Nothing Special   »   [go: up one dir, main page]

JP4853124B2 - Permanent magnet temperature detector for permanent magnet type rotating machine - Google Patents

Permanent magnet temperature detector for permanent magnet type rotating machine Download PDF

Info

Publication number
JP4853124B2
JP4853124B2 JP2006166038A JP2006166038A JP4853124B2 JP 4853124 B2 JP4853124 B2 JP 4853124B2 JP 2006166038 A JP2006166038 A JP 2006166038A JP 2006166038 A JP2006166038 A JP 2006166038A JP 4853124 B2 JP4853124 B2 JP 4853124B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic flux
flux density
rotating machine
type rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166038A
Other languages
Japanese (ja)
Other versions
JP2007336708A (en
Inventor
良一 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006166038A priority Critical patent/JP4853124B2/en
Publication of JP2007336708A publication Critical patent/JP2007336708A/en
Application granted granted Critical
Publication of JP4853124B2 publication Critical patent/JP4853124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、永久磁石型回転機に用いられている永久磁石の温度検出装置に関する。   The present invention relates to a temperature detection device for a permanent magnet used in a permanent magnet type rotating machine.

従来、電動機の回転子に温度検出用の永久磁石を取り付けて、永久磁石と磁性体との間の空隙内の磁束量を検出することにより、回転子の永久磁石を取り付けた部位の温度を検出する装置が知られている(特許文献1参照)。   Conventionally, a permanent magnet for temperature detection is attached to the rotor of an electric motor, and the temperature of the part where the permanent magnet of the rotor is attached is detected by detecting the amount of magnetic flux in the gap between the permanent magnet and the magnetic body. An apparatus is known (see Patent Document 1).

特開昭62−104453号公報JP 62-104453 A

しかしながら、従来の温度検出装置では、電動機の回転子に温度検出用の永久磁石を別途設けて、永久磁石を取り付けた部位の温度を検出する構成となっているため、永久磁石型回転機の回転子に用いられている永久磁石の温度を精度良く検出することができないという問題がある。   However, in the conventional temperature detection device, a permanent magnet for temperature detection is separately provided on the rotor of the electric motor, and the temperature of the part where the permanent magnet is attached is detected. There is a problem that the temperature of the permanent magnet used for the child cannot be detected with high accuracy.

本発明による永久磁石型回転機の永久磁石の温度検出装置は、回転子に永久磁石を用いた永久磁石型回転機の固定子に磁束密度計測手段を設けて、回転子と固定子との間の空隙磁束密度を計測し、計測した空隙磁束密度から、電機子反作用に起因する磁束密度を除外して、永久磁石の磁束密度を抽出し、抽出した永久磁石磁束密度に基づいて、永久磁石の温度を推定することを特徴とする。   A permanent magnet temperature detecting device for a permanent magnet type rotating machine according to the present invention is provided with a magnetic flux density measuring means in a stator of a permanent magnet type rotating machine using a permanent magnet as a rotor, and between the rotor and the stator. The magnetic flux density of the permanent magnet is extracted from the measured magnetic flux magnetic flux density by excluding the magnetic flux density caused by the armature reaction, and based on the extracted permanent magnet magnetic flux density. It is characterized by estimating temperature.

本発明による永久磁石型回転機の永久磁石の温度検出装置によれば、回転子と固定子との間の空隙磁束密度を計測し、計測した空隙磁束密度から、電機子反作用に起因する磁束密度を除外して、永久磁石の磁束密度を抽出してから、永久磁石の温度を推定するので、永久磁石の温度を精度良く推定することができる。   According to the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to the present invention, the magnetic flux density between the rotor and the stator is measured, and the magnetic flux density caused by the armature reaction is measured from the measured magnetic flux density. Since the temperature of the permanent magnet is estimated after extracting the magnetic flux density of the permanent magnet, the temperature of the permanent magnet can be estimated with high accuracy.

−第1の実施の形態−
図1は、第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置の全体構成を示す図である。第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置は、磁気センサ1と、処理装置2と、電流センサ3とを備える。ここでは、磁気センサ1として、ホール素子を用いる。処理装置2は、CPU2aおよびメモリ2bを少なくとも備えており、後述するように、永久磁石型回転機のロータに用いられている永久磁石の温度を推定する処理を行う。電流センサ3は、永久磁石型回転機に流れる電流を検出する。
-First embodiment-
FIG. 1 is a diagram showing an overall configuration of a permanent magnet temperature detection device of a permanent magnet type rotating machine according to a first embodiment. The permanent magnet temperature detecting device of the permanent magnet type rotating machine in the first embodiment includes a magnetic sensor 1, a processing device 2, and a current sensor 3. Here, a Hall element is used as the magnetic sensor 1. The processing device 2 includes at least a CPU 2a and a memory 2b, and performs a process of estimating the temperature of the permanent magnet used in the rotor of the permanent magnet type rotating machine, as will be described later. The current sensor 3 detects a current flowing through the permanent magnet type rotating machine.

以下では、永久磁石型回転機の一例として、IPMモータを取り上げて説明する。図2は、IPMモータ10の構成を示す図である。このIPMモータ10は、内部に永久磁石11a〜11hを埋め込んだロータ(回転子)11と、分布巻構造のステータ(固定子)12とを備える。   Hereinafter, an IPM motor will be described as an example of a permanent magnet type rotating machine. FIG. 2 is a diagram illustrating a configuration of the IPM motor 10. The IPM motor 10 includes a rotor (rotor) 11 in which permanent magnets 11a to 11h are embedded, and a stator (stator) 12 having a distributed winding structure.

永久磁石11a〜11hは標準的なネオジ磁石であり、残留磁束密度の温度係数は、−0.1%/Kとする。永久磁石は、温度が高くなると、残留磁束密度が低くなるという温度特性を有するので、ここでは、永久磁石の残留磁束密度に基づいて、永久磁石の温度を検出する。   The permanent magnets 11a to 11h are standard neodymium magnets, and the temperature coefficient of the residual magnetic flux density is -0.1% / K. Since the permanent magnet has a temperature characteristic that the residual magnetic flux density decreases as the temperature increases, the temperature of the permanent magnet is detected based on the residual magnetic flux density of the permanent magnet.

第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置では、ステータ12のティース先端にホール素子を設けて、ロータ11とステータ12との間の空隙磁束密度を測定して、永久磁石の温度を検出する。図3は、ステータ12の1つのティース12aの先端に設けられたホール素子20を示す図である。   In the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the first embodiment, a Hall element is provided at the tip of the teeth of the stator 12, and the gap magnetic flux density between the rotor 11 and the stator 12 is measured. Detect the temperature of the permanent magnet. FIG. 3 is a view showing the hall element 20 provided at the tip of one tooth 12 a of the stator 12.

図4(a)は、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時にホール素子20を用いて検出される空隙磁束密度値をグラフ化した図である。各温度におけるグラフは、左から順に、無負荷、1/2負荷相当の電流を流した場合、全負荷相当の電流を流した場合の結果を表している。ただし、空隙磁束密度値は、永久磁石の温度が20℃で、無負荷時の値を基準とした相対値(%)で表示している。   FIG. 4A is a graph showing the gap magnetic flux density value detected using the Hall element 20 when the conduction angle is 0 deg and the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. The graphs at the respective temperatures represent, in order from the left, results when a current corresponding to no load and a half load is passed, and a current corresponding to a full load is passed. However, the air gap magnetic flux density value is expressed as a relative value (%) based on the value when the temperature of the permanent magnet is 20 ° C. and no load is applied.

同様に、図4(b)は、通電角が30degの時の結果を表しており、図4(c)は、通電角が60degの時の結果を表している。図4(a)〜図4(c)に示すように、永久磁石の温度が上昇するに従って、ホール素子20を用いて検出される空隙磁束密度は小さくなっている。しかし、IPMモータ10に流れる電機子電流の大きさによって、磁束密度の値が異なっている。これは、電機子反作用の影響、すなわち、電機子電流を流した際に発生する磁束によって、永久磁石から発せられる磁束が影響を受けるためである。従って、ホール素子20を用いて検出される空隙磁束密度から、電機子反作用に起因する磁束成分(以下、電機子反作用成分と呼ぶ)を除外して、永久磁石から発せられる磁束成分(以下、永久磁石成分)のみを取り出す必要がある。   Similarly, FIG. 4B shows the result when the conduction angle is 30 degrees, and FIG. 4C shows the result when the conduction angle is 60 degrees. As shown in FIGS. 4A to 4C, the air gap magnetic flux density detected using the Hall element 20 decreases as the temperature of the permanent magnet increases. However, the value of the magnetic flux density varies depending on the magnitude of the armature current flowing through the IPM motor 10. This is because the magnetic flux generated from the permanent magnet is affected by the influence of the armature reaction, that is, the magnetic flux generated when the armature current is passed. Therefore, a magnetic flux component (hereinafter referred to as a permanent magnetic flux) generated from a permanent magnet by excluding a magnetic flux component (hereinafter referred to as an armature reactive component) due to an armature reaction from the gap magnetic flux density detected using the Hall element 20. It is necessary to take out only the magnet component.

空隙磁束密度Bgapは、永久磁石成分Bmagと電機子反作用成分Baとに基づいて、次式(1)にて表される。
BgapBmagBa (1)
ただし、式(1)において、下線が付されているBgapBmagBaは、それぞれベクトルを表している。
The air gap magnetic flux density Bgap is expressed by the following equation (1) based on the permanent magnet component Bmag and the armature reaction component Ba.
Bgap = Bmag + Ba (1)
In equation (1), underlined Bgap , Bmag , and Ba each represent a vector.

磁気回路の飽和による非線形性が強くない場合、電機子反作用成分Baは、d軸を実部とすると、次式(2)で表される。ただし、IPMモータ10に流れる電流のうち、励磁電流成分に対応する軸をd軸、トルク電流成分に対応する軸をq軸とする。
Ba=K×(Lad×Id+jLaq×Iq) (2)
ただし、式(2)において、jは虚数であり、Kは機械ごとに定まる定数である。また、Ladは、d軸の電機子反作用インダクタンスであり、Laqはq軸の電機子反作用インダクタンスである。
When the nonlinearity due to saturation of the magnetic circuit is not strong, the armature reaction component Ba is expressed by the following equation (2), where the d-axis is a real part. In the current flowing through the IPM motor 10, the axis corresponding to the excitation current component is d-axis and the axis corresponding to the torque current component is q-axis.
Ba = K × (Lad × Id + jLaq × Iq) (2)
However, in Formula (2), j is an imaginary number and K is a constant determined for each machine. Further, Lad is a d-axis armature reaction inductance, and Laq is a q-axis armature reaction inductance.

式(2)より、Lad、Laq、Kの値を、IPMモータ10の構造に応じた適切な値に設定することにより、電機子反作用に起因する磁束密度成分Baを求めることができる。処理装置2のCPU2aは、上式(2)より、電機子反作用成分Baを算出するとともに、算出した電機子反作用成分Ba、および、ホール素子20を用いて検出した空隙磁束密度Bgapに基づいて、式(1)に示すベクトル関係より、永久磁石成分Bmagを求める。   From Formula (2), by setting the values of Lad, Laq, and K to appropriate values according to the structure of the IPM motor 10, the magnetic flux density component Ba caused by the armature reaction can be obtained. The CPU 2a of the processing device 2 calculates the armature reaction component Ba from the above equation (2), and based on the calculated armature reaction component Ba and the gap magnetic flux density Bgap detected using the Hall element 20, The permanent magnet component Bmag is obtained from the vector relationship shown in Expression (1).

図5(a)は、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時に、上述した方法により求めた永久磁石成分Bmagをグラフ化した図である。図4と同様に、各温度におけるグラフは、左から順に、無負荷、1/2負荷相当の電流を流した場合、全負荷相当の電流を流した場合の結果を表している。また、図5(b)および図5(c)はそれぞれ、通電角30degおよび60degの時の結果を表している。図5(a)〜図5(c)に示すように、IPMモータ10に流れる電流の大きさが異なる場合でも、永久磁石の温度が同一であれば、永久磁石成分Bmagはほぼ一定であることが分かる。   FIG. 5A is a graph showing the permanent magnet component Bmag obtained by the above-described method when the energization angle is 0 deg and the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. FIG. Similar to FIG. 4, the graph at each temperature represents, in order from the left, a result when a current corresponding to no load and a half load is passed, and a current corresponding to a full load is passed. FIGS. 5B and 5C show the results when the energization angles are 30 deg and 60 deg, respectively. As shown in FIGS. 5A to 5C, even if the current flowing through the IPM motor 10 is different, the permanent magnet component Bmag is substantially constant if the temperature of the permanent magnet is the same. I understand.

処理装置2のメモリ2bには、永久磁石の磁束密度と温度とを対応付けたデータが記憶されている。CPU2aは、ホール素子20を用いて検出した空隙磁束密度Bgapから、電機子反作用成分Baを除外した永久磁石成分Bmagに基づいて、メモリ2bに記憶されているデータを参照することにより、ロータ11に埋め込まれている永久磁石の温度を検出する。永久磁石の温度を検出することにより、ロータ11の温度を把握することができる。   The memory 2b of the processing device 2 stores data in which the magnetic flux density of the permanent magnet is associated with the temperature. The CPU 2a refers to the data stored in the memory 2b on the basis of the permanent magnet component Bmag excluding the armature reaction component Ba from the gap magnetic flux density Bgap detected using the Hall element 20, thereby causing the rotor 11 to The temperature of the embedded permanent magnet is detected. By detecting the temperature of the permanent magnet, the temperature of the rotor 11 can be grasped.

第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置によれば、以下の手順により、永久磁石の温度を検出する。まず、回転子11に永久磁石を用いた永久磁石型回転機の固定子12にホール素子20を設けて、回転子11と固定子12との間の空隙磁束密度Bgapを計測するとともに、電機子反作用に起因する磁束密度Baを検出する。そして、ホール素子20を用いて計測した空隙磁束密度Bgapから、電機子反作用に起因する磁束密度Baを除外して、永久磁石の磁束密度Bmagを抽出し、抽出した永久磁石磁束密度Bmagに基づいて、永久磁石の温度を推定する。これにより、電機子反作用の影響を受けずに、精度良く、永久磁石の温度を推定することができる。   According to the permanent magnet temperature detection device of the permanent magnet type rotating machine in the first embodiment, the temperature of the permanent magnet is detected by the following procedure. First, a Hall element 20 is provided in a stator 12 of a permanent magnet type rotating machine using a permanent magnet for the rotor 11 to measure a gap magnetic flux density Bgap between the rotor 11 and the stator 12, and an armature. The magnetic flux density Ba resulting from the reaction is detected. Then, from the gap magnetic flux density Bgap measured using the Hall element 20, the magnetic flux density Ba caused by the armature reaction is excluded, and the magnetic flux density Bmag of the permanent magnet is extracted. Based on the extracted permanent magnet magnetic flux density Bmag. Estimate the temperature of the permanent magnet. As a result, the temperature of the permanent magnet can be accurately estimated without being affected by the armature reaction.

特に、ホール素子20を、固定子12の1つのティースの先端に設けるので、回転子11の加工を必要とせず、容易に永久磁石の温度推定を行うことができる。また、回転子11の回転数の制約を受けることもない。   In particular, since the Hall element 20 is provided at the tip of one tooth of the stator 12, it is possible to easily estimate the temperature of the permanent magnet without requiring processing of the rotor 11. Further, the rotational speed of the rotor 11 is not restricted.

−第2の実施の形態−
第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置では、ステータ12のティース先端にホール素子を設けて、ロータ11とステータ12との間の空隙磁束密度を測定した。第2の実施の形態における永久磁石型回転機の永久磁石の温度検出装置では、ステータ12のティース1本にサーチコイルを巻いて、空隙磁束密度を測定する。図6は、ステータ12の1つのティース12aに巻かれたサーチコイル30を示す図である。
-Second Embodiment-
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to the first embodiment, a Hall element is provided at the tip of the teeth of the stator 12 and the magnetic flux density between the rotor 11 and the stator 12 is measured. In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to the second embodiment, a search coil is wound around one tooth of the stator 12 and the magnetic flux density is measured. FIG. 6 is a view showing the search coil 30 wound around one tooth 12 a of the stator 12.

図7(a)は、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時にサーチコイル30を用いて検出される空隙磁束密度値をグラフ化した図である。各温度におけるグラフは、左から順に、無負荷、1/2負荷相当の電流を流した場合、全負荷相当の電流を流した場合の結果を表している。ただし、空隙磁束密度値は、永久磁石の温度が20℃で、無負荷相当の時の値を基準とした相対値(%)で表示している。同様に、図7(b)は通電角が30degの時の結果を表しており、図7(c)は通電角が60degの時の結果を表している。   FIG. 7A is a graph showing the air gap magnetic flux density value detected using the search coil 30 when the energization angle is 0 deg and the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. FIG. The graphs at the respective temperatures represent, in order from the left, results when a current corresponding to no load and a half load is passed, and a current corresponding to a full load is passed. However, the gap magnetic flux density value is expressed as a relative value (%) based on the value when the temperature of the permanent magnet is 20 ° C. and corresponding to no load. Similarly, FIG. 7B shows the result when the conduction angle is 30 degrees, and FIG. 7C shows the result when the conduction angle is 60 degrees.

ホール素子20を用いて空隙磁束密度を検出した時と同様に、永久磁石の温度が上昇するに従って、ホール素子20によって検出される空隙磁束密度は小さくなっているが、電機子反作用の影響により、IPMモータ10に流れる電機子電流の大きさによって、磁束密度の値が異なっている。   As in the case where the air gap magnetic flux density is detected using the Hall element 20, as the temperature of the permanent magnet increases, the air gap magnetic flux density detected by the Hall element 20 decreases, but due to the influence of the armature reaction, The value of the magnetic flux density varies depending on the magnitude of the armature current flowing through the IPM motor 10.

図8(a)は、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時に、第1の実施の形態において説明した方法により求めた永久磁石成分Bmagをグラフ化した図である。図7と同様に、各温度におけるグラフは、左から順に、無負荷、1/2負荷相当の電流を流した場合、全負荷相当の電流を流した場合の結果を表している。また、図8(b)および図8(c)はそれぞれ、通電角30degおよび60degの時の結果を表している。   FIG. 8A is a graph of the permanent magnet component Bmag obtained by the method described in the first embodiment when the energization angle is 0 deg and the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. It is. Similarly to FIG. 7, the graph at each temperature represents, in order from the left, a result when a current corresponding to no load and a half load is passed, and a current corresponding to a full load is passed. FIGS. 8B and 8C show the results when the energization angles are 30 deg and 60 deg, respectively.

図8(b)〜図8(c)に示すように、IPMモータ10に流れる電流の大きさが異なる場合でも、永久磁石の温度が同一であれば、永久磁石成分Bmagはほぼ一定であることが分かる。すなわち、第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置と同様に、サーチコイル30を用いて検出した空隙磁束密度Bgapから、電機子反作用成分Baを除外した永久磁石成分Bmagに基づいて、永久磁石の温度を検出することができる。   As shown in FIGS. 8B to 8C, the permanent magnet component Bmag is substantially constant as long as the temperature of the permanent magnet is the same even when the current flowing through the IPM motor 10 is different. I understand. That is, the permanent magnet component excluding the armature reaction component Ba from the gap magnetic flux density Bgap detected using the search coil 30 as in the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the first embodiment. Based on Bmag, the temperature of the permanent magnet can be detected.

第2の実施の形態における永久磁石型回転機の永久磁石の温度検出装置によれば、サーチコイル30を用いて計測した空隙磁束密度Bgapから、電機子反作用に起因する磁束密度Baを除外して、永久磁石の磁束密度Bmagを抽出し、抽出した永久磁石磁束密度Bmagに基づいて、永久磁石の温度を推定するので、電機子反作用の影響を受けずに、精度良く、永久磁石の温度を推定することができる。磁気センサ1として、サーチコイルを用いることにより、ホール素子を用いる場合に比べて、コストを低減することができる。また、サーチコイルを固定子12のティース1本に巻くだけなので、どのような寸法や形状の固定子鉄心にも対応することができる。   According to the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the second embodiment, the magnetic flux density Ba caused by the armature reaction is excluded from the gap magnetic flux density Bgap measured using the search coil 30. Since the permanent magnet magnetic flux density Bmag is extracted and the permanent magnet temperature is estimated based on the extracted permanent magnet magnetic flux density Bmag, the permanent magnet temperature is accurately estimated without being affected by the armature reaction. can do. By using a search coil as the magnetic sensor 1, the cost can be reduced as compared with the case of using a Hall element. Further, since the search coil is simply wound around one tooth of the stator 12, it can be applied to a stator core of any size and shape.

−第3の実施の形態−
第1および第2の実施の形態における永久磁石型回転機の永久磁石の温度検出装置では、式(2)から、電機子反作用に起因する磁束密度Baを求めた。しかし、磁気飽和が大きく、電機子電流に対して非線形性が強い場合には、式(2)で算出される磁束密度Baの値は、実際の値に対して誤差が生じる。第3の実施の形態における永久磁石型回転機の永久磁石の温度検出装置では、IPMモータ10に流れる電流および通電角に応じた電機子反作用成分Baのマップを予め用意しておき、このマップに基づいて、電機子反作用成分Baを求めて、永久磁石成分Bmagを求める。
-Third embodiment-
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the first and second embodiments, the magnetic flux density Ba resulting from the armature reaction was obtained from the equation (2). However, when the magnetic saturation is large and the nonlinearity is strong with respect to the armature current, the value of the magnetic flux density Ba calculated by the equation (2) has an error from the actual value. In the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the third embodiment, a map of the armature reaction component Ba corresponding to the current flowing through the IPM motor 10 and the energization angle is prepared in advance. Based on this, the armature reaction component Ba is obtained, and the permanent magnet component Bmag is obtained.

図9(a)および図9(b)はそれぞれ、IPMモータ10に流れる電流|I|および通電角∠Iに対するBaqおよびBadのマップの一例を示しており、磁気センサ1としてティース12aの先端に設けられたホール素子20を用いている。ただし、|I|は、IPMモータ10の定格電流に対する比率(%)を表している。また、BaqおよびBadは、電機子反作用成分Baのq軸成分およびd軸成分をそれぞれ表しており、永久磁石が80℃の時における永久磁石の磁束密度Bmagに対する割合(%)を表している。例えば、|I|=50%、∠I=30degで通電した場合、図9(a)に示すマップより、Baq=18.5%、図9(b)に示すマップより、Bad=−1.6%となる。   FIG. 9A and FIG. 9B show examples of maps of Baq and Bad with respect to the current | I | flowing through the IPM motor 10 and the conduction angle ∠I, respectively. The provided hall element 20 is used. However, | I | represents a ratio (%) to the rated current of the IPM motor 10. Baq and Bad represent the q-axis component and the d-axis component of the armature reaction component Ba, respectively, and represent the ratio (%) of the permanent magnet to the magnetic flux density Bmag when the permanent magnet is at 80 ° C. For example, when energization is performed at | I | = 50% and ∠I = 30 deg, Bad = −1.6% from the map shown in FIG. 9A and Bad = −1.6% from the map shown in FIG. .

図10(a)および図10(b)はそれぞれ、IPMモータ10に流れる電流|I|および通電角∠Iに対するBaqおよびBadのマップの一例を示しており、磁気センサ1として1本のティース12aに巻き付けられたサーチコイル30を用いている。BaqおよびBadは、永久磁石が80℃の時に、を用いて検出される永久磁石成分Bmagに対する割合(%)を表している。   FIGS. 10A and 10B show examples of maps of Baq and Bad with respect to the current | I | flowing through the IPM motor 10 and the conduction angle ∠I, respectively, and one tooth 12a as the magnetic sensor 1 is shown. A search coil 30 wound around is used. Baq and Bad represent the percentage (%) of the permanent magnet component Bmag detected using when the permanent magnet is at 80 ° C.

ロータ11とステータ12との間の空隙磁束密度Bgapは、永久磁石成分Bmagおよび電機子反作用成分Baのq軸成分Baqおよびd軸成分Badを用いて、次式(3)により表される。
Bgap=√{(Bmag+Bad)2+Baq2} (3)
The gap magnetic flux density Bgap between the rotor 11 and the stator 12 is expressed by the following equation (3) using the q-axis component Baq and the d-axis component Bad of the permanent magnet component Bmag and the armature reaction component Ba.
Bgap = √ {(Bmag + Bad) 2 + Baq 2 } (3)

従って、IPMモータ10に流れる電流|I|および通電角∠Iに基づいて、図9(a),図9(b)、または、図10(a),図10(b)に示すマップを参照して、BaqおよびBadを求めることにより、ホール素子20やサーチコイル30を用いて測定した空隙磁束密度Bgapと、求めたBaqおよびBadとに基づいて、上式(3)より、永久磁石成分Bmagを算出することができる。なお、永久磁石成分Bmagの算出処理は、処理装置2のCPU2aによって行われる。   Therefore, based on the current | I | flowing through the IPM motor 10 and the conduction angle ∠I, refer to the maps shown in FIG. 9A, FIG. 9B, or FIG. 10A, FIG. Then, by obtaining Baq and Bad, the permanent magnet component Bmag is obtained from the above equation (3) based on the gap magnetic flux density Bgap measured using the Hall element 20 and the search coil 30 and the obtained Baq and Bad. Can be calculated. The calculation process of the permanent magnet component Bmag is performed by the CPU 2a of the processing device 2.

演算の一例について説明する。演算を容易にするために、基準となる永久磁石が80℃の時の磁束密度Bmagを1T(テスラ)とし、測定した空隙磁束密度Bgapを0.9521Tとする。この場合、|I|=50%、∠I=30degで通電すると、上述したように、Baq=18.5%、Bad=−1.6%となるから、式(3)より、Bmag≒0.95Tとなる。   An example of the calculation will be described. For easy calculation, the magnetic flux density Bmag when the reference permanent magnet is 80 ° C. is 1 T (Tesla), and the measured air gap magnetic flux density Bgap is 0.9521 T. In this case, if energization is performed with | I | = 50% and ∠I = 30 deg, Baq = 18.5% and Bad = −1.6% as described above, and therefore, Bmag≈0.95 T from the equation (3).

図11(a)は、磁気センサ1としてホール素子20を用いて、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時に、上述したBaqおよびBadのマップを利用して求めた永久磁石成分Bmagをグラフ化した図である。また、図11(b)および図11(c)はそれぞれ、通電角30degおよび60degの時の結果を表している。図11(a)〜図11(c)から明らかなように、電機子反作用の影響はほぼ除外されており、純粋な永久磁石の磁束密度を取得できている。   FIG. 11A shows the use of the above-described maps of Baq and Bad when the Hall element 20 is used as the magnetic sensor 1 and the energization angle is 0 deg and the temperature of the permanent magnet is 20 ° C., 80 ° C., 140 ° C. It is the figure which graphed the calculated | required permanent magnet component Bmag. Moreover, FIG.11 (b) and FIG.11 (c) each represent the result at the conduction angle of 30deg and 60deg. As is clear from FIGS. 11A to 11C, the influence of the armature reaction is almost excluded, and the magnetic flux density of a pure permanent magnet can be obtained.

図12(a)は、磁気センサ1としてサーチコイル30を用いて、通電角0degで、永久磁石の温度が20℃、80℃、140℃の時に、上述したBaqおよびBadのマップを利用して求めた永久磁石成分Bmagをグラフ化した図である。また、図12(b)および図12(c)はそれぞれ、通電角30degおよび60degの時の結果を表している。磁気センサ1としてサーチコイル30を用いた場合も、図12(a)〜図12(c)から明らかなように、電機子反作用の影響はほぼ除外されており、純粋な永久磁石の磁束密度を取得できている。   FIG. 12 (a) uses the above-described map of Baq and Bad when the search coil 30 is used as the magnetic sensor 1 and the energization angle is 0 ° and the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. It is the figure which graphed the calculated | required permanent magnet component Bmag. Moreover, FIG.12 (b) and FIG.12 (c) each represent the result at the conduction angle of 30deg and 60deg. Even when the search coil 30 is used as the magnetic sensor 1, as apparent from FIGS. 12 (a) to 12 (c), the influence of the armature reaction is almost excluded, and the magnetic flux density of a pure permanent magnet is reduced. It has been acquired.

第3の実施の形態における永久磁石型回転機の永久磁石の温度検出装置によれば、永久磁石型回転機に流れる電流および通電角に応じた電機子反作用成分Baのマップを予め用意しておき、このマップに基づいて、電機子反作用成分Baを求めてから、永久磁石成分Bmagを求めるので、磁気飽和の影響を除いた精度の高い永久磁石成分Bmagを求めることができる。これにより、永久磁石の温度推定精度を向上させることができる。   According to the permanent magnet temperature detecting device of the permanent magnet type rotating machine in the third embodiment, a map of the armature reaction component Ba corresponding to the current flowing through the permanent magnet type rotating machine and the energization angle is prepared in advance. Since the permanent magnet component Bmag is obtained after obtaining the armature reaction component Ba based on this map, it is possible to obtain a highly accurate permanent magnet component Bmag excluding the influence of magnetic saturation. Thereby, the temperature estimation precision of a permanent magnet can be improved.

本発明は、上述した第1〜第3の実施の形態に限定されることはない。例えば、第1の実施の形態では、ホール素子20をステータ12の1つのティース12aの先端に設けたが、ティース12aの先端に凹みを設けて、その凹みにホール素子20を埋め込むようにしてもよい。図13は、ティース12aの先端に設けられた凹み130にホール素子20を埋め込んだ様子を示す図である。同様に、凹みにサーチコイルを埋め込むこともできる。このような構成にすることにより、空隙長が短い場合でも、ホール素子やサーチコイルを設けることができる。また、ティースにサーチコイルを巻き付ける場合に比べて、空隙磁束密度の測定精度を向上させることができる。   The present invention is not limited to the first to third embodiments described above. For example, in the first embodiment, the Hall element 20 is provided at the tip of one tooth 12a of the stator 12, but a recess is provided at the tip of the tooth 12a so that the Hall element 20 is embedded in the recess. Good. FIG. 13 is a diagram illustrating a state in which the Hall element 20 is embedded in a recess 130 provided at the tip of the tooth 12a. Similarly, a search coil can be embedded in the recess. With such a configuration, a Hall element and a search coil can be provided even when the gap length is short. Further, the measurement accuracy of the gap magnetic flux density can be improved as compared with the case where the search coil is wound around the teeth.

また、集中巻モータでは、コギングトルク対策として、ステータのティース先端に凹みが設けられている場合がある。この場合には、予め設けられている凹みにホール素子やサーチコイルを埋め込むことができる。図14は、コギングトルク対策用に設けられている凹み140にホール素子20を埋め込んだ様子を示す図である。ホール素子等を埋め込むために、ティース先端に凹みを設けた場合、等価的な空隙長が若干大きくなるので、特性が悪化する可能性があるが、予め設けられている凹みを利用すれば、上述した特性悪化の問題が生じることはない。   Further, in the concentrated winding motor, a dent may be provided at the tip of the stator teeth as a countermeasure against cogging torque. In this case, a Hall element or a search coil can be embedded in a recess provided in advance. FIG. 14 is a diagram illustrating a state in which the Hall element 20 is embedded in a recess 140 provided for cogging torque countermeasures. If a dent is provided at the tip of the tooth to embed a hall element or the like, the equivalent gap length is slightly increased, so the characteristics may be deteriorated. The problem of deterioration of characteristics does not occur.

第3の実施の形態では、IPMモータ10に流れる電流|I|および通電角∠Iに対応するBaqおよびBadのマップを予め用意するものとして説明したが、IPMモータ10に流れる電流のd軸成分Idおよびq軸成分Iqに対応するBaqおよびBadのマップを予め用意しておいてもよいし、他のパラメータに対応するマップを用意しておいてもよい。   In the third embodiment, it has been described that the map of Baq and Bad corresponding to the current | I | flowing through the IPM motor 10 and the conduction angle ∠I is prepared in advance. However, the d-axis component of the current flowing through the IPM motor 10 is described. Maps of Baq and Bad corresponding to Id and q-axis component Iq may be prepared in advance, or maps corresponding to other parameters may be prepared.

IPMモータのように、回転子のブリッジ部分を磁気飽和させる回転機においては、永久磁石の温度が変化して、永久磁石の発する磁束量が変化すると、ブリッジ部分の飽和度合が異なる。従って、電機子反作用に起因する磁束密度がブリッジの飽和度合の影響を受けるため、第3の実施の形態で説明した方法のように、電機子電流|I|および通電角∠Iに対するBaqおよびBadのマップを用意しておいても、マップから求められる磁束密度Ba(Baq,Bad)には、誤差が含まれる。従って、電機子電流のd軸成分Id、q軸成分Iq、および、空隙磁束密度|Bgap|に対応する磁石温度を予め実験等によって求めてマップ化しておき、求めたId,Iqおよび|Bgap|と、予め用意したマップとに基づいて、永久磁石の温度を求めるようにしてもよい。この場合には、より精度の高い温度推定を行うことができる。   In a rotating machine that magnetically saturates the bridge portion of the rotor, such as an IPM motor, when the temperature of the permanent magnet changes and the amount of magnetic flux generated by the permanent magnet changes, the saturation degree of the bridge portion changes. Therefore, since the magnetic flux density caused by the armature reaction is affected by the degree of saturation of the bridge, as in the method described in the third embodiment, Baq and Bad with respect to the armature current | I | Even if the map is prepared, an error is included in the magnetic flux density Ba (Baq, Bad) obtained from the map. Therefore, the magnet temperature corresponding to the d-axis component Id, q-axis component Iq, and air gap magnetic flux density | Bgap | of the armature current is obtained by an experiment in advance and mapped, and the obtained Id, Iq and | Bgap | Further, the temperature of the permanent magnet may be obtained based on a map prepared in advance. In this case, more accurate temperature estimation can be performed.

永久磁石の温度を推定する処理は、処理装置2が行うものとして説明したが、温度を推定するための処理装置2を設けずに、一般的なモータ制御装置に温度を推定する処理を行わせるようにしてもよい。   Although the processing for estimating the temperature of the permanent magnet has been described as being performed by the processing device 2, the processing for estimating the temperature is performed by a general motor control device without providing the processing device 2 for estimating the temperature. You may do it.

上述した各実施の形態では、永久磁石型回転機の一例として、分布巻IPMモータを取り上げて説明したが、永久磁石型回転機は、図15に示す分布巻SPMモータや、図16に示す集中巻IPMモータ、図17に示す集中巻SPMモータなど、他の種類のモータであってもよい。なお、これらのモータは、電気自動車、ハイブリッド自動車、燃料電池車などの車両や、車両以外のシステムに用いることができる。   In each of the embodiments described above, the distributed winding IPM motor has been described as an example of the permanent magnet type rotating machine. However, the permanent magnet type rotating machine may be a distributed winding SPM motor shown in FIG. 15 or a concentrated winding shown in FIG. Other types of motors such as a wound IPM motor and a concentrated winding SPM motor shown in FIG. 17 may be used. These motors can be used for vehicles such as electric vehicles, hybrid vehicles, fuel cell vehicles, and systems other than vehicles.

特許請求の範囲の構成要素と第1〜第3の実施の形態の構成要素との対応関係は次の通りである。すなわち、磁気センサ1が磁束密度計測手段を、処理装置2が電機子反作用磁束密度検出手段、永久磁石磁束密度抽出手段、温度推定手段、d軸電流検出手段、および、q軸電流検出手段を、電流センサ3が電機子電流検出手段を、メモリ2bがデータ記憶手段をそれぞれ構成する。なお、以上の説明はあくまで一例であり、発明を解釈する上で、上記の実施形態の構成要素と本発明の構成要素との対応関係に何ら限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the first to third embodiments is as follows. That is, the magnetic sensor 1 is a magnetic flux density measuring means, the processing device 2 is an armature reaction magnetic flux density detecting means, a permanent magnet magnetic flux density extracting means, a temperature estimating means, a d-axis current detecting means, and a q-axis current detecting means. The current sensor 3 constitutes armature current detection means, and the memory 2b constitutes data storage means. In addition, the above description is an example to the last, and when interpreting invention, it is not limited to the correspondence of the component of said embodiment and the component of this invention at all.

第1の実施の形態における永久磁石型回転機の永久磁石の温度検出装置の全体構成を示す図The figure which shows the whole structure of the temperature detection apparatus of the permanent magnet of the permanent-magnet-type rotary machine in 1st Embodiment. IPMモータの構成を示す図Diagram showing the configuration of the IPM motor ステータの1つのティースの先端に設けられたホール素子を示す図The figure which shows the Hall element provided in the front-end | tip of one teeth of a stator 図4(a),図4(b),図4(c)は、永久磁石の温度が20℃、80℃、140℃の時にホール素子によって検出される空隙磁束密度値をグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。4 (a), 4 (b), and 4 (c) are graphs showing the magnetic flux density values detected by the Hall element when the temperature of the permanent magnet is 20 ° C, 80 ° C, and 140 ° C. Yes, the results are shown when the energization angles are 0 deg, 30 dge, and 60 deg, respectively. 図5(a),図5(b),図5(c)は、永久磁石の温度が20℃、80℃、140℃の時の永久磁石成分Bmagをグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。5 (a), 5 (b), and 5 (c) are graphs showing the permanent magnet component Bmag when the temperature of the permanent magnet is 20 ° C, 80 ° C, and 140 ° C. The results are shown when 0 deg, 30 dge, and 60 deg. ステータの1つのティースに巻かれたサーチコイルを示す図The figure which shows the search coil wound around one tooth of the stator 図7(a),図7(b),図7(c)は、永久磁石の温度が20℃、80℃、140℃の時にサーチコイルを用いて検出される空隙磁束密度値をグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。7 (a), 7 (b), and 7 (c) are graphs of the air gap magnetic flux density values detected using the search coil when the temperature of the permanent magnet is 20 ° C, 80 ° C, and 140 ° C. It is a figure and represents the result when energization angles are 0 deg, 30 dge, and 60 deg, respectively. 図8(a),図8(b),図8(c)は、永久磁石の温度が20℃、80℃、140℃の時に求めた永久磁石成分Bmagをグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。8 (a), 8 (b), and 8 (c) are graphs showing the permanent magnet component Bmag obtained when the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C., respectively. The results when the angles are 0 deg, 30 dge, and 60 deg are shown. 図9(a)および図9(b)はそれぞれ、磁気センサとしてホール素子を用いた場合に、IPMモータに流れる電流および通電角に対するBaqおよびBadのマップの一例を示す図FIGS. 9 (a) and 9 (b) are diagrams showing examples of maps of Baq and Bad with respect to the current flowing through the IPM motor and the conduction angle when a Hall element is used as the magnetic sensor. 図10(a)および図10(b)はそれぞれ、磁気センサとしてサーチコイルを用いた場合に、IPMモータに流れる電流および通電角に対するBaqおよびBadのマップの一例を示す図FIGS. 10A and 10B are diagrams showing examples of maps of Baq and Bad with respect to the current flowing through the IPM motor and the energization angle when a search coil is used as the magnetic sensor. 図11(a),図11(b),図11(c)は、磁気センサとしてホール素子を用いて、永久磁石の温度が20℃、80℃、140℃の時に、BaqおよびBadのマップを利用して求めた永久磁石成分Bmagをグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。11 (a), 11 (b), and 11 (c) show a map of Baq and Bad when the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. using a Hall element as a magnetic sensor. It is the figure which graphed the permanent magnet component Bmag calculated | required using, and represents the result when the conduction angles are 0 deg, 30 dge, and 60 deg, respectively. 図12(a),図12(b),図12(c)は、磁気センサとしてサーチコイルを用いて、永久磁石の温度が20℃、80℃、140℃の時に、BaqおよびBadのマップを利用して求めた永久磁石成分Bmagをグラフ化した図であり、それぞれ通電角0deg,30dge,60degとした時の結果を表している。12 (a), 12 (b), and 12 (c) show a map of Baq and Bad when the temperature of the permanent magnet is 20 ° C., 80 ° C., and 140 ° C. using a search coil as a magnetic sensor. It is the figure which graphed the permanent magnet component Bmag calculated | required using, and represents the result when the conduction angles are 0 deg, 30 dge, and 60 deg, respectively. ティースの先端に設けられた凹みにホール素子を埋め込んだ様子を示す図The figure which shows a mode that Hall element was embedded in the dent provided in the tip of teeth. コギングトルク対策用に設けられている凹みにホール素子を埋め込んだ様子を示す図The figure which shows a mode that Hall element was embedded in the dent provided for cogging torque measures 分布巻SPMモータの構造を示す図Diagram showing the structure of a distributed winding SPM motor 集中巻IPMモータの構造を示す図Diagram showing the structure of a concentrated winding IPM motor 集中巻SPMモータの構造を示す図Diagram showing the structure of a concentrated winding SPM motor

符号の説明Explanation of symbols

1…磁気センサ、2…処理装置、2a…CPU、2b…メモリ、3…電流センサ、10…IPMモータ、11…ロータ、11a〜11h…永久磁石、12…ステータ、20…ホール素子、30…サーチコイル DESCRIPTION OF SYMBOLS 1 ... Magnetic sensor, 2 ... Processing apparatus, 2a ... CPU, 2b ... Memory, 3 ... Current sensor, 10 ... IPM motor, 11 ... Rotor, 11a-11h ... Permanent magnet, 12 ... Stator, 20 ... Hall element, 30 ... Search coil

Claims (8)

回転子に永久磁石を用いた永久磁石型回転機の固定子に設けられ、回転子と固定子との間の空隙磁束密度を計測する磁束密度計測手段と、
電機子反作用に起因する磁束密度(以下、電機子反作用磁束密度)を検出する電機子反作用磁束密度検出手段と、
前記磁束密度計測手段によって計測された空隙磁束密度から、前記電機子反作用磁束密度検出手段によって検出される電機子反作用磁束密度を除外して、前記永久磁石の磁束密度(以下、永久磁石磁束密度)を抽出する永久磁石磁束密度抽出手段と、
前記永久磁石磁束密度抽出手段によって抽出された永久磁石磁束密度に基づいて、前記永久磁石の温度を推定する温度推定手段とを備えることを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
Magnetic flux density measuring means provided on a stator of a permanent magnet type rotating machine using a permanent magnet as a rotor, and measuring a gap magnetic flux density between the rotor and the stator;
Armature reaction magnetic flux density detecting means for detecting magnetic flux density caused by armature reaction (hereinafter referred to as armature reaction magnetic flux density);
By excluding the armature reaction magnetic flux density detected by the armature reaction magnetic flux density detection means from the gap magnetic flux density measured by the magnetic flux density measurement means, the magnetic flux density of the permanent magnet (hereinafter referred to as permanent magnet magnetic flux density) Permanent magnet magnetic flux density extraction means for extracting
And a temperature estimation means for estimating the temperature of the permanent magnet based on the permanent magnet magnetic flux density extracted by the permanent magnet magnetic flux density extraction means. .
請求項1に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記永久磁石型回転機に流れる電機子電流を検出する電機子電流検出手段をさらに備え、
前記電機子反作用磁束密度検出手段は、前記電機子電流検出手段によって検出される電機子電流に基づいて、前記電機子反作用磁束密度を算出することを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to claim 1,
Armature current detecting means for detecting an armature current flowing in the permanent magnet type rotating machine,
The armature reaction magnetic flux density detection means calculates the armature reaction magnetic flux density based on the armature current detected by the armature current detection means. Temperature detection device.
請求項1に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記永久磁石型回転機に流れる電機子電流を検出する電機子電流検出手段と、
前記電機子電流に対応する電機子反作用磁束密度のデータを記憶するデータ記憶手段とを備え、
前記電機子反作用磁束密度検出手段は、前記電機子電流検出手段によって検出される電機子電流、および、前記データ記憶手段に記憶されているデータに基づいて、前記電機子反作用磁束密度を求めることを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to claim 1,
Armature current detection means for detecting an armature current flowing in the permanent magnet type rotating machine;
Data storage means for storing data of armature reaction magnetic flux density corresponding to the armature current,
The armature reaction magnetic flux density detection means obtains the armature reaction magnetic flux density based on the armature current detected by the armature current detection means and the data stored in the data storage means. A permanent magnet temperature detecting device for a permanent magnet type rotating machine.
回転子に永久磁石を用いた永久磁石型回転機の固定子に設けられ、回転子と固定子との間の空隙磁束密度を計測する磁束密度計測手段と、
電機子電流のd軸成分(以下、d軸電流)を検出するd軸電流検出手段と、
電機子電流のq軸成分(以下、q軸電流)を検出するq軸電流検出手段と、
回転子と固定子との間の空隙磁束密度、d軸電流、および、q軸電流に応じた永久磁石の温度のデータを記憶するデータ記憶手段と、
前記磁束密度計測手段によって検出される空隙磁束密度、前記d軸電流検出手段によって検出されるd軸電流、前記q軸電流検出手段によって検出されるq軸電流、および、前記データ記憶手段に記憶されているデータに基づいて、前記永久磁石の温度を推定する温度推定手段とを備えることを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
Magnetic flux density measuring means provided on a stator of a permanent magnet type rotating machine using a permanent magnet as a rotor, and measuring a gap magnetic flux density between the rotor and the stator;
D-axis current detection means for detecting a d-axis component of the armature current (hereinafter, d-axis current);
Q-axis current detection means for detecting a q-axis component of the armature current (hereinafter referred to as q-axis current);
Data storage means for storing data on the temperature of the permanent magnet according to the magnetic flux density between the rotor and the stator, the d-axis current, and the q-axis current;
The gap magnetic flux density detected by the magnetic flux density measuring means, the d-axis current detected by the d-axis current detecting means, the q-axis current detected by the q-axis current detecting means, and the data storage means are stored. And a temperature estimating means for estimating the temperature of the permanent magnet based on the data of the permanent magnet.
請求項1から請求項4のいずれか一項に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記磁束密度計測手段を前記永久磁石型回転機の固定子のティースの先端に設けることを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to any one of claims 1 to 4,
A temperature detection device for a permanent magnet of a permanent magnet type rotating machine, wherein the magnetic flux density measuring means is provided at a tip of a tooth of a stator of the permanent magnet type rotating machine.
請求項1から請求項4のいずれか一項に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記磁束密度計測手段は、前記永久磁石型回転機の固定子の1つのティースに巻き付けられたサーチコイルを利用して、前記空隙磁束密度を計測することを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to any one of claims 1 to 4,
The magnetic flux density measuring means measures the air gap magnetic flux density by using a search coil wound around one tooth of a stator of the permanent magnet type rotating machine. Magnet temperature detection device.
請求項1から請求項4のいずれか一項に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記永久磁石型回転機の固定子のティースの先端に凹みを設け、前記磁束密度計測手段を前記凹みに埋め込むことを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to any one of claims 1 to 4,
A temperature detection device for a permanent magnet of a permanent magnet type rotating machine, wherein a recess is provided at a tip of a tooth of a stator of the permanent magnet type rotating machine, and the magnetic flux density measuring means is embedded in the recess.
請求項1から請求項4のいずれか一項に記載の永久磁石型回転機の永久磁石の温度検出装置において、
前記永久磁石型回転機の固定子のティースの先端に予め設けられている凹みに、前記磁束密度計測手段を埋め込むことを特徴とする永久磁石型回転機の永久磁石の温度検出装置。
In the permanent magnet temperature detecting device of the permanent magnet type rotating machine according to any one of claims 1 to 4,
A temperature detection device for a permanent magnet of a permanent magnet type rotating machine, wherein the magnetic flux density measuring means is embedded in a recess provided in advance at a tip of a tooth of a stator of the permanent magnet type rotating machine.
JP2006166038A 2006-06-15 2006-06-15 Permanent magnet temperature detector for permanent magnet type rotating machine Expired - Fee Related JP4853124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166038A JP4853124B2 (en) 2006-06-15 2006-06-15 Permanent magnet temperature detector for permanent magnet type rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166038A JP4853124B2 (en) 2006-06-15 2006-06-15 Permanent magnet temperature detector for permanent magnet type rotating machine

Publications (2)

Publication Number Publication Date
JP2007336708A JP2007336708A (en) 2007-12-27
JP4853124B2 true JP4853124B2 (en) 2012-01-11

Family

ID=38935630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166038A Expired - Fee Related JP4853124B2 (en) 2006-06-15 2006-06-15 Permanent magnet temperature detector for permanent magnet type rotating machine

Country Status (1)

Country Link
JP (1) JP4853124B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446494B2 (en) * 2009-06-17 2014-03-19 富士電機株式会社 Control device for permanent magnet type synchronous motor
JP2012035946A (en) * 2010-08-05 2012-02-23 Mitsubishi Electric Corp Temperature protective device of electric motor for elevator
JP5707195B2 (en) * 2011-03-24 2015-04-22 株式会社神戸製鋼所 MOTOR TEMPERATURE ESTIMATION DEVICE, POWER GENERATION SYSTEM HAVING THE SAME, AND MOTOR TEMPERATURE ESTIMATION METHOD
JP5149431B2 (en) * 2011-07-29 2013-02-20 ファナック株式会社 Temperature detection device that detects the temperature of the mover of the motor
EP3556699A1 (en) 2018-04-19 2019-10-23 KONE Corporation A monitoring solution for a conveyor system
JP7363528B2 (en) 2020-01-28 2023-10-18 マツダ株式会社 Motor magnet temperature estimation device and hybrid vehicle equipped with the same
JP7363529B2 (en) 2020-01-28 2023-10-18 マツダ株式会社 Motor magnet temperature estimation device and hybrid vehicle equipped with the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104453A (en) * 1985-10-30 1987-05-14 Toshiba Corp Temperature detector for rotor
DE4137559A1 (en) * 1991-11-15 1993-05-19 Heidelberger Druckmasch Ag DEVICE FOR DETECTING AT LEAST ONE STATE SIZE OF A BRUSHLESS DC MOTOR
JP3473178B2 (en) * 1995-05-31 2003-12-02 株式会社明電舎 Control device for rotating electric machine
JPH09294354A (en) * 1996-04-26 1997-11-11 Toshiba Corp Permanent-magnet motor
JP3605486B2 (en) * 1996-11-01 2004-12-22 日機装株式会社 Bearing wear monitoring device
JP4147600B2 (en) * 1997-12-24 2008-09-10 神鋼電機株式会社 Permanent magnet synchronous motor
JP2003037968A (en) * 2001-07-24 2003-02-07 Aisin Seiki Co Ltd Brushless motor

Also Published As

Publication number Publication date
JP2007336708A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4853124B2 (en) Permanent magnet temperature detector for permanent magnet type rotating machine
US9383265B2 (en) Method and system of internal temperatures determination in a synchronous electrical machine using state observers
US9438152B2 (en) Electronically commutated electric motor comprising rotor position detection with interference field compensation
JP6111324B2 (en) Method for determining the angular offset between the rotor and stator of an electric machine of a motor vehicle
JP5124483B2 (en) Method and apparatus for driving a synchronous machine
US11456687B2 (en) Method and device for controlling a synchronous machine without a position sensor by means of one-to-one assignment of the admittance or inductance to the rotor position
JP2018033302A (en) Method for sensor-free control of pmsm motor
US20120059642A1 (en) Method and device for the angle sensor-free detection of the position of the rotor shaft of a permanently excited synchronous machine on the basis of current signals and voltage signals
US20170115168A1 (en) Method of estimating a temperature of a permanent magnet in a motor
JP2005192325A (en) Method for detecting demagnetization of permanent-magnet electric motor
JP2013501486A (en) Electric drive device with commutator and control method of electric motor with commutator
JP6213407B2 (en) Method and apparatus for estimating motor torque
JP2018033301A (en) Method for determining orientation of rotor of non-iron pmsm motor in sensor free manner
JP5976204B2 (en) Magnet temperature estimation device for permanent magnet motor and magnet temperature estimation method for permanent magnet motor
Lasjerdi et al. Online static/dynamic eccentricity fault diagnosis in inverter-driven electrical machines using resolver signals
CN109004875B (en) Method for calculating zero angle of permanent magnet synchronous motor rotor position sensor and calibration method
JP5447903B2 (en) Method and apparatus for determining the current angular position of a rotatable magnetic member of an electric drive
US20140346990A1 (en) Method of determining the position and the speed of a rotor in a synchronous electric machine using state observers
US20130207588A1 (en) Initial driving apparatus and method of two-phase srm
JP2009177960A (en) Variable-speed driver for pm motor
JP4622068B2 (en) Electric motor control device
Jung et al. Magnet temperature estimation of IPMSM by using reactive energy
JP2009027799A (en) Cylindrical synchronous motor system, method for detecting magnetic pole position of cylindrical synchronous motor, and driving method thereof
Kwon et al. Design of IPMSM with eccentric rotor and search coils for absolute position sensorless drive
Antons et al. Self-sensing control of a synchronous reluctance machine using an extended Kalman filter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20081111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees