Nothing Special   »   [go: up one dir, main page]

JP4726546B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4726546B2
JP4726546B2 JP2005163673A JP2005163673A JP4726546B2 JP 4726546 B2 JP4726546 B2 JP 4726546B2 JP 2005163673 A JP2005163673 A JP 2005163673A JP 2005163673 A JP2005163673 A JP 2005163673A JP 4726546 B2 JP4726546 B2 JP 4726546B2
Authority
JP
Japan
Prior art keywords
core
layer
sub
ceramic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005163673A
Other languages
Japanese (ja)
Other versions
JP2006339482A (en
Inventor
正樹 村松
伸治 由利
誠 折口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005163673A priority Critical patent/JP4726546B2/en
Priority to US11/445,288 priority patent/US7696442B2/en
Priority to EP06011529A priority patent/EP1729552A3/en
Priority to TW095119500A priority patent/TWI396481B/en
Priority to CN2006100887735A priority patent/CN1874648B/en
Publication of JP2006339482A publication Critical patent/JP2006339482A/en
Priority to US12/706,695 priority patent/US8863378B2/en
Application granted granted Critical
Publication of JP4726546B2 publication Critical patent/JP4726546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、セラミックで構成されたセラミック副コアが収容されたコア基板を備える配線基板の製造方法に関する。 The present invention relates to a method of manufacturing a wiring board comprising a core substrate ceramic sub-core made of a ceramic is housed.

従来より、半導体集積回路素子(以下「ICチップ」という)が搭載される配線基板には、オーガニックパッケージ基板が用いられている。オーガニックパッケージ基板は、ガラス繊維にて強化されたエポキシ樹脂などの高分子材料を主体とするコア基板上に、高分子材料からなる誘電体層と金属材料からなる導体層とが交互に積層された配線積層部が形成された構造を有する。しかし、オーガニックパッケージ基板は高分子材料を主体とすることから、半田リフローなどの熱履歴が加わると、シリコンを主体とするICチップとの線膨張係数差によって断線などの不具合につながる惧れがある。そこで、特許文献1では、ICチップと配線基板の線膨張係数差を縮減するために、高分子材料からなるコア本体よりも線膨張係数の小さいセラミックからなる副コアをコア基板内に収容した構造を有する配線基板が提案されている。   Conventionally, an organic package substrate is used as a wiring substrate on which a semiconductor integrated circuit element (hereinafter referred to as “IC chip”) is mounted. The organic package substrate has a dielectric layer made of a polymer material and a conductor layer made of a metal material alternately laminated on a core substrate mainly made of a polymer material such as an epoxy resin reinforced with glass fiber. It has a structure in which a wiring laminated portion is formed. However, organic package substrates are mainly made of polymer materials, so if thermal history such as solder reflow is added, there is a risk of problems such as disconnection due to differences in the linear expansion coefficient with IC chips mainly made of silicon. . Therefore, in Patent Document 1, in order to reduce the difference in coefficient of linear expansion between the IC chip and the wiring board, a structure in which a sub-core made of ceramic having a smaller coefficient of linear expansion than the core body made of a polymer material is accommodated in the core board. A wiring board having the following has been proposed.

特開2005−39217号公報JP 2005-39217 A

ところで、上記のようなコア基板は、コア本体に形成された副コア収容部にセラミック副コアを収容した後、コア本体とセラミック副コアの隙間に、シリカフィラー等の無機フィラーを含む充填樹脂を公知のディスペンサー等により注入することで得ることができる。ここで、充填樹脂は、セラミック副コアとコア本体との線膨張係数差を自身の弾性変形により吸収する役割を果たすため、セラミック副コアの線膨張係数により近い(線膨張係数がより小さい)ものを用いる必要がある。   By the way, in the core substrate as described above, after the ceramic sub-core is accommodated in the sub-core accommodating portion formed in the core main body, a filling resin containing an inorganic filler such as silica filler is provided in the gap between the core main body and the ceramic sub-core. It can be obtained by injecting with a known dispenser or the like. Here, the filled resin plays a role of absorbing the difference in linear expansion coefficient between the ceramic sub-core and the core body by its own elastic deformation, and therefore is closer to the linear expansion coefficient of the ceramic sub-core (smaller linear expansion coefficient). Must be used.

しかしながら、線膨張係数の小さい充填樹脂を得るには、無機フィラーを多く含有させる必要があるが、無機フィラーの含有量が多くなると、それに伴い充填樹脂の粘度が上昇することになる。充填樹脂の粘度が過度に高い場合、ディスペンサー等による注入が困難となり、注入時に内部にボイド(空隙)が発生しやすくなるという問題がある。   However, in order to obtain a filled resin having a small linear expansion coefficient, it is necessary to contain a large amount of inorganic filler. However, as the content of the inorganic filler increases, the viscosity of the filled resin increases accordingly. When the viscosity of the filling resin is excessively high, injection by a dispenser or the like becomes difficult, and there is a problem that voids (voids) are easily generated inside during injection.

本発明は、上記問題を鑑みて為されたものであり、コア本体にセラミック副コアを収容したコア基板を形成する際に、無機フィラーの含有量が多く粘度の高い充填樹脂であってもコア本体とセラミック副コアの隙間に容易に充填することが可能な配線基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when forming a core substrate containing a ceramic sub-core in a core body, even if it is a filled resin with a high content of inorganic filler and a high viscosity, It is an object of the present invention to provide a method of manufacturing a wiring board capable of easily filling a gap between a main body and a ceramic sub-core.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するため、本発明の配線基板の製造方法は、
高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは第1主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部と、を備える配線基板の製造方法であって、
セラミック副コアを、副コア収容部の第1主面の開口側から収容する副コア収容工程と、
セラミック副コア及びコア本体の第1主面側から樹脂ペーストをスキージにより圧入印刷して、セラミック副コアとコア本体の隙間に該樹脂ペーストを充填するとともに、セラミック副コアの第1主面上に被覆形成し、該樹脂ペーストに連続する充填樹脂連続層を形成する圧入印刷工程と、
をこの順に含むことを特徴とする。
In order to solve the above problems, a method for manufacturing a wiring board according to the present invention includes:
A plate-like core body made of a polymer material is formed with a sub-core housing portion as a through hole penetrating between the principal surfaces or a recess opening in the first principal surface, and a plate-like shape made of ceramic inside And a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate. A method for manufacturing a wiring board, comprising:
A sub core housing step of housing the ceramic sub core from the opening side of the first main surface of the sub core housing portion;
A resin paste is press-fitted with a squeegee from the first main surface side of the ceramic sub-core and the core main body, and the resin paste is filled in a gap between the ceramic sub-core and the core main body, and on the first main surface of the ceramic sub-core. A press-fitting printing step of forming a coating and forming a continuous resin layer continuous with the resin paste ;
Are included in this order.

上記本発明の配線基板の製造方法によると、セラミック副コアとコア本体の隙間に樹脂ペーストをスキージを用いて圧入(充填)することにより、セラミック副コアとコア本体の隙間を埋めて両者を互いに固定する充填樹脂を、ボイドを発生させることなく良好に形成することができる。   According to the method for manufacturing a wiring board of the present invention, a resin paste is press-fitted (filled) into the gap between the ceramic sub-core and the core body using a squeegee, thereby filling the gap between the ceramic sub-core and the core body. The filling resin to be fixed can be favorably formed without generating voids.

ここで、樹脂ペーストの粘度は、室温(例えば25℃)以上120℃以下において3Pa・s以上60Pa・s以下であることが好ましい(更に好ましくは5Pa・s以上58Pa・s以下)。スキージによる圧入印刷を行うためには、下限以上の粘度を有することが好ましい。他方、上限を上回ると、樹脂ペーストの流動性が下がり過ぎて、スキージによる圧入印刷によっても樹脂ペーストを良好に充填できない惧れがある。また、かかる粘度を得るべく、樹脂ペーストのフィラー含有量は、50wt%以上80wt%以下であることが好ましい(更に好ましくは52wt%以上78wt%以下)。   Here, the viscosity of the resin paste is preferably 3 Pa · s or more and 60 Pa · s or less at room temperature (for example, 25 ° C.) or more and 120 ° C. or less (more preferably 5 Pa · s or more and 58 Pa · s or less). In order to perform press-fitting printing with a squeegee, it is preferable to have a viscosity equal to or higher than the lower limit. On the other hand, when the upper limit is exceeded, the fluidity of the resin paste is too low, and there is a possibility that the resin paste cannot be satisfactorily filled even by press-fitting printing with a squeegee. In order to obtain such a viscosity, the filler content of the resin paste is preferably 50 wt% or more and 80 wt% or less (more preferably 52 wt% or more and 78 wt% or less).

次に、本発明の配線基板の製造方法では、圧入印刷工程において、少なくともセラミック副コアの第1主面に対してマスク材を介さず樹脂ペーストを直接圧入印刷し、セラミック副コアとコア本体の隙間に樹脂ペーストを充填するとともに、該樹脂ペーストに連続する層を少なくともセラミック副コアの第1主面上に被覆形成し、これを充填樹脂連続層とする。これによれば、少なくともセラミック副コアの第1主面に対してマスク材を用いることなく圧入印刷を行うことができるので工程が簡略化される。また、セラミック副コアとコア本体の隙間への樹脂ペーストの充填と同時に、充填樹脂連続層を形成することができる。   Next, in the method for manufacturing a wiring board of the present invention, in the press-fitting printing step, at least the first main surface of the ceramic sub-core is directly press-fitted with a resin paste without using a mask material, and the ceramic sub-core and the core main body are printed. The gap is filled with the resin paste, and at least a layer continuous with the resin paste is formed on the first main surface of the ceramic sub-core to form a filled resin continuous layer. According to this, since press-fitting printing can be performed without using a mask material on at least the first main surface of the ceramic sub-core, the process is simplified. Further, the filled resin continuous layer can be formed simultaneously with the filling of the resin paste into the gap between the ceramic sub-core and the core body.

更には、本発明の配線基板の製造方法では、圧入印刷工程において、セラミック副コア及びコア本体の第1主面に対してマスク材を介さず樹脂ペーストを直接圧入印刷し、セラミック副コアとコア本体の隙間に樹脂ペーストを充填するとともに、該樹脂ペーストに連続する層をセラミック副コア及びコア本体の第1主面の全面に被覆形成し、これを充填樹脂連続層とすることができる。これによれば、マスク材を全く用いることなく圧入印刷を行うことができるので工程が簡略化される。また、このようなコア基板の主面全体を覆った充填樹脂連続層を形成することで、得られる配線基板の平坦化に寄与する。   Furthermore, in the method for manufacturing a wiring board according to the present invention, in the press-fitting printing step, the resin sub-core and the core are directly press-fitted and printed on the first main surface of the ceramic sub-core and the core body without using a mask material. A resin paste is filled in the gaps of the main body, and a layer continuous with the resin paste is formed on the entire surface of the ceramic sub-core and the first main surface of the core main body to form a filled resin continuous layer. According to this, since press-fitting printing can be performed without using any mask material, the process is simplified. Moreover, it contributes to planarization of the wiring board obtained by forming the filling resin continuous layer which covered the whole main surface of such a core board | substrate.

次に、本発明の配線基板の製造方法では、副コア収容工程前に、コア本体の主面間を貫通する貫通孔として形成された副コア収容部の第2主面側の開口を、表面に粘着剤を有するシート材で、該粘着剤が副コア収容部の内側に露出するように塞ぐ閉塞工程を含み、副コア収容工程では、セラミック副コアを、副コア収容部の第1主面の開口側から収容するとともに粘着剤に固着させ、この状態で圧入印刷工程を行うようにすることができる。これによれば、貫通孔として副コア収容部を形成した場合に、シート材表面の粘着剤によりセラミック副コアを固定した状態で圧入印刷工程を行うことができる。   Next, in the method for manufacturing a wiring board according to the present invention, the opening on the second main surface side of the sub core housing portion formed as a through-hole penetrating between the main surfaces of the core body is performed on the surface before the sub core housing step. And a closing step of closing the adhesive so that the adhesive is exposed to the inside of the sub-core housing portion. In the sub-core housing step, the ceramic sub-core is connected to the first main surface of the sub-core housing portion. In this state, the press-fitting printing process can be performed. According to this, when the sub core housing part is formed as the through hole, the press-fitting printing process can be performed in a state where the ceramic sub core is fixed by the adhesive on the surface of the sheet material.

また、本発明の配線基板の製造方法では、圧入印刷工程後に、配線積層部の最下層となる誘電体層を充填樹脂連続層上に形成する最下誘電体層形成工程と、当該誘電体層及び充填樹脂連続層を跨って貫通する複数層貫通ビアホールを形成し、その内部にセラミック副コアが主面に有する導体パッドを露出させる複数層貫通ビアホール形成工程と、複数層貫通ビアホール内に複数層貫通ビア導体を充填形成する複数層貫通ビア導体形成工程と、を含むようにすることができる。これによれば、セラミック副コアとその主面上に形成される配線積層部との層間に充填樹脂連続層が介挿されていても、複数層貫通ビア導体を形成することによって、各々が有する内部配線同士の導通を図ることができる。   Further, in the method for manufacturing a wiring board according to the present invention, a dielectric layer forming step of forming a dielectric layer, which is a lowermost layer of the wiring laminated portion, on the filled resin continuous layer after the press-fitting printing process, and the dielectric layer And a multi-layer through via hole forming step for forming a multi-layer through via hole penetrating across the filling resin continuous layer and exposing a conductor pad on the main surface of the ceramic sub-core, and a multi-layer in the multi-layer through via hole And a multi-layer through via conductor forming step of filling and forming the through via conductor. According to this, even if the filling resin continuous layer is interposed between the ceramic sub-core and the wiring laminated portion formed on the main surface, each has by forming the multi-layer through via conductor Conduction between internal wirings can be achieved.

なお、以上の製造方法により得られる本発明の配線基板は、
高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは一方の主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部と、を備える配線基板であって、
セラミック副コアとその主面上に形成される配線積層部との層間には、該セラミック副コアとコア本体の隙間を充填する充填樹脂と連続する充填樹脂連続層が介挿されてなり、
セラミック副コアが主面に有する導体パッドには、配線積層部の最下層の誘電体層と充填樹脂連続層とに跨って貫通形成された複数層貫通ビア導体が接続されてなる構成としてもよい。
The wiring board of the present invention obtained by the above manufacturing method is
A plate-shaped core body made of a polymer material is formed with a sub-core housing portion as a through-hole penetrating between the main surfaces or a recess opening in one of the main surfaces, and a plate-like shape made of ceramic inside And a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate. A wiring board,
Between the layer between the ceramic sub-core and the wiring laminated portion formed on the main surface, a filling resin continuous layer that is continuous with the filling resin that fills the gap between the ceramic sub-core and the core body is interposed,
The conductor pad of the main surface of the ceramic sub-core may be configured by connecting a multi-layer through via conductor formed so as to penetrate the lowermost dielectric layer of the wiring laminated portion and the filling resin continuous layer. .

上記本発明の配線基板によると、セラミック副コアとその主面上に形成される配線積層部との層間に、充填樹脂と連続する充填樹脂連続層を形成することで、セラミック副コアと配線積層部(ひいては、その上に実装されるICチップ)との線膨張係数差(すなわち、板圧方向の線膨張係数差)を、充填樹脂連続層の弾性変形により吸収させることができる。これにより、セラミック副コアの周囲の配線に断線などの不具合が生じることを防止できる。また、充填樹脂連続層は、コア基板の主面全体を覆った構造とすることができ、これによれば、上記の効果に加えて、配線基板の平坦化に寄与する。   According to the wiring board of the present invention, the ceramic sub-core and the wiring laminate are formed by forming the filling resin continuous layer continuous with the filling resin between the ceramic sub-core and the wiring laminate formed on the main surface. The linear expansion coefficient difference (that is, the linear expansion coefficient difference in the plate pressure direction) with respect to the portion (and thus the IC chip mounted thereon) can be absorbed by the elastic deformation of the filled resin continuous layer. Thereby, it is possible to prevent problems such as disconnection in the wiring around the ceramic sub-core. In addition, the filled resin continuous layer can have a structure covering the entire main surface of the core substrate, and this contributes to the flattening of the wiring substrate in addition to the above effects.

ここで、充填樹脂連続層は、誘電体層よりも線膨張係数が小さい材料にて構成することができる。特には、充填樹脂連続層は、誘電体層とセラミック副コアの中間の線膨張係数を有する材料にて構成することができる。これにより、上述のような板圧方向の線膨張係数差を吸収する効果を良好に得ることができる。具体的には、充填樹脂連続層は、室温(例えば25℃)から200℃までの平均の線膨張係数(以下、単に線膨張係数という)が35ppm/℃以下(好ましくは33ppm/℃以下:但し、0は含まず)の材料にて構成することができる。かかる上限を超えると、高分子材料を主体とする配線積層部と同程度となってしまい、上記の効果を良好に得られない惧れがある。また、かかる線膨張係数を得るべく、充填樹脂連続層は、誘電体層よりもフィラー含有量が多い材料にて構成することができる。具体的には、充填樹脂連続層のフィラー含有量を50wt%以上80wt%以下とすることができる。   Here, the filled resin continuous layer can be made of a material having a smaller linear expansion coefficient than the dielectric layer. In particular, the filled resin continuous layer can be made of a material having a linear expansion coefficient intermediate between the dielectric layer and the ceramic sub-core. Thereby, the effect which absorbs the linear expansion coefficient difference of the above plate pressure directions can be acquired favorably. Specifically, the filled resin continuous layer has an average linear expansion coefficient from room temperature (for example, 25 ° C.) to 200 ° C. (hereinafter simply referred to as a linear expansion coefficient) of 35 ppm / ° C. or less (preferably 33 ppm / ° C. or less: , 0 is not included). When this upper limit is exceeded, it becomes the same level as a wiring laminated portion mainly composed of a polymer material, and there is a possibility that the above effect cannot be obtained satisfactorily. In order to obtain such a linear expansion coefficient, the filled resin continuous layer can be made of a material having a filler content higher than that of the dielectric layer. Specifically, the filler content of the filled resin continuous layer can be 50 wt% or more and 80 wt% or less.

<配線基板の実施形態>
本発明の配線基板の実施形態を、図面を参照しながら説明する。図1は、配線基板1の断面構造を概略的に表す図である。なお、本実施形態において板状の部材は、図中で上側に表れている面を第1主面MP1とし、下側に表れている面を第2主面MP2とする。配線基板1は、コア基板CBのうち半田バンプ7の下部領域にセラミック副コア3を有しており、半導体集積回路素子(ICチップ)Cとの線膨張係数差を縮減し、熱応力による断線等を生じ難くするものである。以下、詳細な説明を行う。
<Embodiment of wiring board>
An embodiment of a wiring board of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional structure of the wiring board 1. In the present embodiment, the plate-like member has a surface appearing on the upper side in the drawing as the first main surface MP1 and a surface appearing on the lower side as the second main surface MP2. The wiring substrate 1 has a ceramic sub-core 3 in the lower region of the solder bump 7 in the core substrate CB, reduces the difference in coefficient of linear expansion from the semiconductor integrated circuit element (IC chip) C, and breaks due to thermal stress. Etc. are less likely to occur. Detailed description will be given below.

図2は、ICチップCと主基板(マザーボード等)GBとの間に配置された配線基板1を表す図である。ICチップCは、信号端子,電源端子,グランド端子を第2主面に有し(図示せず)、配線基板1の第1主面MP1に形成された半田バンプ7(Pb−Sn系,Sn−Ag系,Sn−Sb系,Sn−Zn系の半田等)にフリップチップ接続されている。また、ICチップCと配線基板1の第1主面MP1の間には、半田バンプ7の熱疲労寿命を向上させるために、熱硬化性樹脂からなるアンダーフィル材(図示せず)が充填形成される。他方、主基板(マザーボード等)GBは、セラミック粒子や繊維をフィラーとして強化された高分子材料を主体に構成されており、配線基板1の第2主面MP2に形成された半田ボールBLを介して端子パッド56に接続されている。   FIG. 2 is a diagram showing the wiring board 1 arranged between the IC chip C and the main board (motherboard or the like) GB. The IC chip C has a signal terminal, a power supply terminal, and a ground terminal on the second main surface (not shown), and solder bumps 7 (Pb-Sn series, Sn) formed on the first main surface MP1 of the wiring board 1. -Ag-based, Sn-Sb-based, Sn-Zn-based solder, etc.). Also, an underfill material (not shown) made of a thermosetting resin is filled between the IC chip C and the first main surface MP1 of the wiring board 1 in order to improve the thermal fatigue life of the solder bumps 7. Is done. On the other hand, the main board (motherboard or the like) GB is mainly composed of a polymer material reinforced with ceramic particles and fibers as fillers, and is connected via solder balls BL formed on the second main surface MP2 of the wiring board 1. Are connected to the terminal pads 56.

図3は、配線基板1の第1主面MP1を表す図である。半田バンプ7は、格子状(あるいは千鳥状でもよい)に配列しており、このうち、中央部には電源端子7aとグランド端子7bとが互い違いに配置され、また、これらを取り囲む形で信号端子7sが配置されている。これらは、ICチップCの端子に対応する。   FIG. 3 is a diagram illustrating the first main surface MP1 of the wiring board 1. FIG. The solder bumps 7 are arranged in a grid pattern (or may be a staggered pattern). Among these, the power terminals 7a and the ground terminals 7b are alternately arranged in the center, and the signal terminals surround the signal terminals. 7s is arranged. These correspond to the terminals of the IC chip C.

コア本体2は、耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)や繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)等で板状に構成される。そして、半田バンプ7の下部領域を含む位置には、主面MP1,MP2間を貫通する副コア収容部25(貫通孔)が形成され、その内部には板状のセラミック副コア3が収容され、コア基板CBを為している。   The core body 2 is configured in a plate shape with a heat resistant resin plate (for example, bismaleimide-triazine resin plate), a fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin), or the like. A sub-core accommodating portion 25 (through hole) penetrating between the main surfaces MP1 and MP2 is formed at a position including the lower region of the solder bump 7, and a plate-shaped ceramic sub-core 3 is accommodated therein. The core substrate CB is used.

セラミック副コア3は、主面MP1,MP2間を貫通する貫通導体32とそれに接続する主面MP1,MP2上の導体パッド31とを有しており、これらはそれぞれ電源端子7a及びグランド端子7bに対応する。セラミック副コア3内に、電源用及びグランド用の貫通導体32を並列形成することで、電源用及びグランド用の経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。   The ceramic sub-core 3 has a through conductor 32 penetrating between the main surfaces MP1 and MP2 and a conductor pad 31 on the main surfaces MP1 and MP2 connected thereto, which are respectively connected to the power supply terminal 7a and the ground terminal 7b. Correspond. By forming the power supply and ground through conductors 32 in parallel in the ceramic sub-core 3, it is possible to reduce the inductance of the power supply and ground paths and thereby reduce the impedance.

セラミック副コア3は、セラミック材料の粉末を含有したセラミックグリーンシートに、パンチングあるいはレーザー穿孔等によりビアホールを形成し、金属粉末ペーストを充填したものを積層して焼成することにより得ることができる。セラミック副コア3を構成するセラミック材料としては、アルミナ,窒化珪素,窒化アルミニウム等や、ホウケイ酸系ガラス,ホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40重量部以上60重量部以下添加したガラスセラミック等を使用できる。   The ceramic sub-core 3 can be obtained by forming a via hole in a ceramic green sheet containing a ceramic material powder by punching or laser drilling, and laminating and filling a metal powder paste. As a ceramic material constituting the ceramic sub-core 3, inorganic ceramic filler such as alumina is added to 40 parts by weight or more and 60 parts by weight or less to alumina, silicon nitride, aluminum nitride or the like, borosilicate glass or lead borosilicate glass. Glass ceramic or the like can be used.

副コア収容部25内でセラミック副コア3とコア本体部2との隙間をなす空間には、高分子材料からなる充填樹脂4が充填形成されている。この充填樹脂4は、シリカフィラーなどの無機フィラーを含むエポキシ系の樹脂からなり、セラミック副コア3をコア本体部2に対して固定するとともに、セラミック副コア3とコア本体部2との面内方向及び厚さ方向の線膨張係数差を自身の弾性変形により吸収する役割を果たす。   A filling resin 4 made of a polymer material is filled in a space that forms a gap between the ceramic sub-core 3 and the core body 2 in the sub-core housing portion 25. The filling resin 4 is made of an epoxy-based resin containing an inorganic filler such as silica filler, and fixes the ceramic sub-core 3 to the core main body 2, and in-plane between the ceramic sub-core 3 and the core main body 2. It plays a role of absorbing the difference in linear expansion coefficient between the direction and the thickness direction by its own elastic deformation.

コア基板CBの第1主面MP1側(ICチップCの実装面側)には、充填樹脂4と連続する充填樹脂連続層41が第1主面MP1の全面を覆う形で形成されている。この充填樹脂連続層41は、充填樹脂4と同じ樹脂材料で一体となって形成されている。充填樹脂連続層41がコア基板CBとその第1主面MP1上に形成される配線積層部L1との層間に介挿されることにより、セラミック副コア3と配線積層部L1(ひいては、その上に実装されるICチップC)との線膨張係数差(すなわち、板圧方向の線膨張係数差)を、充填樹脂連続層41の弾性変形により吸収させることができる。これにより、セラミック副コア3の周囲の配線に断線などの不具合が生じることを防止できる。なお、かかる効果を得るには、図8に示すように、充填樹脂連続層41をセラミック副コア3の第1主面MP1のみに設けても足りる。   On the first main surface MP1 side (the mounting surface side of the IC chip C) of the core substrate CB, a filling resin continuous layer 41 continuous with the filling resin 4 is formed so as to cover the entire surface of the first main surface MP1. The filling resin continuous layer 41 is integrally formed of the same resin material as that of the filling resin 4. The filling resin continuous layer 41 is interposed between the core substrate CB and the wiring laminated portion L1 formed on the first main surface MP1, thereby allowing the ceramic sub-core 3 and the wiring laminated portion L1 (and thus on the ceramic laminated core L1). A difference in linear expansion coefficient with respect to the mounted IC chip C) (that is, a difference in linear expansion coefficient in the plate pressure direction) can be absorbed by elastic deformation of the filled resin continuous layer 41. Thereby, it is possible to prevent problems such as disconnection in the wiring around the ceramic sub-core 3. In order to obtain such an effect, the filling resin continuous layer 41 may be provided only on the first main surface MP1 of the ceramic sub-core 3 as shown in FIG.

コア基板CBの両主面MP1,MP2上に設けられた配線積層部L1,L2は、誘電体層B11〜B14,B21〜B24と導体層M12〜M14,M21〜M24とが交互に積層された構造を有する。導体層M11〜M14,M21〜M24は、Cuメッキからなる配線51,53やパッド55,56などにより構成されている。導体層M11〜M14,M21〜M24間は、ビア導体6によって層間接続がなされており、これによって、パッド55からパッド56への導通経路(信号用,電源用,グランド用)が形成されている。また、パッド55,56は半田バンプ7や半田ボールBLを形成するためのものであり、その表面にはNi−Auメッキが施されている。   In the wiring laminated portions L1 and L2 provided on both main surfaces MP1 and MP2 of the core substrate CB, dielectric layers B11 to B14 and B21 to B24 and conductor layers M12 to M14 and M21 to M24 are alternately laminated. It has a structure. The conductor layers M11 to M14, M21 to M24 are configured by wirings 51 and 53 made of Cu plating, pads 55 and 56, and the like. Between the conductor layers M11 to M14 and M21 to M24, interlayer connection is made by the via conductor 6, thereby forming a conduction path (for signal, power supply, and ground) from the pad 55 to the pad 56. . The pads 55 and 56 are for forming the solder bumps 7 and the solder balls BL, and the surface thereof is Ni-Au plated.

誘電体層B11〜B14,B21〜B24は、エポキシ樹脂等の高分子材料からなり、誘電率や絶縁耐圧を調整するシリカ粉末等の無機フィラーを適宜含んでいる。このうち誘電体層B11〜B13,B21〜B23は、ビルドアップ樹脂絶縁層,ビア層と呼ばれ、導体層M11〜M14,M21〜M24間を絶縁するとともに、層間接続のためのビア導体6が貫通形成されている。特に、配線積層部L1の最下層にある誘電体層B11と充填樹脂連続層41には、これら隣接する2層に跨る複数層貫通ビア導体65が貫通形成され、セラミック副コア3が第1主面MP1に有する導体パッド31に接続されている。他方、誘電体層B14,B24は、ソルダーレジスト層であり、パッド55,56を露出させるための開口が形成されている。   The dielectric layers B11 to B14 and B21 to B24 are made of a polymer material such as an epoxy resin, and appropriately include an inorganic filler such as silica powder that adjusts the dielectric constant and dielectric strength. Among these, the dielectric layers B11 to B13 and B21 to B23 are called buildup resin insulation layers and via layers, and insulate the conductor layers M11 to M14 and M21 to M24, and the via conductors 6 for interlayer connection are provided. It is formed through. In particular, the dielectric layer B11 and the filling resin continuous layer 41 in the lowermost layer of the wiring laminated portion L1 are formed with a multi-layer through via conductor 65 extending through these two adjacent layers, and the ceramic sub-core 3 is the first main layer. It is connected to a conductor pad 31 on the surface MP1. On the other hand, the dielectric layers B14 and B24 are solder resist layers, and openings for exposing the pads 55 and 56 are formed.

また、コア基板CBのコア本体部2及び誘電体層B11,B21には、貫通孔が形成され、その内壁には配線積層部L1,L2間の導通を図るスルーホール導体21が形成されている。このスルーホール導体21は、信号端子7sに対応するものである。スルーホール導体21の内側には、シリカフィラーなどの無機フィラーを含むエポキシ系の樹脂からなる樹脂製穴埋め材23が充填形成されており、スルーホール導体21の端部にはCuメッキからなる蓋導体52が形成されている。なお、スルーホール導体21及び蓋導体52が形成された、コア基板を中心とする導体層M12からM22までの領域はコア領域CRと称される。   In addition, a through hole is formed in the core main body 2 and the dielectric layers B11 and B21 of the core substrate CB, and a through-hole conductor 21 is formed on the inner wall of the core substrate CB so as to establish conduction between the wiring laminated portions L1 and L2. . The through-hole conductor 21 corresponds to the signal terminal 7s. Inside the through-hole conductor 21, a resin hole filling material 23 made of an epoxy resin containing an inorganic filler such as a silica filler is filled and formed, and the end portion of the through-hole conductor 21 is a lid conductor made of Cu plating. 52 is formed. In addition, the area | region from the conductor layers M12 to M22 centering on a core board | substrate in which the through-hole conductor 21 and the cover conductor 52 were formed is called core area | region CR.

なお、誘電体層B11〜B14,B21〜B24と、充填樹脂4及び充填樹脂連続層41とは、同じエポキシ系の樹脂からなるが、無機フィラーの含有量の違いにより、その線膨張係数が調整されている。すなわち、充填樹脂4及び充填樹脂連続層41は、誘電体層B11〜B14,B21〜B24と比較して、フィラー含有量が多く、これにより線膨張係数が小さいものとなっている。また、充填樹脂連続層41は、誘電体層B11〜B14,B21〜B24と、セラミック副コア3との中間の線膨張係数を有する。具体的には、誘電体層B11〜B14,B21〜B24の線膨張係数が40ppm/℃以上50ppm/℃以下であり、セラミック副コア3の線膨張係数が3ppm/℃以上5ppm/℃以下であるのに対して、充填樹脂連続層41の線膨張係数は32ppm/℃以下(但し、0は含まず)とされる(特に、セラミック副コア3との線膨張係数のマッチングを意図する場合には25ppm/℃以下が好ましい。)。また、かかる線膨張係数を得るべく、充填樹脂連続層41のフィラー含有量は、53wt%以上80wt%以下とすることができる(特に、セラミック副コア3との線膨張係数のマッチングを意図する場合には70wt%以上が好ましい。)。また、充填樹脂連続層41は、エポキシ樹脂に酸無水物を加えた樹脂を用いることができる他、アミン等の樹脂を用いることもできる。   The dielectric layers B11 to B14, B21 to B24 and the filling resin 4 and the filling resin continuous layer 41 are made of the same epoxy resin, but the linear expansion coefficient is adjusted by the difference in the content of the inorganic filler. Has been. That is, the filled resin 4 and the filled resin continuous layer 41 have a larger filler content than that of the dielectric layers B11 to B14 and B21 to B24, and thus have a small linear expansion coefficient. The filled resin continuous layer 41 has a linear expansion coefficient intermediate between the dielectric layers B11 to B14 and B21 to B24 and the ceramic sub-core 3. Specifically, the linear expansion coefficients of the dielectric layers B11 to B14, B21 to B24 are 40 ppm / ° C. or more and 50 ppm / ° C. or less, and the linear expansion coefficient of the ceramic sub-core 3 is 3 ppm / ° C. or more and 5 ppm / ° C. or less. On the other hand, the linear expansion coefficient of the filled resin continuous layer 41 is set to 32 ppm / ° C. or less (however, 0 is not included) (particularly when matching the linear expansion coefficient with the ceramic sub-core 3 is intended). 25 ppm / ° C. or less is preferred). Further, in order to obtain such a linear expansion coefficient, the filler content of the filled resin continuous layer 41 can be 53 wt% or more and 80 wt% or less (particularly, when matching the linear expansion coefficient with the ceramic sub-core 3 is intended). Is preferably 70 wt% or more). The filled resin continuous layer 41 can be a resin obtained by adding an acid anhydride to an epoxy resin, or a resin such as an amine.

<配線基板の第1変形例>
配線基板1の第1変形例(配線基板1’)について説明する。以下、主に配線基板1と異なる箇所について述べ、重複する箇所については図中に同番号を付して説明を省略する。図9に示す配線基板1’は、セラミック副コア3’の第1主面MP1側に薄膜コンデンサ部3C(電子部品)が組込まれてなる。薄膜コンデンサ部3Cは、ICチップCのスイッチングノイズの低減や動作電源電圧の安定化を図るためのものであり、半田バンプ7直下に当たるセラミック副コア3’の第1主面MP1側(セラミック基体34上)に設けられることで、ICチップCと薄膜コンデンサ3Cとの間の配線長を短縮化し、配線のインダクタンス成分の減少に寄与している。また、薄膜コンデンサ部3Cが組込まれたセラミック副コア3’の第1主面MP1側が充填樹脂連続層41に覆われる(保護される)ことで、板圧方向の線膨張係数差を吸収させることができ、周囲の配線の断線などの不具合を防止できる。
<First Modification of Wiring Board>
A first modification (wiring board 1 ′) of the wiring board 1 will be described. In the following, portions different from the wiring board 1 are mainly described, and overlapping portions are denoted by the same reference numerals in the drawing and description thereof is omitted. A wiring board 1 ′ shown in FIG. 9 is formed by incorporating a thin film capacitor portion 3C (electronic component) on the first main surface MP1 side of the ceramic sub-core 3 ′. The thin film capacitor portion 3C is for reducing the switching noise of the IC chip C and stabilizing the operation power supply voltage. The thin film capacitor portion 3C is on the first main surface MP1 side (ceramic substrate 34) of the ceramic sub-core 3 'which is directly under the solder bump 7. The wiring length between the IC chip C and the thin film capacitor 3C is shortened and contributes to the reduction of the inductance component of the wiring. Further, the first principal surface MP1 side of the ceramic sub-core 3 ′ in which the thin film capacitor unit 3C is incorporated is covered (protected) by the filled resin continuous layer 41, thereby absorbing the difference in linear expansion coefficient in the plate pressure direction. And can prevent problems such as disconnection of surrounding wiring.

薄膜コンデンサ部3Cは、コンデンサを形成する複数の誘電体薄膜38と複数の電極導体薄膜36,37とが交互に積層されたものである。電極導体薄膜36,37には、電源端子7aに対応する電源側電極導体薄膜とグランド端子7bに対応するグランド側電極導体薄膜との互いに直流的に分離された2種類が存在し、誘電体薄膜38により隔てられた形で積層方向に交互に配列している。   The thin film capacitor portion 3C is formed by alternately laminating a plurality of dielectric thin films 38 and a plurality of electrode conductor thin films 36 and 37 forming a capacitor. There are two types of electrode conductor thin films 36 and 37 that are DC-separated from each other, a power-side electrode conductor thin film corresponding to the power terminal 7a and a ground-side electrode conductor thin film corresponding to the ground terminal 7b. They are arranged alternately in the stacking direction in a form separated by 38.

このような薄膜コンデンサ部3Cは、周知の成膜技術による成膜と、周知のフォトリソグラフィー技術によるパターニングとを繰り返すことで製造できる。電極導体薄膜36,37は、例えばCu,Ag,Au,Pt等の金属で構成でき、スパッタリングや真空蒸着などの気相成膜法にて形成される。他方、誘電体薄膜38は、酸化物あるいは窒化物などで構成され、高周波スパッタリング,反応性スパッタリング,化学気相堆積法(Chemical Vapor Deposition:CVD)などの気相成膜法により形成される。また、酸化物(ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム,チタン酸ストロンチウム,チタン酸鉛の1種又は2種以上)で構成される場合、いわゆるゾルゲル成膜法などの化学溶液成膜法(Chemical Solution Deposition:CSD)にて形成することもできる。   Such a thin film capacitor portion 3C can be manufactured by repeating film formation by a well-known film formation technique and patterning by a well-known photolithography technique. The electrode conductor thin films 36 and 37 can be made of a metal such as Cu, Ag, Au, or Pt, for example, and are formed by a vapor phase film forming method such as sputtering or vacuum evaporation. On the other hand, the dielectric thin film 38 is made of an oxide or nitride, and is formed by a vapor deposition method such as high-frequency sputtering, reactive sputtering, or chemical vapor deposition (CVD). In the case of an oxide (a composite oxide having a perovskite crystal structure, for example, one or more of barium titanate, strontium titanate, and lead titanate) It can also form by the solution film-forming method (Chemical Solution Deposition: CSD).

具体的には、薄膜コンデンサ部3Cは、例えば図10〜図12のような工程に従って製造することができる。なお、薄膜コンデンサ部3Cはセラミック基体34上に形成されるが、このセラミック基体34は、上述のように、セラミックの原料粉末を含有した周知のセラミックグリーンシートと、パンチングあるいはレーザー穿孔等により形成したビアホールに、金属粉末ペーストを充填したものを積層して焼成することにより得られる。   Specifically, the thin film capacitor unit 3C can be manufactured, for example, according to the steps as shown in FIGS. The thin film capacitor portion 3C is formed on a ceramic substrate 34. As described above, the ceramic substrate 34 is formed by a known ceramic green sheet containing a ceramic raw material powder and punching or laser drilling. It is obtained by laminating and firing a via hole filled with a metal powder paste.

まず、工程C1では、セラミック基体34の主面上に金属薄膜367を成膜する。そして、工程C2に進み、金属薄膜367のうち電源用またはグランド用に対応する貫通導体32の周囲をドーナツ状にエッチングし、貫通導体32と電極導体薄膜36とを分離する。これを上部から見た図を図12に示す。続いて、工程C3に進み、電極導体薄膜36の全面を覆うように誘電体薄膜38を例えばゾルゲル法で成膜し、工程C4では、誘電体薄膜38のうち貫通導体32に対応する位置に開口を形成する。次に、工程C5で、工程C1と同様に金属薄膜367を形成し、工程C6で、工程C2の場合とは異なる貫通導体32の周囲をドーナツ状にエッチングし、貫通導体32と電極導体薄膜37とを分離する。これを上部から見た図を図12に示す。以上の工程を繰り返すことで、複数の誘電体薄膜38と複数の電極導体薄膜36,37とが交互に積層した構造が得られる。   First, in step C <b> 1, a metal thin film 367 is formed on the main surface of the ceramic substrate 34. Then, the process proceeds to Step C2, and the periphery of the through conductor 32 corresponding to the power source or the ground in the metal thin film 367 is etched in a donut shape, so that the through conductor 32 and the electrode conductor thin film 36 are separated. FIG. 12 shows a top view of this. Subsequently, the process proceeds to Step C3, and a dielectric thin film 38 is formed by, for example, a sol-gel method so as to cover the entire surface of the electrode conductor thin film 36. In Step C4, the dielectric thin film 38 is opened at a position corresponding to the through conductor 32. Form. Next, in step C5, a metal thin film 367 is formed in the same manner as in step C1, and in step C6, the periphery of the through conductor 32 different from that in step C2 is etched into a donut shape, so that the through conductor 32 and the electrode conductor thin film 37 are etched. And are separated. FIG. 12 shows a top view of this. By repeating the above steps, a structure in which a plurality of dielectric thin films 38 and a plurality of electrode conductor thin films 36 and 37 are alternately laminated is obtained.

<配線基板の第2変形例>
配線基板1の第2変形例(配線基板1”)について説明する。以下、主に配線基板1と異なる箇所について述べ、重複する箇所については図中に同番号を付して説明を省略する。図13に示す配線基板1”は、セラミック副コア3”の全体が積層セラミックコンデンサ(電子部品)として構成されている。この積層セラミックコンデンサは、第1変形例(配線基板1’)における薄膜コンデンサ部3Cと同様の積層構造を有しており、電源端子7aに対応する電源側電極導体層と、グランド端子7bに対応するグランド側電極導体層との互いに直流的に分離された2種類の電極導体層36,37が、セラミック層33により隔てられた形で積層方向に交互に配列している。また、全体が積層セラミックコンデンサとされたセラミック副コア3”の第1主面MP1側が充填樹脂連続層41に覆われる(保護される)ことで、板圧方向の線膨張係数差を吸収させることができ、周囲の配線の断線などの不具合を防止できる。
<Second Modification of Wiring Board>
A description will be given of a second modified example (wiring board 1 ″) of the wiring board 1. Hereinafter, portions different from the wiring board 1 will be mainly described, and overlapping portions will be denoted by the same reference numerals in the drawing and description thereof will be omitted. In the wiring substrate 1 ″ shown in FIG. 13, the entire ceramic sub-core 3 ″ is configured as a multilayer ceramic capacitor (electronic component). This multilayer ceramic capacitor is a thin film capacitor in the first modification (wiring substrate 1 ′). Two types of electrodes that have the same laminated structure as that of the portion 3C and that are DC-separated from each other between a power-side electrode conductor layer corresponding to the power terminal 7a and a ground-side electrode conductor layer corresponding to the ground terminal 7b The conductor layers 36 and 37 are alternately arranged in the stacking direction, separated by the ceramic layer 33. Also, the ceramic sub-core 3 "which is a multilayer ceramic capacitor as a whole. Since the first main surface MP1 side is covered (protected) by the filled resin continuous layer 41, the difference in linear expansion coefficient in the plate pressure direction can be absorbed, and problems such as disconnection of surrounding wiring can be prevented.

このような積層セラミックコンデンサからなるセラミック副コア3”は、具体的には、電極導体層36,37と、それらと同時焼成されたセラミック層33とが交互に積層された積層セラミックコンデンサとされている。すなわち、セラミック副コア3”は、セラミック層33をセラミックグリーンシートにより形成し、電極導体層36,37を金属ペーストの印刷塗布により形成し、これらの積層体を同時焼成することにより得ることができる。また、電極導体層36同士あるいは37同士は、ビアをなす貫通導体32により積層方向に連結されており、これらは金属ペーストの印刷パターニング時に互いに分離されて形成される。   Specifically, the ceramic sub-core 3 ″ made of such a multilayer ceramic capacitor is a multilayer ceramic capacitor in which electrode conductor layers 36 and 37 and ceramic layers 33 co-fired with them are alternately stacked. That is, the ceramic sub-core 3 ″ is obtained by forming the ceramic layer 33 from a ceramic green sheet, forming the electrode conductor layers 36 and 37 by printing and applying a metal paste, and co-firing these laminates. Can do. Further, the electrode conductor layers 36 or 37 are connected to each other in the stacking direction by through conductors 32 forming vias, and these are formed to be separated from each other at the time of printing patterning of the metal paste.

<配線基板の製造方法の実施形態>
次に、本発明の配線基板の製造方法の実施形態を、図面を参照しながら説明する。図4〜図7は、配線基板1の製造工程を表す図である。
<Embodiment of Manufacturing Method of Wiring Board>
Next, an embodiment of a method for manufacturing a wiring board according to the present invention will be described with reference to the drawings. 4-7 is a figure showing the manufacturing process of the wiring board 1. FIG.

工程1では、コア本体部2の両主面MP1,MP2に導体パターン54(導体層M11)を形成する。これは、両主面に銅箔を有する耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)または繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)に対し、マスク材を用いて銅箔をパターンエッチングすることにより得ることができる。   In step 1, a conductor pattern 54 (conductor layer M11) is formed on both main surfaces MP1 and MP2 of the core body 2. This is a pattern etching of copper foil using a mask material for a heat-resistant resin plate (for example, bismaleimide-triazine resin plate) or fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin) having copper foil on both main surfaces. Can be obtained.

工程2では、主面MP1,MP2間を貫通する貫通孔をドリル加工により形成して、副コア収容部25を設ける。また、副コア収容部25(貫通孔)の側壁に対しては、過マンガン酸カリウム等により粗化処理を施すことにより、後に充填される充填樹脂4との密着性を向上させることができる。更には、有機系化合物(カップリング剤)を塗布しても良い。   In step 2, a through-hole penetrating between the main surfaces MP1 and MP2 is formed by drilling to provide the sub-core housing portion 25. Moreover, the adhesiveness with the filling resin 4 with which it fills later can be improved by performing a roughening process with the potassium permanganate etc. with respect to the side wall of the subcore accommodating part 25 (through-hole). Furthermore, an organic compound (coupling agent) may be applied.

工程3(閉塞工程)では、副コア収容部25(貫通孔)の第2主面MP2側の開口を、表面に粘着剤adを有するシート材Sで、粘着剤adが副コア収容部25の内側に露出するように塞ぐ。シート材Sとしては、粘着材adの粘着力が8.0N/25mm以上であるものが好ましい(180°引きはがし法(JIS Z 0237)により測定)。なお、単位[N/25mm]は、幅25mmのシート材を試料として測定された力を意味する。シート材Sの材質(基材)は、例えばポリエステルやポリイミド、PET等の樹脂シートを用いることができる。また、シート材Sの表面に付される粘着剤adは、例えばシリコン系の粘着剤、アクリル系の粘着剤、熱可塑性ゴム系の粘着剤などを用いることができる。   In step 3 (blocking step), the opening on the second main surface MP2 side of the sub core housing part 25 (through hole) is made of the sheet material S having the adhesive ad on the surface, and the adhesive ad is in the sub core housing part 25. Close it so that it is exposed inside. The sheet material S preferably has an adhesive strength of the adhesive material ad of 8.0 N / 25 mm or more (measured by 180 ° peeling method (JIS Z 0237)). The unit [N / 25 mm] means a force measured using a sheet material having a width of 25 mm as a sample. As the material (base material) of the sheet material S, for example, a resin sheet such as polyester, polyimide, or PET can be used. As the adhesive ad applied to the surface of the sheet material S, for example, a silicon adhesive, an acrylic adhesive, a thermoplastic rubber adhesive, or the like can be used.

工程4(副コア収容工程)では、副コア収容部25の第1主面MP1側の開口からセラミック副コア3を収容するとともに粘着剤adに固着させる。これは、公知のマウント装置を用いることにより、セラミック副コア3を精度良く収容することができる。   In step 4 (sub-core accommodating step), the ceramic sub-core 3 is accommodated from the opening on the first main surface MP1 side of the sub-core accommodating portion 25 and is fixed to the adhesive ad. This can accommodate the ceramic sub-core 3 with high accuracy by using a known mounting device.

工程5(圧入印刷工程)では、セラミック副コア3及びコア本体2の第1主面MP1側から樹脂ペースト4PをゴムスキージSKにより圧入印刷して、セラミック副コア3とコア本体2の隙間に樹脂ペースト4Pを充填する(充填樹脂4の形成)。ゴムスキージSKによる圧入印刷で、セラミック副コア3とコア本体2の隙間にはボイドを発生させることなく樹脂ペースト4Pが充填される。また、かかる圧入印刷は、セラミック副コア3及びコア本体2の第1主面MP1に対してマスク材を介さずに樹脂ペースト4Pを直接圧入印刷するため、セラミック副コア3とコア本体2の隙間への樹脂ペースト4Pの充填と同時に、これに連続する層がセラミック副コア3及びコア本体2の第1主面MP1の全面に被覆形成される(充填樹脂連続層41の形成)。以上のように充填形成・被覆形成された樹脂ペースト4Pは、加熱及び乾燥により硬化(いわゆるキュア)して、充填樹脂4及び充填樹脂連続層41となる。なお、図8に示すようなセラミック副コア3の第1主面MP1のみを覆う充填樹脂連続層41を得る場合は、コア本体2の第1主面MP1をマスク材で覆った状態で圧入印刷を行う。   In step 5 (press-fitting printing step), the resin paste 4P is press-fitted with a rubber squeegee SK from the first main surface MP1 side of the ceramic sub-core 3 and the core main body 2, and the resin paste is inserted into the gap between the ceramic sub-core 3 and the core main body 2. 4P is filled (formation of filled resin 4). By press-fitting printing with a rubber squeegee SK, the resin paste 4P is filled in the gap between the ceramic sub-core 3 and the core body 2 without generating voids. In addition, since the press-fitting printing directly press-prints the resin paste 4P on the ceramic sub-core 3 and the first main surface MP1 of the core main body 2 without using a mask material, a gap between the ceramic sub-core 3 and the core main body 2 is obtained. Simultaneously with the filling of the resin paste 4P, a continuous layer is formed on the entire surface of the ceramic main core 3 and the first main surface MP1 of the core body 2 (formation of the filled resin continuous layer 41). The resin paste 4P filled and coated as described above is cured (so-called curing) by heating and drying to become the filled resin 4 and the filled resin continuous layer 41. In addition, when obtaining the filling resin continuous layer 41 which covers only the 1st main surface MP1 of the ceramic subcore 3 as shown in FIG. 8, press-fitting printing in the state which covered the 1st main surface MP1 of the core main body 2 with the mask material. I do.

具体的には、本実施形態に係る配線基板の製造方法は、図14(工程5前の図)に示すように、配線基板1となるべき製品部分が複数配列した製品部分領域PRと、これを取り囲む捨て代部分領域DRとから構成される製造基板に対して行われるが、本工程5(圧入印刷工程)では、捨て代部分領域DRに樹脂ペースト4Pを堆積させ、これを図5に示すようにゴムスキージSKを移動させることでセラミック副コア3とコア本体2の隙間に充填するとともに、セラミック副コア3とコア本体2の第1主面MP1の全面を覆う層を被覆形成する。   Specifically, the method for manufacturing a wiring board according to the present embodiment includes a product part region PR in which a plurality of product parts to be the wiring board 1 are arranged, as shown in FIG. 5 is performed on the manufacturing substrate constituted by the disposal margin partial region DR surrounding the substrate, and in this step 5 (press-fit printing step), the resin paste 4P is deposited on the disposal margin partial region DR, which is shown in FIG. By moving the rubber squeegee SK as described above, the gap between the ceramic sub-core 3 and the core main body 2 is filled, and a layer covering the entire surface of the first main surface MP1 of the ceramic sub-core 3 and the core main body 2 is formed.

ここで、樹脂ペースト4Pの粘度は、例えば、室温(例えば25℃)以上120℃以下において6Pa・s以上57Pa・s以下程度とされる(特には、30Pa・s以上であることが好ましい)。また、かかる粘度を得るべく、樹脂ペースト4Pのフィラー含有量は53wt%以上80wt%以下とすることができる(特には、70wt%以上が好ましい)。また、樹脂ペースト4Pは、エポキシ樹脂に酸無水物を加えた樹脂を用いることができる他、アミン等の樹脂を用いることもできる。   Here, the viscosity of the resin paste 4P is, for example, about 6 Pa · s or more and 57 Pa · s or less at room temperature (for example, 25 ° C.) or more and 120 ° C. or less (in particular, preferably 30 Pa · s or more). In order to obtain such a viscosity, the filler content of the resin paste 4P can be set to 53 wt% or more and 80 wt% or less (particularly, 70 wt% or more is preferable). The resin paste 4P can be a resin obtained by adding an acid anhydride to an epoxy resin, or can be a resin such as an amine.

樹脂ペースト4Pを加熱及び乾燥させ、硬化(いわゆるキュア)させて充填樹脂4及び充填樹脂連続層41を得た後は、過マンガン酸カリウム等により粗化処理を施すことにより、後に形成される誘電体層B11,B21との密着性を向上させることができる。   After the resin paste 4P is heated and dried and cured (so-called curing) to obtain the filled resin 4 and the filled resin continuous layer 41, a roughening treatment is performed with potassium permanganate or the like to form a dielectric formed later. Adhesion with body layers B11 and B21 can be improved.

なお、従来のようなディスペンサー等の注入による充填樹脂の形成では、充填樹脂4がコア本体2とセラミック副コア3の第1主面MP1から盛り上がって形成されてしまう場合があり、これを除去するための研磨を行う必要が生じて製造工程が煩雑となったり、かかる研磨によってセラミック副コア等を損傷してしまう惧れがあったが、本発明の工程5(圧入印刷工程)では、セラミック副コア3の第1主面MP1に樹脂ペースト4Pによる層を被覆形成して、それを充填樹脂連続層41とすることから、かかる研磨を行う必要がなく、セラミック副コア3を損傷することもない。これは、特に、配線基板1の変形例1及び変形例2で示すような、コンデンサが組込まれたセラミック副コア3’及び3”を有する配線基板1’及び配線基板1”を製造する際に有利である。   In addition, in the formation of the filling resin by injection by a conventional dispenser or the like, the filling resin 4 may be formed so as to rise from the first main surface MP1 of the core body 2 and the ceramic sub-core 3, which is removed. However, in the process 5 (press-fit printing process) of the present invention, there is a concern that the manufacturing process becomes complicated due to the necessity of polishing for the above-mentioned reasons, and the ceramic secondary core or the like is damaged by such polishing. Since the first main surface MP1 of the core 3 is coated with a layer of the resin paste 4P to form the filled resin continuous layer 41, it is not necessary to perform such polishing and the ceramic sub-core 3 is not damaged. . This is particularly the case when manufacturing the wiring board 1 ′ and the wiring board 1 ″ having the ceramic sub-cores 3 ′ and 3 ″ in which the capacitors are incorporated, as shown in the first and second modifications of the wiring board 1. It is advantageous.

工程6以降は、セラミック副コア3が収容されたコア基板CBの主面MP1上(詳しくは、充填樹脂連続層41上),MP2上に誘電体層B11〜14,B21〜24と導体層M12〜M14,M22〜M24とを交互に積層して配線積層部L1,L2を形成する。これには、公知のビルドアップ工程(セミアディティブ法、フルアディティブ法、サブトラクティブ法、フィルム状樹脂材料のラミネートによる誘電体層の形成、フォトリソグラフィ技術など)を用いることで実現できる。   After step 6, dielectric layers B11 to 14, B21 to 24 and conductor layer M12 are formed on main surface MP1 (specifically, on filled resin continuous layer 41) and MP2 of core substrate CB in which ceramic sub-core 3 is accommodated. To M14 and M22 to M24 are alternately stacked to form the wiring stacked portions L1 and L2. This can be realized by using a known build-up process (semi-additive method, full-additive method, subtractive method, formation of a dielectric layer by laminating a film-like resin material, photolithography technique, etc.).

まず、工程6(最下誘電体層形成工程)では、セラミック副コア3が収容されたコア基板CBの主面MP1,MP2上に誘電体層B11,B21をラミネート形成する。特に、配線積層部L1の最下層となる誘電体層B11は、充填樹脂連続層41上に形成される。次に、工程7(複数層貫通ビアホール形成工程)では、レーザビアプロセスあるいはフォトビアプロセスなどの手法により、第1主面MP1側では、誘電体層B11及び充填樹脂連続層41を跨って貫通する複数層貫通ビアホール65aを穿設し、第2主面MP2側では、誘電体層B21にビアホール6aを穿設する。これにより、ビアホール6a,複数層貫通ビアホール65aの底には、導体パッド31が露出する。また、ビアホール6a,複数層貫通ビアホール65aの形成後には、過マンガン酸カリウム等によりデスミア処理(樹脂残渣除去処理)が施されて、導体パッド31の表面が洗浄される。   First, in step 6 (lowermost dielectric layer forming step), dielectric layers B11 and B21 are laminated on the main surfaces MP1 and MP2 of the core substrate CB in which the ceramic sub-core 3 is accommodated. In particular, the dielectric layer B11 which is the lowermost layer of the wiring laminated portion L1 is formed on the filled resin continuous layer 41. Next, in step 7 (multi-layer through via hole forming step), the first main surface MP1 side is penetrated across the dielectric layer B11 and the filled resin continuous layer 41 by a technique such as a laser via process or a photo via process. A plurality of through-hole via holes 65a are formed, and via holes 6a are formed in the dielectric layer B21 on the second main surface MP2 side. As a result, the conductor pad 31 is exposed at the bottom of the via hole 6a and the multi-layer through via hole 65a. Further, after the formation of the via hole 6a and the multi-layer through via hole 65a, a desmear process (resin residue removal process) is performed with potassium permanganate or the like to clean the surface of the conductor pad 31.

次に、工程8では、コア基板CB及びその主面MP1,MP2に形成された誘電体層B11,B21、導体層M11,M21を板厚方向に貫く形でドリル等により貫通孔THを穿設する。そして、工程9(複数層貫通ビア導体形成工程)では、Cuメッキ(無電解Cuメッキ後に電解Cuメッキ)を全面に施すことにより、ビア孔6a,複数層貫通ビアホール65a内を充填してビア導体6,複数層貫通ビア導体65を形成するとともに、貫通孔THの内面にスルーホール導体21を形成する。その後、工程10では、スルーホール導体21の内側に樹脂製穴埋め材23を充填し、更にCuメッキを全面に施すことにより、蓋導体52を形成する。   Next, in step 8, a through hole TH is formed by a drill or the like so as to penetrate the core substrate CB and the dielectric layers B11 and B21 and the conductor layers M11 and M21 formed on the main surfaces MP1 and MP2 in the thickness direction. To do. In step 9 (multi-layer through via conductor forming step), Cu plating (electrolytic Cu plating after electroless Cu plating) is applied to the entire surface to fill the via hole 6a and the multi-layer through via hole 65a. The 6, multi-layer through via conductor 65 is formed, and the through hole conductor 21 is formed on the inner surface of the through hole TH. Thereafter, in step 10, the lid conductor 52 is formed by filling the inside of the through-hole conductor 21 with the resin filler 23 and further applying Cu plating to the entire surface.

次に、工程11では、誘電体層B11,B21を覆うCuメッキをパターンエッチングすることにより、配線51等をパターン形成する。以上により、コア領域CRが得られる。そして、同様に、誘電体層B12〜B14、B22〜B24と導体層M13,14、M23,M24とが交互にし、誘電体層B14,B24にはレーザビアプロセスあるいはフォトビアプロセスなどの手法により開口を形成し、パッド55,56を露出させる。また、パッド55,56の表面にNi−Auメッキが施され、パッド55には半田バンプ7が形成される。その後、電気的検査,外観検査等の所定の検査を経て、図1に示す配線基板1が完成する。   Next, in step 11, the wiring 51 and the like are patterned by pattern etching of Cu plating covering the dielectric layers B11 and B21. Thus, the core region CR is obtained. Similarly, the dielectric layers B12 to B14 and B22 to B24 and the conductor layers M13, 14, M23, and M24 are alternately formed, and the dielectric layers B14 and B24 are opened by a technique such as a laser via process or a photo via process. And the pads 55 and 56 are exposed. Further, Ni—Au plating is applied to the surfaces of the pads 55 and 56, and solder bumps 7 are formed on the pads 55. Thereafter, the wiring board 1 shown in FIG. 1 is completed through predetermined inspections such as electrical inspection and appearance inspection.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されず、これらに具現された発明と同一性を失わない範囲内において適宜変更し得る。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, In the range which does not lose the identity with the invention embodied in these, it can change suitably.

本発明の配線基板の断面構造を概略的に表す図The figure which represents roughly the cross-section of the wiring board of this invention 半導体集積回路素子(ICチップ)と主基板(マザーボード等)との間に配置された配線基板を表す図The figure showing the wiring board arrange | positioned between a semiconductor integrated circuit element (IC chip) and main boards (motherboard etc.) 配線基板の第1主面を表す図The figure showing the 1st principal surface of a wiring board 本発明の配線基板の製造工程を表す図The figure showing the manufacturing process of the wiring board of this invention 図4に続く図Figure following Figure 4 図5に続く図Figure following Figure 5 図6に続く図Figure following Figure 6 充填樹脂連続層の変形例を表す図The figure showing the modification of a filling resin continuous layer 配線基板の第1変形例の断面構造を概略的に表す図The figure which represents roughly the cross-section of the 1st modification of a wiring board 薄膜コンデンサ部の製造工程を表す図Diagram showing manufacturing process of thin film capacitor 図10に続く図Figure following Figure 10 製造工程における薄膜コンデンサ部を上面から見た図The top view of the thin film capacitor part in the manufacturing process 配線基板の第2変形例の断面構造を概略的に表す図The figure which represents roughly the cross-section of the 2nd modification of a wiring board 工程4(副コア収容工程)終了後の基板上面図Substrate top view after completion of step 4 (sub-core accommodation step)

符号の説明Explanation of symbols

1 配線基板
2 コア本体
25 副コア収容部
3 セラミック副コア
4 充填樹脂
41 充填樹脂連続層
6 ビア導体
7 半田バンプ
CB コア基板
L1,L2 配線積層部
SK スキージ
DESCRIPTION OF SYMBOLS 1 Wiring board 2 Core main body 25 Sub core accommodating part 3 Ceramic sub core 4 Filling resin 41 Filling resin continuous layer 6 Via conductor 7 Solder bump CB Core board L1, L2 Wiring laminated part SK Squeegee

Claims (2)

高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは第1主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部と、を備える配線基板の製造方法であって、
前記セラミック副コアを、前記副コア収容部の第1主面の開口側から収容する副コア収容工程と、
前記セラミック副コア及び前記コア本体の第1主面側から樹脂ペーストをスキージにより圧入印刷して、前記セラミック副コアと前記コア本体の隙間に該樹脂ペーストを充填するとともに、前記セラミック副コアの前記第1主面上に被覆形成し、該樹脂ペーストに連続する充填樹脂連続層を形成する圧入印刷工程と、
をこの順に含むことを特徴とする配線基板の製造方法。
A plate-like core body made of a polymer material is formed with a sub-core housing portion as a through hole penetrating between the principal surfaces or a recess opening in the first principal surface, and a plate-like shape made of ceramic inside And a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate. A method for manufacturing a wiring board, comprising:
A sub core housing step of housing the ceramic sub core from the opening side of the first main surface of the sub core housing portion;
The press fit printed ceramic sub-core and the first main surface side of the core body of the resin paste by the squeegee, to fill the resin paste in a gap of the core body and the ceramic sub-core, wherein the ceramic sub-core A press-fitting printing process for forming a coating on the first main surface, and forming a filled resin continuous layer continuous with the resin paste ;
A method of manufacturing a wiring board, comprising:
前記圧入印刷工程の後に、前記配線積層部の最下層となる誘電体層を前記充填樹脂連続層の上に形成する最下誘電体層形成工程と、After the press-fitting printing step, a lowermost dielectric layer forming step of forming a dielectric layer serving as a lowermost layer of the wiring laminated portion on the filled resin continuous layer;
前記誘電体層及び前記充填樹脂連続層を跨って貫通する複数層貫通ビアホールを形成し、その内部にセラミック副コアが前記第1主面に有する導体パッドを露出させる複数層貫通ビアホール形成工程と、Forming a multi-layer through via hole penetrating across the dielectric layer and the filling resin continuous layer, and exposing a conductive pad that the ceramic sub-core has on the first main surface inside the multi-layer through via hole; and
前記複数層貫通ビアホール内に、複数層貫通ビア導体を充填形成する複数層貫通ビア導体形成工程と、In the multi-layer through via hole, a multi-layer through via conductor forming step of filling and forming a multi-layer through via conductor;
を含む請求項1に記載の配線基板の製造方法。The manufacturing method of the wiring board of Claim 1 containing this.
JP2005163673A 2005-06-03 2005-06-03 Wiring board manufacturing method Expired - Fee Related JP4726546B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005163673A JP4726546B2 (en) 2005-06-03 2005-06-03 Wiring board manufacturing method
US11/445,288 US7696442B2 (en) 2005-06-03 2006-06-02 Wiring board and manufacturing method of wiring board
EP06011529A EP1729552A3 (en) 2005-06-03 2006-06-02 Wiring board and manufacturing method of wiring board
TW095119500A TWI396481B (en) 2005-06-03 2006-06-02 Wiring board and manufacturing method of wiring board
CN2006100887735A CN1874648B (en) 2005-06-03 2006-06-05 Wiring board and manufacturing method of wiring board
US12/706,695 US8863378B2 (en) 2005-06-03 2010-02-16 Method for manufacturing a wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163673A JP4726546B2 (en) 2005-06-03 2005-06-03 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2006339482A JP2006339482A (en) 2006-12-14
JP4726546B2 true JP4726546B2 (en) 2011-07-20

Family

ID=37484841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163673A Expired - Fee Related JP4726546B2 (en) 2005-06-03 2005-06-03 Wiring board manufacturing method

Country Status (2)

Country Link
JP (1) JP4726546B2 (en)
CN (1) CN1874648B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474985C1 (en) * 2011-07-27 2013-02-10 Открытое акционерное общество "Федеральный научно-производственный центр Нижегородский научно-исследовательский институт радиотехники" Manufacturing method of multilayer printed circuit boards

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936567B2 (en) * 2007-05-07 2011-05-03 Ngk Spark Plug Co., Ltd. Wiring board with built-in component and method for manufacturing the same
US8299366B2 (en) * 2009-05-29 2012-10-30 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
WO2011102561A1 (en) * 2010-02-22 2011-08-25 三洋電機株式会社 Multilayer printed circuit board and manufacturing method therefor
WO2012009831A1 (en) * 2010-07-23 2012-01-26 欣兴电子股份有限公司 Wiring board and manufacturing method thereof
JP5536682B2 (en) * 2011-01-18 2014-07-02 日本特殊陶業株式会社 Component built-in wiring board
JP2012216601A (en) * 2011-03-31 2012-11-08 Fujitsu Ltd Electronic device manufacturing method and electronic device
JP6166878B2 (en) 2012-08-30 2017-07-19 新光電気工業株式会社 WIRING BOARD AND WIRING BOARD MANUFACTURING METHOD
JP6600573B2 (en) * 2015-03-31 2019-10-30 新光電気工業株式会社 Wiring board and semiconductor package
TWI563886B (en) * 2015-10-28 2016-12-21 Ind Tech Res Inst Insulating colloidal material and multilayer circuit structure
TWI693874B (en) * 2018-06-08 2020-05-11 欣興電子股份有限公司 Circuit carrier board structure and manufacturing method thereof
TWI708541B (en) * 2019-06-06 2020-10-21 欣興電子股份有限公司 Circuit carrier board and manufacturing method thereof
JP7184679B2 (en) * 2019-03-13 2022-12-06 イビデン株式会社 Printed wiring board and manufacturing method thereof
CN114585157A (en) * 2020-12-01 2022-06-03 深南电路股份有限公司 Capacitor-embedded circuit board and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118367A (en) * 1999-09-02 2002-04-19 Ibiden Co Ltd Printed wiring board and manufacturing method thereof
JP2002246757A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Manufacturing method of multilayer printed-wiring board
JP2004200201A (en) * 2002-12-16 2004-07-15 Taiyo Yuden Co Ltd Multilayer substrate with built-in electronic part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080111567A (en) * 1999-09-02 2008-12-23 이비덴 가부시키가이샤 Printed circuit board and method of manufacturing printed circuit board
JP2001298258A (en) * 2000-02-10 2001-10-26 Ngk Spark Plug Co Ltd Method of manufacturing printed wiring board, and multilayer printed wiring board using it
JP2002237683A (en) * 2001-02-08 2002-08-23 Ngk Spark Plug Co Ltd Method for manufacturing circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118367A (en) * 1999-09-02 2002-04-19 Ibiden Co Ltd Printed wiring board and manufacturing method thereof
JP2002246757A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Manufacturing method of multilayer printed-wiring board
JP2004200201A (en) * 2002-12-16 2004-07-15 Taiyo Yuden Co Ltd Multilayer substrate with built-in electronic part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474985C1 (en) * 2011-07-27 2013-02-10 Открытое акционерное общество "Федеральный научно-производственный центр Нижегородский научно-исследовательский институт радиотехники" Manufacturing method of multilayer printed circuit boards

Also Published As

Publication number Publication date
CN1874648B (en) 2012-10-17
JP2006339482A (en) 2006-12-14
CN1874648A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4726546B2 (en) Wiring board manufacturing method
JP2007027683A (en) Wiring board and method for manufacturing the same
TWI396481B (en) Wiring board and manufacturing method of wiring board
JP4838068B2 (en) Wiring board
JP4079699B2 (en) Multilayer wiring circuit board
US7025607B1 (en) Capacitor material with metal component for use in circuitized substrates, circuitized substrate utilizing same, method of making said circuitized substrate, and information handling system utilizing said circuitized substrate
KR102032171B1 (en) Electronic component built-in substrate and method of manufacturing the same
US9773747B2 (en) Wiring substrate and method for manufacturing wiring subtrate
JP4880277B2 (en) Wiring board manufacturing method
WO2015151512A1 (en) Interposer, semiconductor device, interposer manufacturing method, and semiconductor device manufacturing method
EP2178116B1 (en) Ic mounting substrate and method for manufacturing the same
KR20060047178A (en) Semiconductor device
JP2007096262A (en) Wiring board and ceramic chip for embedding
JP2001028483A (en) Wiring board, multilayer wiring board, circuit component package, and manufacturing method of wiring board
JP2010129992A (en) Wiring board
JP4497548B2 (en) Wiring board
JP2007258542A (en) Wiring board
JP4648230B2 (en) Wiring board manufacturing method
US20100236822A1 (en) Wiring board and method for manufacturing the same
JP4714510B2 (en) Wiring board manufacturing method
US8546922B2 (en) Wiring board
JP5184497B2 (en) Electronic component-embedded printed circuit board and manufacturing method thereof
JP4778148B2 (en) Multilayer wiring board
JP2003051427A (en) Capacitor sheet and manufacturing method therefor, board having built-in capacitor and semiconductor device
US20090102045A1 (en) Packaging substrate having capacitor embedded therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4726546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees