JP4734695B2 - Flex-resistant flat cable - Google Patents
Flex-resistant flat cable Download PDFInfo
- Publication number
- JP4734695B2 JP4734695B2 JP2000211961A JP2000211961A JP4734695B2 JP 4734695 B2 JP4734695 B2 JP 4734695B2 JP 2000211961 A JP2000211961 A JP 2000211961A JP 2000211961 A JP2000211961 A JP 2000211961A JP 4734695 B2 JP4734695 B2 JP 4734695B2
- Authority
- JP
- Japan
- Prior art keywords
- flat
- flat cable
- conductor
- conductivity
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、多数本の並列された導体をその厚さ方向から絶縁体フィルムで挟み込んでラミネート一体化した構成のフラットケーブルに関する。
【0002】
【従来の技術】
一般に、フラットケーブルは、多数本;例えば3本の平板状の導体いわゆる平角導体を同一平面上に並列に配置し、導体の厚さ方向の両面から片面に接着剤層を施した絶縁体フィルムを接着剤層が内側にして挟み付け、この絶縁フィルムの外側から加熱ロールなどで加熱して接着剤層を融着させることにより、絶縁体フィルム間をラミネート一体化したものである。
【0003】
上記のうち、絶縁体フィルムには、ポリエステルフィルムやPETフィルムが用いられ、接着剤層には、ポリエチレンやポリエステルをベースポリマーとしたものが使用され、また、平角導体には、錫または半田メッキされたタフピッチ銅または無酸素銅の焼鈍材(引張り強さ200MPa 以上、伸び20%以上、導電率100%IACS)が適用されている。
【0004】
また、この種のフラットケーブルの導体として、Cu−Sn合金を適用していた例(実開昭63−61703号)、Cu−Ni−Si合金を適用した例(特開平11−111070号)がある。
【0005】
【発明が解決しようとする課題】
最近の電子機器の小型化に伴い、機器内配線としてのフラットケーブルにおいても、狭ピッチ化、高密度化、高耐屈曲性が要求されるようになってきたが、前述した従来技術によるフラットケーブルでは、前記のような狭ピッチ化、高密度化、高耐屈曲性の要求に十分に答え難い面があった。
【0006】
そこで本発明の目的は、耐屈曲性に優れ、且つ、高密度実装が可能な耐屈曲フラットケーブルを提供することにある。
【0007】
【課題を解決するための手段】
本発明により提供する手段は、無酸素銅(99.999wt%Cu)に0.3wt%以下のSnと0.3wt%以下のInまたはMgを添加した合金、あるいは無酸素銅(99.999wt%Cu)に10wt%以下のAgを添加した合金を母材とし、その表面にSnをめっきした平板状の導体に熱処理を行い、引張り強さ350MPa以上、伸び5%以上、導電率70%IACS以上とした平角導体をフラットケーブルに適用することを基本としたものである。この平角導体の物性及び特性の限定理由は次の通りである。即ち、金属材料の弾性領域での耐屈曲性は、引張り強さが大きいほど優れるが、フラットケーブルは、そのフラット構造の故に、折り曲げられて配線;設置されるケースが多く、引張り強さが大きくても伸びが2%以下の材料の場合、剛性が強く折り曲げが困難であるためと、折り曲げ時に導体を座屈させてしまう恐れがあるため、ある程度の伸びが必要となる。そのため、高強度、高導電性を有する銅合金について、熱処理を行い、引張り強さと伸びと導電率をバランス良く有する材料を母材として適用したものである。
【0008】
前記の、引張り強さ350MPa 以上、伸び5%以上、導電率70%IACS以上と限定した理由は、引張り強さ350MPa 未満では、従来の純銅と比較して屈曲特性の向上効果が十分に得られないためであり、伸びが5%未満では、折り曲げられると平角導体が座屈する恐れがあるためであり、導電率が70%未満では、導電材料として電気特性が不十分なためである。
【0009】
本発明は、前記の特性の平角導体を得るための条件として二つの手段を提供する。
第一の手段は、無酸素銅(99.999wt.%Cu)に0.3wt.%以下のSnと0.3wt.%以下のInまたはMgとを添加した材料を母材とし、その表面にSnメッキした平板状の導体を用いるものである。
【0010】
また、第二の手段は、無酸素銅(99.999wt.%Cu)に10wt.%以下のAgを添加した材料を母材とし、その表面に前記と同様のメッキを施した平板状の導体を用いるものである。
【0011】
これら、第一の手段と第二の手段により得られた平角導体は、多数本;三本以上を同一平面上に並列配置して、両面から絶縁体フィルムを挟み付けた、いわゆる一層構造のフラットケーブルとして提供する。
【0012】
第一の手段において、無酸素銅(99.999wt.%Cu)に0.3wt.%以下のSnと0.3wt.%以下のInまたはMgを添加した理由は、添加元素がSnのみの場合と比較して、導電率をあまり低下させずに引張り強さの大きい材料が得られるためである。Snの添加量を0.3wt.%以下に限定しているのは、0.3wt.%を超えると、In,Mgを添加した際に、70%IACSを確保するのが困難となるためである。In,Mgの添加量が0.3wt.%を超えると、導電率の低下を招き、70%IACSを確保するのが困難となるためである。
また、第二の手段において、無酸素銅(99.999wt.%Cu)に10wt.%以下のAgを添加した理由は、Agが10wt.%を超えると、材料コストが上がり、実用性に乏しいためである。
【0013】
第一の手段と第二の手段において、導体表面にSnメッキしているのは、導体の耐食性を確保するためと導体端末をコネクタの端子等と接続した後の接触抵抗の増加を抑えるためである。
【0014】
本発明は、第三の手段として、前記平角導体が絶縁体フィルムの両面に配され、それら平角導体の外側から絶縁体フィルムで挟み付けて前記平角導体を二層構造としたフラットケーブルを提供する。このように、二層構造とすることで、さらなる高密度実装が可能となる。さらに、前記の銅合金の平角導体を適用することで、屈曲特性は従来品と同等以上のものが得られる。
【0015】
これら第一の手段から第三の手段において、平角導体の材質以外、絶縁体フィルム、接着剤層は従来品と同じで良い。
【0016】
【発明の実施の形態】
図1は、本発明の第一、第二の手段により具現された耐屈曲フラットケーブルを横断面構造により示したものである。1は本発明により得られた平角導体にして、これの複数本;4本を同一平面上に並列に配置して、導体フラット面の両面から片面接着剤層付きの絶縁体フィルム3を接着剤層が内側となるように挟み付けて加熱により融着一体化したものである。2は融着により平角導体1の面及び平角導体1間及び平角導体1の両外側で一体化された接着剤層を示している。
【0017】
図2は、本発明の第三の手段により具現された耐屈曲フラットケーブルを横断面構造により示したものである。両面に接着剤層を施した絶縁体フィルム5の両面に、本発明により得られた平角導体6を複数本;4本ずつ並列に配置し、これら平角導体6の外側から片面接着剤層付きの絶縁体フィルム7を接着剤層が内側にして挟み込み、これらを全体を加熱ロール等で加熱して融着一体化したものである。4は融着により平角導体の面及び平角導体1間及び平角導体1の両外側で一体化された、絶縁体フィルム5の両面及び絶縁体フィルム7の片面に施した接着剤層を示す。
【0018】
以下に、本発明の実施例を比較例等と併せて示す。
【0019】
[参考例1]
Snメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0020】
[実施例1]
Snメッキされた銅合金Cu−0.2wt.%Sn−0.2wt.%Inの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ370MPa 、伸び12%、導電率80%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0021】
[実施例2]
Snメッキされた銅合金Cu−0.3wt.%Sn−0.05wt.%Mgの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ400MPa 、伸び8%、導電率72%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0022】
[実施例3]
Snメッキされた銅合金Cu−2wt.%Agの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ500MPa 、伸び6%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0023】
[参考例2]
Sn−Pbメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0024】
[参考例3]
Sn−Cuメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0025】
[参考例4]
Sn−Ag−Cuメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0026】
[参考例5]
Sn−Ag−Cu−Biメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0027】
[参考例6]
Agメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0028】
[参考例7]
Niメッキされた銅合金Cu−0.1wt.%Zrの板材(サイズw0.2×t0.02)に熱処理を行い、引張り強さ380MPa 、伸び10%、導電率92%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0029】
[比較例1]
Sn−Pbメッキされたタフピッチ銅の板材(サイズw0.3−t0.02)に熱処理を行い、引張り強さ220MPa 、伸び25%、導電率100%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造のフラットケーブルを作製した。
【0030】
[比較例2]
Sn−Pbメッキされた銅合金Cu−0.1wt.%Zrの硬質板材(サイズw0.3−t0.02、引張り強さ880MPa 、伸び2%、導電率72%IACS)で平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0031】
[比較例3]
銅合金Cu−0.5wt.%Zrの板材で平角導体の作製を行っていたところ、圧延途中でCu−Zr系介在物が原因の断線が多発したため、作製を断念した。
【0032】
[比較例4]
Sn−Pbメッキされた銅合金Cu−0.2wt.%Sn−0.2wt.%Inの硬質板材(サイズw0.3−t0.02、引張り強さ800MPa 、伸び2%、導電率76%IACS)で平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0033】
[比較例5]
Sn−Pbメッキされた銅合金Cu−0.6wt.%Sn−0.2wt.%Inの板材(サイズw0.3−t0.02)に熱処理を行い、引張り強さ400MPa 、伸び10%、導電率50%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0034】
[比較例6]
Sn−Pbメッキされた銅合金Cu−0.6wt.%Sn−0.6wt.%Inの板材(サ
イズw0.3−t0.02)に熱処理を行い、引張り強さ420MPa 、伸び10%、導電率45%IACSの平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0035】
[比較例7]
Sn−Pbメッキされた銅合金Cu−0.3wt.%Sn−0.05wt.%Mgの硬質板材(サイズw0.3−t0.02、引張り強さ850MPa 、伸び2%、導電率67%IACS)で平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0036】
[比較例8]
Sn−Pbメッキされた銅合金Cu−2wt.%Agの硬質板材(サイズw0.2−t0.02、引張り強さ950MPa 、伸び2%、導電率83%IACS)で平角導体を作製し、絶縁体フィルムにPET、接着剤層にポリエステルを用いて、図1に示す構造と同様のフラットケーブルを作製した。
【0037】
以上の実施例、比較例および参考例について、引張り強さ、伸び、導電率の測定と、U字屈曲試験、左右90°屈曲試験を行った結果を表1に示す。
【0038】
【表1】
【0039】
表1中のU字屈曲試験の評価において、丸記号は、従来品である比較例1を基準に、寿命が2倍以上のものとし、バツ記号は、当該寿命が同等以下のものとした。左右90°屈曲試験の評価において、丸記号は、比較例1を基準に寿命が同等以上のものとし、バツ記号は、当該寿命が2/3以下のものとした。総合評価において、二重丸記号は、導電率70%IACS以上、U字屈曲試験の寿命が比較例1の2倍以上、左右90°屈曲試験の寿命が比較例1と同等以上を満足するものとし、バツ記号は、それ以外のものとした。
【0040】
表1に示したように、実施例1〜3は、いずれにおいても、導電率70%以上、U字屈曲試験の寿命が比較例1の2倍以上、左右90°屈曲試験の寿命が比較例1と同等以上を満足することが検証された。一方、比較例1〜8は、導電率、U字屈曲特性、左右90°屈曲特性のいずれかに不具合があった。
【0041】
また、前述したように、平角導体に特定の銅合金を適用することで、導体の幅、厚さを薄くすることができ、フラットケーブルのさらなる薄型化、導体の狭ピッチ化が可能となることも確認できた。
【0042】
なおまた、平角導体に前述した実施例のような特定の銅合金材を適用することにより、導体の薄型化が可能となり、フラットケーブルの薄型化が図れるのみならず、図2に示すような両面に端子を有する構造のフラットケーブルの提供も可能であった。
【0043】
【発明の効果】
以上説明したように本発明によれば、耐屈曲性に優れ、且つ、高密度実装が可能な耐屈曲フラットケーブルを提供することができる。
【図面の簡単な説明】
【図1】 本発明の第一手段および第二手段により具現された耐屈曲フラットケーブルを示す横断面説明図。
【図2】 本発明の第三手段により具現された耐屈曲フラットケーブルを示す横断面説明図。
【符号の説明】
1 平角導体
2 接着剤層
3 絶縁体フィルム
4 接着剤層
5 絶縁体フィルム
6 平角導体
7 絶縁体フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat cable having a configuration in which a large number of parallel conductors are sandwiched between insulating films from the thickness direction and laminated and integrated.
[0002]
[Prior art]
In general, a flat cable has a large number of, for example, three flat conductors, so-called flat conductors, arranged in parallel on the same plane, and an insulator film having an adhesive layer applied from one side to the other in the thickness direction of the conductor. The adhesive film is sandwiched between the insulating films, and the insulating film is laminated and integrated by heating from the outside of the insulating film with a heating roll or the like to fuse the adhesive layer.
[0003]
Among the above, the insulator film is a polyester film or PET film, the adhesive layer is made of polyethylene or polyester as a base polymer, and the rectangular conductor is tin or solder plated. An annealed material of tough pitch copper or oxygen-free copper (tensile strength of 200 MPa or more, elongation of 20% or more, conductivity of 100% IACS) is applied.
[0004]
In addition, as a conductor of this type of flat cable, there are an example in which a Cu—Sn alloy is applied (Japanese Utility Model Publication No. 63-61703) and an example in which a Cu—Ni—Si alloy is applied (Japanese Patent Laid-Open No. 11-1111070). is there.
[0005]
[Problems to be solved by the invention]
With the recent miniaturization of electronic equipment, flat cables as wiring in equipment are also required to have a narrow pitch, high density, and high bending resistance. However, it is difficult to sufficiently satisfy the demands for narrow pitch, high density, and high bending resistance as described above.
[0006]
Accordingly, an object of the present invention is to provide a bending-resistant flat cable that has excellent bending resistance and can be mounted at high density.
[0007]
[Means for Solving the Problems]
The means provided by the present invention is an alloy obtained by adding 0.3 wt% or less of Sn and 0.3 wt% or less of In or Mg to oxygen free copper (99.999 wt% Cu), or oxygen free copper (99.999 wt%). Cu) An alloy obtained by adding 10 wt% or less of Ag to a base material, heat treatment is performed on a flat conductor whose surface is plated with Sn, tensile strength is 350 MPa or more, elongation is 5% or more, and conductivity is 70% IACS or more. This is based on the application of the flat rectangular conductor to a flat cable. The reasons for limiting the physical properties and characteristics of this rectangular conductor are as follows. That is, the bending resistance in the elastic region of the metal material is better as the tensile strength is larger. However, flat cables are bent and wired because of their flat structure; there are many cases where they are installed, and the tensile strength is large. However, in the case of a material having an elongation of 2% or less, a certain degree of elongation is required because the rigidity is high and bending is difficult and the conductor may be buckled during bending. Therefore, a copper alloy having high strength and high conductivity is subjected to heat treatment, and a material having a good balance between tensile strength, elongation and conductivity is applied as a base material.
[0008]
The reason why the tensile strength is 350 MPa or more, the elongation is 5% or more, and the electrical conductivity is 70% IACS or more is that if the tensile strength is less than 350 MPa, the effect of improving the bending characteristics can be sufficiently obtained compared with the conventional pure copper. This is because if the elongation is less than 5%, the flat conductor may buckle when bent, and if the conductivity is less than 70%, the electrical characteristics are insufficient as a conductive material.
[0009]
The present invention provides two means as conditions for obtaining a rectangular conductor having the above characteristics.
The first means is oxygen-free copper (99.999 wt.% Cu) with 0.3 wt. % Sn and 0.3 wt. % The following In or materials added and Mg as a base material, is to use a S n main Tsu key tabular conductor on its surface.
[0010]
The second means is oxygen-free copper (99.999 wt.% Cu) with 10 wt. A flat conductor whose surface is plated in the same manner as described above is used as a base material made of a material to which no more than% Ag is added.
[0011]
These flat conductors obtained by the first means and the second means are so-called single-layer flats in which a large number of conductors; three or more are arranged in parallel on the same plane and an insulating film is sandwiched from both sides. Provide as cable.
[0012]
In the first means, oxygen-free copper (99.999 wt.% Cu) is added to 0.3 wt. % Sn and 0.3 wt. The reason why% or less of In or Mg is added is that a material having a high tensile strength can be obtained without significantly reducing the electrical conductivity as compared with the case where the additive element is only Sn. The amount of Sn added is 0.3 wt. % Is limited to 0.3 wt. This is because when it exceeds%, it is difficult to secure 70% IACS when In and Mg are added. The amount of In and Mg added is 0.3 wt. If it exceeds 50%, the conductivity will be lowered, and it will be difficult to secure 70% IACS.
In the second means, oxygen-free copper (99.999 wt.% Cu) is added to 10 wt. % Or less of Ag is added because Ag is 10 wt. If the content exceeds 50%, the material cost increases and the practicality is poor.
[0013]
In the first means and second means, it is you S n main Tsu key to the conductor surface, an increase in contact resistance after connecting with a conductor terminal connector terminals or the like and for ensuring the corrosion resistance of the conductor This is to suppress.
[0014]
The present invention provides, as a third means, a flat cable in which the flat conductors are arranged on both surfaces of an insulator film, and the flat conductors are sandwiched by insulator films from the outside of the flat conductors to form the flat conductors in a two-layer structure. . As described above, the two-layer structure enables further high-density mounting. Further, by applying the copper alloy flat rectangular conductor, a bending characteristic equal to or higher than that of the conventional product can be obtained.
[0015]
In these first to third means, the insulator film and the adhesive layer may be the same as those of the conventional product except for the material of the flat conductor.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross-sectional structure of a bending-resistant flat cable embodied by the first and second means of the present invention. 1 is a rectangular conductor obtained according to the present invention, and a plurality of these; four are arranged in parallel on the same plane, and an insulating
[0017]
FIG. 2 shows a cross-sectional structure of a bend-resistant flat cable embodied by the third means of the present invention. A plurality of flat conductors 6 obtained by the present invention are arranged in parallel on both surfaces of an insulator film 5 having adhesive layers on both sides, and four of them are arranged in parallel. The insulating
[0018]
Examples of the present invention are shown below together with comparative examples and the like.
[0019]
[Reference Example 1]
Sn-plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0020]
[Example 1]
Sn-plated copper alloy Cu-0.2 wt. % Sn-0.2 wt. % In plate material (size w0.2 × t0.02) is heat treated to produce a flat conductor with a tensile strength of 370 MPa, elongation of 12%, and conductivity of 80% IACS. The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0021]
[Example 2]
Sn-plated copper alloy Cu-0.3 wt. % Sn-0.05 wt. % Mg plate (size w0.2 × t0.02) is heat-treated to produce a flat conductor with tensile strength of 400 MPa, elongation of 8%, conductivity of 72% IACS, insulating film with PET, adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0022]
[Example 3]
Sn-plated copper alloy Cu-2 wt. % Ag plate (size w0.2 × t0.02) is heat treated to produce a flat conductor with tensile strength of 500 MPa, elongation of 6%, and conductivity of 92% IACS, insulating film with PET, adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0023]
[Reference Example 2]
Sn-Pb plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0024]
[Reference Example 3]
Sn-Cu plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0025]
[Reference Example 4]
Sn-Ag-Cu plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0026]
[Reference Example 5]
Sn-Ag-Cu-Bi plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0027]
[Reference Example 6]
Ag-plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0028]
[Reference Example 7]
Ni plated copper alloy Cu-0.1 wt. % Zr plate (size w0.2 × t0.02) is heat-treated to produce a rectangular conductor with a tensile strength of 380 MPa, elongation of 10%, and conductivity of 92% IACS, an insulator film with PET, and an adhesive layer The flat cable of the structure shown in FIG. 1 was produced using polyester.
[0029]
[Comparative Example 1]
A Sn-Pb plated tough pitch copper plate (size w0.3-t0.02) is heat treated to produce a rectangular conductor with tensile strength of 220 MPa, elongation of 25%, conductivity of 100% IACS. A flat cable having the structure shown in FIG. 1 was produced using PET and polyester for the adhesive layer.
[0030]
[Comparative Example 2]
Sn-Pb plated copper alloy Cu-0.1 wt. % Zr hard plate material (size w0.3-t0.02, tensile strength 880MPa,
[0031]
[Comparative Example 3]
Copper alloy Cu-0.5 wt. When a flat conductor was produced with a plate material of% Zr, the breakage occurred frequently during the rolling due to Cu-Zr inclusions, so the production was abandoned.
[0032]
[Comparative Example 4]
Sn—Pb plated copper alloy Cu-0.2 wt. % Sn-0.2 wt. A rectangular conductor is made of a hard plate material of% In (size w0.3-t0.02, tensile strength 800MPa,
[0033]
[Comparative Example 5]
Sn—Pb plated copper alloy Cu-0.6 wt. % Sn-0.2 wt. % In plate (size w0.3-t0.02) is heat-treated to produce a flat conductor with tensile strength of 400 MPa, elongation of 10%, conductivity of 50% IACS, insulating film with PET, adhesive layer A flat cable having the same structure as that shown in FIG. 1 was prepared using polyester.
[0034]
[Comparative Example 6]
Sn—Pb plated copper alloy Cu-0.6 wt. % Sn-0.6 wt. % In plate material (size w0.3-t0.02) is heat-treated to produce a flat conductor with tensile strength of 420 MPa, elongation of 10%, conductivity of 45% IACS, insulating film with PET, adhesive layer A flat cable having the same structure as that shown in FIG. 1 was prepared using polyester.
[0035]
[Comparative Example 7]
Sn—Pb plated copper alloy Cu-0.3 wt. % Sn-0.05 wt. % Mg hard plate (size w0.3-t0.02, tensile strength 850MPa,
[0036]
[Comparative Example 8]
Sn—Pb plated copper alloy Cu-2 wt. % Ag hard plate (size w0.2-t0.02, tensile strength 950MPa,
[0037]
Table 1 shows the results of measurement of tensile strength, elongation, conductivity, U-shaped bending test, and left and right 90 ° bending test for the above Examples, Comparative Examples, and Reference Examples .
[0038]
[Table 1]
[0039]
In the evaluation of the U-shaped bending test in Table 1, the circle symbol is a life of at least twice based on the comparative example 1 which is a conventional product, and the cross symbol is that of the same life or less. In the evaluation of the left / right 90 ° bend test, the circle symbol has a life equal to or longer than that of Comparative Example 1, and the cross symbol has a life of 2/3 or less. In the overall evaluation, the double circle symbol indicates that the electrical conductivity is 70% IACS or higher, the life of the U-shaped bending test is more than twice that of Comparative Example 1, and the life of the 90 ° lateral bending test is equivalent to or longer than that of Comparative Example 1. The cross symbol is assumed to be other than that.
[0040]
As shown in Table 1, in each of Examples 1 to 3, the conductivity is 70% or more, the life of the U-shaped bending test is twice or more that of Comparative Example 1, and the life of the left and right 90 ° bending test is a comparative example. It was verified that the same as or better than 1. On the other hand, Comparative Examples 1 to 8 had problems in any of conductivity, U-shaped bending characteristics, and left and right 90 ° bending characteristics.
[0041]
In addition, as described above, by applying a specific copper alloy to the flat conductor, the width and thickness of the conductor can be reduced, and the flat cable can be further thinned and the conductor pitch can be reduced. Was also confirmed.
[0042]
Further, by applying the specific copper alloy material as in the above-described embodiment to the flat conductor, the conductor can be thinned, and the flat cable can be thinned. It was also possible to provide a flat cable having a structure with a terminal.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a bending-resistant flat cable that has excellent bending resistance and can be mounted at high density.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing a bending-resistant flat cable embodied by first and second means of the present invention.
FIG. 2 is a cross sectional explanatory view showing a bending-resistant flat cable embodied by the third means of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000211961A JP4734695B2 (en) | 2000-07-07 | 2000-07-07 | Flex-resistant flat cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000211961A JP4734695B2 (en) | 2000-07-07 | 2000-07-07 | Flex-resistant flat cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002025353A JP2002025353A (en) | 2002-01-25 |
JP4734695B2 true JP4734695B2 (en) | 2011-07-27 |
Family
ID=18707957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000211961A Expired - Fee Related JP4734695B2 (en) | 2000-07-07 | 2000-07-07 | Flex-resistant flat cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4734695B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10388427B2 (en) | 2016-09-20 | 2019-08-20 | Furukawa Electric Co., Ltd. | Flat cable, method for manufacturing the same, and rotatable connector device including the same |
US10574012B2 (en) | 2016-08-16 | 2020-02-25 | Furukawa Electric Co., Ltd. | Rotatable connector device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050161129A1 (en) | 2003-10-24 | 2005-07-28 | Hitachi Cable, Ltd. | Cu alloy material, method of manufacturing Cu alloy conductor using the same, Cu alloy conductor obtained by the method, and cable or trolley wire using the Cu alloy conductor |
JP3675471B1 (en) * | 2004-07-16 | 2005-07-27 | パイオニア株式会社 | Flexible flat cable and manufacturing method thereof |
JP4479510B2 (en) * | 2005-01-17 | 2010-06-09 | 日立電線株式会社 | Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor |
JP5666853B2 (en) * | 2010-08-31 | 2015-02-12 | 古河電気工業株式会社 | Flat cable and its manufacturing method |
JP5589756B2 (en) * | 2010-10-20 | 2014-09-17 | 日立金属株式会社 | Flexible flat cable and manufacturing method thereof |
TW201301307A (en) * | 2011-06-24 | 2013-01-01 | Compal Electronics Inc | Flat coaxial cable and manufacturing method thereof |
JP5668814B1 (en) | 2013-08-12 | 2015-02-12 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127121U (en) * | 1988-02-24 | 1989-08-30 | ||
JPH02232327A (en) * | 1989-03-06 | 1990-09-14 | Nippon Mining Co Ltd | High conductivity copper alloy having excellent workability and heat resistance |
JPH04231443A (en) * | 1990-12-27 | 1992-08-20 | Nikko Kyodo Co Ltd | Electrifying material |
JPH0547232A (en) * | 1991-08-12 | 1993-02-26 | Tatsuta Electric Wire & Cable Co Ltd | Heat-resisting, bending-resisting and wear-resisting insulated cable |
JPH0536711U (en) * | 1991-10-18 | 1993-05-18 | 株式会社フジクラ | Tape wire |
JPH05138206A (en) * | 1991-11-15 | 1993-06-01 | Hitachi Cable Ltd | Production of rolled foil of copper alloy for film carrier |
JPH06158201A (en) * | 1992-11-20 | 1994-06-07 | Tatsuta Electric Wire & Cable Co Ltd | High strength and high electric conductivity copper alloy |
JPH06283047A (en) * | 1993-03-29 | 1994-10-07 | Tatsuta Electric Wire & Cable Co Ltd | Cable for anti-spattering welding robot |
JPH08255511A (en) * | 1995-03-16 | 1996-10-01 | Fujikura Ltd | Flexible flat cable |
JPH08264031A (en) * | 1995-03-22 | 1996-10-11 | Fujikura Ltd | Flexible flat cable |
JPH11181560A (en) * | 1997-09-12 | 1999-07-06 | Fisk Alloy Wire Inc | Copper alloy electric wire, its production and copper alloy cable |
JP2000067642A (en) * | 1998-08-27 | 2000-03-03 | Hitachi Cable Ltd | Conductor for flat cable |
JP2000282157A (en) * | 1999-01-29 | 2000-10-10 | Furukawa Electric Co Ltd:The | Foil conductor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127121A (en) * | 1987-11-11 | 1989-05-19 | Sumitomo Heavy Ind Ltd | Mold temperature controller |
-
2000
- 2000-07-07 JP JP2000211961A patent/JP4734695B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127121U (en) * | 1988-02-24 | 1989-08-30 | ||
JPH02232327A (en) * | 1989-03-06 | 1990-09-14 | Nippon Mining Co Ltd | High conductivity copper alloy having excellent workability and heat resistance |
JPH04231443A (en) * | 1990-12-27 | 1992-08-20 | Nikko Kyodo Co Ltd | Electrifying material |
JPH0547232A (en) * | 1991-08-12 | 1993-02-26 | Tatsuta Electric Wire & Cable Co Ltd | Heat-resisting, bending-resisting and wear-resisting insulated cable |
JPH0536711U (en) * | 1991-10-18 | 1993-05-18 | 株式会社フジクラ | Tape wire |
JPH05138206A (en) * | 1991-11-15 | 1993-06-01 | Hitachi Cable Ltd | Production of rolled foil of copper alloy for film carrier |
JPH06158201A (en) * | 1992-11-20 | 1994-06-07 | Tatsuta Electric Wire & Cable Co Ltd | High strength and high electric conductivity copper alloy |
JPH06283047A (en) * | 1993-03-29 | 1994-10-07 | Tatsuta Electric Wire & Cable Co Ltd | Cable for anti-spattering welding robot |
JPH08255511A (en) * | 1995-03-16 | 1996-10-01 | Fujikura Ltd | Flexible flat cable |
JPH08264031A (en) * | 1995-03-22 | 1996-10-11 | Fujikura Ltd | Flexible flat cable |
JPH11181560A (en) * | 1997-09-12 | 1999-07-06 | Fisk Alloy Wire Inc | Copper alloy electric wire, its production and copper alloy cable |
JP2000067642A (en) * | 1998-08-27 | 2000-03-03 | Hitachi Cable Ltd | Conductor for flat cable |
JP2000282157A (en) * | 1999-01-29 | 2000-10-10 | Furukawa Electric Co Ltd:The | Foil conductor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10574012B2 (en) | 2016-08-16 | 2020-02-25 | Furukawa Electric Co., Ltd. | Rotatable connector device |
US10388427B2 (en) | 2016-09-20 | 2019-08-20 | Furukawa Electric Co., Ltd. | Flat cable, method for manufacturing the same, and rotatable connector device including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002025353A (en) | 2002-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367149B2 (en) | Flat cable conductor, method of manufacturing the same, and flat cable | |
TWI362046B (en) | Flat cable | |
KR101156989B1 (en) | Flexible printed wiring board terminal part or flexible flat cable terminal part | |
TWI374456B (en) | Plated flat conductor and flexible flat cable therewith | |
JP3108302B2 (en) | Method for producing Sn alloy plated material having excellent electrical contact characteristics and solderability | |
JP6060875B2 (en) | Board terminals and board connectors | |
JP4734695B2 (en) | Flex-resistant flat cable | |
JP2000504784A (en) | Electric contact element | |
JP2002339029A (en) | Copper alloy material for electronic or electric part | |
TWI663270B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP3633302B2 (en) | Flat cable conductor | |
CN109155208B (en) | Coating material for electrical contacts and method for producing said coating material | |
JP4164887B2 (en) | High flex flat cable | |
CN107046768B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP4878735B2 (en) | Flat cable | |
JP2004225070A (en) | Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME | |
JPH10223290A (en) | Connecting terminal | |
JPWO2018074256A1 (en) | Conductive strip | |
TW200537755A (en) | Structural improvement of flexible flat cable | |
JP2851245B2 (en) | Sn alloy plating material | |
JP4427044B2 (en) | Conductor for flexible substrate, method for producing the same, and flexible substrate | |
JP4796522B2 (en) | Wiring conductor and method for manufacturing the same | |
JP2003086024A (en) | Sn PLATING FLAT CONDUCTOR AND FLAT CABLE USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060120 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060120 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20060120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4734695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |