Nothing Special   »   [go: up one dir, main page]

JP4849445B2 - Thin film resonator - Google Patents

Thin film resonator Download PDF

Info

Publication number
JP4849445B2
JP4849445B2 JP2006060351A JP2006060351A JP4849445B2 JP 4849445 B2 JP4849445 B2 JP 4849445B2 JP 2006060351 A JP2006060351 A JP 2006060351A JP 2006060351 A JP2006060351 A JP 2006060351A JP 4849445 B2 JP4849445 B2 JP 4849445B2
Authority
JP
Japan
Prior art keywords
thin film
resonator
film
piezoelectric
fbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006060351A
Other languages
Japanese (ja)
Other versions
JP2007243361A5 (en
JP2007243361A (en
Inventor
好章 渡辺
隆彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2006060351A priority Critical patent/JP4849445B2/en
Publication of JP2007243361A publication Critical patent/JP2007243361A/en
Publication of JP2007243361A5 publication Critical patent/JP2007243361A5/ja
Application granted granted Critical
Publication of JP4849445B2 publication Critical patent/JP4849445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、携帯電話機等の通信機器に用いられる、広帯域信号から特定の周波数の信号を抽出する等のための薄膜共振器に関する。   The present invention relates to a thin film resonator for extracting a signal of a specific frequency from a broadband signal used in communication equipment such as a mobile phone.

携帯電話機や無線LAN送信機・受信機等の通信機器には、特定の周波数帯の信号を抽出するためのRFフィルタが用いられている。RFフィルタでは通常、使用される周波数帯内の周波数で共振する共振器が多数使用される。これらの通信機器において使用される周波数帯は数百MHz〜数GHzと高いため、共振器もそのような高周波数に対応する必要がある。   An RF filter for extracting a signal in a specific frequency band is used in a communication device such as a mobile phone or a wireless LAN transmitter / receiver. In an RF filter, a large number of resonators that resonate at a frequency within a used frequency band are usually used. Since the frequency band used in these communication devices is as high as several hundred MHz to several GHz, the resonator needs to cope with such a high frequency.

近年、高い共振周波数を実現することができる共振器として、FBAR(Film Bulk Acoustic Resonator)と呼ばれる薄膜共振器が注目されている(特許文献1参照)。FBARは空洞を設けた基板の上に圧電体の薄膜を載置し、その圧電体薄膜を挟むように1対の電極を設けた構造を有する。ここで、基板に空洞を設けるのは、圧電体薄膜が基板に拘束されずに自由に振動できるようにするためである。FBARでは共振周波数が圧電体薄膜の厚さに反比例するため、薄膜の厚さを薄くする程、共振周波数を高くすることができる。実際、FBARを用いた周波数フィルタでは数GHzという高周波数においても良好なフィルタ特性が得られることが確認されている。   In recent years, a thin film resonator called FBAR (Film Bulk Acoustic Resonator) has attracted attention as a resonator capable of realizing a high resonance frequency (see Patent Document 1). The FBAR has a structure in which a piezoelectric thin film is placed on a substrate having a cavity, and a pair of electrodes is provided so as to sandwich the piezoelectric thin film. Here, the cavity is provided in the substrate so that the piezoelectric thin film can freely vibrate without being constrained by the substrate. In FBAR, since the resonance frequency is inversely proportional to the thickness of the piezoelectric thin film, the resonance frequency can be increased as the thickness of the thin film is reduced. In fact, it has been confirmed that a frequency filter using FBAR can obtain good filter characteristics even at a high frequency of several GHz.

特開2001-203558号公報([0003]〜[0004], 図1)Japanese Patent Laid-Open No. 2001-203558 ([0003] to [0004], FIG. 1)

しかし、従来のFBARは以下の問題を有している。
FBARの共振周波数は圧電体の弾性定数に依存し、この弾性定数は圧電体の温度により変化する。すなわち、従来のFBARは温度変化により共振周波数が変化する、という問題を有する。特に、移動体通信機器では、約0.1mm角のFBARに対して約100mWという大電力を投入する必要があるため、そのFBARは温度上昇の影響を大きく受ける。
However, the conventional FBAR has the following problems.
The resonance frequency of the FBAR depends on the elastic constant of the piezoelectric body, and this elastic constant changes with the temperature of the piezoelectric body. That is, the conventional FBAR has a problem that the resonance frequency changes due to a temperature change. In particular, in mobile communication devices, it is necessary to supply a large power of about 100 mW to an FBAR of about 0.1 mm square, so that the FBAR is greatly affected by temperature rise.

また、従来のFBARでは通常、作製が容易であるという理由により、膜面に垂直な方向に伝搬する縦波による共振が形成される圧電体が用いられていた。縦波は膜の外側の空気に伝播することができ、振動エネルギーが損失しやすい。この振動エネルギーの損失を防ぐために、FBARにおいて圧電体が真空容器に封入されたものがある。しかし、その場合には圧電体から放熱し難くなるため圧電体の温度が上昇してしまい、共振周波数が変化(減少)してしまう。   In addition, a conventional FBAR usually uses a piezoelectric body in which resonance due to a longitudinal wave propagating in a direction perpendicular to the film surface is formed because it is easy to manufacture. Longitudinal waves can propagate to the air outside the membrane and vibration energy is likely to be lost. In order to prevent this loss of vibration energy, some FBARs have a piezoelectric body sealed in a vacuum vessel. However, in that case, it becomes difficult to dissipate heat from the piezoelectric body, so that the temperature of the piezoelectric body rises and the resonance frequency changes (decreases).

更に、従来のFBARでは、電極の直上又は直下から外れた圧電体薄膜内の領域において、共振器の本来の共振とは異なる不要な振動(スプリアスモード)が生成される。このスプリアスモードの周波数は多くの場合、共振器の本来の共振周波数に近い値となり、本体の振動周波数の誤差の原因となる。   Further, in the conventional FBAR, unnecessary vibration (spurious mode) different from the original resonance of the resonator is generated in a region in the piezoelectric thin film that is directly above or below the electrode. In many cases, the frequency of the spurious mode is a value close to the original resonance frequency of the resonator, which causes an error in the vibration frequency of the main body.

本発明が解決しようとする課題は、温度変化による共振周波数の変化が小さく、スプリアスモード振動を抑制することができる薄膜共振器を提供することである。   The problem to be solved by the present invention is to provide a thin film resonator in which a change in resonance frequency due to a temperature change is small and spurious mode vibration can be suppressed.

上記課題を解決するために成された本発明に係る薄膜共振器は、
a)圧電体膜を上下電極の間に設けて成り、該電極間に交流電圧が印加されると該圧電体膜の厚み方向に伝播する横波の定在波が形成される共振器本体と、
b)温度上昇に伴い粘性係数が低下する特性を有し、前記共振器本体の少なくとも一部に接触する接触液と、
を備えることを特徴とする。
The thin film resonator according to the present invention, which has been made to solve the above problems,
a) A resonator body comprising a piezoelectric film provided between upper and lower electrodes, and a transverse wave standing wave propagating in the thickness direction of the piezoelectric film is formed when an AC voltage is applied between the electrodes;
b) having a characteristic that the viscosity coefficient decreases as the temperature rises, and a contact liquid that contacts at least a part of the resonator body;
It is characterized by providing.

