JP4873347B2 - Tidal water turbine - Google Patents
Tidal water turbine Download PDFInfo
- Publication number
- JP4873347B2 JP4873347B2 JP2007091225A JP2007091225A JP4873347B2 JP 4873347 B2 JP4873347 B2 JP 4873347B2 JP 2007091225 A JP2007091225 A JP 2007091225A JP 2007091225 A JP2007091225 A JP 2007091225A JP 4873347 B2 JP4873347 B2 JP 4873347B2
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- tidal
- tidal current
- rotating body
- water turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Hydraulic Turbines (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Description
本発明は、海中を流れる海流及び潮流を利用して動力を得る新方式の水車に関するものである。 The present invention relates to a new type of water turbine that obtains power by using ocean currents and tidal currents flowing in the sea.
潮流を利用した発電方法として、潮位差(位置エネルギー)を利用した潮汐発電と潮流の流れ(運動エネルギー)を利用した潮流発電があり、潮位差を利用した潮汐発電ではフランス北西部のランス川口の潮汐発電が潮位差平均8m、出力24万KWで現在稼動している中で世界最大規模であるが、日本では設置場所の環境問題や経済性の問題などがあって潮汐発電の実現にはほど遠く、他方潮流の流れを利用した潮流発電はダリウス水車、クロスフロー水車等が提案されているが小規模実験段階でありこれらの水車で得られる動力が小容量で設置場所の制限、効率性の技術的な課題も多く、経済性、設備維持費等においても実現には至っていない。 There are tidal power generation using tidal current (potential energy) and tidal power generation using tidal current (kinetic energy), and tidal power generation using tidal current at the mouth of the Lance River in northwestern France. Tidal power generation is the world's largest scale currently operating with an average tidal difference of 8 m and output of 240,000 kW, but in Japan it is far from realizing tidal power generation due to environmental problems and economic problems in the installation location. On the other hand, Darius turbines, cross-flow turbines, etc. have been proposed for tidal power generation using the flow of tidal currents, but this is a small-scale experimental stage. There are many problems, and it has not yet been realized in terms of economic efficiency and equipment maintenance costs.
この改善策として、海底に潮流水車が提案されている。
解決しようとする問題点は、潮流水車の大容量化、効率性の向上、初期設置の経済性、設備維持の容易性等に適する新しい構造の水車回転体である。 The problem to be solved is a water turbine rotating body with a new structure suitable for increasing the capacity of tidal water turbines, improving efficiency, economy of initial installation, ease of equipment maintenance, and the like.
本発明は、潮流水車の水車回転体を三枚の長板から成る各板間角度を約120度として各片側長辺を一括溶接又は結合した水車羽根を三組、水車回転体の仮想円筒面上に120度の等間隔で3箇所に配置し且つ各水車羽根の一枚が回転体中心を向く位置で回転体左右両平面に直接固定した構造を特色とする水車回転体とし、水車回転体のやや上半分を囲む外面逆三角柱の構造の水車室、水車回転体の下部へ潮流の速度を高める三角柱の構造体、三角柱の構造体上部に取り付けられた可動板、三角柱の構造体を海底から支える柱、潮流力に拮抗する水車室及び構造体を支える支線等が付随した構成である。 The present invention relates to a turbine wheel rotating body of a tidal water turbine, wherein three sets of turbine blades are formed by welding or joining the long sides of one side at a time, with the angle between each plate consisting of three long plates being about 120 degrees. A turbine rotating body featuring a structure in which three turbine blades are arranged at equal intervals of 120 degrees and fixed directly to both the left and right planes at a position where one blade of each turbine blade faces the center of the rotating body. A water turbine room with an outer inverted triangular prism structure surrounding the upper half of the triangle, a triangular prism structure that increases the speed of tidal current to the lower part of the rotating turbine body, a movable plate attached to the upper part of the triangular prism structure, and a triangular prism structure from the seabed It is a structure with supporting pillars, water turbine chambers that antagonize tidal forces, and branch lines that support the structure.
本発明の潮流水車は、水車回転体から回転軸又は回転軸胴体を省き、且つ水車回転体を三枚の長板から成る各板間角度を約120度として各片側長辺を一括溶接又は結合した水車羽根を三組、水車回転体の仮想円筒面上に120度の等間隔で3箇所に配置し且つ各水車羽根の一枚が回転体中心を向く位置で回転体左右両平面に直接固定した構造のため、従来の水車回転体と異なり回転軸又は回転軸胴体が不要であり、そのため水車回転体の中心のやや上部から最下部間をより多くの潮流が通過できる。従って本発明の水車羽根を通過するより多くの潮流の運動量が、水車回転体の軸動力へ比較的高い効率で変換する事ができる。更に本発明の潮流水車は構造上、簡素で耐久性があり、大型化に向いており、フィルターが不要で且つ外来物による水車回転体への詰まり少ないと考えられ、維持費も小さいと考えられる。 The tidal water turbine of the present invention omits the rotating shaft or the rotating shaft body from the rotating body of the turbine, and welds or combines the long sides of each side with the angle between the plates composed of three long plates of about 120 degrees. Three sets of water turbine blades are arranged at three positions at equal intervals of 120 degrees on the virtual cylindrical surface of the water turbine rotor, and directly fixed to the left and right planes of the rotor at a position where each turbine blade faces the center of the rotor. Because of this structure, a rotating shaft or a rotating shaft body is not required unlike a conventional rotating body of a water turbine, so that more tidal current can pass between a slightly upper part and a lower part of the center of the rotating body of a water turbine. Therefore, the momentum of the more tidal current that passes through the water turbine blades of the present invention can be converted into the shaft power of the water turbine rotor with relatively high efficiency. Furthermore, the tidal water turbine of the present invention is simple and durable in structure, is suitable for upsizing, is considered to require no filter, and is less likely to be clogged by a foreign body with a rotating wheel of the water turbine, and is also considered to have a low maintenance cost. .
潮流水車を海底に設置するための最良の形は、水車回転体のやや上半分を囲む外面逆三角柱状の水車室、水車回転体の下部へ潮流の速度を高める三角柱の構造体、三角柱の構造体上部に取り付けられた可動板、三角柱の構造体を海底から支える柱2本(容量が増えると柱本数も増加)、潮流力に拮抗する水車室及び構造体を支える支線を左右に2組(容量が増えると支線本数も増加)を潮流又は海流の流れの速い場所に設置する事で初期設置費用及び設備維持費等において実現的な中容量以上の水車回転体の軸動力を得る事が実現できる。 The best way to install a tidal water turbine on the seabed is the outer inverted triangular column-shaped turbine wheel that surrounds the upper half of the turbine rotating body, the triangular column structure that increases the tidal current to the bottom of the turbine rotating body, and the triangular column structure. Two pairs of left and right support lines supporting the structure of the movable plate attached to the upper part of the body, two pillars that support the structure of the triangular prism from the seabed (the number of pillars increases as the capacity increases), the turbine chamber that antagonizes tidal power, and the structure As the capacity increases, the number of branch lines also increases). By installing it in a place where the current of the tidal current or ocean current is fast, it is possible to obtain the shaft power of the turbine rotor that has a medium capacity or more that is practical in terms of initial installation costs and equipment maintenance costs. it can.
図1は、本発明の水車回転体の構造を示し、水車回転体の水車羽根1a、水車回転体の平面板1b、水車回転体の軸1cで構成される大型化に適する構造である。 図2は、潮流水車本体の構造を断面1、断面2で示し、水車回転体1、水車室2、三角柱の構造体3、三角柱の構造体上部の可動板4、水車本体の側面壁5で構成される。 潮流水車本体の水車室2、三角柱の構造体3、三角柱の構造体上部の可動板4によって、潮流流量が水車回転体入り口に絞られて、水車回転体を通過する潮流速度が増加する。 満潮と干潮では潮流の向きが逆になるため、水車本体は潮流の正逆の流れを通過すると正逆の軸動力が得られ、水中発電設備への軸結合で発電電力が得られる。図3は、潮流水車を海底に設置する実施方法を示し、潮流水車本体の荷重を支える支柱7、支柱7を支えるために海底の支持層まで打ち込まれたパイル8、支柱7とパイル8間の脱着式結合部、水車本体を、潮流の流れから支える支線6で構成される。 海底に設置する恒久構造物は、パイル8及び支線アンカー6aであり、潮流水車本体及び支柱7は陸上で製作組み立てされるため、現状の海底環境が十分維持できる施設で、且つ妥当な初期設備費用と考えられる。
図5、図5a、図5b、図5c、図5dは、本発明の水車回転体の回転原理を説明するため、潮流と水車回転体回転位置関係を示す下記条件を設定する。
条件1 潮流は、水車本体の左から垂直且つ一様に流れる。
条件2 水車羽根に番号1、2、3を設け、水車羽根1、水車羽根2、水車羽根3と表示し、水車羽根1を基準に潮流との関係を示す。
条件3 潮流流量が水車回転体入り口に絞られて、水車回転体を通過する潮流速度流が増加する。入り口の潮流に位置関係を示す番号を設け、上から潮流1、潮流2、潮流3、潮流4と表示し、水車羽根との関係を示す。
条件4 水車回転体の回転位置を、順次 回転1、回転2、回転3、回転4、回転5、回転6、回転7、回転8と表示し、各回転毎に、水車羽根と潮流の関係を示す。
条件5 図5の灰色部分は、水車室と三角柱の構造体でかこまれた体積を示し、その体積の潮流の流体運動量を、流体運動量Mと表示する。
以上の条件を基に、図5a、図5b、図5c、図5dの各回転毎に、本発明の水車回転体の回転原理を水車羽根1を基準に説明する。
回転1 水車回転体の水車羽根1は、水車羽根1の直下面を潮流1が通過すると、水車羽根1の直下面が負圧となり、水車羽根1は下部へ動かされて水車回転体を反時計回りに回転する。
回転2 水車回転体の水車羽根1は、水車羽根1の直下面を潮流2が通過すると、水車羽根1の直下面が負圧となり、水車羽根1は下部へ動かされて水車回転体を反時計回りに回転する。 回転1で流れていた潮流1の流れを水車羽根1で妨げられると、流体運動量Mは潮流2、潮流3、潮流4に移行して潮流速度を増加して水車羽根2の回転圧力を更に増加させる。
回転3 水車回転体の水車羽根1は、潮流2、潮流3の圧力を受けて水車回転体を反時計回りに回転する。 潮流4から下の潮流部分が構造体面上に沿って上に押し上げられるため、潮流4の速度が最も早くなり、その早い潮流4を可動板に沿って更に上に押し上げられると、水車羽根2の回転圧力は増加する。
回転4 水車回転体の水車羽根1は、潮流3の圧力を受けて水車回転体を反時計回りに回転する。 潮流4から下の潮流部分が構造体面上に沿って上に押し上げられるため、潮流4の速度が最も早くなり、その早い潮流4で水車羽根1の回転圧力は更に増加する。 水車羽根2は、潮流2の圧力を受けて回転する。
回転5 水車回転体の水車羽根1は、潮流3の圧力を受けて水車回転体を反時計回りに回転する。 潮流4から下の潮流部分が構造体面上に沿って上に押し上げられるため、潮流4の速度が最も早くなり、その早い潮流4を可動板に沿って更に上に押し上げられると、水車羽根1の回転圧力を更に増加させる。
回転6 水車回転体の水車羽根1は、潮流3の圧力を受けて水車回転体を反時計回りに回転する。 潮流4から下の潮流部分が構造体面上に沿って上に押し上げられるため、潮流4の速度が最も早くなり、その早い潮流4を可動板に沿って更に上に押し上げられると、水車羽根1の回転圧力を更に増加させる。回転3で流れていた潮流1の流れを水車羽根1で妨げられると、流体運動量Mは潮流2、潮流3、潮流4に移行して潮流速度を増加して水車羽根1の回転圧力を更に増加させる。
回転7 水車回転体の水車羽根1は、潮流2の圧力を受けて水車回転体を反時計回りに回転する。
回転8 水車回転体の水車羽根1は水車室内に位置するため、潮流の回転圧力を受けない。
FIG. 1 shows a structure of a water turbine rotating body according to the present invention, which is a structure suitable for upsizing comprising a water turbine blade 1a of a water turbine rotating body, a flat plate 1b of the water turbine rotating body, and a shaft 1c of the water turbine rotating body. FIG. 2 shows the structure of the tidal water turbine main body as a cross section 1 and a cross section 2, including a water turbine rotating body 1, a water turbine chamber 2, a triangular prism structure 3, a movable plate 4 above the triangular prism structure, and a side wall 5 of the turbine main body. Composed. The tidal flow rate is restricted to the entrance of the water turbine rotor by the water turbine chamber 2 of the tidal water turbine body, the triangular prism structure 3, and the movable plate 4 at the top of the triangular prism structure, and the tidal current velocity passing through the turbine rotor is increased. Since the direction of the tide is reversed at high tide and low tide, the water turbine body can obtain forward and reverse shaft power when passing through the forward and backward flow of the tide, and the generated power can be obtained by axial coupling to the underwater power generation equipment. FIG. 3 shows an implementation method of installing a tidal water turbine on the sea floor, a support column 7 that supports the load of the tidal water turbine body, a pile 8 that is driven up to a support layer on the sea floor to support the support column 7, and between the support column 7 and the pile 8. It consists of a branch line 6 that supports the detachable coupling part and the turbine body from the flow of the tidal current. Permanent structures installed on the sea floor are piles 8 and branch anchors 6a, and the tidal water turbine body and struts 7 are manufactured and assembled on land, so that the current seafloor environment can be sufficiently maintained, and reasonable initial equipment costs it is conceivable that.
5, 5 a, 5 b, 5 c, and 5 d, the following conditions indicating the relationship between the tidal current and the rotation position of the water turbine rotor are set in order to explain the rotation principle of the water wheel rotation body of the present invention.
Condition 1 The tidal current flows vertically and uniformly from the left side of the turbine body.
Condition 2 Numbers 1, 2, and 3 are provided on the water wheel blades, indicated as water wheel blade 1, water wheel blade 2, and water wheel blade 3, and the relationship with the tidal current is shown based on the water wheel blade 1.
Condition 3 The tidal flow rate is reduced at the turbine rotor entrance, and the tidal velocity flow passing through the turbine rotor increases. Numbers indicating the positional relationship are provided for the tidal current at the entrance, and the tidal current 1, the tidal current 2, the tidal current 3, and the tidal current 4 are displayed from the top to indicate the relationship with the turbine blades.
Condition 4 The rotation position of the waterwheel rotor is displayed as Rotation 1, Rotation 2, Rotation 3, Rotation 4, Rotation 5, Rotation 6, Rotation 7, Rotation 8, and the relationship between the turbine blade and the tidal current for each rotation. Show.
Condition 5 The gray portion in FIG. 5 indicates the volume covered by the structure of the water turbine chamber and the triangular prism, and the fluid momentum of the tidal current of that volume is indicated as fluid momentum M.
Based on the above conditions, the rotation principle of the water turbine rotating body of the present invention will be described with reference to the water turbine blade 1 for each rotation of FIGS. 5a, 5b, 5c, and 5d.
Rotation 1 When the tidal current 1 passes through the bottom surface of the turbine blade 1, the turbine blade 1 of the turbine wheel becomes negative pressure, and the turbine blade 1 is moved downward to counterclockwise rotate the turbine wheel. Rotate around.
Rotation 2 When the tidal current 2 passes through the bottom surface of the turbine blade 1, the turbine blade 1 of the turbine wheel becomes negative pressure, and the turbine blade 1 is moved downward to counterclockwise rotate the turbine wheel. Rotate around. When the flow of the tidal current 1 that was flowing in the rotation 1 is blocked by the turbine blade 1, the fluid momentum M shifts to the tidal current 2, the tidal current 3, and the tidal current 4 to increase the tidal velocity and further increase the rotational pressure of the turbine blade 2. Let
Rotation 3 The turbine blade 1 of the rotating turbine body receives the pressure of the tidal current 2 and the tidal current 3 and rotates the rotating turbine body counterclockwise. Since the portion of the tidal current below the tidal current 4 is pushed up along the structure surface, the speed of the tidal current 4 becomes the fastest, and when the fast tidal current 4 is pushed up further along the movable plate, The rotational pressure increases.
Rotation 4 The turbine blade 1 of the turbine rotating body receives the pressure of the tidal current 3 and rotates the turbine rotating body counterclockwise. Since the tidal portion below the tidal current 4 is pushed up along the structure surface, the speed of the tidal current 4 becomes the fastest, and the rotational pressure of the water turbine blades 1 further increases in the fast tidal current 4. The water turbine blade 2 rotates under the pressure of the tidal current 2.
Rotation 5 The turbine blade 1 of the turbine rotating body receives the pressure of the tidal current 3 and rotates the turbine rotating body counterclockwise. Since the portion of the tidal current below the tidal current 4 is pushed up along the structure surface, the speed of the tidal current 4 becomes the fastest, and when the fast tidal current 4 is pushed up further along the movable plate, Increase the rotational pressure further.
Rotation 6 The turbine blade 1 of the turbine rotating body receives the pressure of the tidal current 3 and rotates the turbine rotating body counterclockwise. Since the portion of the tidal current below the tidal current 4 is pushed up along the structure surface, the speed of the tidal current 4 becomes the fastest, and when the fast tidal current 4 is pushed up further along the movable plate, Increase the rotational pressure further. When the flow of the tidal current 1 that was flowing in the rotation 3 is blocked by the turbine blade 1, the fluid momentum M shifts to the tidal current 2, the current 3 and the current 4 to increase the tidal velocity and further increase the rotational pressure of the turbine blade 1. Let
Rotation 7 The turbine blade 1 of the turbine rotating body receives the pressure of the tidal current 2 and rotates the turbine rotating body counterclockwise.
Rotation 8 Since the turbine blade 1 of the rotating turbine body is located in the turbine chamber, it does not receive the rotational pressure of the tidal current.
本発明の潮流水車は、潮流又は海流の流れの速い場所においても設置する事が容易であり、且つ設置場所範囲が広大なため複数台設置する事ができ、初期設置費用及び設備維持費等においても十分採算の取れる実現的な中容量以上の水車回転体の軸動力を得る事ができ、別途水中発電機設備に軸結合送電設備を設け、二酸化炭素を発生しないに大容量発電電力設備が実現できる。 The tidal water turbine of the present invention is easy to install even in a place where the flow of tidal currents or ocean currents is fast, and since the installation location range is vast, it can be installed in multiple units, with initial installation costs and equipment maintenance costs etc. It is possible to obtain shaft power of a turbine rotor with a practical medium capacity or more that can be fully profitable. Separately, a shaft-coupled power transmission facility is installed in the underwater generator facility, realizing a large-capacity power generation facility without generating carbon dioxide. it can.
1 水車回転体
1a 水車回転体の水車羽根
1b 水車回転体の平面板(水車羽根及び軸の固定)
1c 水車回転体の軸
2 水車室(水車回転体のやや上半分を囲む外面逆三角柱の構造)
3 三角柱の構造体(水車回転体下部の潮流速度を高める。)
4 三角柱の構造体上部の可動板(水車回転体下部の潮流速度を高める。)
5 水車本体の側面壁
6 支線(水車本体を、潮流の流れから支える)
6a 支線アンカー(海底に打ち込む)
7 支柱(水車本体の荷重を支える)
7a 支柱の水車本体結合部
7b 支柱のパイル結合部
8 パイル(海底に打ち込む)
8b パイルの支柱結合部
1 Turbine rotor 1a Turbine blade 1b of turbine rotor 1 Plane plate of turbine rotor (fixation of turbine blade and shaft)
1c Shaft of rotating turbine 2 Turbine chamber (structure of inverted triangular prism on the outer surface surrounding the upper half of the rotating turbine)
3 Triangular prism structure (increases the tidal velocity at the bottom of the rotating turbine body)
4 Movable plate at the top of the triangular prism structure (increases the tidal velocity at the bottom of the turbine rotor)
5 Side wall of the turbine body 6 Branch line (supports the turbine body from the tidal current)
6a Branch anchor (driving into the seabed)
7 Prop (supports the load of the turbine body)
7a Turbine body coupling part 7b Piling pile coupling part 8 Pile (driving into the seabed)
8b Pile strut joint
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007091225A JP4873347B2 (en) | 2007-03-30 | 2007-03-30 | Tidal water turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007091225A JP4873347B2 (en) | 2007-03-30 | 2007-03-30 | Tidal water turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008248790A JP2008248790A (en) | 2008-10-16 |
JP4873347B2 true JP4873347B2 (en) | 2012-02-08 |
Family
ID=39974027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007091225A Expired - Fee Related JP4873347B2 (en) | 2007-03-30 | 2007-03-30 | Tidal water turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4873347B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5389082B2 (en) | 2011-03-24 | 2014-01-15 | 日本システム企画株式会社 | Turbine blade type generator |
JP2015034554A (en) * | 2014-07-16 | 2015-02-19 | 義雄 井内田 | Low cost, large capacity hydroelectric generator |
CN106013011A (en) * | 2016-02-26 | 2016-10-12 | 林丽容 | Helical turbine hydroelectric station |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5094342A (en) * | 1973-12-24 | 1975-07-28 | ||
JPS537534A (en) * | 1976-07-10 | 1978-01-24 | Tokyo Shibaura Electric Co | Method of detecting boundary between solid and liquid of casting |
JPS60185070A (en) * | 1984-03-05 | 1985-09-20 | 株式会社ジヤンテツク | Heat amplifier |
JP2005036791A (en) * | 2003-06-24 | 2005-02-10 | Tomoari Nagashima | Fluid-driven rotor and fluid-driven power generation device |
JP2005273464A (en) * | 2004-03-23 | 2005-10-06 | Hiroyuki Higa | Generating equipment and deep water pumping device using sea-bottom tidal current hydraulic turbine |
-
2007
- 2007-03-30 JP JP2007091225A patent/JP4873347B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008248790A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6257617B2 (en) | Vertical axis wind turbine and water turbine with flow control | |
US6109863A (en) | Submersible appartus for generating electricity and associated method | |
JP4695128B2 (en) | Tidal current generator | |
US20110309624A1 (en) | Device and system for extracting tidal energy | |
JP4787286B2 (en) | Hydroelectric generator | |
GB2497461A (en) | Generator assembly for generating energy from a flow of water | |
NO335484B1 (en) | Underwater ducted turbine | |
JP4856134B2 (en) | Hydroelectric generator | |
JP6020988B2 (en) | Hydroelectric generator | |
JP4653036B2 (en) | Hydroelectric generator | |
JP2013538314A (en) | Water turbine and hydroelectric power generation structure using the same | |
JP2013538314A5 (en) | ||
JP2013024049A (en) | Small-scaled hydropower generation apparatus | |
JP4873347B2 (en) | Tidal water turbine | |
CN101265865A (en) | Sea hydraulic drive apparatus | |
KR101623709B1 (en) | Water Turbine Structure for Generation Using Tide Current | |
JP2002310054A (en) | Tidal current power generator | |
KR101190780B1 (en) | Hydro-power generator that rotates in the direction of fluid flow | |
KR101049421B1 (en) | Tidal power systems | |
SK50582009A3 (en) | Flow turbine with pivoted blades | |
KR20090109691A (en) | Water Turbine Turbine | |
JP6274694B2 (en) | Water-lift rotary power generator | |
CN221568691U (en) | Water wheels, horizontal-shaft turbines and vertical turbines that can be installed horizontally or vertically | |
CN211258874U (en) | Hydroelectric power station | |
JP2024538696A (en) | Tidal power generation device using a tidal induction hydraulic pipeline and a tidal power generation pipeline turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141202 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |