Nothing Special   »   [go: up one dir, main page]

JP4843790B2 - Temperature measurement method using ultrasonic waves - Google Patents

Temperature measurement method using ultrasonic waves Download PDF

Info

Publication number
JP4843790B2
JP4843790B2 JP2006251806A JP2006251806A JP4843790B2 JP 4843790 B2 JP4843790 B2 JP 4843790B2 JP 2006251806 A JP2006251806 A JP 2006251806A JP 2006251806 A JP2006251806 A JP 2006251806A JP 4843790 B2 JP4843790 B2 JP 4843790B2
Authority
JP
Japan
Prior art keywords
temperature
medium
ultrasonic
ultrasonic pulse
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006251806A
Other languages
Japanese (ja)
Other versions
JP2008070340A (en
Inventor
郁夫 井原
学 高橋
大輔 釜親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2006251806A priority Critical patent/JP4843790B2/en
Publication of JP2008070340A publication Critical patent/JP2008070340A/en
Application granted granted Critical
Publication of JP4843790B2 publication Critical patent/JP4843790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、超音波を用いて媒体の温度分布を測定する超音波を用いた温度測定方法に関する。   The present invention relates to a temperature measurement method using ultrasonic waves that measures the temperature distribution of a medium using ultrasonic waves.

従来、被測定物の表面温度の測定は熱電対などを利用した接触式温度計或いは放射などを利用した放射温度計により測定することができる。   Conventionally, the surface temperature of an object to be measured can be measured by a contact-type thermometer using a thermocouple or a radiation thermometer using radiation.

また、媒体に入射された超音波の伝播速度が媒体の温度に依存する温度依存性を利用した超音波による温度測定が知られており、気体や固体材料等の媒体の温度測定方法(例えば特許文献1〜3)が提案されている。   In addition, temperature measurement using ultrasonic waves is known that uses temperature dependence in which the propagation speed of ultrasonic waves incident on the medium depends on the temperature of the medium, and a method for measuring the temperature of a medium such as a gas or a solid material (for example, a patent) Documents 1 to 3) have been proposed.

ところで、産業界では、高温環境での材料加工プロセスが多数あり、各種材料の温度及びその内部の温度分布を非破壊的に且つインプロセスで測定したいという要望が多数あるが、従来の温度測定方法では、内部の温度を測定できても、その温度分布までは測定することができなかった。
特開昭53−124486号公報 特開昭57−16874号公報 特開2000−234963号公報
By the way, there are many material processing processes in the high temperature environment, and there are many requests for non-destructive and in-process measurement of the temperature of various materials and the temperature distribution therein. Then, even if the internal temperature could be measured, the temperature distribution could not be measured.
JP-A-53-124486 Japanese Patent Laid-Open No. 57-16874 JP 2000-234963 A

そこで、本発明は、媒体内に超音波を伝播することにより該媒体内の温度分布を測定できる超音波を用いた温度測定方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a temperature measurement method using ultrasonic waves that can measure the temperature distribution in the medium by propagating the ultrasonic waves in the medium.

請求項1の発明は、媒体の一側面に超音波探触子を配置し、前記媒体の他側面を加熱し、前記媒体中の一定距離を伝播する超音波パルスの伝播時間と前記媒体の既知のデータとから前記媒体中の温度分布を測定する超音波を用いた温度測定方法であって、
前記既知のデータに、前記媒体の温度に対する前記超音波パルスの伝播速度と、前記媒体の温度伝導率とを用い、前記超音波探触子により前記超音波パルスを前記媒体の一側面から入射すると共に、前記媒体の他側面で反射した超音波パルスの伝播時間を測定し、
前記媒体の初期温度と、前記媒体の前記温度伝導率と、前記加熱後の測定時間とにより定まる前記媒体の温度分布を示す関数T(x,t)を仮定し、前記加熱前に前記媒体の表面の温度を測定して得られた前記初期温度と、前記媒体の既知の前記温度伝導率と、前記加熱後の測定時間と、測定した前記超音波パルスの前記伝播時間とから、前記既知の前記媒体の温度に対する前記超音波パルスの伝播速度により求める超音波パルスの伝播時間の数式及び前記関数T(x,t)を用いて、前記媒体の他側面温度及び温度分布を算出する方法である。
According to the first aspect of the present invention, an ultrasonic probe is disposed on one side of the medium, the other side of the medium is heated, and the propagation time of the ultrasonic pulse propagating a certain distance in the medium is known. a from the data the temperature measuring method of the temperature distribution using ultrasound you measure in the medium,
Using the propagation speed of the ultrasonic pulse with respect to the temperature of the medium and the temperature conductivity of the medium as the known data, the ultrasonic pulse is incident from one side of the medium by the ultrasonic probe. And measuring the propagation time of the ultrasonic pulse reflected from the other side of the medium,
Assuming a function T (x, t) indicating the temperature distribution of the medium determined by the initial temperature of the medium, the temperature conductivity of the medium, and the measurement time after the heating, and before the heating, From the initial temperature obtained by measuring the surface temperature, the known temperature conductivity of the medium, the measurement time after the heating, and the propagation time of the measured ultrasonic pulse, the known temperature This is a method of calculating the other side surface temperature and temperature distribution of the medium by using the equation of the propagation time of the ultrasonic pulse obtained from the propagation speed of the ultrasonic pulse with respect to the temperature of the medium and the function T (x, t). .

また、請求項2の発明は、前記伝播時間の数式が In the invention of claim 2, the propagation time formula is

Figure 0004843790
Figure 0004843790
であり、数1において、tAnd in Equation 1, t LL は超音波パルスの伝播時間、V(T)は温度Tの関数で表される媒体の音速であり、この音速V(T)は下記の数2で表され、Is the propagation time of the ultrasonic pulse, V (T) is the sound speed of the medium expressed as a function of the temperature T, and this sound speed V (T) is expressed by the following formula 2.

Figure 0004843790
Figure 0004843790
上記数2において、A,Bは、それぞれ媒体固有の定数であり、  In the above equation 2, A and B are constants specific to the medium,
前記関数T(x,t)が  The function T (x, t) is

Figure 0004843790
Figure 0004843790
であり、数3において、ηは下記の数4により表され、In Equation 3, η is expressed by Equation 4 below,

Figure 0004843790
数3及び数4において、Tsは他側面温度、T 0 は媒体の初期温度、αは温度伝導率(α=λ/ρC:λは媒体の熱伝導率、ρは媒体の密度、Cは媒体の比熱容量)、xは他側面からの距離、tは加熱後の測定時間、uは確率変数である方法である。
Figure 0004843790
In Equations 3 and 4, Ts is the other side surface temperature, T 0 is the initial temperature of the medium, α is the temperature conductivity (α = λ / ρC: λ is the thermal conductivity of the medium, ρ is the density of the medium, and C is the medium density. Specific heat capacity), x is the distance from the other side, t is the measurement time after heating, and u is a random variable .

また、請求項3の発明は、前記媒体の表面が一側面であり、前記媒体の一側面の温度を測定して前記初期温度を得る方法である。 The invention of claim 3 is a method in which the surface of the medium is one side surface, and the temperature of one side surface of the medium is measured to obtain the initial temperature .

また、請求項の発明は、前記超音波パルスを一側面から斜めに入射する方法である。 According to a fourth aspect of the present invention, the ultrasonic pulse is incident obliquely from one side.

また、請求項の発明は、前記超音波パルスの周波数が100kHz以上である方法である。 The invention of claim 5 is a method in which a frequency of the ultrasonic pulse is 100 kHz or more.

上記構成によれば、媒体中の一定距離を伝播する超音波の伝播時間と前記媒体の既知のデータとから前記媒体中の温度分布を測定する方法であるから、超音波の媒体内の速度が温度に依存することを利用し、熱電対などを測定物の内部に挿入することなく、媒体の初期温度と、媒体の温度伝導率と、加熱後の測定時間とにより定まる媒体の温度分布を示す関数T(x,t)と、既知の媒体の温度に対する超音波パルスの伝播速度により求める超音波パルスの伝播時間の数式とを用い、超音波パルスの伝播速度と媒体に関する既知のデータから媒体内の温度分布を測定することが可能となる。また、従来の温度測定法より、時間応答性に優れたものになる。 According to the above configuration, since the temperature distribution in the medium is measured from the propagation time of the ultrasonic wave propagating in a certain distance in the medium and the known data of the medium, the velocity of the ultrasonic wave in the medium is The temperature distribution of the medium determined by the initial temperature of the medium, the temperature conductivity of the medium, and the measurement time after heating is shown without using a thermocouple or the like inside the object to be measured. function T (x, t) and, using the formula for propagation time of the ultrasonic pulse obtained by the propagation speed of the ultrasonic pulse with respect to the temperature of the known medium, the medium from the known data regarding propagation speed and medium ultrasonic pulse It is possible to measure the temperature distribution. In addition, the time response is superior to the conventional temperature measurement method.

また、媒体の既知のデータには、媒体の温度に対する超音波速度のデータ、媒体の温度伝導率を用いることができる。 In addition, as the known data of the medium, ultrasonic velocity data with respect to the temperature of the medium and the temperature conductivity of the medium can be used.

さらに、超音波パルスを用いて、超音波パルスエコー法やピッチキャッチ法(斜入射法)を用いることができ、また、媒体の一側で測定が可能となり、媒体の他側に温度の異なる物体が配置された状態で測定することができる。   Furthermore, the ultrasonic pulse echo method and the pitch catch method (oblique incidence method) can be used by using the ultrasonic pulse, the measurement can be performed on one side of the medium, and an object having a different temperature on the other side of the medium. Can be measured in a state in which is placed.

さらにまた、媒体の表面温度や一側面の温度を測定することもでき、超音波パルスは100kHz〜数MHz(10MkHz未満)とすることが好ましい。   Furthermore, the surface temperature of the medium and the temperature of one side surface can also be measured, and the ultrasonic pulse is preferably 100 kHz to several MHz (less than 10 MHz).

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる超音波を用いた温度測定方法を採用することにより、従来にない超音波を用いた温度測定方法が得られ、その超音波を用いた温度測定方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each example, by employing a temperature measurement method using ultrasonic waves that is different from the conventional one, a temperature measurement method using ultrasonic waves that has never been obtained can be obtained, and the temperature measurement method using the ultrasonic waves is described respectively. To do.

以下、本発明の実施例1について図1〜図4を参照して説明する。   Embodiment 1 of the present invention will be described below with reference to FIGS.

工学・工業の幅広い分野において、物体内部の温度をリアルタイムで精度良く測定したいというニーズは数多くある。本実施例では、ダイカスト型材として用いられているSKD鋼を媒体として用いた。   In a wide range of engineering and industrial fields, there are many needs to accurately measure the temperature inside an object in real time. In this example, SKD steel used as a die casting mold was used as a medium.

図1に温度測定装置1を示し、同図に示すように、媒体として厚さ30mmのSKD製の板材2を用い、この板材2は、ブロック状をなし、平行な上面3と底面4とを有し、容器5に入れた温水6に前記底面4が接するように配置される。   FIG. 1 shows a temperature measuring apparatus 1, and as shown in FIG. 1, an SKD plate 2 having a thickness of 30 mm is used as a medium. The plate 2 is formed in a block shape and includes a parallel upper surface 3 and a bottom surface 4. And is arranged so that the bottom surface 4 is in contact with the hot water 6 put in the container 5.

前記上面3にはカプラ11を介して超音波探触子12が配置され、この超音波探触子12は、超音波を発生する振動子(図示せず)と、該振動子からの超音波を前記板材2に入射し、該板材2から戻ってきた超音波を検出するものであって、送波手段と受波手段の機能を備え、この例では、底面4で反射した超音波パルスエコーを検出する。   An ultrasonic probe 12 is disposed on the upper surface 3 via a coupler 11, and the ultrasonic probe 12 includes a transducer (not shown) that generates ultrasonic waves, and an ultrasonic wave from the transducer. Is incident on the plate material 2 and detects the ultrasonic wave returned from the plate material 2, and has functions of a wave transmitting means and a wave receiving means, and in this example, an ultrasonic pulse echo reflected from the bottom surface 4. Is detected.

前記超音波探触子12は、検出制御手段13に接続され、この検出制御手段13により、板材2に入射する超音波パルスを制御すると共に、戻ってきた超音波パルスエコーの波形や戻るまでの伝播時間などを検出し、これら検出データが波形等データ出力手段14により演算処理制御手段15に出力される。この演算処理制御手段15には、記憶手段を備えたコンピュータなどが用いられ、演算処理制御手段15は、前記波形等データ出力手段14から入力した検出データと前記板材2の既知のデータなどとから、理論式に基き、板材2の内部を含む温度分布を算出し、これをディスプレーなどの表示手段16に表示し、また、超音波パルスの各状態の波形を表示するように制御する。   The ultrasonic probe 12 is connected to a detection control means 13, and the detection control means 13 controls the ultrasonic pulse incident on the plate 2 and the waveform of the returned ultrasonic pulse echo and the time until the return. The propagation time and the like are detected, and the detected data is output to the arithmetic processing control means 15 by the waveform data output means 14. The arithmetic processing control means 15 is a computer equipped with storage means. The arithmetic processing control means 15 is based on the detection data input from the waveform data output means 14 and the known data of the plate 2 and the like. Based on the theoretical formula, the temperature distribution including the inside of the plate member 2 is calculated and displayed on the display means 16 such as a display, and the waveform of each state of the ultrasonic pulse is controlled to be displayed.

また、実験のために装置1に付随して接触式の温度測定手段を設けた。この温度測定手段には、7個の熱電対21,21…を用いた。尚、実験に用いた板材2の厚さWは30mmであり、この板材2の底面位置W1と上面位置W6と、底面4から5mm間隔の位置W2,W3,W4,W5の6箇所に熱電対21を配置し、さらに、温水6の温度を測定する位置W7にも熱電対21を配置した。これら熱電対21で検出した検出データから温度検出手段22が温度を演算し、その温度データが前記演算処理制御手段15に送られ、演算処理制御手段15は、熱電対21により測定した温度を前記表示手段16に表示することができる。尚、この例では、前記厚さWの2倍が媒体中の超音波の伝播距離である。   For the experiment, a contact-type temperature measuring means was provided along with the apparatus 1. Seven thermocouples 21, 21,... Were used as the temperature measuring means. The thickness W of the plate 2 used in the experiment is 30 mm, and thermocouples are provided at six locations of the bottom surface position W1, the top surface position W6, and the positions W2, W3, W4, and W5 spaced from the bottom surface 4 by 5 mm. 21 was further disposed, and a thermocouple 21 was also disposed at a position W7 where the temperature of the hot water 6 was measured. The temperature detection means 22 calculates the temperature from the detection data detected by these thermocouples 21, and the temperature data is sent to the arithmetic processing control means 15, which calculates the temperature measured by the thermocouple 21. It can be displayed on the display means 16. In this example, twice the thickness W is the propagation distance of the ultrasonic wave in the medium.

次に、本発明の温度測定に係る原理を説明する。一次元の温度分布を有する物体(媒体)を仮定すると、その物体内を伝播する超音波の伝播時間は、下記に数1で表すことができる。   Next, the principle relating to the temperature measurement of the present invention will be described. Assuming an object (medium) having a one-dimensional temperature distribution, the propagation time of the ultrasonic wave propagating through the object can be expressed by Equation 1 below.

Figure 0004843790
上記数1で、V(T)は温度Tの関数として表される物体の音速であり、近似的に下記の数2で表すことができる。
Figure 0004843790
In the above equation 1, V (T) is the sound velocity of the object expressed as a function of the temperature T, and can be approximately expressed by the following equation 2.

Figure 0004843790
上記数2で、A,Bは、それぞれ物体固有の定数である。今、一様な温度T0を持つ半無限物体物の片面が高温物体と接触することにより熱せされる状態を考えると、一次非定常状態において物体内部での発熱や対流がなく温度伝導率が温度に依存しないとき、接触後(加熱後)の接触面温度は、一定値TSに保持される。このときの物体内の温度分布T(x,t)は、下記の数3及び数4で表すことができる。
Figure 0004843790
In the above equation 2, A and B are constants specific to the object. Considering a state where one surface of a semi-infinite object having a uniform temperature T 0 is heated by contact with a high-temperature object, there is no heat generation or convection inside the object in the primary unsteady state, and the temperature conductivity is When not dependent on temperature, the contact surface temperature after contact ( after heating) is maintained at a constant value T S. The temperature distribution T (x, t) in the object at this time can be expressed by the following equations 3 and 4.

Figure 0004843790
Figure 0004843790

Figure 0004843790
上記数3及び数4で、Tsは接触面温度、T0はその初期温度、αは温度伝導率(α=λ/ρC:λは熱伝導率、ρは密度、Cは比熱容量)、xは接触面からの距離、tは接触後(加熱後)の測定時間である。数3の右辺第二項は確率変数uで表される誤差関数に(T0−Ts)を乗じた形となっている。超音波伝播時間tLを計測することで、数1〜数4を用いて、温度Tsを求めることができる。但し、初期温度T0、温度伝導率α、時間tは既知とする。
Figure 0004843790
In the above formulas 3 and 4, Ts is the contact surface temperature, T 0 is the initial temperature, α is the temperature conductivity (α = λ / ρC: λ is the thermal conductivity, ρ is the density, and C is the specific heat capacity), x Is the distance from the contact surface, and t is the measurement time after contact (after heating) . The second term on the right side of Equation 3 has a form obtained by multiplying the error function represented by the random variable u by (T 0 −Ts). By measuring the ultrasonic propagation time t L , the temperature T s can be obtained using Equations 1 to 4. However, the initial temperature T 0 , the temperature conductivity α, and the time t are assumed to be known.

図1に示した装置により実験を行い、上述したように板材2の厚さは30mmで、この板材2の上面3に周波数5MHzの超音波探接子12を設置し、超音波パルスエコーの計測を行った。尚、板材2中の超音波の伝播時間tの計測には相互相関法を用いた。また、演算処理制御手段15には、汎用ソフトウエアを用いたモニタリングシステムにより、超音波パルスエコーと温度とを同時計測し、超音波波形と温度はそれぞれ5回/秒の速度で記録し、板材21の底面4が75℃の温水6に接した状態をモニタリングした。   Experiments were performed using the apparatus shown in FIG. 1, and the thickness of the plate 2 was 30 mm as described above, and an ultrasonic probe 12 having a frequency of 5 MHz was installed on the upper surface 3 of the plate 2 to measure ultrasonic pulse echo. Went. A cross-correlation method was used to measure the ultrasonic wave propagation time t in the plate 2. The arithmetic processing control means 15 simultaneously measures the ultrasonic pulse echo and temperature by a monitoring system using general-purpose software, and records the ultrasonic waveform and temperature at a rate of 5 times / second, respectively. The state where the bottom surface 4 of 21 was in contact with the warm water 6 at 75 ° C. was monitored.

図2は一方の縦軸に超音波パルスエコーの振幅、他方の縦軸に温度を取り、横軸を測定時間としたグラフであり、温度は板材2の底面4から上面側に5mmの位置W1と同25mmの位置W5の測定結果であり、板材2の底面4側と上面3側の温度変化を示している。超音波パルスエコーの強度(振幅)が急激に減少しているのが観察されるが、これは板材2の底面4と温水6との接触に基くものである。すなわち、底面4と温水6との接触による超音波の反射率の低下によるもので、超音波パルスエコーの強度減少は理論的に計算した反射率の変化(6%)と略一致している。このように超音波パルスエコーを指標とすることで温水6との接触を精度よく検出することができる。   FIG. 2 is a graph in which the vertical axis represents the amplitude of the ultrasonic pulse echo, the other vertical axis represents the temperature, and the horizontal axis represents the measurement time. The temperature is a position W1 of 5 mm from the bottom surface 4 to the top surface side of the plate 2. The measurement result of the position W5 of 25 mm and the temperature change on the bottom surface 4 side and the top surface 3 side of the plate member 2 is shown. It is observed that the intensity (amplitude) of the ultrasonic pulse echo is sharply reduced, which is based on the contact between the bottom surface 4 of the plate member 2 and the hot water 6. In other words, this is due to a decrease in the reflectance of the ultrasonic wave due to the contact between the bottom surface 4 and the hot water 6, and the decrease in the intensity of the ultrasonic pulse echo substantially coincides with the theoretically calculated change in reflectance (6%). Thus, contact with the hot water 6 can be detected with high accuracy by using the ultrasonic pulse echo as an index.

尚、底面4から5mmの位置W1に設置した熱電対21による温度変化が確認されたのは、超音波パルスエコーの強度減少が開始した時刻から約0.5秒後であった。   The temperature change by the thermocouple 21 installed at the position W1 5 mm from the bottom surface 4 was confirmed about 0.5 seconds after the time when the intensity of the ultrasonic pulse echo started to decrease.

図3は縦軸を温度、横軸を測定時間とした温度変化を示すグラフであり、「超音波」を用いた本発明による温度測定(以下、超音波法という)の結果と共に、対比のために「熱電対」を用いた温度測定の結果を示した。両者の傾向はよく一致している。底面4から5mmの位置W1では、両者に差が見られるが、超音波法は、熱電対21を用いた温度測定より約0.5秒早く温度上昇を捉えている。   FIG. 3 is a graph showing temperature changes with the vertical axis representing temperature and the horizontal axis representing measurement time, and for comparison with the results of temperature measurement according to the present invention using “ultrasonic waves” (hereinafter referred to as ultrasonic method). Shows the results of temperature measurement using a "thermocouple". Both trends are in good agreement. At the position W1 5 mm from the bottom surface 4, there is a difference between them, but the ultrasonic method catches the temperature rise about 0.5 seconds earlier than the temperature measurement using the thermocouple 21.

図4は縦軸に温度、横軸に底面5からの距離を取ったグラフであり、「超音波」を用いた本発明による温度測定の結果と共に、対比のために「熱電対」を用いた温度測定の結果を示した。底面4が温水6に接触した後1秒での温度分布は、熱電対21によるものと略一致するが、時間の経過と共に底面4近傍で両者に差がでた。この原因としては、温水6の対流や板材2の側面からの加熱などの影響が考えられ、これら影響を抑える又は計算上補正することにより、実用可能な温度測定が可能になると考えられる。   FIG. 4 is a graph in which temperature is plotted on the vertical axis and distance from the bottom surface 5 is plotted on the horizontal axis, and “thermocouple” is used for comparison with the results of temperature measurement according to the present invention using “ultrasonic waves”. The results of temperature measurement are shown. The temperature distribution at 1 second after the bottom surface 4 was in contact with the hot water 6 substantially coincided with that of the thermocouple 21, but there was a difference between the two near the bottom surface 4 over time. The cause is considered to be effects such as convection of the hot water 6 and heating from the side surface of the plate member 2, and it is considered that practical measurement of temperature becomes possible by suppressing these influences or correcting the calculation.

このように本実施例では、請求項1に対応して、媒体たる板材2中の一定距離を伝播する超音波の伝播時間tと板材2の既知のデータとから板材2中の温度分布T(x,t)を測定するから、超音波の板材2内の速度が温度に依存することを利用し、熱電対21などを測定物たる板材2の内部に挿入することなく、超音波の伝播速度とに関する既知のデータから板材2内の温度分布T(x,t)を測定することが可能となる。また、従来の温度測定法より、時間応答性に優れたものになる。   Thus, in the present embodiment, corresponding to claim 1, the temperature distribution T (in the plate material 2 is obtained from the propagation time t of the ultrasonic wave propagating a certain distance in the plate material 2 as a medium and the known data of the plate material 2. x, t) is measured, and the propagation speed of the ultrasonic wave is utilized without inserting a thermocouple 21 or the like into the measurement object 2 using the fact that the velocity of the ultrasonic wave 2 in the plate 2 depends on the temperature. It is possible to measure the temperature distribution T (x, t) in the plate 2 from known data relating to the above. In addition, the time response is superior to the conventional temperature measurement method.

また、このように本実施例では、請求項に対応して、既知のデータに、板材2の温度に対する超音波の速度のデータを用い、また、請求項に対応して、既知のデータに、板材2の温度伝導率αのデータを用いるから、温度分布T(x,t)の推定による算出が可能となる。 Further, in the present embodiment in this manner, corresponding to claim 1, the known data, using an ultrasound velocity data with respect to the temperature of the plate 2, also corresponding to claim 1, known data In addition, since the data of the temperature conductivity α of the plate material 2 is used, calculation by estimating the temperature distribution T (x, t) is possible.

また、このように本実施例では、請求項に対応して、超音波が超音波パルスであるから、超音波パルスエコー法やピッチキャッチ法(斜入射法)を用いることができ、また、板材2の一側たる上面3で測定が可能となり、板材2の他側たる底面4に温度の異なる物体たる温水6が配置された状態で測定することができる。 In this way, in this embodiment, in response to claim 1 , since the ultrasonic wave is an ultrasonic pulse, an ultrasonic pulse echo method or a pitch catch method (oblique incidence method) can be used, Measurement can be performed on the upper surface 3 that is one side of the plate member 2, and measurement can be performed in a state where hot water 6 that is an object having a different temperature is disposed on the bottom surface 4 that is the other side of the plate member 2.

また、このように本実施例では、請求項に対応して、超音波パルスを媒体たる板材2の一側面たる上面3から入射し、板材2の他側面たる底面4で反射した超音波パルスエコーの伝播速度を測定するから、板材2の一側たる上面3で測定が可能となり、板材2の他側たる底面4に温度の異なる物体たる温水6が配置された状態で測定することができる。 In this way, in this embodiment, corresponding to claim 1 , the ultrasonic pulse is incident from the upper surface 3 that is one side surface of the plate material 2 that is a medium, and is reflected by the bottom surface 4 that is the other side surface of the plate material 2. Since the propagation speed of the echo is measured, the measurement can be performed on the upper surface 3 which is one side of the plate material 2, and the measurement can be performed in a state where the hot water 6 which is an object having a different temperature is arranged on the bottom surface 4 which is the other side of the plate material 2. .

また、このように本実施例では、請求項に対応して、超音波パルスを媒体たる板材2の一側面たる上面3から入射し、板材2の他側面たる底面4に該板材2と温度の異なる物体たる温水6を配置したから、板材2の一側での測定が可能となる。 In this way, in this embodiment, corresponding to claim 1 , an ultrasonic pulse is incident from the upper surface 3 that is one side surface of the plate material 2 that is a medium, and the plate material 2 and the temperature are incident on the bottom surface 4 that is the other side surface of the plate material 2. Since the hot water 6 which is a different object is disposed, measurement on one side of the plate member 2 is possible.

また、このように本実施例では、請求項に対応して、媒体たる板材2の表面温度を測定するから、内部の温度分布と共に、表面温度を推定して算出することにより測定できる。 Further, in the present embodiment in this manner, corresponding to claim 1, from measuring the surface temperature of the medium serving plate 2, together with the internal temperature distribution can be measured by calculating by estimating the surface temperature.

また、このように本実施例では、請求項に対応して、媒体たる板材2の一側面たる上面3を測定するから、内部の温度分布と共に、表面温度を推定して算出することにより測定できる。 In this way, according to the third embodiment, since the upper surface 3 as one side surface of the plate material 2 as a medium is measured, the measurement is performed by estimating and calculating the surface temperature together with the internal temperature distribution. it can.

また、このように本実施例では、請求項に対応して、超音波パルスの周波数が100kHz以上である。 In this way, in this embodiment, the frequency of the ultrasonic pulse is 100 kHz or more, corresponding to claim 5 .

また、請求項2に対応して、上記数1〜数4を用い、ここで、Tsは接触面温度、T0はその初期温度、αは温度伝導率(α=λ/ρC:λは熱伝導率、ρは密度、Cは比熱容量)、xは接触面からの距離、tは接触後(加熱後)の測定時間、uは確率変数であり、超音波伝播時間tLを計測することで、温度Tsを求め、媒体の温度分布T(x,t)を求めることができる。 Corresponding to claim 2, the above equations 1 to 4 are used, where Ts is the contact surface temperature, T 0 is the initial temperature, α is the temperature conductivity (α = λ / ρC: λ is the heat Conductivity, ρ is density, C is specific heat capacity), x is a distance from the contact surface, t is a measurement time after contact (after heating) , u is a random variable, and ultrasonic propagation time tL is measured. The temperature Ts can be obtained, and the temperature distribution T (x, t) of the medium can be obtained.

参考例1
図5〜図8は本発明の参考例1を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述し、この参考例の温度測定装置1は、前記容器5の代わりに鋳型5Aを用いると共に、前記温水6の代わりに溶融アルミニウム6Aを前記鋳型に6Aに入れている。また、板材2の表面位置W6,板材2の底面4から4mm上方の位置W1´,,この位置W1´から5.5mm間隔の位置W2´,W3´,W4´,W5´に前記熱電対21を配置しており、上面位置W6と位置W5´とは4mmの距離を置いている。また、溶融アルミニウム6Aの温度を測定する熱電対21(位置W7)を備える。
Reference example 1
5 to 8 show a reference example 1 of the present invention, the same reference numerals are given to the same parts as those of the above-described embodiment 1, detailed description thereof is omitted, and the temperature measuring device 1 of this reference example is In addition to using the mold 5A in place of the container 5, molten aluminum 6A is put in the mold 6A in place of the hot water 6. Further, the thermocouple 21 is placed at the surface position W6 of the plate member 2, the position W1 ′ 4 mm above the bottom surface 4 of the plate member 2, and the positions W2 ′, W3 ′, W4 ′, W5 ′ at intervals of 5.5 mm from this position W1 ′. The upper surface position W6 and the position W5 ′ are 4 mm apart. Moreover, the thermocouple 21 (position W7) which measures the temperature of the molten aluminum 6A is provided.

また、実施例1では、温度分布T(x,t)を数3及び数4で表した。この参考例では、物体内の温度分布T(x,t)は境界条件に依存するが、ここでは近似的に下記の数5のような指数関数を仮定した。 In Example 1, the temperature distribution T (x, t) is expressed by Equation 3 and Equation 4. In this reference example, the temperature distribution T (x, t) in the object depends on the boundary condition, but here, an exponential function as shown in Equation 5 below is approximately assumed.

Figure 0004843790
上記数5で、xは距離、C,D,Eは定数である。超音波パルスエコーの計測二より物体内の超音波伝播時間tLを精度良く測定すれば、上記の式から物体内の任意の位置での温度を求めることができ、また、近似的に内部の温度勾配を推測することもできる。尚、この例では、物体内の一点の温度を既知情報として用いることとする。
Figure 0004843790
In the above equation 5, x is a distance, and C, D, and E are constants. If the ultrasonic propagation time tL in the object is accurately measured from the measurement of the ultrasonic pulse echo, the temperature at an arbitrary position in the object can be obtained from the above formula, and the internal temperature can be approximated. The slope can also be inferred. In this example, the temperature at one point in the object is used as known information.

図6は、前記板材2の音速の温度依存性を測定した結果である。この実験は別途用意した加熱用ヒータを用いて板材2の板厚方向の温度を均一にした状況で行った。この結果より、この温度範囲内では、前記数2で仮定したように音速は温度の一次式で表せることが分かる。後の温度推定にはここで最小二乗法により求めた関係式を用いた。   FIG. 6 shows the results of measuring the temperature dependence of the sound speed of the plate 2. This experiment was performed in a state where the temperature in the thickness direction of the plate material 2 was made uniform using a heater for heating separately prepared. From this result, it can be seen that within this temperature range, the speed of sound can be expressed by a linear equation of temperature, as assumed in Equation 2 above. For later temperature estimation, the relational expression obtained by the least square method is used.

図7は一方の縦軸に超音波パルスエコーの振幅、他方の縦軸に温度を取り、横軸を測定時間としたグラフであり、板材2の底面4に溶融アルミニウム6Aが接触する前後の板材2の底面4からの超音波パルスエコーの強度と、板材2の位置W1´,W5´の温度の変化を示す。超音波パルスエコーに着目すると、点aにおいて強度の減少が明瞭に確認される。これは溶融アルミニウム6Aが板材2の底面4に接触したことにより、超音波エネルギーの一部が底面4から溶融アルミニウム6Aに透過したことによるものであり、このような反射強度の挙動から溶融アルミニウム6Aとの接触状況を正確に捉えることができる。以後、このa点を接触開始の基準時間とする。尚、底面4から最も近い位置にある熱電対21(位置W1´)に温度上昇が見られるのはa点から約1.7秒後であることから、超音波振幅による溶融接触状況モニタリングは熱電対21によるものよりも時間応答性に優れることがわかる。底面4から遠い位置W5´の熱電対21の温度変化は当然のことながら位置W1´の熱電対21よりも緩慢であった。尚、この例では、内部温度の推定に、超音波伝播時間tLと上面3付近の温度を測定既知情報として用いるが、ここでは上面3に近いW5´の温度を既知情報とすることとしており、このように媒体の既知の物性的データに加えて、測定時の温度に関する1つの情報(データ)を付加して用いてもよい。   FIG. 7 is a graph in which the vertical axis represents the amplitude of the ultrasonic pulse echo, the other vertical axis represents the temperature, and the horizontal axis represents the measurement time. The plate material before and after the molten aluminum 6A contacts the bottom surface 4 of the plate material 2. 2 shows the intensity of the ultrasonic pulse echo from the bottom surface 4 of 2 and the temperature change at the positions W1 ′ and W5 ′ of the plate 2. When attention is paid to the ultrasonic pulse echo, the decrease in intensity is clearly confirmed at the point a. This is because molten aluminum 6A is in contact with the bottom surface 4 of the plate 2 and a part of ultrasonic energy is transmitted from the bottom surface 4 to the molten aluminum 6A. Can accurately capture the contact situation. Hereinafter, this point a is set as a reference time for starting contact. Note that the temperature rise at the thermocouple 21 (position W1 ′) located closest to the bottom surface 4 is about 1.7 seconds after point a. It can be seen that the time response is superior to that of the pair 21. Naturally, the temperature change of the thermocouple 21 at the position W5 ′ far from the bottom surface 4 was slower than the thermocouple 21 at the position W1 ′. In this example, the ultrasonic propagation time tL and the temperature near the upper surface 3 are used as measurement known information for the estimation of the internal temperature. Here, the temperature of W5 ′ close to the upper surface 3 is used as the known information. Thus, in addition to the known physical data of the medium, one piece of information (data) related to the temperature at the time of measurement may be added and used.

図8は縦軸を温度、横軸を測定時間とした温度変化を示すグラフであり、「超音波」を用いた本発明による温度測定の結果と共に、対比のために「熱電対」を用いた温度測定の結果を示した。両者の傾向はよく一致しており、本参考例の測定方法の有効性が確認された。 FIG. 8 is a graph showing the temperature change with the vertical axis representing temperature and the horizontal axis representing measurement time. The result of temperature measurement according to the present invention using “ultrasonic waves” was used for comparison with “thermocouple”. The results of temperature measurement are shown. Both tendencies were in good agreement, confirming the effectiveness of the measurement method of this reference example .

参考例2
図9は本発明の参考を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述し、この参考例では、媒体たる板材2の一側面に発信用の超音波探触子12Aを設け、前記板材2の他側面に受信用の超音波探触子12Bを設けている。前記超音波探触子12Bは前記超音波探触子12Aから板材2内に入射した超音波パルスを受信し、媒体の一定距離は厚さWとなる。
Reference example 2
FIG. 9 shows a reference example 2 of the present invention, in which the same reference numerals are given to the same parts as those in the first embodiment, and detailed description thereof is omitted. In this reference example, one side of the plate material 2 as a medium is shown. A transmitting ultrasonic probe 12A is provided on the other side, and a receiving ultrasonic probe 12B is provided on the other side of the plate 2. The ultrasonic probe 12B receives an ultrasonic pulse incident on the plate 2 from the ultrasonic probe 12A, and a certain distance of the medium has a thickness W.

また、上記実施例1及び参考例1では、所謂パルスエコー法を説明したが、ピッチキャッチ法(斜入射法)を用いてもよく、すなわち、図示しないが、超音波探触子12A,12Bを媒体の一側面に設け、超音波探触子12Aから超音波パルスを前記一側面に斜めに入射し、他側面で反射した超音波パルスエコーを前記超音波探触子12Bで受信してもよい。 In the first embodiment and the reference example 1 , the so-called pulse echo method has been described. However, a pitch catch method (oblique incidence method) may be used, that is, although not shown, the ultrasonic probes 12A and 12B are used. Provided on one side of the medium, an ultrasonic pulse from the ultrasonic probe 12A is obliquely incident on the one side, and an ultrasonic pulse echo reflected on the other side may be received by the ultrasonic probe 12B. .

また、このように本参考例では、超音波パルスを一側面に斜めに入射するから、ピッチキャッチ法(斜入射法)を用いて媒体内の温度分布を推測して温度分布を測定することができる。 Further, in this reference example, since the ultrasonic pulse is incident obliquely on one side surface, it is possible to estimate the temperature distribution in the medium using the pitch catch method (oblique incidence method) and measure the temperature distribution. it can.

以上、本発明の実施例について詳述したが、本発明は、前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、媒体は、固体に限らず、気体や液体でもよい。   As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various deformation | transformation implementation is possible within the range of the summary of this invention. For example, the medium is not limited to a solid but may be a gas or a liquid.

本発明の実施例1を示す装置の全体説明図である。It is the whole apparatus explanatory drawing which shows Example 1 of this invention. 同上、測定時間に対する振幅と測定温度の変化を示すグラフ図である。It is a graph which shows the change of the amplitude and measurement temperature with respect to measurement time same as the above. 同上、測定時間に対する測定温度の変化を示すグラフ図である。It is a graph which shows the change of measurement temperature with respect to measurement time same as the above. 同上、底面からの距離毎の温度の変化を示すグラフ図である。It is a graph which shows the change of the temperature for every distance from a bottom face same as the above. 本発明の参考例1を示す装置の全体説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is whole explanatory drawing of the apparatus which shows the reference example 1 of this invention. 同上、媒体における温度と音速の関係を示すグラフ図である。It is a graph which shows the relationship between the temperature in a medium, and sound velocity same as the above. 同上、測定時間に対する振幅と測定温度の変化を示すグラフ図である。It is a graph which shows the change of the amplitude and measurement temperature with respect to measurement time same as the above. 同上、同上、測定時間に対する測定温度の変化を示すグラフ図である。It is a graph which shows the change of the measurement temperature with respect to measurement time same as the above. 本発明の参考例3を示す装置の要部の断面図である。It is sectional drawing of the principal part of the apparatus which shows the reference example 3 of this invention.

1 測定装置
2 板材(媒体)
3 上面(一側面)
4 底面(接触面)
6 温水(媒体と温度の異なる物体)
6A 溶融アルミニウム(媒体と温度の異なる物体)
Ts 接触面温度
0 初期温度
α 温度伝導率
λ 熱伝導率
ρ 密度
C 比熱容量
x 接触面からの距離
t 接触後(加熱後)の測定時間
u 確率変数
L 超音波伝播時間
1 Measuring device 2 Plate material (medium)
3 Top (one side)
4 Bottom (contact surface)
6 Hot water (objects with different temperatures from the medium)
6A Molten aluminum (object with different temperature from medium)
Ts Contact surface temperature
T 0 initial temperature
α Temperature conductivity
λ Thermal conductivity
ρ density
C Specific heat capacity
x Distance from contact surface
t Measurement time after contact (after heating)
u random variable
t L Ultrasonic propagation time

Claims (5)

媒体の一側面に超音波探触子を配置し、前記媒体の他側面を加熱し、前記媒体中の一定距離を伝播する超音波パルスの伝播時間と前記媒体の既知のデータとから前記媒体中の温度分布を測定する超音波を用いた温度測定方法であって、
前記既知のデータに、前記媒体の温度に対する前記超音波パルスの伝播速度と、前記媒体の温度伝導率とを用い、
前記超音波探触子により前記超音波パルスを前記媒体の一側面から入射すると共に、前記媒体の他側面で反射した超音波パルスの伝播時間を測定し、
前記媒体の初期温度と、前記媒体の前記温度伝導率と、前記加熱後の測定時間とにより定まる前記媒体の温度分布を示す関数T(x,t)を仮定し、
前記加熱前に前記媒体の表面の温度を測定して得られた前記初期温度と、前記媒体の既知の前記温度伝導率と、前記加熱後の測定時間と、測定した前記超音波パルスの前記伝播時間とから、前記既知の前記媒体の温度に対する前記超音波パルスの伝播速度により求める超音波パルスの伝播時間の数式及び前記関数T(x,t)を用いて、前記媒体の他側面温度及び温度分布を算出することを特徴とする超音波を用いた温度測定方法。
An ultrasonic probe is arranged on one side of the medium, the other side of the medium is heated, and the propagation time of the ultrasonic pulse propagating a certain distance in the medium and the known data of the medium are used in the medium. a temperature measuring method of the temperature distribution using ultrasound you measurements,
Using the propagation speed of the ultrasonic pulse with respect to the temperature of the medium and the temperature conductivity of the medium as the known data,
The ultrasonic pulse is incident from one side of the medium by the ultrasonic probe, and the propagation time of the ultrasonic pulse reflected from the other side of the medium is measured,
Assuming a function T (x, t) indicating the temperature distribution of the medium determined by the initial temperature of the medium, the temperature conductivity of the medium, and the measurement time after the heating,
The initial temperature obtained by measuring the surface temperature of the medium prior to the heating, the known temperature conductivity of the medium, the measurement time after the heating, and the propagation of the measured ultrasonic pulse. And the other side temperature and temperature of the medium using the formula of the propagation time of the ultrasonic pulse and the function T (x, t) determined from the propagation speed of the ultrasonic pulse with respect to the known temperature of the medium. A temperature measurement method using ultrasonic waves, characterized by calculating a distribution .
前記媒体の表面が一側面であり、前記媒体の一側面の温度を測定して前記初期温度を得ることを特徴とする請求項1記載の超音波を用いた温度測定方法。 The temperature measurement method using ultrasonic waves according to claim 1 , wherein the surface of the medium is one side surface, and the temperature of one side surface of the medium is measured to obtain the initial temperature . 前記伝播時間の数式が
Figure 0004843790
であり、数1において、t L は超音波パルスの伝播時間、V(T)は温度Tの関数で表される媒体の音速であり、この音速V(T)は下記の数2で表され、
Figure 0004843790
上記数2において、A,Bは、それぞれ媒体固有の定数であり、
前記関数T(x,t)が
Figure 0004843790
であり、数3において、ηは下記の数4により表され、
Figure 0004843790
数3及び数4において、Tsは他側面温度、T 0 は媒体の初期温度、αは温度伝導率(α=λ/ρC:λは媒体の熱伝導率、ρは媒体の密度、Cは媒体の比熱容量)、xは他側面からの距離、tは加熱後の測定時間、uは確率変数であることを特徴とする請求項1又は2記載の超音波を用いた温度測定方法。
The propagation time formula is
Figure 0004843790
In Equation 1, t L is the propagation time of the ultrasonic pulse, V (T) is the sound velocity of the medium expressed as a function of temperature T, and this sound velocity V (T) is expressed by Equation 2 below. ,
Figure 0004843790
In the above equation 2, A and B are constants specific to the medium,
The function T (x, t) is
Figure 0004843790
In Equation 3, η is expressed by Equation 4 below,
Figure 0004843790
In Equations 3 and 4, Ts is the other side surface temperature, T 0 is the initial temperature of the medium, α is the temperature conductivity (α = λ / ρC: λ is the thermal conductivity of the medium, ρ is the density of the medium, and C is the medium density. 3. The temperature measurement method using ultrasonic waves according to claim 1 , wherein x is a distance from another side surface, t is a measurement time after heating, and u is a random variable .
前記超音波パルスを一側面から斜めに入射することを特徴とする請求項1〜3のいずれか1項に記載の超音波を用いた温度測定方法。 The temperature measurement method using ultrasonic waves according to any one of claims 1 to 3, wherein the ultrasonic pulse is incident obliquely from one side surface. 前記超音波パルスの周波数が100kHz以上であることを特徴とする請求項のいずれか1項に記載の超音波を用いた温度測定方法。 The temperature measurement method using ultrasonic waves according to any one of claims 1 to 4 , wherein the frequency of the ultrasonic pulses is 100 kHz or more.
JP2006251806A 2006-09-15 2006-09-15 Temperature measurement method using ultrasonic waves Active JP4843790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251806A JP4843790B2 (en) 2006-09-15 2006-09-15 Temperature measurement method using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251806A JP4843790B2 (en) 2006-09-15 2006-09-15 Temperature measurement method using ultrasonic waves

Publications (2)

Publication Number Publication Date
JP2008070340A JP2008070340A (en) 2008-03-27
JP4843790B2 true JP4843790B2 (en) 2011-12-21

Family

ID=39292035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251806A Active JP4843790B2 (en) 2006-09-15 2006-09-15 Temperature measurement method using ultrasonic waves

Country Status (1)

Country Link
JP (1) JP4843790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990916A (en) * 2017-12-29 2019-07-09 国电科学技术研究院有限公司 A kind of measurement method and system of fire box temperature
US11953384B2 (en) 2020-10-02 2024-04-09 Mitsubishi Heavy Industries, Ltd. Temperature measuring device, mechanical system, temperature measuring method, and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409795B1 (en) * 2009-03-17 2019-08-14 Nippon Steel Corporation Temperature measuring method and device for continuous-casting mold copper plate
CN103926018B (en) * 2014-03-11 2016-09-28 刘文斌 A kind of temperature of liquid measurement apparatus and method
JP7151609B2 (en) 2019-04-24 2022-10-12 日本電信電話株式会社 Internal temperature measurement device and method
CN114061785A (en) * 2021-11-17 2022-02-18 青岛理工大学 Method and system for measuring temperature field inside bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195148A (en) * 1982-05-08 1983-11-14 Nippon Steel Corp Method and device for measuring internal temperature and texture of metallic material
JP3459491B2 (en) * 1995-04-17 2003-10-20 新日本製鐵株式会社 Internal temperature measurement device
JP3004984B1 (en) * 1999-02-16 2000-01-31 核燃料サイクル開発機構 Ultrasonic temperature measurement device
JP3799453B2 (en) * 2002-03-13 2006-07-19 新日本製鐵株式会社 Internal temperature distribution measuring device and internal temperature distribution measuring method
JP2003329518A (en) * 2002-05-09 2003-11-19 Kawasaki Heavy Ind Ltd Method and apparatus for measurement of temperature on inner surface of structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990916A (en) * 2017-12-29 2019-07-09 国电科学技术研究院有限公司 A kind of measurement method and system of fire box temperature
CN109990916B (en) * 2017-12-29 2020-11-10 国电科学技术研究院有限公司 Method and system for measuring temperature of hearth
US11953384B2 (en) 2020-10-02 2024-04-09 Mitsubishi Heavy Industries, Ltd. Temperature measuring device, mechanical system, temperature measuring method, and program

Also Published As

Publication number Publication date
JP2008070340A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4843790B2 (en) Temperature measurement method using ultrasonic waves
US9212956B2 (en) Ultrasonic temperature measurement device
US7665362B2 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
JP4321190B2 (en) Material thickness measuring method and apparatus
Wadley et al. Ultrasonic measurement of internal temperature distribution
Kosugi et al. Accuracy evaluation of surface temperature profiling by a laser ultrasonic method
Jia et al. Noninvasive ultrasound measurements of temperature distribution and heat fluxes in solids
CN106768464A (en) A kind of laser-ultrasound detection method and system in uniform material component inside temperature field
Zhang et al. Ultrasonic monitoring of pipe wall interior surface temperature
CN105466495B (en) Measuring method that is a kind of while obtaining pars intramuralis non-uniform temperature field and wall thickness
Takahashi et al. Ultrasonic determination of temperature distribution in thick plates during single sided heating
Takahashi et al. Quantitative evaluation of one-dimensional temperature distribution on material surface using surface acoustic wave
EP1893972A1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
Ihara et al. Non-invasive monitoring of temperature distribution inside materials with ultrasound inversion method
Myers et al. Heat flux determination from ultrasonic pulse measurements
Ihara et al. A new method for internal temperature profile measurement by ultrasound
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
CN109506807B (en) Method for simultaneously measuring internal temperature and wall thickness of high-temperature structure under steady-state condition
JP2019060740A (en) Temperature measurement method
JP5446008B2 (en) Temperature measurement method using ultrasonic waves
Ihara et al. Ultrasound thermometry for monitoring internal temperature gradient in heated material
JP3770522B2 (en) Method and apparatus for measuring internal temperature of steel material
JPS5890129A (en) Ultrasonic level meter
Takahashi et al. Ultrasonic sensing of internal temperature distributions in heated materials
Ihara et al. A non-contact temperature sensing with ultrasound and the potential for monitoring heated materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150