横波定在波が形成される共振器本体を得るために、前記圧電体膜には、ZnO及びAlNのいずれかから成り[0001]方向が膜面に略平行な1方向に配向したものを用いることができる。
ZnO及びAlNは共に、図1に示すように、一般式An+Bn-(nは整数)で表され六方晶であるウルツ鉱構造を有する。ウルツ鉱構造では、An+から成る層(A層)とBn-から成る層(B層)が交互に積層し、B層はその上下にある2枚のA層から等距離の位置よりもc軸の1方向にずれた位置に存在する。即ち、ウルツ鉱構造はc軸方向に極性を有する。本願では、B層に対してA層がずれる方向を[0001]方向と定義する。
In order to obtain a resonator body in which a transverse standing wave is formed, the piezoelectric film made of either ZnO or AlN and having the [0001] direction oriented in one direction substantially parallel to the film surface is used. be able to.
As shown in FIG. 1, both ZnO and AlN have a wurtzite structure represented by the general formula An + Bn- (n is an integer) and a hexagonal crystal. In the wurtzite structure, layers composed of An + (layer A) and layers composed of B n- (layer B) are alternately stacked, and the layer B is located at a distance from the two layers A above and below the same distance. It exists at a position shifted in one direction of the c-axis. That is, the wurtzite structure has polarity in the c-axis direction. In the present application, the direction in which the A layer deviates from the B layer is defined as the [0001] direction.

前記圧電体膜には、ZnO及びAlNのいずれかから成り[0001]方向が膜面に略平行な1方向に配向した第1圧電体膜と、材料及び厚さが第1圧電体膜と同じであり[0001]方向が第1圧電体膜と180°異なる方向に配向した第2圧電体膜と、を重ねた積層体を用いることができる。更に、第1圧電体膜及び第2圧電体膜を交互に複数重ねた積層体を用いることもできる。   The piezoelectric film is made of either ZnO or AlN and has the same material and thickness as the first piezoelectric film, with the [0001] direction oriented in one direction substantially parallel to the film surface. It is possible to use a laminated body in which the [0001] direction and the second piezoelectric film oriented in a direction different from the first piezoelectric film by 180 ° are stacked. Furthermore, a laminated body in which a plurality of first piezoelectric films and second piezoelectric films are alternately stacked can also be used.

本発明で用いる「接触液」は粘性の温度変化により前記共振器本体の周波数の温度変化を抑制する機能を有し、具体的には、次のような特性を持つ液体である。
(1) 温度上昇に伴い粘性係数が低下する。
(2) 空気よりも熱伝導率が良い。
(3) 空気よりも縦波を伝播しやすい。
このような特性により、本発明において、共振器本体の少なくとも一部に接触する接触液は次のような作用を行う。
(1) 共振器本体の温度が上昇すると、圧電体膜の弾性定数が低下し、その共振周波数は低周波数側に変化する。それに対し、接触液の粘性係数が低下するため、接触液は圧電体膜の共振周波数を高周波数側に変化させるように作用する。同様に、共振器本体の温度が下降すると、圧電体膜の弾性定数が上昇してその共振周波数は高周波数側に変化するのに対して、接触液は粘性係数が上昇して圧電体膜の共振周波数を低周波数側に変化させるように作用する。これら弾性定数の温度変化による作用と粘性係数の温度変化による作用が少なくとも一部相殺されることにより、共振器の温度変化による共振周波数の変化が抑制される。
(2) 圧電体膜で発生する熱を、従来の空気(又は真空)よりもよりよく伝達し、外部に逃がすことができる。これにより、圧電体膜の温度変化自体を抑制することができる。
(3) 圧電体膜で発生するスプリアスモードの中で圧電体膜に平行な方向以外に変位成分を持つ音波が接触液中に漏洩し、圧電体膜のスプリアスモード振動を減衰させる。
The “contact liquid” used in the present invention has a function of suppressing the temperature change of the frequency of the resonator main body by the temperature change of the viscosity, and specifically, is a liquid having the following characteristics.
(1) The viscosity coefficient decreases with increasing temperature.
(2) Better thermal conductivity than air.
(3) Longitudinal waves propagate more easily than air.
Due to such characteristics, in the present invention, the contact liquid that contacts at least a part of the resonator body performs the following action.
(1) When the temperature of the resonator body rises, the elastic constant of the piezoelectric film decreases and the resonance frequency changes to the lower frequency side. On the other hand, since the viscosity coefficient of the contact liquid is lowered, the contact liquid acts to change the resonance frequency of the piezoelectric film to the high frequency side. Similarly, when the temperature of the resonator body decreases, the elastic constant of the piezoelectric film increases and its resonance frequency changes to the high frequency side, whereas the contact liquid increases in viscosity coefficient and the piezoelectric film It acts to change the resonance frequency to the low frequency side. The action due to the temperature change of the elastic constant and the action due to the temperature change of the viscosity coefficient are at least partially offset, thereby suppressing the change in the resonance frequency due to the temperature change of the resonator.
(2) The heat generated in the piezoelectric film can be transmitted better than the conventional air (or vacuum) and released to the outside. Thereby, the temperature change itself of the piezoelectric film can be suppressed.
(3) Among the spurious modes generated in the piezoelectric film, a sound wave having a displacement component other than the direction parallel to the piezoelectric film leaks into the contact liquid and attenuates the spurious mode vibration of the piezoelectric film.

本発明の薄膜共振器においては、その温度が上昇すると、圧電体膜の弾性定数が低下して共振周波数が低周波数側に変化するように作用すると共に、接触液の粘性係数が低下して共振周波数が高周波数側に変化するように作用する。同様に、温度が下降すると弾性定数が上昇して共振周波数が高周波数側に変化するように作用する共に、粘性係数が上昇して共振周波数が低周波数側に変化するように作用する。これら圧電体膜の弾性定数変化による作用と接触液の粘性変化による作用が相殺されることにより、共振器の温度変化による共振周波数の変化が抑制される。   In the thin film resonator of the present invention, when the temperature rises, the elastic constant of the piezoelectric film is lowered and the resonance frequency is changed to the lower frequency side, and the viscosity coefficient of the contact liquid is lowered to resonate. It acts so that the frequency changes to the high frequency side. Similarly, when the temperature is lowered, the elastic constant is increased and the resonance frequency is changed to the higher frequency side, and the viscosity coefficient is increased and the resonance frequency is changed to the lower frequency side. By canceling out the effect due to the change in the elastic constant of the piezoelectric film and the effect due to the change in the viscosity of the contact liquid, the change in the resonance frequency due to the temperature change in the resonator is suppressed.

また、本発明に係る薄膜共振器は共振器本体が接触液に接触しているため、本体から発生する熱を、接触液を通して外部に放出しやすくなる。これにより、共振器の温度変化(上昇)による共振周波数の変化が更に抑制される。   In addition, since the resonator main body is in contact with the contact liquid, the thin film resonator according to the present invention easily releases heat generated from the main body to the outside through the contact liquid. Thereby, the change of the resonant frequency by the temperature change (rise) of a resonator is further suppressed.

更に、本発明の薄膜共振器では、スプリアスモードの中で圧電体膜に平行な方向以外に変位成分を持つ音波が接触液中に漏洩するため、スプリアスモードを減衰させることができる。   Furthermore, in the thin film resonator of the present invention, since the sound wave having a displacement component other than the direction parallel to the piezoelectric film in the spurious mode leaks into the contact liquid, the spurious mode can be attenuated.

本発明の薄膜共振器の本体は圧電体から成る膜の上下を挟むように1対の電極(上部電極、下部電極)を配置したものである。この点では前述のFBAR等の従来の薄膜共振器と同様である。この共振器本体には、電極間に交流電圧が印加されると圧電体膜の厚み方向に伝播する横波の定在波が形成されるものを用いる。   The main body of the thin film resonator of the present invention has a pair of electrodes (upper electrode and lower electrode) arranged so as to sandwich the upper and lower sides of a film made of a piezoelectric material. This is the same as the conventional thin film resonator such as the FBAR described above. As this resonator main body, one that forms a transverse standing wave that propagates in the thickness direction of the piezoelectric film when an AC voltage is applied between the electrodes is used.

そのような共振器本体として、[0001]方向が薄膜の面に略平行な1方向に配向したZnO又はAlNを圧電体膜に用いた薄膜共振器が挙げられる。この共振器本体の電極間に交流電圧が印加されると、圧電体膜に略垂直な方向に伝播し略平行な方向に変位を持つ横波の定在波が形成される。このような圧電体膜を1層だけ設けた場合には、その横波の波長は圧電体膜の厚さの2倍となる。また、本体の圧電体膜として、ZnO又はAlNから成り[0001]方向が互いに180°異なる第1圧電体膜及び第2圧電体膜を重ねた積層体を用いることもできる。この場合、横波の波長は積層体の厚さと同じ、即ちZnO又はAlNを1層だけ設けた場合の1/2となる。更に、第1圧電体膜及び第2圧電体膜を交互に複数積層した積層体も用いることができる。   An example of such a resonator body is a thin film resonator using ZnO or AlN whose [0001] direction is oriented in one direction substantially parallel to the surface of the thin film as a piezoelectric film. When an AC voltage is applied between the electrodes of the resonator body, a standing wave of a transverse wave that propagates in a direction substantially perpendicular to the piezoelectric film and has a displacement in a substantially parallel direction is formed. When only one piezoelectric film is provided, the wavelength of the transverse wave is twice the thickness of the piezoelectric film. Also, as the piezoelectric film of the main body, a laminated body in which a first piezoelectric film and a second piezoelectric film made of ZnO or AlN and having different [0001] directions by 180 ° can be used. In this case, the wavelength of the transverse wave is the same as the thickness of the laminated body, that is, 1/2 of the case where only one layer of ZnO or AlN is provided. Furthermore, a laminate in which a plurality of first piezoelectric films and second piezoelectric films are alternately laminated can also be used.

前記共振器本体の少なくとも一部に接触液を接触させる。接触液が接触するのは本体の一部分のみでもよく、その部分は圧電体膜、上部電極、下部電極のいずれでもよい。但し、本発明の効果を最大限得るために、接触液は共振器本体の表面全面に接触させるとよい。導電性の接触液を用いる場合には、上部電極及び/又は下部電極と接触液の間に絶縁部材を設けることが望ましい。   A contact liquid is brought into contact with at least a part of the resonator body. The contact liquid may contact only a part of the main body, and the part may be a piezoelectric film, an upper electrode, or a lower electrode. However, in order to obtain the maximum effect of the present invention, the contact liquid is preferably brought into contact with the entire surface of the resonator body. When a conductive contact liquid is used, it is desirable to provide an insulating member between the upper electrode and / or the lower electrode and the contact liquid.

本発明では共振器本体を液体に接触させるため、仮に縦波の定在波が形成される共振器本体を用いた場合には縦波の振動が液体中に伝播して共振の強度が減衰してしまう。そのため、本発明では共振器本体に横波の定在波が形成されるものを用いることにより、振動が液体中に伝播することを防いでいる。   In the present invention, since the resonator body is brought into contact with the liquid, if a resonator body in which a longitudinal standing wave is formed is used, the vibration of the longitudinal wave propagates in the liquid and the resonance intensity is attenuated. End up. Therefore, in the present invention, the propagation of vibration into the liquid is prevented by using a resonator body in which a transverse standing wave is formed.

本発明の薄膜共振器の作用を説明する。
まず、比較のために、圧電体膜が(本発明のように液体ではなく)真空に接しており、それ以外の構成は本発明のものと同じである薄膜共振器について、その共振周波数f0を示す。共振周波数f0は、圧電体膜の密度ρp、弾性定数cp及び厚さdpを用いて、

Figure 0004849445
と表される。温度が上昇すると、圧電体膜の弾性定数cpは小さくなる(密度及び厚さは弾性定数よりも温度変化が十分に小さい)ため、共振周波数f0は低くなる。 The operation of the thin film resonator of the present invention will be described.
First, for comparison, a resonance frequency f 0 of a thin film resonator in which the piezoelectric film is in contact with a vacuum (not a liquid as in the present invention) and the other configuration is the same as that of the present invention. Indicates. The resonance frequency f 0 is obtained by using the density ρ p , the elastic constant c p and the thickness d p of the piezoelectric film,
Figure 0004849445
It is expressed. As the temperature increases, the elastic constant c p of the piezoelectric film becomes small (density and thickness is sufficiently small temperature changes than the elastic constant) Therefore, the resonance frequency f 0 is lowered.

それに対して、本発明の薄膜共振器では、圧電体膜が接触液に接していることにより、その共振周波数fは
f=f0-Δf (2)
となり、圧電体膜が真空に接する薄膜共振器よりも変化分Δfだけ小さくなる。この変化分Δfは、

Figure 0004849445
と表される。ここで、ρlは接触液の密度、ηlは接触液の粘性係数である。(3)式より、Δfはc p 1/4 及びηl 1/2に比例する。温度が上昇すると、粘性係数ηlが小さくなると共に、前述のように圧電体膜の弾性定数cpも小さくなるため、Δfは小さくなる。(2)式の第2項より、このΔfの温度変化は、温度上昇と共に共振周波数fを大きくするように作用する。それに対して、(2)式の第1項のf0は、温度上昇と共に共振周波数fを小さくするように作用する。これにより、(2)式第2項の温度変化と(2)式第1項の温度変化が相殺されるため、本発明の薄膜共振器の共振周波数fは、圧電体膜が真空に接する薄膜共振器よりも温度による変化が小さくなる。 On the other hand, in the thin film resonator of the present invention, since the piezoelectric film is in contact with the contact liquid, the resonance frequency f is
f = f 0 -Δf (2)
Thus, the piezoelectric film is smaller than the thin film resonator in contact with the vacuum by a change amount Δf. This change Δf is
Figure 0004849445
It is expressed. Here, ρ l is the density of the contact liquid, and η l is the viscosity coefficient of the contact liquid. From equation (3), Δf is proportional to c p 1/4 and η l 1/2 . As the temperature increases, the viscosity coefficient eta l decreases, since the smaller elastic constant c p of the piezoelectric film as described above, Delta] f becomes smaller. From the second term of equation (2), the temperature change of Δf acts to increase the resonance frequency f as the temperature rises. On the other hand, f 0 in the first term of equation (2) acts to decrease the resonance frequency f as the temperature rises. This cancels out the temperature change in the second term of equation (2) and the temperature change in the first term of equation (2), so the resonance frequency f of the thin film resonator of the present invention is a thin film in which the piezoelectric film is in contact with vacuum The change with temperature becomes smaller than the resonator.

また、本発明の薄膜共振器では、使用中に共振器本体に発生する熱が接触液を通して外部に排出される。そのため、薄膜共振器の温度変化そのものを抑制することができるため、共振周波数fの温度変化を一層抑制することができる。   In the thin film resonator of the present invention, heat generated in the resonator body during use is discharged to the outside through the contact liquid. Therefore, since the temperature change itself of the thin film resonator can be suppressed, the temperature change of the resonance frequency f can be further suppressed.

更に、本発明により、スプリアスモードの影響を受けない薄膜共振器を得ることができる。これは、スプリアスモードが圧電体膜に平行な方向に伝播する板波や表面波から成るため、これらの波の振動が接触液中に漏洩することにより、横波の基本モードに対するスプリアスモードを減衰させることができるからである。   Furthermore, according to the present invention, a thin film resonator that is not affected by the spurious mode can be obtained. This is because the spurious mode consists of plate waves and surface waves propagating in a direction parallel to the piezoelectric film, and the vibration of these waves leaks into the contact liquid, thereby attenuating the spurious mode for the fundamental mode of the transverse wave. Because it can.

通常、液体は気体よりも粘性係数が数桁大きい。例えば、温度が25℃であって常圧である場合において、空気の粘性係数は1.82×10-5Pa・sであるのに対して、水の粘性係数は空気の約50倍の8.90×10-4Pa・sである。そして、その粘性係数の温度による変化もそれに応じて大きい。また、熱伝導率及び縦波伝播特性に関しても、当然、気体よりも密度の高い液体はそれらの値が高い。液体がこのような一般的特性を有するため、本発明において用いる接触液には、通常考え得るほとんどの液体を用いることができる。 Usually, a liquid has a viscosity coefficient several orders of magnitude greater than that of a gas. For example, when the temperature is 25 ° C. and normal pressure, the viscosity coefficient of air is 1.82 × 10 −5 Pa · s, while the viscosity coefficient of water is 8.90 × 10, which is about 50 times that of air. -4 Pa · s. And the change by the temperature of the viscosity coefficient is also large according to it. Also, regarding the thermal conductivity and the longitudinal wave propagation characteristics, naturally, a liquid having a higher density than the gas has a higher value. Since the liquid has such general characteristics, most of the liquid that can be usually considered can be used as the contact liquid used in the present invention.

薄膜共振器本体のQ値を高くするためにできるだけ粘性係数が小さく、しかも共振周波数の温度変化を抑制するために粘性係数の温度変化が十分に大きい接触液を用いることが望ましい。また、接触液は化学的に不活性であることが望ましい。   In order to increase the Q value of the thin film resonator main body, it is desirable to use a contact liquid having a viscosity coefficient as small as possible and also having a sufficiently large temperature change in the viscosity coefficient in order to suppress a temperature change in the resonance frequency. The contact liquid is desirably chemically inert.

本発明で用いる接触液として好適な例の1つに、シリコーンオイルがある。シリコーンオイルはその成分の高分子が有する側鎖の種類により粘性係数の絶対値や温度依存性が異なる。そのため、シリコーンオイルは、用いる圧電体膜の材料に応じて適切なものを選択することができる、という利点を有する。また、シリコーンオイルは化学的に不活性であるという利点も有する。   One suitable example of the contact liquid used in the present invention is silicone oil. Silicone oil differs in absolute value and temperature dependence of viscosity coefficient depending on the type of side chain of the component polymer. Therefore, the silicone oil has an advantage that an appropriate one can be selected according to the material of the piezoelectric film to be used. Silicone oil also has the advantage of being chemically inert.

本発明に係る薄膜共振器の一実施例であるFBARを、図2〜図8を用いて説明する。
(1)本実施例のFBARの構成
図2は本実施例のFBAR10の縦断面図である。シリコンから成るSi基板11は、その中央にそれを貫通する空洞12を有する。Si基板11の上に下部電極13を設け、その上にZnOから成るZnO薄膜14を設け、ZnO薄膜14の上に上部電極15を設ける。ZnO薄膜14は、[0001]方向が薄膜の面内の1方向(図2では左右方向)に配向している。以下では、このような配向を「平行配向」と呼ぶ。
An FBAR which is an embodiment of a thin film resonator according to the present invention will be described with reference to FIGS.
(1) Configuration of FBAR of this embodiment FIG. 2 is a longitudinal sectional view of the FBAR 10 of this embodiment. The Si substrate 11 made of silicon has a cavity 12 passing through it at the center. A lower electrode 13 is provided on the Si substrate 11, a ZnO thin film 14 made of ZnO is provided thereon, and an upper electrode 15 is provided on the ZnO thin film 14. In the ZnO thin film 14, the [0001] direction is oriented in one direction in the plane of the thin film (the left-right direction in FIG. 2). Hereinafter, such an orientation is referred to as “parallel orientation”.

これらSi基板11、ZnO薄膜14及び上下の電極は、接触液16と共に容器17内に封入されている。ZnO薄膜14、下部電極13及び上部電極15の露出面は接触液16に接触している。また、下部電極13及び上部電極15の一端は容器17に設けた端子181及び182に接続されている。容器17の材料には接触液16に浸食されない絶縁体を用いる。   These Si substrate 11, ZnO thin film 14, and upper and lower electrodes are enclosed in a container 17 together with a contact liquid 16. The exposed surfaces of the ZnO thin film 14, the lower electrode 13, and the upper electrode 15 are in contact with the contact liquid 16. One end of each of the lower electrode 13 and the upper electrode 15 is connected to terminals 181 and 182 provided on the container 17. An insulator that is not eroded by the contact liquid 16 is used as the material of the container 17.

本実施例では、接触液16にKF-54シリコーンオイル(本実施例1)、KF-96-10csシリコーンオイル(本実施例2)及びKF-96L-1csシリコーンオイル(本実施例3)(いずれも信越化学工業製)をそれぞれ用いた3種類のFBARを作製した。これらのシリコーンオイルの特性を表1に示す。

Figure 0004849445
ここで、動粘度は粘性係数ηlを密度ρlで除したものであり、表1に挙げた値は25℃におけるものである。粘度温度係数は次式
Figure 0004849445
で表される。粘度温度係数が大きいほど、温度による粘度の変化は大きい。 In this embodiment, the contact liquid 16 is composed of KF-54 silicone oil (this embodiment 1), KF-96-10cs silicone oil (this embodiment 2) and KF-96L-1cs silicone oil (this embodiment 3) (whichever Also manufactured three types of FBARs using Shin-Etsu Chemical Co., Ltd.). The characteristics of these silicone oils are shown in Table 1.
Figure 0004849445
Here, the kinematic viscosity is obtained by dividing the viscosity coefficient η l by the density ρ l , and the values listed in Table 1 are those at 25 ° C. Viscosity temperature coefficient is
Figure 0004849445
It is represented by The greater the viscosity temperature coefficient, the greater the change in viscosity with temperature.

(2)本実施例のFBAR10の製造方法
本実施例のFBAR10の製造方法を、図3及び図4を用いて説明する。ここではまず、(i)図3を用いてFBARの製造方法の全体の流れを説明した後に、(ii)図4を用いてZnO薄膜14を作製する方法を説明する。
(i) FBARの製造方法
まず、Si基板11の表面に、下部電極13を形成する領域に窓を設けたマスク21を形成し、その上から下部電極金属を蒸着する(図3(a))ことにより下部電極13を作製する。マスク21を除去した(b)後、Si基板11及び下部電極13の上に、(ii)で述べる方法を用いてZnO薄膜14を作製する(c)。更にその上に、上部電極15を形成する領域に窓を設けたマスク22を形成し、その上から上部電極金属を蒸着する(d)ことにより上部電極15を作製する。マスク22を除去した(e)後、Si基板11のうちZnO薄膜14の中央付近の領域においてSiを選択的にエッチングすることにより空洞12を形成する(f)。こうして得られたFBARの本体を、別途作製した容器17内に固定し、容器17内に接触液16を注入した後に容器17を封じる。これにより、本実施例のFBAR10が得られる(g)。
(2) Manufacturing method of FBAR 10 of this embodiment A manufacturing method of FBAR 10 of this embodiment will be described with reference to FIGS. Here, first, (i) the entire flow of the FBAR manufacturing method will be described with reference to FIG. 3, and then (ii) a method of manufacturing the ZnO thin film 14 will be described with reference to FIG. 4.
(i) FBAR Manufacturing Method First, a mask 21 having a window in a region where the lower electrode 13 is formed is formed on the surface of the Si substrate 11, and a lower electrode metal is deposited thereon (FIG. 3 (a)). Thereby, the lower electrode 13 is produced. After removing the mask 21 (b), a ZnO thin film 14 is formed on the Si substrate 11 and the lower electrode 13 using the method described in (ii) (c). Further, a mask 22 having a window in a region where the upper electrode 15 is to be formed is formed thereon, and an upper electrode metal is vapor-deposited (d) thereon to produce the upper electrode 15. After removing the mask 22 (e), the cavity 12 is formed by selectively etching Si in the region of the Si substrate 11 near the center of the ZnO thin film 14 (f). The main body of the FBAR thus obtained is fixed in a separately prepared container 17, and after the contact liquid 16 is injected into the container 17, the container 17 is sealed. Thereby, FBAR10 of a present Example is obtained (g).

(ii) ZnO薄膜14の作製方法(図3(c)の工程)
ZnO薄膜14は、図4に示すマグネトロンスパッタリング装置30を用いて作製した。まず、マグネトロンスパッタリング装置30の構成を説明する。この装置は、成膜室31の下部にマグネトロン回路32及び陰極33を、上部に陽極34を設けたものである。陽極34の直下には、陰極33及び陽極34の中心を結ぶ線(図中の一点鎖線)から外れた位置に、この線に対して傾斜して基板38を配置する基板台35が設けられている。陰極33の上に、ZnO薄膜14の原料となるZnOターゲット36を載置する。また、成膜室31にアルゴン(Ar)ガス及び酸素(O2)ガスのガス源37を接続する。
ZnO薄膜14の作製方法を説明する。図3(b)に示した、Si基板11の表面に下部電極13を形成したもの(基板38)を、下部電極13が下側になるように基板台35に取り付ける。成膜室31内にArガス及びO2ガスを導入し、陰極33に高周波電力を供給する。これにより成膜室31内に高周波電磁場が形成され、それによりArガス及びO2ガスが電離して電子を放出する。この電子はZnOターゲット36近傍の電界及び磁界によりトロイダル曲線を描きながら運動し、これによりZnOターゲット36の近傍にプラズマが発生してZnOターゲット36がスパッタされる。スパッタされたZnOは陽極34に向かう一軸方向の流れ(原料流39)を形成し、この原料流39が基板38の表面に達してZnOがこの表面に堆積する。この時、基板38を前述のように傾斜して配置したことにより、基板38にその面に平行な1方向の温度勾配が形成され、それにより平行配向のZnO薄膜14が形成される。
(ii) Preparation method of ZnO thin film 14 (step of FIG. 3 (c))
The ZnO thin film 14 was produced using the magnetron sputtering apparatus 30 shown in FIG. First, the configuration of the magnetron sputtering apparatus 30 will be described. In this apparatus, a magnetron circuit 32 and a cathode 33 are provided in the lower part of the film forming chamber 31, and an anode 34 is provided in the upper part. Immediately below the anode 34, a substrate stage 35 is disposed at a position deviating from a line connecting the centers of the cathode 33 and the anode 34 (a chain line in the figure) and being inclined with respect to this line. Yes. On the cathode 33, a ZnO target 36 as a raw material for the ZnO thin film 14 is placed. A gas source 37 of argon (Ar) gas and oxygen (O 2 ) gas is connected to the film forming chamber 31.
A method for producing the ZnO thin film 14 will be described. The substrate (bottom 38) in which the lower electrode 13 is formed on the surface of the Si substrate 11 shown in FIG. 3B is attached to the substrate base 35 so that the lower electrode 13 is on the lower side. Ar gas and O 2 gas are introduced into the film forming chamber 31, and high frequency power is supplied to the cathode 33. As a result, a high-frequency electromagnetic field is formed in the film forming chamber 31, whereby Ar gas and O 2 gas are ionized to emit electrons. The electrons move while drawing a toroidal curve by an electric field and a magnetic field in the vicinity of the ZnO target 36, whereby plasma is generated in the vicinity of the ZnO target 36 and the ZnO target 36 is sputtered. The sputtered ZnO forms a uniaxial flow (raw material flow 39) toward the anode 34, the raw material flow 39 reaches the surface of the substrate 38, and ZnO is deposited on this surface. At this time, by arranging the substrate 38 to be inclined as described above, a temperature gradient in one direction parallel to the surface is formed on the substrate 38, whereby the parallel-oriented ZnO thin film 14 is formed.

(3)本実施例のFBAR10の特性の測定結果
本実施例1〜3のFBAR10について、アドミタンス特性、及び共振周波数の温度変化を測定した。併せて、比較例として、本実施例の接触液16の代わりに空気19を容器17内に充填したもの(比較例1、図5(a))、本実施例のZnO薄膜14の代わりに[0001]方向が膜面に垂直な方向に配向(以下、「垂直配向」と呼ぶ)したZnO薄膜を用いたもの(比較例2、図5(b))、及び比較例2の接触液16の代わりに空気19を容器17内に充填したもの(比較例3、図5(c))を作製し、同様の測定を行った。下部電極13と上部電極15の間に交流電圧を印加すると、本実施例及び比較例1のFBARでは膜面に平行な方向に振動する横波の定在波がZnO薄膜14内に形成されるのに対して、比較例2及び比較例3のFBARでは膜面に垂直な方向に振動する縦波の定在波がZnO薄膜14内に形成される。本実施例1〜3、比較例1〜3のいずれも、ZnO薄膜14の厚さは6.5μm、下部電極及び上部電極の厚さをそれぞれ0.15μmとした。なお、本実施例1〜3、比較例1〜3のいずれも、Si基板11のない状態で測定を行った。
(3) Measurement results of characteristics of FBAR 10 of this example For the FBARs 10 of Examples 1 to 3, admittance characteristics and changes in temperature of the resonance frequency were measured. In addition, as a comparative example, a container 17 filled with air 19 instead of the contact liquid 16 of this example (Comparative Example 1, FIG. 5A), instead of the ZnO thin film 14 of this example [ [0001] Using a ZnO thin film whose direction is perpendicular to the film surface (hereinafter referred to as "vertical alignment") (Comparative Example 2, FIG. 5 (b)), and the contact liquid 16 of Comparative Example 2 Instead, a container 17 filled with air 19 (Comparative Example 3, FIG. 5 (c)) was prepared, and the same measurement was performed. When an AC voltage is applied between the lower electrode 13 and the upper electrode 15, a transverse standing wave that vibrates in a direction parallel to the film surface is formed in the ZnO thin film 14 in the FBARs of the present example and the comparative example 1. On the other hand, in the FBARs of Comparative Examples 2 and 3, a longitudinal standing wave that vibrates in a direction perpendicular to the film surface is formed in the ZnO thin film 14. In each of Examples 1 to 3 and Comparative Examples 1 to 3, the thickness of the ZnO thin film 14 was 6.5 μm, and the thicknesses of the lower electrode and the upper electrode were each 0.15 μm. Note that all of Examples 1 to 3 and Comparative Examples 1 to 3 were measured without the Si substrate 11.

図6に、本実施例3のFBAR10及び比較例1〜3のFBARのアドミタンス特性の測定結果を示す。比較例2の接触液16には、本実施例3と同じKF-96L-1csシリコーンオイルを用いた。共振周波数は、本実施例3及び比較例1のFBARでは約200MHz、比較例2及び比較例3のFBARでは約450MHzである。縦波の定在波が形成される比較例2及び比較例3では、空気19(比較例3)の代わりに接触液16(比較例2)を用いるとアドミタンスが1桁低下した。これは、比較例2の場合には、垂直配向のZnO薄膜14を用いた場合に形成される縦波の振動が接触液16により減衰してしまうためである。それに対して、横波の定在波が形成される本実施例3及び比較例1では、空気19(比較例1)の代わりに接触液16(本実施例3)を用いた場合のアドミタンスの低下は、縦波の場合よりも抑えられている。これは、本実施例3では横波の振動が接触液16により減衰しないためであると考えられる。
なお、比較例2及び3において200MHz付近に見られるピークは、ZnO薄膜の[0001]軸が薄膜に垂直な方向からわずかに傾斜していることにより生じる横波によるものである。同様に、比較例1においても440MHz付近に、[0001]軸が薄膜に平行な方向からわずかに傾斜していることにより生じた縦波によるピークが見られるが、本実施例3ではこの縦波の振動は接触液16により減衰するため観測されない。また、本実施例3及び比較例1〜3において600MHz付近に見られるピークは、横波振動の3次モードによるものである。
In FIG. 6, the measurement result of the admittance characteristic of FBAR10 of the present Example 3 and FBAR of Comparative Examples 1-3 is shown. For the contact liquid 16 of Comparative Example 2, the same KF-96L-1cs silicone oil as in Example 3 was used. The resonance frequency is about 200 MHz for the FBARs of the present Example 3 and Comparative Example 1, and is about 450 MHz for the FBARs of Comparative Example 2 and Comparative Example 3. In Comparative Example 2 and Comparative Example 3 in which a longitudinal standing wave is formed, the admittance decreased by an order of magnitude when the contact liquid 16 (Comparative Example 2) was used instead of the air 19 (Comparative Example 3). This is because in the case of the comparative example 2, the vibration of the longitudinal wave formed when the vertically oriented ZnO thin film 14 is used is attenuated by the contact liquid 16. On the other hand, in this Example 3 and Comparative Example 1 in which a standing wave of a transverse wave is formed, a decrease in admittance when the contact liquid 16 (this Example 3) is used instead of the air 19 (Comparative Example 1). Is suppressed more than the longitudinal wave. This is considered to be because the vibration of the transverse wave is not attenuated by the contact liquid 16 in the third embodiment.
Note that the peak seen in the vicinity of 200 MHz in Comparative Examples 2 and 3 is due to a transverse wave that is generated when the [0001] axis of the ZnO thin film is slightly inclined from the direction perpendicular to the thin film. Similarly, in Comparative Example 1, a peak due to a longitudinal wave generated when the [0001] axis is slightly inclined from the direction parallel to the thin film is observed near 440 MHz. In Example 3, this longitudinal wave is observed. Is not observed because it is attenuated by the contact liquid 16. Moreover, the peak seen in the vicinity of 600 MHz in the present Example 3 and Comparative Examples 1 to 3 is due to the third-order mode of transverse wave vibration.

図7に、本実施例3及び比較例1について、共振周波数付近のアドミタンス特性のグラフの拡大図を示す。図7には、比較例1においてメインピークに多数のスプリアスモードが重畳されていることが示されている。それに対して本実施例3ではスプリアスモードによるピークは見られない。これは、本実施例ではスプリアスモードの中で圧電体膜に平行な方向以外に変位成分を持つ音波が接触液中に漏洩し、スプリアスモード振動が減衰することによる。   FIG. 7 shows an enlarged view of a graph of admittance characteristics in the vicinity of the resonance frequency for Example 3 and Comparative Example 1. FIG. 7 shows that in the comparative example 1, a large number of spurious modes are superimposed on the main peak. On the other hand, in Example 3, no peak due to the spurious mode is observed. This is because in this embodiment, a sound wave having a displacement component other than the direction parallel to the piezoelectric film in the spurious mode leaks into the contact liquid, and the spurious mode vibration is attenuated.

図8に、本実施例1〜3及び比較例1のFBARにおける共振周波数の温度による変化を測定した結果をグラフで示す。比較例1では測定を行った全温度範囲において、負の傾きを持つ一次関数で表される変化を示した。その対温度変化を表すTCF(Temperature coefficient of Frequency)の値は31.4ppm/℃である。ここでTCFは、このグラフの傾きを、基準温度(この例では25℃とした)における共振周波数の値で除したものである。それに対して本実施例3ではTCF値は24.3ppm/℃、本実施例2ではTCF値は19.7ppm/℃であり、いずれも比較例1よりも温度変化が小さい。更に、本実施例1では、25℃〜50℃の温度範囲において、共振周波数はほとんど変化しない。また、50℃〜80℃の温度範囲においては、他の例と同様に共振周波数は負の傾きを持つ一次関数で表される変化を示すが、TCF値は16.0ppm/℃であり、比較例1のものよりも小さい。以上より、測定を行った全温度範囲において、本実施例1〜3のFBAR10はいずれも比較例1のFBARよりも温度変化に対する安定性が高いといえる。また、本実施例1、本実施例2及び本実施例3を比較すると、接触液16の粘温度係数が高くなるほど温度安定性がより高くなるといえる。 In FIG. 8, the result of having measured the change with the temperature of the resonant frequency in FBAR of the Examples 1-3 and the comparative example 1 is shown with a graph. In Comparative Example 1, a change represented by a linear function having a negative slope was shown in the entire temperature range where the measurement was performed. The value of TCF (Temperature coefficient of Frequency) representing the change with respect to temperature is 31.4 ppm / ° C. Here, TCF is obtained by dividing the slope of this graph by the value of the resonance frequency at the reference temperature (25 ° C. in this example). In contrast, in Example 3, the TCF value is 24.3 ppm / ° C., and in Example 2, the TCF value is 19.7 ppm / ° C., both of which have a smaller temperature change than Comparative Example 1. Furthermore, in Example 1, the resonance frequency hardly changes in the temperature range of 25 ° C. to 50 ° C. In addition, in the temperature range of 50 ° C to 80 ° C, the resonance frequency shows a change represented by a linear function having a negative slope as in the other examples, but the TCF value is 16.0 ppm / ° C. Smaller than one. From the above, it can be said that all of the FBARs 10 of Examples 1 to 3 have higher stability against temperature change than the FBAR of Comparative Example 1 in the entire temperature range in which the measurement was performed. Further, the present embodiment 1, when comparing the embodiment 2 and the embodiment 3, it can be said that the higher the temperature stability viscosity temperature coefficient of the contact liquid 16 is high becomes higher.

本発明に係る薄膜共振器の他の実施例を図9〜図11に示す。
図9に示すFBAR10aは、容器17を用いずに、蓋41を用いて空洞12にのみ接触液16を封入したものである。それ以外の構成はFBAR10と同様である。このFBAR10’では、共振器本体はZnO薄膜14の一部及び下部電極13の一部のみが接触液16に接触する。このように共振器本体の一部のみが接触液に接触しているだけでも、共振周波数の対温度変化及びスプリアスモードを抑制するという本発明の効果を得ることができる。但し、より強くこれらの効果を得るためには、FBAR10のように、共振器本体のうちのより広い部分が接触液に接触することが望ましい。
Another embodiment of the thin film resonator according to the present invention is shown in FIGS.
The FBAR 10 a shown in FIG. 9 is one in which the contact liquid 16 is sealed only in the cavity 12 using the lid 41 without using the container 17. Other configurations are the same as those of the FBAR 10. In this FBAR 10 ′, only a part of the ZnO thin film 14 and a part of the lower electrode 13 are in contact with the contact liquid 16 in the resonator body. Thus, even if only a part of the resonator body is in contact with the contact liquid, the effect of the present invention can be obtained that suppresses the change in the resonance frequency with respect to temperature and the spurious mode. However, in order to obtain these effects more strongly, it is desirable that a wider part of the resonator body, like the FBAR 10, be in contact with the contact liquid.

図10に示すFBAR10bは、ZnO薄膜14の代わりに、[0001]方向が膜面に平行な1方向に配向したZnO薄膜141と、ZnO薄膜141とは180°異なる方向に[0001]方向が配向したZnO薄膜142の積層体14’を設けたものである。それ以外の構成はFBAR10と同様である。このFBAR10bと前述のFBAR10を比較すると、FBAR10ではZnO薄膜14の厚さの2倍の波長を有する1次モードの定在波が形成されるのに対して、FBAR10bでは積層体14’の厚さと同じ長さの波長を有する2次モードの定在波が形成されるため、ZnO薄膜14と積層体14’の厚さが同じであれば、FBAR10bの共振周波数はFBAR10のそれの2倍になる。従って、FBAR10bにより、共振器の機械的強度を低下させることなく、FBAR10よりも高い共振周波数を得ることができる。
また、積層体14’を更に複数積層させたものをZnO薄膜14の代わりに用いることもできる。その厚さをZnO薄膜14と同じ厚さにすることにより、更に共振周波数を高めることができる。
In the FBAR 10b shown in FIG. 10, instead of the ZnO thin film 14, the [0001] direction is oriented in a direction 180 ° different from the ZnO thin film 141 in which the [0001] direction is oriented in one direction parallel to the film surface. A laminated body 14 ′ of the ZnO thin film 142 is provided. Other configurations are the same as those of the FBAR 10. Comparing the FBAR 10b with the FBAR 10 described above, the FBAR 10 forms a standing wave of the first mode having a wavelength twice the thickness of the ZnO thin film 14, whereas the FBAR 10b has the thickness of the stacked body 14 '. Since a standing wave of a secondary mode having the same wavelength is formed, the resonance frequency of the FBAR 10b is twice that of the FBAR 10 if the thickness of the ZnO thin film 14 and the stacked body 14 'is the same. . Therefore, the FBAR 10b can obtain a higher resonance frequency than the FBAR 10 without reducing the mechanical strength of the resonator.
Moreover, what laminated | stacked more than one laminated body 14 'can also be used instead of the ZnO thin film 14. FIG. By making the thickness the same as that of the ZnO thin film 14, the resonance frequency can be further increased.

図11に、本発明の他の実施例であるSMR(Solidly Mounted Resonator)50を示す。このSMR50は、[0001]方向が膜面に平行な1方向に配向したZnO薄膜54の上下に下部電極53及び上部電極55を有し、下部電極53の下には、SiO2から成る低音響インピーダンス層511とMoから成る高音響インピーダンス層512を交互に多数積層した音響多層膜51を有する。低音響インピーダンス層511及び高音響インピーダンス層512はいずれも、ZnO薄膜54の厚さにより定まる共振周波数を有する超音波の、その層内における波長の1/4倍の厚さを有する。そして、これらZnO薄膜54、下部電極53、上部電極55及び音響多層膜51は容器57内に配置され、上部電極55に、FBAR10で用いたものと同じ接触液56を接触させている。
SMR50では、電極間に交流電圧を印加することにより生じるZnO薄膜54からの超音波は、各低音響インピーダンス層511と高音響インピーダンス層512の境界で反射され、それら反射波は互いに同位相になり打ち消し合わない。これにより、ZnO薄膜54の振動が外部に漏れることが抑えられる。そして、ZnO薄膜54、下部電極53、上部電極55から成る共振器本体のうちの1つの面に接触液が接しているため、FBAR10と同様の効果を得ることができる。
なお、前述の各種のFBARと同様に、ZnO薄膜54の代わりに、積層体14’やそれを複数積層させたものを用いることができる。
FIG. 11 shows an SMR (Solidly Mounted Resonator) 50 which is another embodiment of the present invention. This SMR50 is [0001] direction has a lower electrode 53 and upper electrode 55 above and below the ZnO thin film 54 oriented in one direction parallel to the film plane, under the lower electrode 53, a low sound of SiO 2 An acoustic multilayer film 51 in which a large number of high acoustic impedance layers 512 made of Mo and impedance layers 511 are alternately laminated is provided. Each of the low acoustic impedance layer 511 and the high acoustic impedance layer 512 has a thickness of 1/4 times the wavelength of the ultrasonic wave having a resonance frequency determined by the thickness of the ZnO thin film 54. The ZnO thin film 54, the lower electrode 53, the upper electrode 55, and the acoustic multilayer film 51 are arranged in a container 57, and the same contact liquid 56 as that used in the FBAR 10 is brought into contact with the upper electrode 55.
In the SMR 50, ultrasonic waves from the ZnO thin film 54 generated by applying an AC voltage between the electrodes are reflected at the boundary between each low acoustic impedance layer 511 and high acoustic impedance layer 512, and these reflected waves are in phase with each other. Do not cancel each other. Thereby, the vibration of the ZnO thin film 54 is suppressed from leaking to the outside. Since the contact liquid is in contact with one surface of the resonator body composed of the ZnO thin film 54, the lower electrode 53, and the upper electrode 55, the same effect as that of the FBAR 10 can be obtained.
Similar to the above-described various FBARs, a stacked body 14 ′ or a stack of a plurality of the stacked bodies 14 ′ can be used instead of the ZnO thin film 54.

ウルツ鉱構造を示す結晶構造図。The crystal structure figure which shows a wurtzite structure. 本発明に係る薄膜共振器の一実施例(FBAR10)を示す縦断面図。The longitudinal cross-sectional view which shows one Example (FBAR10) of the thin film resonator which concerns on this invention. 本実施例のFBAR10の製造方法を示す縦断面図。The longitudinal cross-sectional view which shows the manufacturing method of FBAR10 of a present Example. c軸が面内に配向したZnO薄膜を製造するための装置を示す縦断面図。The longitudinal cross-sectional view which shows the apparatus for manufacturing the ZnO thin film in which the c axis | shaft orientated in the surface. 比較例のFBARを示す縦断面図。The longitudinal cross-sectional view which shows FBAR of a comparative example. 本実施例3及び比較例1〜3のFBARのアドミタンス特性を示すグラフ。The graph which shows the admittance characteristic of FBAR of the present Example 3 and Comparative Examples 1-3. 図6のグラフの拡大図。The enlarged view of the graph of FIG. 本実施例1〜3及び比較例1のFBARにおける共振周波数の温度変化を示すグラフ。The graph which shows the temperature change of the resonant frequency in FBAR of the Examples 1-3 and the comparative example 1. FIG. 本発明の他の実施例である、空洞12にのみ接触液16を封入したFBAR10aを示す縦断面図。The longitudinal cross-sectional view which shows FBAR10a which enclosed the contact liquid 16 only in the cavity 12, which is the other Example of this invention. 本発明の他の実施例である、積層体14’を用いたFBAR10bを示す縦断面図。The longitudinal cross-sectional view which shows FBAR10b using the laminated body 14 'which is another Example of this invention. 本発明の他の実施例であるSMR50を示す縦断面図。The longitudinal cross-sectional view which shows SMR50 which is the other Example of this invention.

符号の説明Explanation of symbols

10、10a、10b…FBAR
11…Si基板
12…空洞
13、53…下部電極
14、141、142、54…ZnO薄膜
14’…積層体
15、55…上部電極
16、56…接触液
17、57…容器
181、182…端子
19…空気
21、22…マスク
30…マグネトロンスパッタリング装置
31…成膜室
32…マグネトロン回路
33…陰極
34…陽極
35…基板台
36…ZnOターゲット
37…ガス源
38…基板
39…原料流
41…蓋
50…SMR
51…音響多層膜
511…低音響インピーダンス層
512…高音響インピーダンス層
10, 10a, 10b ... FBAR
DESCRIPTION OF SYMBOLS 11 ... Si substrate 12 ... Cavity 13, 53 ... Lower electrode 14, 141, 142, 54 ... ZnO thin film 14 '... Laminated body 15, 55 ... Upper electrode 16, 56 ... Contact liquid 17, 57 ... Container 181, 182 ... Terminal DESCRIPTION OF SYMBOLS 19 ... Air 21, 22 ... Mask 30 ... Magnetron sputtering apparatus 31 ... Film formation chamber 32 ... Magnetron circuit 33 ... Cathode 34 ... Anode 35 ... Substrate stand 36 ... ZnO target 37 ... Gas source 38 ... Substrate 39 ... Raw material flow 41 ... Cover 50 ... SMR
51 ... Acoustic multilayer film 511 ... Low acoustic impedance layer 512 ... High acoustic impedance layer

Claims (7)

a)圧電体膜を上下電極の間に設けて成り、該電極間に交流電圧が印加されると該圧電体膜の厚み方向に伝播する横波の定在波が形成される共振器本体と、
b)温度上昇に伴い粘性係数が低下する特性を有し、前記共振器本体の少なくとも一部に接触する接触液と、
を備えることを特徴とする薄膜共振器。
a) A resonator body comprising a piezoelectric film provided between upper and lower electrodes, and a transverse wave standing wave propagating in the thickness direction of the piezoelectric film is formed when an AC voltage is applied between the electrodes;
b) having a characteristic that the viscosity coefficient decreases as the temperature rises, and a contact liquid that contacts at least a part of the resonator body;
A thin film resonator comprising:
前記圧電体膜が、ZnO及びAlNのいずれかから成り[0001]方向が膜面に略平行な1方向に配向したものであることを特徴とする請求項1に記載の薄膜共振器。   2. The thin film resonator according to claim 1, wherein the piezoelectric film is made of any one of ZnO and AlN and has a [0001] direction oriented in one direction substantially parallel to the film surface. 前記圧電体膜が、ZnO及びAlNのいずれかから成り[0001]方向が膜面に略平行な1方向に配向した第1圧電体膜と、材料及び厚さが第1圧電体膜と同じであり[0001]方向が第1圧電体膜と180°異なる方向に配向した第2圧電体膜と、を重ねた積層体から成ることを特徴とする請求項1に記載の薄膜共振器。   The piezoelectric film is made of either ZnO or AlN, and the [0001] direction is aligned in one direction substantially parallel to the film surface, and the material and thickness are the same as the first piezoelectric film. 2. The thin film resonator according to claim 1, comprising a laminated body in which a second [0001] direction and a second piezoelectric film oriented in a direction different from the first piezoelectric film by 180 ° are stacked. 前記積層体が第1圧電体膜及び第2圧電体膜を交互に複数重ねたものであることを特徴とする請求項3に記載の薄膜共振器。   4. The thin film resonator according to claim 3, wherein the laminated body is formed by alternately stacking a plurality of first piezoelectric films and second piezoelectric films. 前記接触液がシリコーンオイルであることを特徴とする請求項1〜4のいずれかに記載の薄膜共振器。   The thin film resonator according to claim 1, wherein the contact liquid is silicone oil. 前記共振器本体が空洞を有する基板上に固定されていることを特徴とする請求項1〜5のいずれかに記載の薄膜共振器。   The thin film resonator according to claim 1, wherein the resonator main body is fixed on a substrate having a cavity. 前記共振器本体が、共振器本体の共振周波数と同じ周波数を有する超音波の波長の1/4の厚さを有し音響インピーダンスの異なる2種類の層が交互に積層して成る音響多層膜に固定されていることを特徴とする請求項1〜5のいずれかに記載の薄膜共振器。   The resonator main body is an acoustic multilayer film in which two types of layers having a thickness of 1/4 of an ultrasonic wave having the same frequency as the resonance frequency of the resonator main body and having different acoustic impedances are alternately stacked. The thin film resonator according to claim 1, wherein the thin film resonator is fixed.
JP2006060351A 2006-03-06 2006-03-06 Thin film resonator Expired - Fee Related JP4849445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060351A JP4849445B2 (en) 2006-03-06 2006-03-06 Thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060351A JP4849445B2 (en) 2006-03-06 2006-03-06 Thin film resonator

Publications (3)

Publication Number Publication Date
JP2007243361A JP2007243361A (en) 2007-09-20
JP2007243361A5 JP2007243361A5 (en) 2009-04-23
JP4849445B2 true JP4849445B2 (en) 2012-01-11

Family

ID=38588480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060351A Expired - Fee Related JP4849445B2 (en) 2006-03-06 2006-03-06 Thin film resonator

Country Status (1)

Country Link
JP (1) JP4849445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002969B4 (en) * 2007-01-24 2017-12-21 Murata Mfg. Co., Ltd. Piezoelectric resonator and piezoelectric filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051262A (en) * 1996-04-16 1998-02-20 Matsushita Electric Ind Co Ltd Piezoelectric vibrator and its production
JP3947443B2 (en) * 2002-08-30 2007-07-18 Tdk株式会社 Electronic device substrate and electronic device
JP3561745B1 (en) * 2003-02-11 2004-09-02 関西ティー・エル・オー株式会社 Thin film manufacturing method
JP2005197983A (en) * 2004-01-07 2005-07-21 Tdk Corp Thin film bulk wave resonator

Also Published As

Publication number Publication date
JP2007243361A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
CN111162748B (en) Bulk acoustic wave resonator having electrode with void layer, filter, and electronic device
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US9748918B2 (en) Acoustic resonator comprising integrated structures for improved performance
JP5905677B2 (en) Piezoelectric thin film resonator and manufacturing method thereof
US7161447B2 (en) Piezoelectric resonator, piezoelectric filter, and communication apparatus
US9083302B2 (en) Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
JP5643056B2 (en) Elastic wave device
US8587391B2 (en) Acoustic coupling layer for coupled resonator filters and method of fabricating acoustic coupling layer
CN111245394B (en) Bulk acoustic wave resonator with electrode having void layer and temperature compensation layer, filter, and electronic device
US8508315B2 (en) Acoustically coupled resonator filter with impedance transformation ratio controlled by resonant frequency difference between two coupled resonators
JP6371518B2 (en) Piezoelectric thin film resonator, method for manufacturing the same, filter, and duplexer
US10367472B2 (en) Acoustic resonator having integrated lateral feature and temperature compensation feature
KR20130018399A (en) Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
JP2014121025A (en) Piezoelectric thin film resonator
JP2013005446A (en) Bulk acoustic resonator including non-piezoelectric layer
WO2003041273A1 (en) Filter device and method of fabricating a filter device
JP2002374144A (en) Thin-film piezoelectric resonator
CN111082776B (en) Bulk acoustic wave resonator having electrode with void layer, filter, and electronic device
US7961066B2 (en) Bulk acoustic wave resonator filter
JP4784815B2 (en) High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film
JP2019097145A (en) Composite substrate for surface acoustic wave element, and manufacturing method thereof
WO2021241696A1 (en) Frequency filter
JP4849445B2 (en) Thin film resonator
JP2005277454A (en) Piezoelectric resonator and electronic component provided with same
JP2006340007A (en) Thin-film bulk acoustic wave resonator, filter, and communication device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees