sensor showing a modification of FIG. 5, and FIG. 7 is a circuit diagram of the magnetic sensor. These are the graphs which show the RH curve of the H // PIN direction of a magnetoresistive effect element.

各図におけるX1−X2方向、Y1−Y2方向、及びZ1−Z2方向の各方向は残り2つの方向に対して直交した関係となっている。X1方向は、磁石あるいは磁気センサの移動方向である。Z1−Z2方向は前記磁石と磁気センサとが所定の間隔を空けて対向する方向である。   Each direction of the X1-X2 direction, the Y1-Y2 direction, and the Z1-Z2 direction in each figure has a relationship orthogonal to the remaining two directions. The X1 direction is a moving direction of the magnet or the magnetic sensor. The Z1-Z2 direction is a direction in which the magnet and the magnetic sensor face each other with a predetermined interval.

図1に示すように磁気エンコーダ20は、第1の永久磁石21と磁気センサ22を有して構成される。   As shown in FIG. 1, the magnetic encoder 20 includes a first permanent magnet 21 and a magnetic sensor 22.

前記第1の永久磁石(磁界発生部材)21は図示X1−X2方向に延びる棒形状であり、図示X1−X2方向に所定幅にてN極とS極とが交互に着磁されている。N極の着磁面と、隣接するS極の着磁面との間の中心幅(ピッチ)はλである。   The first permanent magnet (magnetic field generating member) 21 has a rod shape extending in the X1-X2 direction in the figure, and N poles and S poles are alternately magnetized with a predetermined width in the X1-X2 direction in the figure. The center width (pitch) between the N pole magnetized surface and the adjacent S pole magnetized surface is λ.

図1に示すように前記第1の永久磁石21と前記磁気センサ22との間には所定の間隔S1が空けられている。   As shown in FIG. 1, a predetermined interval S <b> 1 is provided between the first permanent magnet 21 and the magnetic sensor 22.

図1に示すように前記磁気センサ22は、基板23と、同一の前記基板23の表面(第1の永久磁石21との対向面)23aに設けられた複数の磁気抵抗効果素子24a〜24hと、前記基板23の裏面23bに設けられた1個の第2の永久磁石25とを有して構成される。   As shown in FIG. 1, the magnetic sensor 22 includes a substrate 23 and a plurality of magnetoresistive elements 24 a to 24 h provided on the same surface 23 a (a surface facing the first permanent magnet 21) 23 a of the same substrate 23. And a second permanent magnet 25 provided on the back surface 23b of the substrate 23.

図1及び図2に示すように、8個の磁気抵抗効果素子24a〜24hは、X1−X2方向に4個ずつ、Y1−Y2方向に2個ずつマトリクス状に配列している。図2に示すようにX1−X2方向にて隣り合う各磁気抵抗効果素子の幅方向(図示X1−X2方向)の中心間の間隔はλ/2となっている。   As shown in FIG. 1 and FIG. 2, the eight magnetoresistive elements 24a to 24h are arranged in a matrix form, four in the X1-X2 direction and two in the Y1-Y2 direction. As shown in FIG. 2, the distance between the centers in the width direction (X1-X2 direction in the drawing) of each magnetoresistive element adjacent in the X1-X2 direction is λ / 2.

図3に示すように各磁気抵抗効果素子24a〜24hは全て同じ積層体35で構成される。図3には、磁気抵抗効果素子24a〜24cのみが図示されているが、磁気抵抗効果素子24d〜24hも同じ積層体で形成される。このように全ての磁気抵抗効果素子24a〜24hが同じ積層体35で形成されるので、これら磁気抵抗効果素子24a〜24hを全て同じ製造工程で形成でき、しかも後述するように各磁気抵抗効果素子24a〜24hの磁化方向も同じであるので、容易に製造できる。   As shown in FIG. 3, each of the magnetoresistive effect elements 24 a to 24 h is composed of the same stacked body 35. Although only the magnetoresistive effect elements 24a to 24c are illustrated in FIG. 3, the magnetoresistive effect elements 24d to 24h are also formed of the same laminate. Thus, since all the magnetoresistive effect elements 24a-24h are formed by the same laminated body 35, these magnetoresistive effect elements 24a-24h can be formed in the same manufacturing process, and each magnetoresistive effect element is described later. Since the magnetization direction of 24a-24h is also the same, it can manufacture easily.

図3に示すように磁気抵抗効果素子は、下から反強磁性層30、固定磁性層31、非磁性材料層32、フリー磁性層33及び保護層34の順で積層された積層体35で形成される。前記積層体35は前記反強磁性層30と前記基板23との間に下地層が形成されたり、積層体35の膜構成は図3に限定されない。また、前記積層体35は下からフリー磁性層33、非磁性材料層32、固定磁性層31、反強磁性層30及び保護層34の順に積層されてもよい。   As shown in FIG. 3, the magnetoresistive effect element is formed by a laminated body 35 in which an antiferromagnetic layer 30, a pinned magnetic layer 31, a nonmagnetic material layer 32, a free magnetic layer 33 and a protective layer 34 are laminated in this order from the bottom. Is done. In the laminated body 35, an underlayer is formed between the antiferromagnetic layer 30 and the substrate 23, and the film configuration of the laminated body 35 is not limited to FIG. 3. The laminated body 35 may be laminated in order of the free magnetic layer 33, the nonmagnetic material layer 32, the pinned magnetic layer 31, the antiferromagnetic layer 30, and the protective layer 34 from the bottom.

前記反強磁性層30は例えばPtMnやIrMnで形成される。前記固定磁性層31及びフリー磁性層33は例えば、NiFeやCoFeで形成される。前記非磁性材料層32は例えばCuで形成される。また前記保護層34は例えばTaで形成される。   The antiferromagnetic layer 30 is made of, for example, PtMn or IrMn. The pinned magnetic layer 31 and the free magnetic layer 33 are made of, for example, NiFe or CoFe. The nonmagnetic material layer 32 is made of Cu, for example. The protective layer 34 is made of Ta, for example.

前記反強磁性層30と前記固定磁性層31との間には交換結合磁界(Hex)が生じて前記固定磁性層31の磁化は一方向に固定されている。図2,図3に示すように全ての磁気抵抗効果素子24a〜24hの固定磁性層31の磁化方向(PIN方向)は図示X1方向(相対移動方向)に固定されている。一方、前記フリー磁性層33の磁化方向は固定されておらず外部磁界(センシング磁界)によって磁化変動する。なお、前記固定磁性層31の磁化方向は図示X2方向(相対移動方向に対して反平行)でもよい。   An exchange coupling magnetic field (Hex) is generated between the antiferromagnetic layer 30 and the pinned magnetic layer 31, and the magnetization of the pinned magnetic layer 31 is pinned in one direction. As shown in FIGS. 2 and 3, the magnetization direction (PIN direction) of the pinned magnetic layer 31 of all the magnetoresistive elements 24a to 24h is fixed in the X1 direction (relative movement direction). On the other hand, the magnetization direction of the free magnetic layer 33 is not fixed and fluctuates due to an external magnetic field (sensing magnetic field). The magnetization direction of the pinned magnetic layer 31 may be the X2 direction (antiparallel to the relative movement direction).

なお本実施形態では、前記非磁性材料層32が非磁性導電材料で形成された巨大磁気抵抗効果(GMR効果)を利用したGMR素子に代えて、前記非磁性材料層32がAl等の絶縁材料で形成されたトンネル型磁気抵抗効果素子(TMR素子)を用いてもよい。 In this embodiment, instead of the GMR element using the giant magnetoresistance effect (GMR effect) in which the nonmagnetic material layer 32 is formed of a nonmagnetic conductive material, the nonmagnetic material layer 32 is made of Al 2 O 3 or the like. Alternatively, a tunnel type magnetoresistive element (TMR element) formed of any insulating material may be used.

本実施形態では、全ての磁気抵抗効果素子24a〜24hのフリー磁性層33には、図3,図5に示すように、前記基板23の裏面23bに設けられた第2の磁石25から生じたバイアス磁界biasが印加されている。これにより全ての磁気抵抗効果素子24a〜24hの前記フリー磁性層33の磁化方向33aは、図2,図5に示すように、図示Y1方向に向けられている。   In the present embodiment, the free magnetic layers 33 of all the magnetoresistive elements 24a to 24h are generated from the second magnet 25 provided on the back surface 23b of the substrate 23 as shown in FIGS. A bias magnetic field bias is applied. Thereby, the magnetization direction 33a of the free magnetic layer 33 of all the magnetoresistive effect elements 24a to 24h is oriented in the Y1 direction as shown in FIGS.

図2に示すように、前記フリー磁性層33の磁化方向33aと固定磁性層31の磁化方向(PIN方向)とは直交した関係にある。図8が各磁気抵抗効果素子24a〜24hのR−H曲線40である。図12に示す従来の磁気抵抗効果素子のように、ヒステリシスが生じておらず、直線状のR−H曲線40を形成している。   As shown in FIG. 2, the magnetization direction 33a of the free magnetic layer 33 and the magnetization direction (PIN direction) of the pinned magnetic layer 31 are orthogonal to each other. FIG. 8 is an RH curve 40 of each of the magnetoresistive effect elements 24a to 24h. Unlike the conventional magnetoresistive effect element shown in FIG. 12, there is no hysteresis, and a linear RH curve 40 is formed.

次に以下では、磁気抵抗効果素子24aを第1の磁気抵抗効果素子24a、磁気抵抗効果素子24bを第2の磁気抵抗効果素子24b、磁気抵抗効果素子24cを第3の磁気抵抗効果素子24c、磁気抵抗効果素子24dを第4の磁気抵抗効果素子24d、磁気抵抗効果素子24eを第5の磁気抵抗効果素子24e、磁気抵抗効果素子24fを第6の磁気抵抗効果素子24f、磁気抵抗効果素子24gを第7の磁気抵抗効果素子24g、磁気抵抗効果素子24hを第8の磁気抵抗効果素子24hと称することとする。   Next, in the following, the magnetoresistive effect element 24a is the first magnetoresistive effect element 24a, the magnetoresistive effect element 24b is the second magnetoresistive effect element 24b, the magnetoresistive effect element 24c is the third magnetoresistive effect element 24c, The magnetoresistive effect element 24d is the fourth magnetoresistive effect element 24d, the magnetoresistive effect element 24e is the fifth magnetoresistive effect element 24e, the magnetoresistive effect element 24f is the sixth magnetoresistive effect element 24f, and the magnetoresistive effect element 24g. Is referred to as a seventh magnetoresistive element 24g, and the magnetoresistive element 24h is referred to as an eighth magnetoresistive element 24h.

図7に示すように、第1の磁気抵抗効果素子24a、第3の磁気抵抗効果素子24c、第5の磁気抵抗効果素子24e及び第7の磁気抵抗効果素子24gによりA相のブリッジ回路が構成されている。第1の磁気抵抗効果素子24aと第3の磁気抵抗効果素子24cとが第1の出力取り出し部50を介して直列接続され、第5の磁気抵抗効果素子24eと第7の磁気抵抗効果素子24gとが第2の出力取り出し部51を介して直列接続されている。また、図7に示すように第1の磁気抵抗効果素子24aと第7の磁気抵抗効果素子24gとが入力端子52を介して並列接続され、前記第3の磁気抵抗効果素子24cと前記第5の磁気抵抗効果素子24eとがアース端子53を介して並列接続されている。   As shown in FIG. 7, the first magnetoresistive element 24a, the third magnetoresistive element 24c, the fifth magnetoresistive element 24e, and the seventh magnetoresistive element 24g constitute an A-phase bridge circuit. Has been. The first magnetoresistive effect element 24a and the third magnetoresistive effect element 24c are connected in series via the first output extraction section 50, and the fifth magnetoresistive effect element 24e and the seventh magnetoresistive effect element 24g are connected. Are connected in series via the second output extraction portion 51. Further, as shown in FIG. 7, the first magnetoresistive effect element 24a and the seventh magnetoresistive effect element 24g are connected in parallel via the input terminal 52, and the third magnetoresistive effect element 24c and the fifth magnetoresistive effect element 24c are connected to each other. Are connected in parallel via a ground terminal 53.

図7に示すように第1の出力取り出し部50と第2の出力取り出し部51は、第1の差動増幅器58の入力部側に接続され、前記第1の差動増幅器58の出力側が第1の出力端子59に接続されている。   As shown in FIG. 7, the first output extraction section 50 and the second output extraction section 51 are connected to the input section side of the first differential amplifier 58, and the output side of the first differential amplifier 58 is the first output section. 1 output terminal 59.

また本実施形態ではもう一つB相のブリッジ回路が、第2の磁気抵抗効果素子24b、第4の磁気抵抗効果素子24d、第6の磁気抵抗効果素子24f及び第8の磁気抵抗効果素子24hにより構成されている。第2の磁気抵抗効果素子24bと第4の磁気抵抗効果素子24dとが第3の出力取り出し部54を介して直列接続され、第6の磁気抵抗効果素子24fと第8の磁気抵抗効果素子24hとが第4の出力取り出し部55を介して直列接続されている。また、図7に示すように第2の磁気抵抗効果素子24bと第8の磁気抵抗効果素子24hとが入力端子56を介して並列接続され、前記第4の磁気抵抗効果素子24dと前記第6の磁気抵抗効果素子24fとがアース端子57を介して並列接続されている。   In the present embodiment, another B-phase bridge circuit includes the second magnetoresistive element 24b, the fourth magnetoresistive element 24d, the sixth magnetoresistive element 24f, and the eighth magnetoresistive element 24h. It is comprised by. The second magnetoresistive effect element 24b and the fourth magnetoresistive effect element 24d are connected in series via the third output extraction portion 54, and the sixth magnetoresistive effect element 24f and the eighth magnetoresistive effect element 24h. Are connected in series via the fourth output extraction portion 55. Further, as shown in FIG. 7, the second magnetoresistive effect element 24b and the eighth magnetoresistive effect element 24h are connected in parallel via the input terminal 56, and the fourth magnetoresistive effect element 24d and the sixth magnetoresistive effect element 24d are connected to each other. The magnetoresistive effect element 24 f is connected in parallel via a ground terminal 57.

図7に示すように第3の出力取り出し部54と第4の出力取り出し部55は、第2の差動増幅器60の入力部側に接続され、前記第2の差動増幅器60の出力側が第2の出力端子61に接続されている。   As shown in FIG. 7, the third output extraction section 54 and the fourth output extraction section 55 are connected to the input section side of the second differential amplifier 60, and the output side of the second differential amplifier 60 is the first output section. 2 output terminals 61.

図2に示すように、図7に示すブリッジ回路にて直列接続される磁気抵抗効果素子どうしの中心間の間隔はλとなっている。   As shown in FIG. 2, the distance between the centers of the magnetoresistive elements connected in series in the bridge circuit shown in FIG. 7 is λ.

本実施形態では、磁気センサ22あるいは第1の永久磁石21のどちらか一方が図示X1―図示X2方向と平行な方向に直線移動可能に支持されている。本実施形態では前記磁気センサ22の相対移動空間内に、前記第1の永久磁石21から生じる外部磁界領域が形成されている。ここで相対移動方向(図1では図示X1方向)を(+)方向と、相対移動方向と逆方向(図1では図示X2方向)を(−)方向と定めると、図1に示すように、前記外部磁界領域では、前記相対移動方向に向う(+)方向への外部磁界H5と、前記相対移動方向とは逆方向に向う(−)方向への外部磁界H6とが交互に発生している。   In the present embodiment, either the magnetic sensor 22 or the first permanent magnet 21 is supported so as to be linearly movable in a direction parallel to the illustrated X1-X2 direction. In the present embodiment, an external magnetic field region generated from the first permanent magnet 21 is formed in the relative movement space of the magnetic sensor 22. Here, when the relative movement direction (X1 direction in FIG. 1) is defined as the (+) direction and the opposite direction (X2 direction in FIG. 1) is defined as the (−) direction, as shown in FIG. In the external magnetic field region, an external magnetic field H5 in the (+) direction toward the relative movement direction and an external magnetic field H6 in the (−) direction opposite to the relative movement direction are alternately generated. .

図3に示すように、ちょうど、第1の磁気抵抗効果素子24aの頭上に、第1の永久磁石21のN極の中心が対向した位置関係になると、前記第1の磁気抵抗効果素子24aのフリー磁性層33には、前記(+)方向及び(−)方向の外部磁界H5,H6のベクトル成分のうち、図示Z1方向(紙面下方向)へのベクトル成分の外部磁界H7が支配的に流入する。前記外部磁界H7は、第1の磁気抵抗効果素子24aの膜面(X−Y面と平行な面)に対して垂直方向であるため、前記フリー磁性層33の磁化方向33aは変動せず、前記固定磁性層31の磁化方向(PIN方向)と直交した関係を維持する。よって前記第1の磁気抵抗効果素子24aには外部磁界Hが作用していない無磁場状態と同じ状態が作用し、前記第1の磁気抵抗効果素子24aの電気抵抗値は変動しない。   As shown in FIG. 3, when the center of the N pole of the first permanent magnet 21 faces just above the head of the first magnetoresistive element 24a, the first magnetoresistive element 24a Out of the vector components of the external magnetic fields H5 and H6 in the (+) direction and the (−) direction, the external magnetic field H7 of the vector component in the Z1 direction (downward direction in the drawing) dominantly flows into the free magnetic layer 33. To do. Since the external magnetic field H7 is perpendicular to the film surface of the first magnetoresistive element 24a (a surface parallel to the XY plane), the magnetization direction 33a of the free magnetic layer 33 does not vary, The relationship orthogonal to the magnetization direction (PIN direction) of the pinned magnetic layer 31 is maintained. Therefore, the same state as the non-magnetic field state where the external magnetic field H is not acting acts on the first magnetoresistive effect element 24a, and the electric resistance value of the first magnetoresistive effect element 24a does not fluctuate.

また、前記第1の磁気抵抗効果素子24aと直列接続され、前記第1の磁気抵抗効果素子24aとλの中心間距離を空けた第3の磁気抵抗効果素子24cの頭上には、第1の永久磁石21のS極の中心が対向した位置関係になる。このとき、前記第3の磁気抵抗効果素子24cのフリー磁性層33には、前記(+)方向及び(−)方向の外部磁界H5,H6のベクトル成分のうち、図示Z2方向(紙面上方向)へのベクトル成分の外部磁界H8が支配的に流入する。前記外部磁界H8は、第3の磁気抵抗効果素子24cの膜面(X−Y面と平行な面)に対して垂直方向であるため、前記フリー磁性層33の磁化方向33aは変動せず、前記固定磁性層31の磁化方向(PIN方向)と直交した関係を維持する。よって前記第3の磁気抵抗効果素子24cには外部磁界Hが作用していない無磁場状態と同じ状態が作用し、前記第3の磁気抵抗効果素子24cの電気抵抗値は変動しない。   The first magnetoresistive element 24c connected in series with the first magnetoresistive element 24a and spaced apart from the center of the first magnetoresistive element 24a by the first magnetoresistive element 24c It becomes the positional relationship in which the centers of the S poles of the permanent magnet 21 face each other. At this time, in the free magnetic layer 33 of the third magnetoresistive element 24c, the vector component of the external magnetic fields H5 and H6 in the (+) direction and the (−) direction is the Z2 direction (upward in the drawing) in the drawing. The external magnetic field H8 of the vector component flows into dominantly. Since the external magnetic field H8 is perpendicular to the film surface of the third magnetoresistive element 24c (a surface parallel to the XY plane), the magnetization direction 33a of the free magnetic layer 33 does not vary, The relationship orthogonal to the magnetization direction (PIN direction) of the pinned magnetic layer 31 is maintained. Therefore, the same state as the non-magnetic field state where the external magnetic field H is not acting acts on the third magnetoresistive element 24c, and the electric resistance value of the third magnetoresistive element 24c does not fluctuate.

図3の状態では、第1の磁気抵抗効果素子24a及び第3の磁気抵抗効果素子24cのみならず、A相のブリッジ回路を構成する他の第5の磁気抵抗効果素子24e及び第7の磁気抵抗効果素子24gの電気抵抗値も変動しない。   In the state of FIG. 3, not only the first magnetoresistive effect element 24a and the third magnetoresistive effect element 24c but also the other fifth magnetoresistive effect element 24e and the seventh magnetism constituting the A-phase bridge circuit. The electrical resistance value of the resistive element 24g does not change.

よって図7に示す第1の出力取り出し部50及び第2の出力取り出し部51からは夫々中点電位が出力され、差動電位はゼロである。   Therefore, the first output extraction unit 50 and the second output extraction unit 51 shown in FIG. 7 each output a midpoint potential, and the differential potential is zero.

本実施形態では、前記フリー磁性層33の磁化方向33aを無磁場状態において、前記固定磁性層31の磁化方向(PIN方向)と直交する方向に規制し、図8に示すヒステリシスのないR−H曲線40を得ることが出来る。図11,図12で説明した従来構造では、無磁場状態でのフリー磁性層の磁化の不安定化によって磁気抵抗効果素子の電気抵抗値がばらつき、その結果、出力波形に乱れが生じたが、本実施形態では、従来に比べて出力波形の乱れを改善でき波形を平滑化できる。   In the present embodiment, the magnetization direction 33a of the free magnetic layer 33 is restricted to a direction orthogonal to the magnetization direction (PIN direction) of the pinned magnetic layer 31 in the absence of a magnetic field, and RH without hysteresis shown in FIG. A curve 40 can be obtained. In the conventional structure described with reference to FIGS. 11 and 12, the electric resistance value of the magnetoresistive effect element varies due to destabilization of the magnetization of the free magnetic layer in the absence of a magnetic field, and as a result, the output waveform is disturbed. In this embodiment, the disturbance of the output waveform can be improved compared to the conventional case, and the waveform can be smoothed.

次に、前記磁気センサ22が図示X1方向にλ/2だけ相対移動すると図4のようになる。   Next, when the magnetic sensor 22 is relatively moved by λ / 2 in the X1 direction shown in FIG.

図4に示すように前記第1の磁気抵抗効果素子24aには、(−)方向の外部磁界H6のうち、図示X2方向へのベクトル成分の外部磁界H9が支配的に流入する。   As shown in FIG. 4, out of the external magnetic field H6 in the (−) direction, a vector component external magnetic field H9 in the X2 direction flows dominantly into the first magnetoresistive element 24a.

この結果、前記フリー磁性層33の磁化方向33aは、固定磁性層31の磁化方向(PIN方向)と直交方向である図示Y1方向(図2参照)から図示X2方向に磁化変動する。前記フリー磁性層33の磁化方向33aは前記固定磁性層31の磁化方向(PIN方向)と逆方向であるから、前記第1の磁気抵抗効果素子24aの電気抵抗値は大きくなる。   As a result, the magnetization direction 33a of the free magnetic layer 33 changes in magnetization from the Y1 direction (see FIG. 2) perpendicular to the magnetization direction (PIN direction) of the pinned magnetic layer 31 to the X2 direction. Since the magnetization direction 33a of the free magnetic layer 33 is opposite to the magnetization direction (PIN direction) of the pinned magnetic layer 31, the electrical resistance value of the first magnetoresistive element 24a is increased.

一方、前記第1の磁気抵抗効果素子24aと直列接続され、図示X1方向にλの中心間距離を空けた位置にある第3の磁気抵抗効果素子24cには、(+)方向の外部磁界H5のうち、図示X1方向へのベクトル成分の外部磁界H10が支配的に流入する。   On the other hand, an external magnetic field H5 in the (+) direction is connected to the third magnetoresistive element 24c that is connected in series with the first magnetoresistive element 24a and is spaced by a center distance of λ in the X1 direction shown in the figure. Among these, the external magnetic field H10 of the vector component in the X1 direction shown in FIG.

この結果、前記フリー磁性層33の磁化方向33aは、固定磁性層31の磁化方向(PIN方向)と直交方向である図示Y1方向(図2参照)から図示X1方向に磁化変動する。前記フリー磁性層33の磁化方向33aは前記固定磁性層31の磁化方向(PIN方向)と同じ方向であるから、前記第3の磁気抵抗効果素子24aの電気抵抗値は小さくなる。   As a result, the magnetization direction 33a of the free magnetic layer 33 changes in magnetization from the Y1 direction (see FIG. 2) perpendicular to the magnetization direction (PIN direction) of the pinned magnetic layer 31 to the X1 direction. Since the magnetization direction 33a of the free magnetic layer 33 is the same as the magnetization direction (PIN direction) of the pinned magnetic layer 31, the electric resistance value of the third magnetoresistive element 24a becomes small.

また第1の磁気抵抗効果素子24a及び第3の磁気抵抗効果素子24cとブリッジ回路を構成する前記第5の磁気抵抗効果素子24eには、前記第1の磁気抵抗効果素子24eに流入する外部磁界H9が流入し、前記第7の磁気抵抗効果素子24gには、前記第3の磁気抵抗効果素子24cに流入する外部磁界H10が流入する。   The fifth magnetoresistive effect element 24e constituting a bridge circuit with the first magnetoresistive effect element 24a and the third magnetoresistive effect element 24c has an external magnetic field flowing into the first magnetoresistive effect element 24e. H9 flows in, and the external magnetic field H10 flowing into the third magnetoresistive element 24c flows into the seventh magnetoresistive element 24g.

よって図7に示す第1の出力取り出し部50からは、中点電位よりも低い電圧が出力され、前記第2の出力取り出し部51からは、中点電位よりも高い電圧が出力される。そして差動電位を取ると電圧値が倍となる。   Therefore, a voltage lower than the midpoint potential is output from the first output extraction section 50 shown in FIG. 7, and a voltage higher than the midpoint potential is output from the second output extraction section 51. When the differential potential is taken, the voltage value is doubled.

A相のブリッジ回路を構成する第1の磁気抵抗効果素子24a、第3の磁気抵抗効果素子24c、第5の磁気抵抗効果素子24e及び第7の磁気抵抗効果素子24gは、夫々、前記磁気センサ22あるいは第1の永久磁石21の移動により、電気抵抗値が変化し、第1の出力端子59からは略矩形状の出力波形が得られる。   The first magnetoresistive effect element 24a, the third magnetoresistive effect element 24c, the fifth magnetoresistive effect element 24e, and the seventh magnetoresistive effect element 24g constituting the A-phase bridge circuit are respectively the magnetic sensor. 22 or the movement of the first permanent magnet 21 changes the electric resistance value, and a substantially rectangular output waveform is obtained from the first output terminal 59.

一方、B相のブリッジ回路を構成する第2の磁気抵抗効果素子24b、第4の磁気抵抗効果素子24d、第6の磁気抵抗効果素子24f及び第8の磁気抵抗効果素子24hも、夫々、前記磁気センサ22あるいは第1の永久磁石21の移動により、電気抵抗値が変化し、第2の出力端子61からは略矩形状の出力波形が得られる。   On the other hand, the second magnetoresistive effect element 24b, the fourth magnetoresistive effect element 24d, the sixth magnetoresistive effect element 24f and the eighth magnetoresistive effect element 24h constituting the B-phase bridge circuit are also respectively described above. Due to the movement of the magnetic sensor 22 or the first permanent magnet 21, the electric resistance value changes, and a substantially rectangular output waveform is obtained from the second output terminal 61.

前記第1の出力端子59から出力される出力波形と、前記第2の出力端子61から出力される出力波形は位相がずれている。出力により、前記磁気センサ22あるいは第1の永久磁石21の移動速度や移動距離を検出できる。またA相とB相のブリッジ回路を設けて出力を2系統にすることで、前記第1の出力端子59からの出力波形に対する前記第2の出力端子61からの出力波形の位相のずれ方向がどちら方向であるかにより、移動方向を知ることが可能である。   The output waveform output from the first output terminal 59 and the output waveform output from the second output terminal 61 are out of phase. Based on the output, the moving speed and moving distance of the magnetic sensor 22 or the first permanent magnet 21 can be detected. In addition, by providing A-phase and B-phase bridge circuits and providing two systems of output, the phase shift direction of the output waveform from the second output terminal 61 relative to the output waveform from the first output terminal 59 can be changed. It is possible to know the moving direction depending on which direction it is.

上記のようにフリー磁性層33の磁化方向33aを、前記固定磁性層31の磁化方向(PIN方向)と直交する方向に制御することで、図3に示すA相のブリッジ回路に対する無磁場状態から図4の状態に変化したとき、第1の磁気抵抗効果素子24aのフリー磁性層33、及び第3の磁気抵抗効果素子24cのフリー磁性層33の双方が、同じように磁化変動する。すなわちフリー磁性層33は、(+)方向の外部磁界H5が作用したときと、(−)方向の外部磁界H6が作用したときとで、磁気感度が夫々同じである。また、一方の磁気抵抗効果素子の電気抵抗値が大きくなれば、直列接続された他方の磁気抵抗効果素子の電気抵抗値は必ず下がる関係にある。したがって図10に示す従来構造に比べて、(+)方向の外部磁界H5及び(−)方向の外部磁界H6に対する磁気感度のアンバランスを改善できる。   As described above, the magnetization direction 33a of the free magnetic layer 33 is controlled to a direction orthogonal to the magnetization direction (PIN direction) of the pinned magnetic layer 31 so that the A-phase bridge circuit shown in FIG. When the state changes to the state of FIG. 4, both the free magnetic layer 33 of the first magnetoresistive effect element 24a and the free magnetic layer 33 of the third magnetoresistive effect element 24c fluctuate in the same manner. That is, the free magnetic layer 33 has the same magnetic sensitivity when the external magnetic field H5 in the (+) direction is applied and when the external magnetic field H6 in the (−) direction is applied. Further, when the electric resistance value of one magnetoresistive effect element is increased, the electric resistance value of the other magnetoresistive effect element connected in series is necessarily reduced. Therefore, compared with the conventional structure shown in FIG. 10, it is possible to improve the magnetic sensitivity imbalance with respect to the external magnetic field H5 in the (+) direction and the external magnetic field H6 in the (−) direction.

以上のように本実施形態では、出力波形の乱れを従来に比べて改善でき、また(+)方向の外部磁界が作用したときと(−)方向の外部磁界が作用したときとで各磁気抵抗効果素子の検出感度を同じにでき、したがって従来に比べて検出精度を向上できる。   As described above, in this embodiment, the disturbance of the output waveform can be improved as compared with the conventional case, and each magnetoresistive resistance is increased when an external magnetic field in the (+) direction is applied and when an external magnetic field in the (−) direction is applied. The detection sensitivity of the effect element can be made the same, and therefore the detection accuracy can be improved as compared with the conventional case.

しかも本実施形態では、基板23の裏面23bに一つの第2の永久磁石25を設け、全ての磁気抵抗効果素子24a〜24hのフリー磁性層33の磁化方向33aを、前記第2の永久磁石25からの同じバイアス磁界biasによって制御するので、簡単な構成で、前記フリー磁性層33の磁化方向33aの制御を行うことが可能となっている。   In addition, in the present embodiment, one second permanent magnet 25 is provided on the back surface 23b of the substrate 23, and the magnetization direction 33a of the free magnetic layer 33 of all the magnetoresistive effect elements 24a to 24h is set to the second permanent magnet 25. Therefore, the magnetization direction 33a of the free magnetic layer 33 can be controlled with a simple configuration.

前記第2の永久磁石25の図示X1−X2方向への幅寸法は、図示X1−X2方向に配列された磁気抵抗効果素子の両側に位置する第1の磁気抵抗効果素子24aと前記第4の磁気抵抗効果素子24d間の間隔、及び前記第5の磁気抵抗効果素子24eと前記第8の磁気抵抗効果素子24h間の間隔よりも大きい。これによって全ての磁気抵抗効果素子24a〜24hに対して前記第2の永久磁石25から同じバイアス磁界biasを印加でき、全ての磁気抵抗効果素子24a〜24hのフリー磁性層33を適切に磁化制御できる。   The width dimension of the second permanent magnet 25 in the illustrated X1-X2 direction is such that the first magnetoresistive effect element 24a located on both sides of the magnetoresistive effect elements arranged in the illustrated X1-X2 direction and the fourth permanent magnet 25 have the fourth dimension. The distance between the magnetoresistive effect element 24d and the distance between the fifth magnetoresistive effect element 24e and the eighth magnetoresistive effect element 24h are larger. As a result, the same bias magnetic field bias can be applied from the second permanent magnet 25 to all the magnetoresistive effect elements 24a to 24h, and the free magnetic layers 33 of all the magnetoresistive effect elements 24a to 24h can be controlled appropriately. .

前記第2の永久磁石25はバルク材であることが好ましい。例えば、前記第2の永久磁石25は前記基板23の裏面23bに接着剤を介して貼り付けられる。   The second permanent magnet 25 is preferably a bulk material. For example, the second permanent magnet 25 is attached to the back surface 23b of the substrate 23 with an adhesive.

図2に示すように各磁気抵抗効果素子24a〜24hは、図示X1−X2方向の幅寸法T1よりも、図示Y1−Y2方向の長さ寸法L1のほうが長く形成されている。前記固定磁性層31の磁化方向(PIN方向)は、図示X1−X2方向に磁化され、前記フリー磁性層33の磁化方向33aは、長手方向である図示Y1−Y2方向に磁化される。各磁気抵抗効果素子24a〜24hの幅寸法T1は、〜100μm程度、長さ寸法L1は100〜300μm程度である。このように長さ寸法L1が非常に長くなっている。よって例えば、前記磁気抵抗効果素子24a〜24hの図示Y1−Y2方向の両側に、CoPt等のハードバイアス層をスパッタ法で形成して、前記ハードバイアス層によるバイアス磁界によって前記フリー磁性層33を図示Y1方向に磁化するには、前記バイアス磁界が弱すぎ、前記フリー磁性層33を適切に磁化制御できない。したがって本実施形態ではバルク材の第2の永久磁石25を用いている。そして、これにより、全ての前記フリー磁性層33の磁化制御を一度に行うことが出来る。 As shown in FIG. 2, each of the magnetoresistive elements 24a to 24h is formed such that the length dimension L1 in the illustrated Y1-Y2 direction is longer than the width dimension T1 in the illustrated X1-X2 direction. The magnetization direction (PIN direction) of the pinned magnetic layer 31 is magnetized in the illustrated X1-X2 direction, and the magnetization direction 33a of the free magnetic layer 33 is magnetized in the illustrated Y1-Y2 direction, which is the longitudinal direction. Width T1 of each magnetoresistive element 24a~24h is about 2 ~100Myuemu, the length L1 is about 100 to 300 [mu] m. Thus, the length dimension L1 is very long. Therefore, for example, a hard bias layer such as CoPt is formed by sputtering on both sides of the magnetoresistive elements 24a to 24h in the Y1-Y2 direction, and the free magnetic layer 33 is illustrated by a bias magnetic field generated by the hard bias layer. In order to magnetize in the Y1 direction, the bias magnetic field is too weak to properly control the magnetization of the free magnetic layer 33. Therefore, in this embodiment, the second permanent magnet 25 made of a bulk material is used. Thereby, the magnetization control of all the free magnetic layers 33 can be performed at a time.

前記第2の永久磁石25から前記フリー磁性層33に作用するバイアス磁界biasの大きさは、前記第1の永久磁石21から前記フリー磁性層33に作用する外部磁界Hの大きさに比べて小さい。これによって前記フリー磁性層33は、適切に前記第1の永久磁石21からの外部磁界Hによって磁化変動する。   The magnitude of the bias magnetic field bias that acts on the free magnetic layer 33 from the second permanent magnet 25 is smaller than the magnitude of the external magnetic field H that acts on the free magnetic layer 33 from the first permanent magnet 21. . Accordingly, the free magnetic layer 33 is appropriately changed in magnetization by the external magnetic field H from the first permanent magnet 21.

また、図6に示すように、前記基板23と磁気抵抗効果素子24a〜24hとを有する磁気センサ22を収納した筐体70の外側に、前記第2の永久磁石25を設けてもよい。   In addition, as shown in FIG. 6, the second permanent magnet 25 may be provided outside the housing 70 that houses the magnetic sensor 22 having the substrate 23 and the magnetoresistive elements 24a to 24h.

本実施形態の磁気エンコーダ20は、図1に示すように磁気センサ22が第1の永久磁石21に対して直線的に相対移動するものであったが、図9に示すように、例えば表面80aにN極とS極とが交互に着磁された回転ドラム80と前記磁気センサ22とを有し、前記回転ドラム80の回転によって得られた出力により、回転速度や回転数、回転方向を検知できる回転型の磁気エンコーダであってもよい。   In the magnetic encoder 20 of the present embodiment, the magnetic sensor 22 linearly moves relative to the first permanent magnet 21 as shown in FIG. 1, but as shown in FIG. The rotating drum 80 in which N poles and S poles are alternately magnetized and the magnetic sensor 22, and the rotation speed, the number of rotations, and the rotating direction are detected by the output obtained by the rotation of the rotating drum 80. A rotary magnetic encoder that can be used may be used.

図9の拡大図に示すように、図1に示す直線移動の磁気エンコーダと同様に、N極とS極の中心間距離(ピッチ)をλとしたとき、直列接続される各磁気抵抗効果素子どうしの中心間距離はλに制御されている。   As shown in the enlarged view of FIG. 9, each magnetoresistive element connected in series when the distance (pitch) between the centers of the N pole and the S pole is λ, similar to the linearly moving magnetic encoder shown in FIG. The distance between the centers is controlled to λ.

図9に示すように、各磁気抵抗効果素子24a〜24hの固定磁性層31の磁化方向(PIN方向)は、前記磁気センサ22の基板23の中心を、前記磁気センサ22の相対回転方向上の接点としたときの接線方向と平行な方向に固定されている。ここで「接線方向」とは、接線に方向性を持たせたものであり、その方向は、相対回転方向に従う。換言すれば、前記接線方向は、前記接点での速度ベクトルの方向である。前記固定磁性層31の磁化方向は、前記接線方向に反平行であってもよい。   As shown in FIG. 9, the magnetization direction (PIN direction) of the pinned magnetic layer 31 of each of the magnetoresistive effect elements 24 a to 24 h is centered on the substrate 23 of the magnetic sensor 22 and on the relative rotational direction of the magnetic sensor 22. It is fixed in a direction parallel to the tangential direction when the contact is made. Here, the “tangential direction” is a direction in which the tangent is given directionality, and the direction follows the relative rotation direction. In other words, the tangential direction is the direction of the velocity vector at the contact. The magnetization direction of the pinned magnetic layer 31 may be antiparallel to the tangential direction.

また図7に示すように本実施形態では、A相とB相のブリッジ回路が設けられているが、どちらか一方だけ設けられる形態でもよい。   Further, as shown in FIG. 7, in the present embodiment, a bridge circuit of A phase and B phase is provided, but only one of them may be provided.

また本実施形態の磁気エンコーダでは、直列接続される磁気抵抗効果素子の中心間の間隔はλであったが、これに限定されるものではない。かかる場合、全ての固定磁性層の磁化方向は平行でなくてもよい。少なくとも一つの磁気抵抗効果素子における固定磁性層の磁化方向が、残りの磁気抵抗効果素子における固定磁性層の磁化方向に対して反平行であってもよい。例えば図2に示す第1の磁気抵抗効果素子24aの固定磁性層31の磁化方向は図示X1方向であるが、第3の磁気抵抗効果素子24cの固定磁性層31の磁化方向は図示X2方向である如くである。ただし、図2に示すように、直列接続される磁気抵抗効果素子の中心間の間隔をλとし、各磁気抵抗効果素子24a〜24hの固定磁性層31の磁化方向(PIN方向)を全て同一方向に磁化することが前提の磁気エンコーダに本実施形態は効果的に適用できる。   In the magnetic encoder of the present embodiment, the interval between the centers of the magnetoresistive elements connected in series is λ, but is not limited to this. In such a case, the magnetization directions of all the pinned magnetic layers may not be parallel. The magnetization direction of the pinned magnetic layer in at least one magnetoresistive element may be antiparallel to the magnetization direction of the pinned magnetic layer in the remaining magnetoresistive elements. For example, the magnetization direction of the pinned magnetic layer 31 of the first magnetoresistive effect element 24a shown in FIG. 2 is the X1 direction shown in the figure, but the magnetization direction of the pinned magnetic layer 31 of the third magnetoresistive effect element 24c is the X2 direction shown in the figure. There seems to be. However, as shown in FIG. 2, the interval between the centers of the magnetoresistive effect elements connected in series is λ, and the magnetization directions (PIN directions) of the pinned magnetic layers 31 of the magnetoresistive effect elements 24a to 24h are all in the same direction. The present embodiment can be effectively applied to a magnetic encoder that is premised on magnetization.

本実施形態の磁気センサ22は、磁気エンコーダ以外に、例えば、ポテンショメータにも適用することが出来る。ポテンショメータでは磁気センサの基板に垂直な軸を中心として回転可能な磁石(磁界発生部材)が対向配置される。前記磁石の回転により、各磁気抵抗効果素子に回転磁場が作用し各磁気抵抗効果素子の電気抵抗値が変化する。前記電気抵抗値の変化に基づく出力波形から前記磁石の回転角度を検知できる。   The magnetic sensor 22 of the present embodiment can be applied to, for example, a potentiometer in addition to the magnetic encoder. In the potentiometer, a magnet (magnetic field generating member) that can rotate about an axis perpendicular to the substrate of the magnetic sensor is disposed oppositely. Due to the rotation of the magnet, a rotating magnetic field acts on each magnetoresistive element and the electric resistance value of each magnetoresistive element changes. The rotation angle of the magnet can be detected from the output waveform based on the change in the electrical resistance value.

本実施形態の磁気エンコーダの部分斜視図、The partial perspective view of the magnetic encoder of this embodiment, 磁気センサの部分拡大平面図、Partial enlarged plan view of the magnetic sensor, 図2に示すA−A線から膜厚方向に切断し矢印方向から見た前記磁気エンコーダの部分拡大断面図、The partial expanded sectional view of the said magnetic encoder cut | disconnected in the film thickness direction from the AA line shown in FIG. 図3の状態から磁気センサが、λ/2だけ相対移動したときの前記磁気エンコーダの部分拡大断面図、FIG. 3 is a partial enlarged cross-sectional view of the magnetic encoder when the magnetic sensor is relatively moved by λ / 2 from the state of FIG. 3; 図2に示すB−B線から膜厚方向に切断し矢印方向から見た前記磁気センサの拡大断面図、FIG. 2 is an enlarged cross-sectional view of the magnetic sensor as viewed from the direction of the arrow cut in the film thickness direction from the line BB shown in FIG. 図5の変形例を示す磁気センサの断面図、Sectional drawing of the magnetic sensor which shows the modification of FIG. 磁気センサの回路図、Circuit diagram of magnetic sensor, 磁気抵抗効果素子のR−H曲線を示すグラフ、A graph showing an RH curve of the magnetoresistive element; 本実施の別の形態の磁気エンコーダの模式図、Schematic diagram of a magnetic encoder of another embodiment of the present embodiment, 従来における第1の磁気エンコーダの構造と問題点を説明するための部分断面図、Partial sectional view for explaining the structure and problems of a first magnetic encoder in the prior art, 従来における第2の磁気エンコーダの構造と問題点を説明するための部分断面図、Partial sectional view for explaining the structure and problems of the second magnetic encoder in the prior art, 図11の磁気エンコーダに搭載される磁気抵抗効果素子のH//PIN方向のR−H曲線を示すグラフ、The graph which shows the RH curve of the H // PIN direction of the magnetoresistive effect element mounted in the magnetic encoder of FIG.

符号の説明Explanation of symbols

20 磁気エンコーダ
21 第1の永久磁石
22 磁気センサ
23 基板
24a〜24h 磁気抵抗効果素子
25 第2の永久磁石
30 反強磁性層
31 固定磁性層
32 非磁性材料層
33 フリー磁性層
34 保護層
40 R−H曲線
70 筐体
50、51、54、55 出力取り出し部
52、56 入力端子
53、57 アース端子
58、60 差動増幅器
59、61 出力端子
80 回転ドラム
33a (フリー磁性層の)磁化方向
PIN (固定磁性層の)磁化方向
20 Magnetic encoder 21 First permanent magnet 22 Magnetic sensor 23 Substrate 24a-24h Magnetoresistive element 25 Second permanent magnet 30 Antiferromagnetic layer 31 Fixed magnetic layer 32 Nonmagnetic material layer 33 Free magnetic layer 34 Protective layer 40 R -H curve 70 Case 50, 51, 54, 55 Output take-out part 52, 56 Input terminal 53, 57 Ground terminal 58, 60 Differential amplifier 59, 61 Output terminal 80 Rotating drum 33a Magnetization direction PIN (of free magnetic layer) Magnetization direction (of pinned magnetic layer)

Claims (5)

基板上に、磁界発生部材からの外部磁界に対して電気抵抗値が変化する磁気抵抗効果を利用した磁気抵抗効果素子を有する磁気センサであって、
前記磁気抵抗効果素子は複数個、前記基板上に設けられるとともに、磁化が一方向に固定された固定磁性層と、前記外部磁界に対して磁化変動するフリー磁性層とが、非磁性材料層を介して積層された積層部分を有し、
全ての前記磁気抵抗効果素子における前記固定磁性層の磁化方向は平行であるか、あるいは少なくとも一つの前記磁気抵抗効果素子における前記固定磁性層の磁化方向が、残りの前記磁気抵抗効果素子における前記固定磁性層の磁化方向に対して反平行であり、
前記磁気抵抗効果素子と離れた位置に永久磁石が設けられ、前記磁界発生部材からの外部磁界が作用しない無磁場状態において、全ての前記磁気抵抗効果素子の前記フリー磁性層が、前記永久磁石からの同じバイアス磁界によって、前記固定磁性層の磁化方向と直交方向で且つ前記バイアス磁界の作用方向と同一方向に、磁化されていることを特徴とする磁気センサ。
A magnetic sensor having a magnetoresistive effect element using a magnetoresistive effect that changes an electric resistance value with respect to an external magnetic field from a magnetic field generating member on a substrate,
A plurality of the magnetoresistive effect elements are provided on the substrate, and a fixed magnetic layer whose magnetization is fixed in one direction and a free magnetic layer whose magnetization is fluctuated with respect to the external magnetic field are a nonmagnetic material layer. Having a laminated portion laminated through,
The magnetization direction of the pinned magnetic layer in all the magnetoresistive effect elements is parallel, or the magnetization direction of the pinned magnetic layer in at least one of the magnetoresistive effect elements is the pinned in the remaining magnetoresistive effect elements. Antiparallel to the magnetization direction of the magnetic layer,
A permanent magnet is provided at a position away from the magnetoresistive effect element, and the free magnetic layer of all the magnetoresistive effect elements is separated from the permanent magnet in a no-magnetic field state where an external magnetic field from the magnetic field generating member does not act. The magnetic sensor is magnetized by the same bias magnetic field in the direction perpendicular to the magnetization direction of the pinned magnetic layer and in the same direction as the action direction of the bias magnetic field .
前記基板の表面に前記磁気抵抗効果素子が設けられ、前記基板の裏面に前記永久磁石が設けられる請求項1記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetoresistive effect element is provided on a surface of the substrate, and the permanent magnet is provided on a back surface of the substrate. 前記磁気抵抗効果素子は、幅方向の寸法よりも前記幅方向と直交する長さ方向の寸法のほうが長く形成された形状であり、前記固定磁性層が、前記幅方向に磁化固定され、フリー磁性層が前記長さ方向に磁化されている請求項1又は2に記載の磁気センサ。   The magnetoresistive effect element has a shape in which the dimension in the length direction perpendicular to the width direction is longer than the dimension in the width direction, and the pinned magnetic layer is magnetization-fixed in the width direction and free magnetic The magnetic sensor according to claim 1, wherein the layer is magnetized in the length direction. 表面に、N極とS極が交互に着磁された着磁面を有する磁界発生部材と、請求項1ないし3のいずれかに記載された磁気センサとを備える磁気エンコーダであって、
前記N極及びS極は、前記磁気センサの相対移動方向あるいは相対回転方向に交互に配列されて、前記磁気センサには、相対移動あるいは相対回転に伴って、前記相対移動方向あるいは前記相対回転方向に向う(+)方向への外部磁界と、前記(+)方向とは逆方向の(−)方向への外部磁界とが交互に作用し、
直列接続される磁気抵抗効果素子どうしは、前記相対移動方向と平行な方向に、あるいは、前記基板の中心を相対回転方向上の接点としたときの接線方向と平行な方向に、ずれて配置され、
各磁気抵抗効果素子の固定磁性層が、夫々、前記相対移動方向と平行あるいは反平行な方向に、あるいは、前記接線方向と平行あるいは反平行な方向に磁化固定されていることを特徴とする磁気エンコーダ。
A magnetic encoder comprising a magnetic field generating member having a magnetized surface in which N and S poles are alternately magnetized on the surface, and the magnetic sensor according to any one of claims 1 to 3,
The N pole and the S pole are alternately arranged in the relative movement direction or the relative rotation direction of the magnetic sensor, and the relative movement direction or the relative rotation direction is provided to the magnetic sensor in accordance with the relative movement or the relative rotation. The external magnetic field in the (+) direction toward the direction and the external magnetic field in the (−) direction opposite to the (+) direction act alternately,
The magnetoresistive effect elements connected in series are displaced in a direction parallel to the relative movement direction or in a direction parallel to a tangential direction when the center of the substrate is a contact point in the relative rotation direction. ,
The fixed magnetic layer of each magnetoresistive element is magnetized and fixed in a direction parallel or antiparallel to the relative movement direction, or in a direction parallel or antiparallel to the tangential direction, respectively. Encoder.
前記N極と前記S極の中心間距離をλとしたとき、直列接続される磁気抵抗効果素子どうしは、前記相対移動方向と平行な方向に、あるいは、前記接線方向と平行な方向に、λの中心間距離を空けて配置されており、
全ての磁気抵抗効果素子の前記固定磁性層が、同一方向に磁化固定されている請求項4記載の磁気エンコーダ。
When the distance between the centers of the N pole and the S pole is λ, the magnetoresistive elements connected in series are in a direction parallel to the relative movement direction or in a direction parallel to the tangential direction. It is arranged with a distance between the centers of
The magnetic encoder according to claim 4, wherein the fixed magnetic layers of all magnetoresistive elements are fixed in magnetization in the same direction.
JP2006343031A 2006-12-20 2006-12-20 Magnetic sensor and magnetic encoder using the same Expired - Fee Related JP4874781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343031A JP4874781B2 (en) 2006-12-20 2006-12-20 Magnetic sensor and magnetic encoder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343031A JP4874781B2 (en) 2006-12-20 2006-12-20 Magnetic sensor and magnetic encoder using the same

Publications (2)

Publication Number Publication Date
JP2008151759A JP2008151759A (en) 2008-07-03
JP4874781B2 true JP4874781B2 (en) 2012-02-15

Family

ID=39654059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343031A Expired - Fee Related JP4874781B2 (en) 2006-12-20 2006-12-20 Magnetic sensor and magnetic encoder using the same

Country Status (1)

Country Link
JP (1) JP4874781B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843079B2 (en) 2013-03-29 2016-01-13 Tdk株式会社 Magnetic sensor and magnetic sensor system
JP5532166B1 (en) 2013-03-29 2014-06-25 Tdk株式会社 Magnetic sensor and magnetic sensor system
JP6548357B2 (en) * 2014-03-28 2019-07-24 Dmg森精機株式会社 Position detection device
US9733317B2 (en) 2014-03-10 2017-08-15 Dmg Mori Seiki Co., Ltd. Position detecting device
JP6202282B2 (en) 2015-02-17 2017-09-27 Tdk株式会社 Magnetic sensor
WO2022131049A1 (en) * 2020-12-18 2022-06-23 パナソニックIpマネジメント株式会社 Magnetic detection system, position detection system, and magnetic detection module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373238A (en) * 1992-11-06 1994-12-13 International Business Machines Corporation Four layer magnetoresistance device and method for making a four layer magnetoresistance device
JP3367230B2 (en) * 1994-10-25 2003-01-14 ソニー・プレシジョン・テクノロジー株式会社 Position detection device
JP4243051B2 (en) * 2001-10-01 2009-03-25 アルプス電気株式会社 Magnetic sensor for magnetic scale
JP4132835B2 (en) * 2002-01-23 2008-08-13 株式会社デンソー Rotation speed detector

Also Published As

Publication number Publication date
JP2008151759A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US10734443B2 (en) Dual manetoresistance element with two directions of response to external magnetic fields
JP4837749B2 (en) Magnetic sensor and magnetic encoder using the same
TWI774189B (en) Magnetoresistance element and spin valve
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP6202282B2 (en) Magnetic sensor
US20050280411A1 (en) GMR sensor with flux concentrators
TWI633321B (en) Tunneling magneto-resistor device for sensing magnetic field
JP5843079B2 (en) Magnetic sensor and magnetic sensor system
JP2016176911A (en) Magnetic sensor
JP4874781B2 (en) Magnetic sensor and magnetic encoder using the same
JP2012127788A (en) Magnetic sensor
CN106257298B (en) Magnetic field generator, magnetic sensor system, and magnetic sensor
US11217626B2 (en) Dual tunnel magnetoresistance (TMR) element structure
US20090251830A1 (en) Magnetic detector
US20230026816A1 (en) Position detection device
JP2010286238A (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
JP2018179776A (en) Thin film magnetic sensor
CN112305471A (en) Magnetic field sensor, system and oblique incidence deposition manufacturing method
JP5453198B2 (en) Magnetic sensor
JP2015133377A (en) Magnetic detection element and rotation detection device
JP4984962B2 (en) Magnetic angle sensor
WO2008053926A1 (en) Motion sensor
JP4914502B2 (en) Magnetic sensor and magnetic encoder
JP5184380B2 (en) Magnetic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4874781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees