Nothing Special   »   [go: up one dir, main page]

JP4847052B2 - Gas-liquid separation method and apparatus - Google Patents

Gas-liquid separation method and apparatus Download PDF

Info

Publication number
JP4847052B2
JP4847052B2 JP2005171929A JP2005171929A JP4847052B2 JP 4847052 B2 JP4847052 B2 JP 4847052B2 JP 2005171929 A JP2005171929 A JP 2005171929A JP 2005171929 A JP2005171929 A JP 2005171929A JP 4847052 B2 JP4847052 B2 JP 4847052B2
Authority
JP
Japan
Prior art keywords
water level
pressure
pressure vessel
predetermined
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005171929A
Other languages
Japanese (ja)
Other versions
JP2006347779A (en
Inventor
憲司 樽家
昌規 岡部
孝治 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005171929A priority Critical patent/JP4847052B2/en
Publication of JP2006347779A publication Critical patent/JP2006347779A/en
Application granted granted Critical
Publication of JP4847052B2 publication Critical patent/JP4847052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水分を含む高圧水素ガスを、該高圧水素ガスと水とに分離する気液分離方法及び該気液分離方法に用いる気液分離装置に関するものである。   The present invention relates to a gas-liquid separation method for separating high-pressure hydrogen gas containing moisture into the high-pressure hydrogen gas and water, and a gas-liquid separation device used in the gas-liquid separation method.

近年、水の電解により水素ガスを製造する水素製造装置が用いられている。前記水素製造装置は、例えば、両面に触媒電極層を備える固体高分子膜と、該固体高分子膜の両側に相対向して設けられたカソード側給電体、アノード側給電体と、各給電体にそれぞれ積層されたセパレータとを備える構成を単セルとし、複数の該単セルを相互に積層した構成となっている。前記水素製造装置では、アノード側に水を供給すると共に、各給電体に通電することにより、供給された水が固体高分子電解質膜のアノード側の触媒電極層で電気分解され、水素イオン、電子、酸素ガスを生成する。前記水素イオンは、アノード側とカソード側との電位差により固体高分子電解質膜を透過してカソード側に移動し、カソード側の触媒電極層から電子を受け取って水素ガスとなる。この結果、前記水素製造装置では、カソード側に高圧水素ガスを得ることができる。   In recent years, hydrogen production apparatuses that produce hydrogen gas by electrolysis of water have been used. The hydrogen production apparatus includes, for example, a solid polymer membrane having catalyst electrode layers on both sides, a cathode-side power feeding body, an anode-side power feeding body provided on opposite sides of the solid polymer film, and each power feeding body. A structure including a separator stacked on each other is a single cell, and a plurality of the single cells are stacked on each other. In the hydrogen production apparatus, water is supplied to the anode side, and by supplying current to each power feeding body, the supplied water is electrolyzed in the catalyst electrode layer on the anode side of the solid polymer electrolyte membrane, and hydrogen ions, electrons To produce oxygen gas. The hydrogen ions permeate the solid polymer electrolyte membrane due to the potential difference between the anode side and the cathode side, move to the cathode side, receive electrons from the catalyst electrode layer on the cathode side, and become hydrogen gas. As a result, in the hydrogen production apparatus, high-pressure hydrogen gas can be obtained on the cathode side.

ところで、前記水素イオンは、前記固体高分子電解質膜を透過する際に水分子を伴うので、前記高圧水素ガスは水分を含んでいる。従って、前記高圧水素ガスを使用する際には、気液分離を行って、前記水分を除去する必要がある。   By the way, since the hydrogen ions are accompanied by water molecules when passing through the solid polymer electrolyte membrane, the high-pressure hydrogen gas contains moisture. Therefore, when using the high-pressure hydrogen gas, it is necessary to perform gas-liquid separation to remove the moisture.

前記高圧水素ガスの気液分離装置として、例えば、前記水素製造装置で得られた前記高圧水素ガスを耐圧容器に導入し、該耐圧容器内で重力により高圧水素ガスと水とに分離する装置が知られている。前記気液分離装置は、前記耐圧容器の上部に水素ガス取出口を備えると共に、底部には排水導管を備えており、該耐圧容器内に所定量の水が溜まると、これを水位検出手段により検知して、該排水導管に設けられた電磁弁を開弁し、該耐圧容器内の水を該排水導管から外部に排出するようになっている(例えば特許文献1参照)。   As the high-pressure hydrogen gas-liquid separator, for example, an apparatus that introduces the high-pressure hydrogen gas obtained in the hydrogen production apparatus into a pressure-resistant vessel and separates it into high-pressure hydrogen gas and water by gravity in the pressure-resistant vessel. Are known. The gas-liquid separator is provided with a hydrogen gas outlet at the top of the pressure vessel and a drainage conduit at the bottom, and when a predetermined amount of water accumulates in the pressure vessel, the water level detection means It detects, the solenoid valve provided in this drainage pipe is opened, and the water in this pressure vessel is discharged outside from this drainage pipe (for example, refer to patent documents 1).

ところが、前記耐圧容器には前記高圧水素ガスが貯留されているため、前述のようにして該耐圧容器内の水を排出しようとすると、前記排水導管から高圧の水が勢いよく噴出することとなり、前記電磁弁や該排水導管に接続された配管等の装置を損傷する虞があるとの問題がある。また、前記耐圧容器では内部に水が無くなると、前記排水導管から前記高圧水素ガスが漏出するので、該耐圧容器内の水が全て排出される前に、前記電磁弁を閉弁する必要があるが、前記排水導管から高圧の水が勢いよく噴出する状態では、水位が急速に変動するため、該電磁弁を適時に閉弁することが難しいとの問題もある。   However, since the high-pressure hydrogen gas is stored in the pressure vessel, when trying to discharge the water in the pressure vessel as described above, high-pressure water will be ejected vigorously from the drainage conduit, There exists a problem that there exists a possibility of damaging apparatuses, such as piping connected to the said solenoid valve and this drainage conduit | pipe. In addition, when there is no water in the pressure vessel, the high-pressure hydrogen gas leaks from the drainage conduit. Therefore, it is necessary to close the solenoid valve before all the water in the pressure vessel is discharged. However, in a state where high-pressure water is ejected vigorously from the drainage conduit, there is also a problem that it is difficult to close the solenoid valve in a timely manner because the water level fluctuates rapidly.

前記問題を解決するために、前記排水導管をバッファタンクに接続し該バッファタンクで一次減圧を行った後に排水したり、前記耐圧容器の横断面積を大きくして水位の変動を緩やかにすることが行われている。   In order to solve the above problem, the drainage conduit is connected to a buffer tank and drained after primary pressure reduction in the buffer tank, or the cross-sectional area of the pressure vessel is increased to moderate fluctuations in the water level. Has been done.

しかしながら、前述の手段では、いずれも装置の大型化が避けられないとの不都合がある。
特開平6−74033号公報(段落番号0011、0014、図1)
However, all of the above-mentioned means have the disadvantage that an increase in the size of the apparatus cannot be avoided.
JP-A-6-74033 (paragraph numbers 0011 and 0014, FIG. 1)

本発明は、かかる不都合を解消して、高圧水素ガスから気液分離された水を、大型の装置を用いることなく、減圧して緩やかに排出することができる気液分離方法を提供することを目的とする。   The present invention provides a gas-liquid separation method that eliminates such inconveniences and can slowly discharge water separated from high-pressure hydrogen gas under reduced pressure without using a large apparatus. Objective.

また、本発明の目的は、前記気液分離方法に用いられる気液分離装置を提供することにもある。   Another object of the present invention is to provide a gas-liquid separator used in the gas-liquid separation method.

かかる目的を達成するために、本発明の方法の第1の態様は、水分を含む高圧水素ガスを耐圧容器内に導入して、重力により該高圧水素ガスと水とに分離し、該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第2の所定の水位に達したときに高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで該耐圧容器内の水を排出する気液分離方法において、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管に、第1の所定の圧力以上で開弁する第1の背圧弁と、第1の背圧弁の下流側に設けられた電磁弁とを備えると共に、該耐圧容器の水が貯留される領域に接続された第2の導管に、第1の所定の圧力よりも高い第2の所定の圧力以上で開弁する第2の背圧弁を備え、該耐圧容器内の水位が第1の所定の水位となったときに、該電磁弁を開弁して第1の背圧弁を介して第1の導管から高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに該電磁弁を閉弁して高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで、第2の背圧弁を介して第2の導管から該耐圧容器内の水を排出することを特徴とする。   In order to achieve such an object, the first aspect of the method of the present invention is to introduce a high-pressure hydrogen gas containing moisture into a pressure-resistant vessel and separate the high-pressure hydrogen gas and water by gravity, The high-pressure hydrogen gas is taken out until the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level when the water level in the pressure vessel is equal to or higher than the first predetermined water level; When the water level in the pressure vessel reaches the second predetermined water level, the extraction of the high-pressure hydrogen gas is stopped, and the water in the pressure vessel is reduced until the water level in the pressure vessel drops to the first predetermined water level. In the gas-liquid separation method for discharging, a first back pressure valve that opens at a first predetermined pressure or higher to a first conduit connected to a region in which the high-pressure hydrogen gas of the pressure vessel is stored; And a solenoid valve provided on the downstream side of the back pressure valve, and water in the pressure vessel The second conduit connected to the region to be retained is provided with a second back pressure valve that opens at a second predetermined pressure higher than the first predetermined pressure, and the water level in the pressure vessel is When the predetermined water level reaches 1, the electromagnetic valve is opened and high-pressure hydrogen gas is taken out from the first conduit through the first back pressure valve, and the water level in the pressure vessel is set to the first predetermined level. When the second predetermined water level higher than the water level is reached, the solenoid valve is closed to stop taking out the high-pressure hydrogen gas until the water level in the pressure vessel drops to the first predetermined water level. The water in the pressure vessel is discharged from the second conduit through the second back pressure valve.

前記第1の態様の方法は、水分を含む高圧水素ガスを導入して、重力により高圧水素ガスと水とに分離する耐圧容器と、該耐圧容器内の水位を検出する水位検出手段と、該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、該耐圧容器から高圧水素ガスを取り出す水素取出手段と、該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに、該耐圧容器内の水位が第1の所定の水位に低下するまで、該耐圧容器から水を排出する排水手段とを備える気液分離装置において、該水素取出手段は、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管と、第1の導管に設けられ第1の所定の圧力以上で開弁する第1の背圧弁と、第1の導管の第1の背圧弁の下流側に設けられ、該水位検出手段により検出される該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位となったときに開弁し、該耐圧容器内の水位が第2の所定の水位に達したときに閉弁する電磁弁とを備え、該排水手段は、該耐圧容器の水が貯留される領域に接続された第2の導管と、第2の導管に設けられ、第1の所定の圧力よりも高い第2の所定の圧力以上で開弁する第2の背圧弁とを備える気液分離装置により、実施することができる。   The method of the first aspect includes a pressure vessel that introduces high-pressure hydrogen gas containing moisture and separates it into high-pressure hydrogen gas and water by gravity, water level detection means for detecting the water level in the pressure vessel, and When the water level in the pressure vessel detected by the water level detection means is equal to or higher than the first predetermined water level, the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level. Until a hydrogen extraction means for extracting high-pressure hydrogen gas from the pressure vessel, and a water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level higher than the first predetermined water level. In the gas-liquid separator comprising a drainage means for discharging water from the pressure vessel until the water level in the pressure vessel drops to a first predetermined water level, the hydrogen extraction means is a high-pressure hydrogen in the pressure vessel A first lead connected to the area where the gas is stored; A first back pressure valve provided in the first conduit and opened at a pressure equal to or higher than the first predetermined pressure, and provided downstream of the first back pressure valve of the first conduit and detected by the water level detecting means When the water level in the pressure vessel detected by the water level detecting means reaches the first predetermined water level, the valve is opened, and when the water level in the pressure vessel reaches the second predetermined water level. An electromagnetic valve that closes, and the drainage means is provided in a second conduit connected to a region in which the water in the pressure-resistant container is stored, and is provided in the second conduit, and is more than a first predetermined pressure. This can be implemented by a gas-liquid separation device including a second back pressure valve that opens at a high second predetermined pressure or higher.

前記気液分離装置では、前記水位検出手段により検出される前記耐圧容器内の水位が、低水位である第1の所定の水位となったときに、前記電磁弁を開弁する。このとき、前記第1の導管に設けられた第1の背圧弁と、前記第2の導管に設けられた第2の背圧弁とでは、第1の背圧弁の方が低い圧力(第1の所定圧力)で開くように設定されている。そこで、前記耐圧容器内の高圧水素ガスの圧力が第1の所定圧力に達するたびに、第1の背圧弁が開弁し、断続的に前記高圧水素ガスが第1の背圧弁を介して、前記第1の導管から該耐圧容器の外部に取出される。   In the gas-liquid separation device, the electromagnetic valve is opened when the water level in the pressure vessel detected by the water level detection means becomes a first predetermined water level that is a low water level. At this time, in the first back pressure valve provided in the first conduit and the second back pressure valve provided in the second conduit, the first back pressure valve has a lower pressure (the first back pressure valve). It is set to open at a predetermined pressure. Therefore, each time the pressure of the high-pressure hydrogen gas in the pressure-resistant container reaches the first predetermined pressure, the first back pressure valve is opened, and the high-pressure hydrogen gas is intermittently passed through the first back pressure valve, The pressure vessel is taken out from the first conduit.

この間、前記耐圧容器内では、該耐圧容器内に導入される高圧水素ガスから水分を分離する気液分離が行われており、該耐圧容器内の水位は次第に上昇する。そして、前記水位検出手段により検出される前記耐圧容器内の水位が、高水位である第2の所定の水位に達すると、前記電磁弁が閉弁され、前記第1の導管からの前記高圧水素ガスの取り出しが停止される。   During this time, gas-liquid separation for separating moisture from the high-pressure hydrogen gas introduced into the pressure vessel is performed in the pressure vessel, and the water level in the pressure vessel gradually rises. When the water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level that is a high water level, the electromagnetic valve is closed and the high-pressure hydrogen from the first conduit is closed. Gas extraction is stopped.

すると、前記耐圧容器内の圧力が高まり、第1の所定圧力よりも高圧である第2の所定圧力に達するたびに、第2の背圧弁が開弁し、断続的に該耐圧容器内の水が第2の背圧弁を介して、前記第2の導管から該耐圧容器の外部に排出される。前記水の排出は、前記耐圧容器内の水位が、低水位である第1の所定の水位に低下するまで続けられる。   Then, every time the pressure in the pressure vessel increases and reaches a second predetermined pressure that is higher than the first predetermined pressure, the second back pressure valve opens, and water in the pressure vessel is intermittently opened. Is discharged from the second conduit to the outside of the pressure vessel through the second back pressure valve. The discharge of water continues until the water level in the pressure vessel drops to a first predetermined water level that is a low water level.

そして、前記耐圧容器内の水位が第1の所定の水位まで低下すると、再び前記電磁弁が開弁されて、前記第1の導管からの前記高圧水素ガスの取り出しが開始され、前述の作動が繰り返される。   When the water level in the pressure vessel drops to the first predetermined water level, the electromagnetic valve is opened again, and the extraction of the high-pressure hydrogen gas from the first conduit is started. Repeated.

前記気液分離装置によれば、前記耐圧容器内の水は、前記高圧水素ガスの取り出しに用いられる第1の背圧弁が開弁する圧力よりも高い圧力で開弁する第2の背圧弁により排出されるので、該耐圧容器内の高圧水素ガスの圧力よりも低い圧力で排出することができる。また、前記気液分離装置によれば、前記耐圧容器内の水は、前記第2の背圧弁を介して断続的に排出されるので、水位の制御を容易に行うことができる。   According to the gas-liquid separator, the water in the pressure-resistant vessel is supplied by the second back pressure valve that opens at a pressure higher than the pressure at which the first back pressure valve used for taking out the high-pressure hydrogen gas opens. Since it is discharged, it can be discharged at a pressure lower than the pressure of the high-pressure hydrogen gas in the pressure vessel. Further, according to the gas-liquid separator, the water in the pressure vessel is intermittently discharged through the second back pressure valve, so that the water level can be easily controlled.

また、本発明の方法の第2の態様は、水分を含む高圧水素ガスを耐圧容器内に導入して、重力により該高圧水素ガスと水とに分離し、該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第2の所定の水位に達したときに高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで該耐圧容器内の水を排出する気液分離方法において、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管に、所定の圧力以上で開弁する背圧弁を備えると共に、該耐圧容器の水が貯留される領域に接続された第2の導管に、絞り部と、該絞り部の下流側に設けられた電磁弁とを備え、該耐圧容器内の水位が第1の所定の水位となったときに、該電磁弁を閉弁して該背圧弁を介して第1の導管から高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに該電磁弁を開弁して高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで、該絞り部を介して第2の導管から該耐圧容器内の水を排出することを特徴とする。   In the second aspect of the method of the present invention, high-pressure hydrogen gas containing moisture is introduced into a pressure-resistant vessel and separated into the high-pressure hydrogen gas and water by gravity, and the water level in the pressure-resistant vessel is the first level. The high pressure hydrogen gas is taken out until the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level, and the water level in the pressure vessel is A gas-liquid separation method that stops taking out the high-pressure hydrogen gas when the second predetermined water level is reached and discharges the water in the pressure vessel until the water level in the pressure vessel drops to the first predetermined water level. In the pressure vessel, the first conduit connected to the region where the high-pressure hydrogen gas is stored is provided with a back pressure valve that opens at a predetermined pressure or higher, and connected to the region where the water in the pressure vessel is stored. The second conduit is provided with a throttle part and downstream of the throttle part A magnetic valve, and when the water level in the pressure vessel reaches a first predetermined water level, the solenoid valve is closed and high-pressure hydrogen gas is taken out from the first conduit via the back pressure valve. When the water level in the pressure vessel reaches a second predetermined water level higher than the first predetermined water level, the solenoid valve is opened to stop taking out high-pressure hydrogen gas, and the water level in the pressure vessel is Until the water level drops to the first predetermined water level, the water in the pressure vessel is discharged from the second conduit through the throttle.

前記第2の態様の方法は、水分を含む高圧水素ガスを導入して、重力により高圧水素ガスと水とに分離する耐圧容器と、該耐圧容器内の水位を検出する水位検出手段と、該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、該耐圧容器から高圧水素を取り出す水素取出手段と、該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに、該耐圧容器内の水位が第1の所定の水位に低下するまで、該耐圧容器から水を排出する排水手段とを備える気液分離装置において、該水素取出手段は、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管と、第1の導管に設けられ所定の圧力以上で開弁する背圧弁とを備え、該排出手段は、該耐圧容器の水が貯留される領域に接続された第2の導管と、第2の導管に設けられた絞り部と、第2の導管の該絞り部の下流側に設けられ、該水位検出手段により検出される該耐圧容器内の水位が第2の所定の水位に達したときに開弁し、該耐圧容器内の水位が第1の所定の水位まで低下したときに閉弁する電磁弁とを備える気液分離装置により、実施することができる。   The method of the second aspect includes a pressure vessel that introduces high-pressure hydrogen gas containing moisture and separates it into high-pressure hydrogen gas and water by gravity, water level detection means that detects the water level in the pressure vessel, and When the water level in the pressure vessel detected by the water level detection means is equal to or higher than the first predetermined water level, the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level. Until when the hydrogen extraction means for extracting high-pressure hydrogen from the pressure vessel and the water level in the pressure vessel detected by the water level detection means has reached a second predetermined water level higher than the first predetermined water level, In the gas-liquid separator comprising a drain means for discharging water from the pressure vessel until the water level in the pressure vessel drops to a first predetermined water level, the hydrogen extraction means is a high-pressure hydrogen gas in the pressure vessel A first conduit connected to an area where A back pressure valve that is provided in the first conduit and opens at a pressure equal to or higher than a predetermined pressure, and the discharge means includes a second conduit connected to a region in which the water in the pressure vessel is stored, and a second conduit And a throttle part provided on the downstream side of the throttle part of the second conduit, and opened when the water level in the pressure vessel detected by the water level detecting means reaches a second predetermined water level. The gas-liquid separator includes a solenoid valve that is closed when the water level in the pressure-resistant vessel is lowered to the first predetermined water level.

前記気液分離装置では、前記水位検出手段により検出される前記耐圧容器内の水位が、低水位である第1の所定の水位まで低下すると、前記電磁弁が閉弁される。前記電磁弁を閉弁すると、前記耐圧容器内の圧力が高まるので、所定の圧力に達するたびに、第1の導管に設けられた背圧弁が開弁し、断続的に前記高圧水素ガスが該背圧弁を介して、前記第1の導管から該耐圧容器の外部に取出される。   In the gas-liquid separation device, the electromagnetic valve is closed when the water level in the pressure-resistant container detected by the water level detection means falls to a first predetermined water level that is a low water level. When the solenoid valve is closed, the pressure in the pressure-resistant container increases, so that whenever a predetermined pressure is reached, the back pressure valve provided in the first conduit is opened, and the high-pressure hydrogen gas is intermittently transferred to the pressure valve. The pressure vessel is taken out from the first conduit through a back pressure valve.

この間、前記耐圧容器内では、該耐圧容器内に導入される高圧水素ガスから水分を分離する気液分離が行われており、該耐圧容器内の水位は次第に上昇する。そして、前記水位検出手段により検出される前記耐圧容器内の水位が、高水位である第2の所定の水位に達すると、前記電磁弁が開弁され、該耐圧容器内の水が第2の導管から排出され始める。このとき、第2の導管には、前記電磁弁の上流側に絞り部が設けられている。従って、前記水は該絞り部を介して排出されることとなり、減圧されると共に、流量が制限される。一方、前記耐圧容器内の水が排出されると、該耐圧容器内の圧力が下がるので、前記背圧弁は閉弁され、前記第1の導管からの前記高圧水素ガスの取り出しが停止される。   During this time, gas-liquid separation for separating moisture from the high-pressure hydrogen gas introduced into the pressure vessel is performed in the pressure vessel, and the water level in the pressure vessel gradually rises. When the water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level that is a high water level, the electromagnetic valve is opened, and the water in the pressure vessel is It begins to drain from the conduit. At this time, the second conduit is provided with a throttle portion on the upstream side of the electromagnetic valve. Therefore, the water is discharged through the throttle, and the pressure is reduced and the flow rate is limited. On the other hand, when the water in the pressure vessel is discharged, the pressure in the pressure vessel is lowered, so that the back pressure valve is closed and the extraction of the high-pressure hydrogen gas from the first conduit is stopped.

前記水の排出は、前記耐圧容器内の水位が、低水位である第1の所定の水位に低下するまで続けられる。そして、前記耐圧容器内の水位が第1の所定の水位まで低下すると、再び前記電磁弁が閉弁され、前記第1の導管からの前記高圧水素ガスの取り出しが開始され、前述の作動が繰り返される。   The discharge of water continues until the water level in the pressure vessel drops to a first predetermined water level that is a low water level. When the water level in the pressure vessel drops to the first predetermined water level, the solenoid valve is closed again, the extraction of the high-pressure hydrogen gas from the first conduit is started, and the above operation is repeated. It is.

前記気液分離装置によれば、前記耐圧容器内の水は、前記絞り部を介して排出されるので、該耐圧容器内の高圧水素ガスの圧力よりも低い圧力で排出することができる。また、前記気液分離装置によれば、前記耐圧容器内の水は、前記絞り部により流量が制限されるので水位の変動が緩やかになり、水位の制御を容易に行うことができる。   According to the gas-liquid separator, the water in the pressure vessel is discharged through the throttling portion, so that it can be discharged at a pressure lower than the pressure of the high-pressure hydrogen gas in the pressure vessel. Further, according to the gas-liquid separation device, the flow rate of the water in the pressure vessel is limited by the throttling portion, so that the fluctuation of the water level becomes gentle, and the water level can be easily controlled.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の気液分離装置の概略の構成を示す説明的断面、図2は本実施形態の気液分離装置の第1の態様の構成を示す説明的断面、図3は本実施形態の気液分離装置の第2の態様の構成を示す説明的断面である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing a schematic configuration of the gas-liquid separation device of the present embodiment, FIG. 2 is an explanatory cross-section showing the configuration of the first aspect of the gas-liquid separation device of the present embodiment, and FIG. It is explanatory drawing which shows the structure of the 2nd aspect of the gas-liquid separation apparatus of a form.

図1に示す本実施形態の気液分離装置は、水素製造装置1で製造される水分を含む高圧水素ガスを、高圧水素ガスと水とに分離するために用いられるものである。   The gas-liquid separator of this embodiment shown in FIG. 1 is used to separate high-pressure hydrogen gas containing moisture produced by the hydrogen production apparatus 1 into high-pressure hydrogen gas and water.

水素製造装置1は、固体高分子電解質膜2と、その両側に相対向して設けられたカソード側給電体3、アノード側給電体4と、各給電体3,4にそれぞれ積層されたカソード側セパレータ5、アノード側セパレータ6とを備える単セル7により構成されている。水素製造装置1では、例えば2つの単セル7,7が積層されて2層構成のスタックを形成している。単セル7,7は、一方の単セル7のカソード側セパレータ5に、他方の単セル7のアノード側セパレータ6が積層されている。   The hydrogen production apparatus 1 includes a solid polymer electrolyte membrane 2, cathode-side power feeders 3, anode-side power feeders 4 provided opposite to each other, and cathode sides stacked on the power feeders 3, 4, respectively. The unit cell 7 includes a separator 5 and an anode-side separator 6. In the hydrogen production apparatus 1, for example, two single cells 7 and 7 are stacked to form a two-layer stack. In the single cells 7, the anode separator 6 of the other single cell 7 is laminated on the cathode separator 5 of the single cell 7.

各単セル7において、カソード側セパレータ5は、カソード側給電体3が露出する流体通路8と、流体通路8に連通する水素取出口9とを備え、アノード側セパレータ6は、アノード側給電体4が露出する流体通路10と、流体通路10の一方の端部に連通する給水口11と、流体通路10の他方の端部に連通する排水口12とを備えている。   In each single cell 7, the cathode-side separator 5 includes a fluid passage 8 in which the cathode-side power feeder 3 is exposed, and a hydrogen outlet 9 that communicates with the fluid passage 8. The anode-side separator 6 includes the anode-side power feeder 4. Are exposed to the fluid passage 10, a water supply port 11 communicating with one end of the fluid passage 10, and a drain port 12 communicating with the other end of the fluid passage 10.

単セル7,7は、その両側で絶縁部材13,13を介してエンドプレート14,14に挟持されており、エンドプレート14,14に取着されたボルト15とナット16とにより締め付けられ、相互に密着せしめられて固定されている。   The single cells 7 and 7 are sandwiched between end plates 14 and 14 via insulating members 13 and 13 on both sides, and are fastened by bolts 15 and nuts 16 attached to the end plates 14 and 14. It is attached and fixed to.

尚、水素取出口9、給水口11、排水口12は、いずれも、各単セル7,7間で連通すると共に、絶縁部材13、エンドプレート14を貫通して設けられている。   The hydrogen outlet 9, the water inlet 11, and the drain 12 are all provided between the single cells 7 and 7, and are provided through the insulating member 13 and the end plate 14.

水素製造装置1において、固体高分子電解質膜2は陽イオン透過膜であり、例えばNafion(登録商標、デュポン社製)、Aciplex(商品名、旭化成株式会社製)等を用いることができる。固体高分子電解質膜2は、アノード側には例えばRuIrFeO触媒を含む電極触媒層(図示せず)を備え、カソード側には例えば白金触媒を含む電極触媒層(図示せず)を備えている。 In the hydrogen production apparatus 1, the solid polymer electrolyte membrane 2 is a cation permeable membrane. For example, Nafion (registered trademark, manufactured by DuPont), Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.), or the like can be used. The solid polymer electrolyte membrane 2 includes an electrode catalyst layer (not shown) containing, for example, a RuIrFeO X catalyst on the anode side, and an electrode catalyst layer (not shown) containing, for example, a platinum catalyst, on the cathode side. .

水素製造装置1では、給水口11からアノード側セパレータ6の流体通路10に水を供給すると共に、カソード側セパレータ5とアノード側セパレータ6とを介してカソード側給電体3とアノード側給電体4とにそれぞれ通電することにより、前記水の電気分解を行う。前記電気分解によれば、流体通路10から供給される水が固体高分子電解質膜2のアノード側の触媒電極層で電気分解され、水素イオン、電子、酸素ガスを生成する。前記水素イオンは、水分子を伴って固体高分子電解質膜2を透過してカソード側に移動し、カソード側の触媒電極層から電子を受け取って水素ガスとなる。そして、前記水素ガスはカソード側給電体3を通ってカソード側セパレータ5の流体通路8に移動する。   In the hydrogen production apparatus 1, water is supplied from the water supply port 11 to the fluid passage 10 of the anode separator 6, and the cathode side feeder 3 and the anode side feeder 4 are connected via the cathode side separator 5 and the anode side separator 6. The water is electrolyzed by energizing each of them. According to the electrolysis, water supplied from the fluid passage 10 is electrolyzed by the catalyst electrode layer on the anode side of the solid polymer electrolyte membrane 2 to generate hydrogen ions, electrons, and oxygen gas. The hydrogen ions permeate the solid polymer electrolyte membrane 2 with water molecules and move to the cathode side, receive electrons from the catalyst electrode layer on the cathode side, and become hydrogen gas. The hydrogen gas moves to the fluid passage 8 of the cathode separator 5 through the cathode power feeder 3.

ここで、前記水素イオンは、アノード側とカソード側との電位差により固体高分子電解質膜2を透過してカソード側に移動するので、流体通路8に例えば36MPaの高圧水素ガスが得られる。また、前記水素イオンは、前述のように、固体高分子電解質膜2を透過する際に水分子を伴うので、流体通路8に得られた前記高圧水素ガスは水分を含んでいる。   Here, since the hydrogen ions permeate the solid polymer electrolyte membrane 2 due to the potential difference between the anode side and the cathode side and move to the cathode side, a high-pressure hydrogen gas of 36 MPa, for example, is obtained in the fluid passage 8. Further, as described above, since the hydrogen ions are accompanied by water molecules when passing through the solid polymer electrolyte membrane 2, the high-pressure hydrogen gas obtained in the fluid passage 8 contains moisture.

前記水分を含む高圧水素ガスは、水素取出口9から取出され水素導管17を介して、気液分離装置18に導入される。尚、排水口12からは、固体高分子電解質膜2のアノード側で生成した酸素ガスを含む水が取出される。   The high-pressure hydrogen gas containing moisture is taken out from the hydrogen outlet 9 and introduced into the gas-liquid separator 18 through the hydrogen conduit 17. Note that water containing oxygen gas generated on the anode side of the solid polymer electrolyte membrane 2 is taken out from the drain port 12.

そして、気液分離装置18内では、前記水分を含む高圧水素ガスが、重力により高圧水素ガスと水とに分離される。前記水分が除去された高圧水素ガスは、水素取出手段19により気液分離装置18から取出され、前記水は、排水手段20により排出される。   In the gas-liquid separator 18, the high-pressure hydrogen gas containing moisture is separated into high-pressure hydrogen gas and water by gravity. The high-pressure hydrogen gas from which the moisture has been removed is taken out from the gas-liquid separator 18 by the hydrogen take-out means 19, and the water is discharged by the drain means 20.

本実施形態の気液分離装置18は、図2に示す第1の態様の気液分離装置18aまたは、図3に示す第2の態様の気液分離装置18bを用いることができる。   As the gas-liquid separator 18 of the present embodiment, the gas-liquid separator 18a of the first mode shown in FIG. 2 or the gas-liquid separator 18b of the second mode shown in FIG. 3 can be used.

本実施形態の第1の態様の気液分離装置18aは、図2に示すように、水素導管17が接続されている耐圧容器21と、耐圧容器21内の水位を検出する水位センサ22と、耐圧容器21の天井部に接続された水素取出手段19としての水素取出導管23と、耐圧容器21の底部に接続された排水手段20としての排水導管24とを備えている。また、水素取出導管23には、第1背圧弁25が備えられると共に、第1背圧弁25の下流側に電磁弁26が備えられており、排出導管24には、第2背圧弁27が備えられている。   As shown in FIG. 2, the gas-liquid separation device 18a of the first aspect of the present embodiment includes a pressure vessel 21 to which the hydrogen conduit 17 is connected, a water level sensor 22 that detects the water level in the pressure vessel 21, A hydrogen extraction conduit 23 as the hydrogen extraction means 19 connected to the ceiling portion of the pressure vessel 21 and a drainage conduit 24 as the drainage means 20 connected to the bottom of the pressure vessel 21 are provided. The hydrogen extraction conduit 23 is provided with a first back pressure valve 25, an electromagnetic valve 26 is provided on the downstream side of the first back pressure valve 25, and the discharge conduit 24 is provided with a second back pressure valve 27. It has been.

第1背圧弁25は例えば35MPaで開弁するように設定されており、第2背圧弁27は第1背圧弁25よりも高圧で、例えば36MPaで開弁するように設定されている。電磁弁26は、水位センサ22の検出信号を受けて作動し、水位センサ22が検出する水位が所定の低水位になったときに開弁し、所定の高水位になったときに閉弁する。   The first back pressure valve 25 is set to open at, for example, 35 MPa, and the second back pressure valve 27 is set to be higher in pressure than the first back pressure valve 25, for example, at 36 MPa. The electromagnetic valve 26 operates in response to a detection signal from the water level sensor 22 and opens when the water level detected by the water level sensor 22 reaches a predetermined low water level and closes when the water level reaches a predetermined high water level. .

次に、気液分離装置18aの作動について説明する。   Next, the operation of the gas-liquid separator 18a will be described.

気液分離装置18aでは、水素製造装置1で製造された水分を含む高圧水素ガスが、水素導管17を介して耐圧容器21に導入され、耐圧容器21内で重力により、高圧水素ガスと液体の水とに分離される。このとき、耐圧容器21内には、前記水分が除去された高圧水素ガスが排出導管24から漏出することを防止するために、予め所定の低水位まで水が供給されており、該水位を水位センサ22が検出することにより、電磁弁26が開弁された状態となっている。この結果、高圧水素ガスは耐圧容器21の上部に、液体の水は底部に、それぞれ貯留される。   In the gas-liquid separation device 18a, the high-pressure hydrogen gas containing water produced by the hydrogen production device 1 is introduced into the pressure vessel 21 through the hydrogen conduit 17, and the high-pressure hydrogen gas and the liquid are separated by gravity in the pressure vessel 21. Separated into water. At this time, in order to prevent the high-pressure hydrogen gas from which the moisture has been removed from leaking from the discharge conduit 24, water is supplied in advance to the predetermined low water level, and the water level is reduced to the water level. When the sensor 22 detects, the electromagnetic valve 26 is opened. As a result, the high-pressure hydrogen gas is stored at the top of the pressure-resistant vessel 21 and the liquid water is stored at the bottom.

電磁弁26が開弁されているとき、第1背圧弁25は第2背圧弁27より低圧の35MPaで開弁するように設定されている。従って、第1背圧弁25は耐圧容器21内の圧力が35MPaに達する度に開弁し、前記水分が除去された高圧水素ガスが、第1背圧弁25を介して水素取出導管23から断続的に取出される。このとき、第2背圧弁27は閉弁している。   When the electromagnetic valve 26 is opened, the first back pressure valve 25 is set to open at 35 MPa, which is lower than the second back pressure valve 27. Accordingly, the first back pressure valve 25 is opened every time the pressure in the pressure vessel 21 reaches 35 MPa, and the high-pressure hydrogen gas from which the moisture has been removed is intermittently supplied from the hydrogen extraction conduit 23 via the first back pressure valve 25. To be taken out. At this time, the second back pressure valve 27 is closed.

前述のようにして、前記水分が除去された高圧水素ガスが取出される間、耐圧容器21内では、水素導管17を介して導入される前記水分を含む高圧水素ガスを、高圧水素ガスと水分とに分離する気液分離が継続されており、耐圧容器21内の水位は次第に上昇する。そして、耐圧容器21内の水位が所定の高水位に達したことが水位センサ22により検出されると、電磁弁26が閉弁される。   As described above, while the high-pressure hydrogen gas from which moisture has been removed is taken out, the high-pressure hydrogen gas containing moisture introduced through the hydrogen conduit 17 is converted into high-pressure hydrogen gas and moisture in the pressure-resistant vessel 21. The gas-liquid separation is continued, and the water level in the pressure vessel 21 gradually rises. When the water level sensor 22 detects that the water level in the pressure vessel 21 has reached a predetermined high water level, the electromagnetic valve 26 is closed.

電磁弁26が閉弁されると、水素取出導管23からの高圧水素ガスの取出しが強制的に停止されるため、耐圧容器21内の圧力が第1背圧弁25の設定圧力である35MPaを超えて高くなる。この結果、第2背圧弁27は、耐圧容器21内の圧力がその設定圧力である36MPaに達する度に開弁し、液体の水が第2背圧弁27を介して排水導管24から断続的に排出される。前記液体の水の排出は、耐圧容器21内の水位が所定の低水位に低下するまで続けられる。そして、耐圧容器21内の水位が所定の低水位に達したことが水位センサ22により検出されると、電磁弁26が開弁され、前述の作動が繰り返される。   When the solenoid valve 26 is closed, the extraction of the high-pressure hydrogen gas from the hydrogen extraction conduit 23 is forcibly stopped, so that the pressure in the pressure-resistant vessel 21 exceeds 35 MPa, which is the set pressure of the first back pressure valve 25. Become higher. As a result, the second back pressure valve 27 opens each time the pressure in the pressure vessel 21 reaches its set pressure of 36 MPa, and liquid water is intermittently discharged from the drainage conduit 24 via the second back pressure valve 27. Discharged. The discharge of the liquid water is continued until the water level in the pressure vessel 21 drops to a predetermined low water level. When the water level sensor 22 detects that the water level in the pressure vessel 21 has reached a predetermined low water level, the electromagnetic valve 26 is opened and the above-described operation is repeated.

本実施形態の第2の態様の気液分離装置18bは、図3に示すように、水素取出導管23に、第1背圧弁25と電磁弁26とに代えて背圧弁28が備えられており、排出導管24には、第2背圧弁27に代えて絞り部29と電磁弁30とが備えられていることを除いて、図2に示す気液分離装置18aと全く同一の構成を備えている。   As shown in FIG. 3, the gas-liquid separation device 18 b of the second aspect of the present embodiment is provided with a back pressure valve 28 instead of the first back pressure valve 25 and the electromagnetic valve 26 in the hydrogen extraction conduit 23. The exhaust conduit 24 has the same configuration as that of the gas-liquid separator 18a shown in FIG. 2 except that a throttle portion 29 and an electromagnetic valve 30 are provided instead of the second back pressure valve 27. Yes.

背圧弁28は例えば35MPaで開弁するように設定されている。   The back pressure valve 28 is set to open at 35 MPa, for example.

絞り部29は、オリフィスでもよくニードルバルブ等の調整弁であってもよい。絞り部29をオリフィスとする場合には、例えば排出導管34の内径1/4インチ(0.6cm)に対してオリフィス径を約0.4mmとすることにより、差圧35MPaで排水量を20ml/秒とすることができる。また、絞り部29を調整弁とする場合には、Cv値が0.005となるニードルバルブ等の調整弁を用いることができる。   The throttle unit 29 may be an orifice or an adjusting valve such as a needle valve. When the throttle portion 29 is an orifice, for example, by setting the orifice diameter to about 0.4 mm with respect to the inner diameter of 1/4 inch (0.6 cm) of the discharge conduit 34, the amount of drainage is 20 ml / second with a differential pressure of 35 MPa. It can be. Further, when the throttle portion 29 is an adjustment valve, an adjustment valve such as a needle valve having a Cv value of 0.005 can be used.

電磁弁30は、排出導管24において、絞り部29の下流側に配設されている。また、電磁弁30は、水位センサ22の検出信号を受けて作動し、水位センサ22が検出する水位が高水位になったときに開弁し、低水位になったときに閉弁する。   The solenoid valve 30 is disposed on the downstream side of the throttle portion 29 in the discharge conduit 24. The electromagnetic valve 30 operates in response to a detection signal from the water level sensor 22 and opens when the water level detected by the water level sensor 22 is high, and closes when the water level is low.

尚、気液分離装置18bでは、絞り部29と電磁弁30とに代えて、絞り構造を備える一体型電磁弁を用いるようにしてもよい。   In the gas-liquid separator 18b, an integrated electromagnetic valve having a throttle structure may be used instead of the throttle portion 29 and the electromagnetic valve 30.

次に、気液分離装置18bの作動について説明する。   Next, the operation of the gas-liquid separator 18b will be described.

気液分離装置18bでは、水素製造装置1で製造された水分を含む高圧水素ガスが、水素導管17を介して耐圧容器21に導入され、耐圧容器21内で重力により、高圧水素ガスと液体の水とに分離される。このとき、耐圧容器21内には、前記水分が除去された高圧水素ガスが排出導管24から漏出することを防止するために、予め所定の低水位まで水が供給されており、該水位を水位センサ22が検出することにより、電磁弁30が閉弁された状態となっている。この結果、高圧水素ガスは耐圧容器21の上部に、液体の水は底部に、それぞれ貯留される。   In the gas-liquid separator 18b, the high-pressure hydrogen gas containing water produced by the hydrogen production apparatus 1 is introduced into the pressure vessel 21 through the hydrogen conduit 17, and the high-pressure hydrogen gas and liquid are separated by gravity in the pressure vessel 21. Separated into water. At this time, in order to prevent the high-pressure hydrogen gas from which the moisture has been removed from leaking from the discharge conduit 24, water is supplied in advance to the predetermined low water level, and the water level is reduced to the water level. The electromagnetic valve 30 is closed by detecting the sensor 22. As a result, the high-pressure hydrogen gas is stored at the top of the pressure-resistant vessel 21 and the liquid water is stored at the bottom.

電磁弁30が閉弁されているとき、背圧弁28は35MPaで開弁するように設定されているので、耐圧容器21内の圧力が35MPaに達する度に開弁し、前記水分が除去された高圧水素ガスが、背圧弁28を介して水素取出導管23から断続的に取出される。   Since the back pressure valve 28 is set to open at 35 MPa when the solenoid valve 30 is closed, the valve is opened each time the pressure in the pressure vessel 21 reaches 35 MPa, and the water is removed. High-pressure hydrogen gas is intermittently extracted from the hydrogen extraction conduit 23 via the back pressure valve 28.

前述のようにして、前記水分が除去された高圧水素ガスが取出される間、耐圧容器21内では、水素導管17を介して導入される前記水分を含む高圧水素ガスを、高圧水素ガスと水分とに分離する気液分離が継続されており、耐圧容器21内の水位は次第に上昇する。そして、耐圧容器21内の水位が所定の高水位に達したことが水位センサ22により検出されると、電磁弁30が開弁され、耐圧容器21内に貯留されている液体の水が排出導管24を介して排出されるようになる。   As described above, while the high-pressure hydrogen gas from which moisture has been removed is taken out, the high-pressure hydrogen gas containing moisture introduced through the hydrogen conduit 17 is converted into high-pressure hydrogen gas and moisture in the pressure-resistant vessel 21. The gas-liquid separation is continued, and the water level in the pressure vessel 21 gradually rises. When the water level sensor 22 detects that the water level in the pressure vessel 21 has reached a predetermined high water level, the electromagnetic valve 30 is opened, and the liquid water stored in the pressure vessel 21 is discharged from the discharge conduit. 24 is discharged.

このとき、耐圧容器21内の液体の水は、絞り部29を介して排出されるので、減圧されると共に、流量が制限される。従って、絞り部29の下流側に配設されている電磁弁30は、高圧の水の噴出により損傷を受けることが無い。一方、前述のようにして、耐圧容器21内の液体の水が排出されると、耐圧容器21内の圧力が低下するので、背圧弁28は閉弁し、水素取出導管23から前記高圧水素ガスが取出されることはない。   At this time, the liquid water in the pressure vessel 21 is discharged through the throttle 29, so that the pressure is reduced and the flow rate is limited. Therefore, the solenoid valve 30 disposed on the downstream side of the throttle portion 29 is not damaged by the ejection of high-pressure water. On the other hand, when the liquid water in the pressure vessel 21 is discharged as described above, the pressure in the pressure vessel 21 is reduced, so the back pressure valve 28 is closed and the high-pressure hydrogen gas is discharged from the hydrogen extraction conduit 23. Will not be removed.

前記液体の水の排出は、耐圧容器21内の水位が所定の低水位に低下するまで続けられる。そして、耐圧容器21内の水位が所定の低水位に達したことが水位センサ22により検出されると、電磁弁30が閉弁され、前述の作動が繰り返される。   The discharge of the liquid water is continued until the water level in the pressure vessel 21 drops to a predetermined low water level. When the water level sensor 22 detects that the water level in the pressure vessel 21 has reached a predetermined low water level, the electromagnetic valve 30 is closed and the above-described operation is repeated.

本発明の気液分離装置の概略の構成を示す説明的断面。The explanatory section which shows the schematic structure of the gas-liquid separation device of the present invention. 本発明の気液分離装置の第1の態様の構成を示す説明的断面。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory cross section which shows the structure of the 1st aspect of the gas-liquid separator of this invention. 本発明の気液分離装置の第2の態様の構成を示す説明的断面。Explanatory cross section which shows the structure of the 2nd aspect of the gas-liquid separator of this invention.

符号の説明Explanation of symbols

18(a,b)…気液分離装置、 21…耐圧容器、 22…水位検出手段、 23…第1の導管、 24…第2の導管、 25…第1の背圧弁、 26…電磁弁、 27…第2の背圧弁、 28…背圧弁、 29…絞り部、 30…電磁弁。   18 (a, b): gas-liquid separator, 21: pressure vessel, 22: water level detecting means, 23: first conduit, 24: second conduit, 25: first back pressure valve, 26: solenoid valve, 27 ... Second back pressure valve, 28 ... Back pressure valve, 29 ... Throttle part, 30 ... Solenoid valve.

Claims (4)

水分を含む高圧水素ガスを耐圧容器内に導入して、重力により該高圧水素ガスと水とに分離し、該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第2の所定の水位に達したときに高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで該耐圧容器内の水を排出する気液分離方法において、
該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管に、第1の所定の圧力以上で開弁する第1の背圧弁と、第1の背圧弁の下流側に設けられた電磁弁とを備えると共に、該耐圧容器の水が貯留される領域に接続された第2の導管に、第1の所定の圧力よりも高い第2の所定の圧力以上で開弁する第2の背圧弁を備え、
該耐圧容器内の水位が第1の所定の水位となったときに、該電磁弁を開弁して第1の背圧弁を介して第1の導管から高圧水素ガスを取り出すと共に、
該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに該電磁弁を閉弁して高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで、第2の背圧弁を介して第2の導管から該耐圧容器内の水を排出することを特徴とする気液分離方法。
When the high-pressure hydrogen gas containing moisture is introduced into the pressure-resistant container and separated into the high-pressure hydrogen gas and water by gravity, and the water level in the pressure-resistant container is equal to or higher than the first predetermined water level, the pressure-resistant container The high pressure hydrogen gas is taken out until the water level in the pressure rises to a second predetermined water level higher than the first predetermined water level, and when the water level in the pressure vessel reaches the second predetermined water level, In the gas-liquid separation method of stopping the gas extraction and discharging the water in the pressure vessel until the water level in the pressure vessel drops to the first predetermined water level,
A first back pressure valve that opens at a pressure equal to or higher than a first predetermined pressure and a downstream side of the first back pressure valve are provided in a first conduit connected to a region where high pressure hydrogen gas is stored in the pressure vessel. And a second conduit connected to a region where water in the pressure vessel is stored is opened at a second predetermined pressure higher than the first predetermined pressure. With two back pressure valves,
When the water level in the pressure vessel becomes the first predetermined water level, the solenoid valve is opened to take out high-pressure hydrogen gas from the first conduit via the first back pressure valve;
When the water level in the pressure vessel reaches a second predetermined water level higher than the first predetermined water level, the solenoid valve is closed to stop taking out high-pressure hydrogen gas, and the water level in the pressure vessel is A gas-liquid separation method, wherein water in the pressure vessel is discharged from the second conduit through the second back pressure valve until the first predetermined water level is lowered.
水分を含む高圧水素ガスを耐圧容器内に導入して、重力により該高圧水素ガスと水とに分離し、該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、高圧水素ガスを取り出すと共に、該耐圧容器内の水位が第2の所定の水位に達したときに高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで該耐圧容器内の水を排出する気液分離方法において、
該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管に、所定の圧力以上で開弁する背圧弁を備えると共に、該耐圧容器の水が貯留される領域に接続された第2の導管に、絞り部と、該絞り部の下流側に設けられた電磁弁とを備え、
該耐圧容器内の水位が第1の所定の水位となったときに、該背圧弁を介して第1の導管から高圧水素ガスを取り出すと共に、
該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに該電磁弁を開弁して高圧水素ガスの取り出しを停止し、該耐圧容器内の水位が第1の所定の水位に低下するまで、該絞り部を介して第2の導管から該耐圧容器内の水を排出することを特徴とする気液分離方法。
When the high-pressure hydrogen gas containing moisture is introduced into the pressure-resistant container and separated into the high-pressure hydrogen gas and water by gravity, and the water level in the pressure-resistant container is equal to or higher than the first predetermined water level, the pressure-resistant container The high pressure hydrogen gas is taken out until the water level in the pressure rises to a second predetermined water level higher than the first predetermined water level, and when the water level in the pressure vessel reaches the second predetermined water level, In the gas-liquid separation method of stopping the gas extraction and discharging the water in the pressure vessel until the water level in the pressure vessel drops to the first predetermined water level,
The first conduit connected to the region where the high-pressure hydrogen gas of the pressure vessel is stored is provided with a back pressure valve which opens at a predetermined pressure or more, and is connected to the region where the water of the pressure vessel is stored. The second conduit includes a throttle part and a solenoid valve provided on the downstream side of the throttle part,
When the water level in the pressure vessel reaches a first predetermined water level, high-pressure hydrogen gas is taken out from the first conduit via the back pressure valve,
When the water level in the pressure vessel reaches a second predetermined water level higher than the first predetermined water level, the electromagnetic valve is opened to stop taking out high-pressure hydrogen gas, and the water level in the pressure vessel is A gas-liquid separation method characterized in that water in the pressure vessel is discharged from the second conduit through the throttle until the water level drops to a first predetermined water level.
水分を含む高圧水素ガスを導入して、重力により高圧水素ガスと水とに分離する耐圧容器と、
該耐圧容器内の水位を検出する水位検出手段と、
該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、該耐圧容器から高圧水素ガスを取り出す水素取出手段と、
該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに、該耐圧容器内の水位が第1の所定の水位に低下するまで、該耐圧容器から水を排出する排水手段とを備える気液分離装置において、
該水素取出手段は、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管と、
第1の導管に設けられ第1の所定の圧力以上で開弁する第1の背圧弁と、
第1の導管の第1の背圧弁の下流側に設けられ、該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位となったときに開弁し、該耐圧容器内の水位が第2の所定の水位に達したときに閉弁する電磁弁とを備え、
該排水手段は、該耐圧容器の水が貯留される領域に接続された第2の導管と、
第2の導管に設けられ、第1の所定の圧力よりも高い第2の所定の圧力以上で開弁する第2の背圧弁とを備えることを特徴とする気液分離装置。
A pressure vessel that introduces high-pressure hydrogen gas containing moisture and separates it into high-pressure hydrogen gas and water by gravity;
Water level detection means for detecting the water level in the pressure vessel;
When the water level in the pressure vessel detected by the water level detection means is equal to or higher than the first predetermined water level, the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level. A hydrogen extraction means for extracting high-pressure hydrogen gas from the pressure vessel until
When the water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level that is higher than the first predetermined water level, the water level in the pressure vessel drops to the first predetermined water level. In the gas-liquid separator comprising the drainage means for discharging water from the pressure vessel,
The hydrogen extraction means includes a first conduit connected to a region where high pressure hydrogen gas is stored in the pressure vessel,
A first back pressure valve provided in the first conduit and opening at a first predetermined pressure or higher;
Provided at the downstream side of the first back pressure valve of the first conduit and opens when the water level in the pressure vessel detected by the water level detecting means reaches a first predetermined water level, and the pressure vessel An electromagnetic valve that closes when the water level in the inside reaches a second predetermined water level,
The drainage means includes a second conduit connected to a region where water in the pressure vessel is stored;
A gas-liquid separation device comprising: a second back pressure valve provided in the second conduit and opened at a second predetermined pressure higher than the first predetermined pressure.
水分を含む高圧水素ガスを導入して、重力により高圧水素ガスと水とに分離する耐圧容器と、
該耐圧容器内の水位を検出する水位検出手段と、
該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位以上であるときに、該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に上昇するまで、該耐圧容器から高圧水素を取り出す水素取出手段と、
該水位検出手段により検出される該耐圧容器内の水位が第1の所定の水位より高い第2の所定の水位に達したときに、該耐圧容器内の水位が第1の所定の水位に低下するまで、該耐圧容器から水を排出する排水手段とを備える気液分離装置において、
該水素取出手段は、該耐圧容器の高圧水素ガスが貯留される領域に接続された第1の導管と、
第1の導管に設けられ所定の圧力以上で開弁する背圧弁とを備え、
該排出手段は、該耐圧容器の水が貯留される領域に接続された第2の導管と、
第2の導管に設けられた絞り部と、
第2の導管の該絞り部の下流側に設けられ、該水位検出手段により検出される該耐圧容器内の水位が第2の所定の水位に達したときに開弁し、該耐圧容器内の水位が第1の所定の水位まで低下したときに閉弁する電磁弁とを備えることを特徴とする気液分離装置。
A pressure vessel that introduces high-pressure hydrogen gas containing moisture and separates it into high-pressure hydrogen gas and water by gravity;
Water level detection means for detecting the water level in the pressure vessel;
When the water level in the pressure vessel detected by the water level detection means is equal to or higher than the first predetermined water level, the water level in the pressure vessel rises to a second predetermined water level higher than the first predetermined water level. Hydrogen extracting means for extracting high-pressure hydrogen from the pressure vessel until
When the water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level that is higher than the first predetermined water level, the water level in the pressure vessel drops to the first predetermined water level. In the gas-liquid separator comprising the drainage means for discharging water from the pressure vessel,
The hydrogen extraction means includes a first conduit connected to a region where high pressure hydrogen gas is stored in the pressure vessel,
A back pressure valve provided in the first conduit and opened at a predetermined pressure or higher,
The discharge means includes a second conduit connected to a region where water in the pressure vessel is stored;
A throttle provided in the second conduit;
Provided on the downstream side of the throttle portion of the second conduit, and opens when the water level in the pressure vessel detected by the water level detection means reaches a second predetermined water level, A gas-liquid separator comprising a solenoid valve that closes when the water level drops to a first predetermined water level.
JP2005171929A 2005-06-13 2005-06-13 Gas-liquid separation method and apparatus Expired - Fee Related JP4847052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171929A JP4847052B2 (en) 2005-06-13 2005-06-13 Gas-liquid separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171929A JP4847052B2 (en) 2005-06-13 2005-06-13 Gas-liquid separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2006347779A JP2006347779A (en) 2006-12-28
JP4847052B2 true JP4847052B2 (en) 2011-12-28

Family

ID=37644012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171929A Expired - Fee Related JP4847052B2 (en) 2005-06-13 2005-06-13 Gas-liquid separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4847052B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007999B2 (en) * 2007-03-29 2012-08-22 国立大学法人広島大学 Gas-liquid separator
JP5220432B2 (en) * 2008-02-15 2013-06-26 本田技研工業株式会社 Hydrogen generation system
JP5349073B2 (en) * 2009-02-17 2013-11-20 本田技研工業株式会社 Water electrolysis equipment
JP5341862B2 (en) * 2010-10-28 2013-11-13 本田技研工業株式会社 Water electrolysis system
JP2012180554A (en) 2011-03-01 2012-09-20 Honda Motor Co Ltd High-pressure hydrogen producing apparatus
JP5613084B2 (en) * 2011-03-02 2014-10-22 本田技研工業株式会社 Water electrolysis system
JP5355636B2 (en) * 2011-07-21 2013-11-27 本田技研工業株式会社 Operation method of water electrolysis system
CN102732905A (en) 2011-04-05 2012-10-17 本田技研工业株式会社 Water electrolysis system and method of operating same
JP5196510B1 (en) * 2012-07-20 2013-05-15 株式会社健康支援センター Desktop hydrogen gas generator
JP7478082B2 (en) * 2020-11-17 2024-05-02 株式会社神鋼環境ソリューション Hydrogen/oxygen generator and gas-liquid separation tank

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469896A (en) * 1987-09-08 1989-03-15 Toshiba Corp Gas-liquid separating valve
JPH06100315B2 (en) * 1989-10-13 1994-12-12 株式会社テイエルブイ Condensate drainage device
JP3005868B2 (en) * 1990-06-25 2000-02-07 株式会社石井鐵工所 Gas release method and gas release structure of low temperature storage tank safety valve
JP3059587B2 (en) * 1992-08-27 2000-07-04 アイシン精機株式会社 Hydrogen gas storage device
JP3027057B2 (en) * 1992-11-09 2000-03-27 アイシン精機株式会社 In-vehicle hydrogen supply device
JP3264893B2 (en) * 1998-09-28 2002-03-11 神鋼パンテツク株式会社 Hydrogen / oxygen generator
JP4156884B2 (en) * 2002-09-06 2008-09-24 本田技研工業株式会社 Water electrolysis hydrogen gas production equipment
JP2005179106A (en) * 2003-12-18 2005-07-07 Honda Motor Co Ltd High-pressure hydrogen producing device
JP2006316288A (en) * 2005-05-10 2006-11-24 Honda Motor Co Ltd High-pressure hydrogen production apparatus
JP4597800B2 (en) * 2005-07-19 2010-12-15 本田技研工業株式会社 High pressure hydrogen production equipment

Also Published As

Publication number Publication date
JP2006347779A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US7846307B2 (en) High-pressure hydrogen production apparatus
US8815075B2 (en) Water electrolysis system and method of operating same
US8329020B2 (en) Method of shutting down water electrolysis system
JP4847052B2 (en) Gas-liquid separation method and apparatus
JP6599937B2 (en) Water electrolysis system and its operation stop method
JP5048796B2 (en) Water electrolysis system
JP2004003003A (en) Gas/liquid phase separation apparatus improved in pressure control
US20110198235A1 (en) Water electrolysis system and method for shutting down the same
JP2005353569A (en) Fuel cell system
JP6090798B2 (en) High pressure water electrolysis system and control method thereof
JP5804103B2 (en) Fuel cell system
JP2007087718A (en) Vapor liquid separator and fuel cell system equipped with this vapor liquid separator
JP4914258B2 (en) Gas-liquid separator
JP2012219276A (en) Water electrolysis system and method for controlling the same
US9540739B2 (en) High differential pressure water electrolysis system and method for starting the same
US9096940B2 (en) High pressure water electrolysis system and method for activating same
US10511032B2 (en) Fuel cell with purge manifold
US20070281191A1 (en) Fuel cell apparatus
JP2005180545A (en) High-pressure hydrogen producing apparatus
JP5355636B2 (en) Operation method of water electrolysis system
JP7436171B2 (en) water electrolysis system
JP2012219292A (en) Water electrolysis system and method for operating the same
JP2012219293A (en) Water electrolysis system and method for operating the same
JP5421860B2 (en) Water electrolysis equipment shutdown method
JP5613084B2 (en) Water electrolysis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees