JP4720993B2 - Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials - Google Patents
Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials Download PDFInfo
- Publication number
- JP4720993B2 JP4720993B2 JP2005263364A JP2005263364A JP4720993B2 JP 4720993 B2 JP4720993 B2 JP 4720993B2 JP 2005263364 A JP2005263364 A JP 2005263364A JP 2005263364 A JP2005263364 A JP 2005263364A JP 4720993 B2 JP4720993 B2 JP 4720993B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- speed
- cutting
- high speed
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
この発明は、硬質被覆層がすぐれた潤滑性を有し、したがって特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高速重切削加工に用いた場合にも、切削時に切粉が切刃部に溶着することなく、すぐれた耐チッピング性を発揮する表面被覆高速度工具鋼製切削工具(以下、被覆ハイス工具という)に関するものである。 In the present invention, the hard coating layer has excellent lubricity. Therefore, even when it is used for high-speed heavy cutting of highly viscous difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel, it is cut during cutting. The present invention relates to a cutting tool made of a surface-coated high-speed tool steel (hereinafter referred to as a coated high-speed tool) that exhibits excellent chipping resistance without welding powder to the cutting edge.
一般に、被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated cutting tools, throwaway inserts that are used detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, drilling of the work material Drills and miniature drills used in, etc., as well as solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.
また、被覆切削工具としては、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:(Ti1-(X+Y) AlX VY)N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.09を示す)、
を満足するTiとAlとVの複合窒化物[以下、(Ti,Al,V)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,V)N層においては、構成成分であるAlによって高温硬さおよび耐熱性、同Tiによって高温強度、さらに同Vによって潤滑性が向上した特性をもつようになることも知られている。
Further, as a coated cutting tool, for example, a single phase is formed on the surface of a cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. Having a structure, and
Composition formula: (Ti 1− (X + Y) Al X V Y ) N (wherein X is 0.50 to 0.65, Y is 0.01 to 0.09 in atomic ratio),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and V [hereinafter referred to as (Ti, Al, V) N] satisfying the above conditions with an average layer thickness of 2 to 8 μm The (Ti, Al, V) N layer has the characteristics that high temperature hardness and heat resistance are obtained by Al as a constituent component, high temperature strength is obtained by Ti, and lubricity is improved by V. It is also known that
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−V合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にある。そして、上記従来の(Ti,Al,V)N層からなる硬質被覆層を設けた被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材などの切削加工を、高熱発生を伴う高速重切削加工条件で行うのに用いた場合には、特に硬質被覆層の潤滑性不足が原因で、切粉が切刃部に溶着し易くなり、これが原因でチッピング(微少欠け)が発生し、この結果比較的短時間で使用寿命に至るという問題があった。また、高速度工具鋼からなる工具基体に、上記(Ti,Al,V)N層からなる硬質被覆層を設けた被覆ハイス工具についても、難削材の高速重切削加工(穴あけ切削加工、面削加工、溝加工、肩加工など)に用いた場合には、硬質被覆層の潤滑性が不足し切粉が切刃部に溶着し易くなるという同様の原因で、比較的短時間で使用寿命に至るという問題があった。 In recent years, the performance of cutting devices has been remarkably improved. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting tends to increase in speed. And in the above-mentioned conventional coated carbide tool provided with a hard coating layer composed of (Ti, Al, V) N layer, this can be cut with carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions. When used to perform, there is no problem showing normal cutting performance, but especially high-viscosity heavy heat generation with high heat generation is required for cutting difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. When used under cutting conditions, chipping easily occurs on the cutting edge due to insufficient lubricity of the hard coating layer, which causes chipping (small chipping). As a result, there was a problem that the service life was reached in a relatively short time. In addition, high-speed heavy cutting of difficult-to-cut materials (drilling cutting, surface, etc.) is also possible for coated high-speed tools in which a hard base layer made of the (Ti, Al, V) N layer is provided on a tool base made of high-speed tool steel When used for cutting, grooving, shoulder processing, etc.), the service life is relatively short in the same reason that the lubricity of the hard coating layer is insufficient and chips easily adhere to the cutting edge. There was a problem of reaching.
そこで、本発明者等は、上述のような観点から、特に上記難削材の高速重切削加工(穴あけ切削加工、面削加工、溝加工、肩加工など)で硬質被覆層がすぐれた潤滑性を発揮する被覆ハイス工具を開発すべく、上記従来の被覆切削工具の硬質被覆層を構成する(Ti,Al,V)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,V)N層において、V成分の含有割合を多くすれば潤滑性が向上するが、上記の従来(Ti,Al,V)N層における1〜9原子%程度のV含有割合では、粘性の高い難削材の高速重切削加工に要求される高い潤滑性を確保することができず、これらの要求に満足に対応させるためには前記1〜9原子%をはるかに越えた50〜70原子%のV含有が必要であり、一方50〜70原子%のV成分を含有した(Ti,Al,V)N層を硬質被覆層として実用に供するためには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
Therefore, the present inventors, from the above-mentioned viewpoint, have excellent lubricity with a hard coating layer particularly in high-speed heavy cutting (drilling, chamfering, grooving, shouldering, etc.) of the difficult-to-cut materials. As a result of conducting research by focusing on the (Ti, Al, V) N layer that constitutes the hard coating layer of the conventional coated cutting tool,
(A) In the (Ti, Al, V) N layer constituting the hard coating layer, the lubricity is improved if the content ratio of the V component is increased, but 1 in the conventional (Ti, Al, V) N layer described above. When the V content is about ˜9 atomic%, the high lubricity required for high-speed heavy cutting of difficult-to-cut materials with high viscosity cannot be ensured. To satisfy these requirements satisfactorily, It is necessary to contain 50 to 70 atomic% of V, far exceeding -9 atomic%, while (Ti, Al, V) N layer containing 50 to 70 atomic% of V component is practically used as a hard coating layer. In order to provide it, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high-temperature strength. In this case, however, it is inevitable that the content ratio of the Al component is extremely low. It must be extremely low in heat resistance.
(b)組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する、V含有割合が50〜70原子%の(Ti,Al,V)N層と、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,V)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で交互積層すると、この結果の(Ti,Al,V)N層は、薄層の交互積層構造によって、上記の高V含有の(Ti,Al,V)N層(以下、薄層Aという)のもつすぐれた潤滑性と、前記薄層Aに比して相対的にV含有割合が低く、かつ相対的にAl含有割合が高い(Ti,Al,V)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さおよび耐熱性を具備するようになること。
(B) the composition formula: (Ti 1- (A + B ) Al A V B) N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) satisfies A (Ti, Al, V) N layer having a V content ratio of 50 to 70 atomic%;
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein, C is 0.25 to 0.40 and D is 0.20 to 0.35 in an atomic ratio), relative (Ti, Al, V) N layer with an increased Al component content,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometer), and the resulting (Ti, Al, V) N layer has the above-described structure due to the alternately laminated structure of thin layers. The excellent lubricity of the (Ti, Al, V) N layer (hereinafter referred to as the thin layer A) having a high V content, the V content ratio being relatively lower than that of the thin layer A, and the relative And (Ti, Al, V) N layer (hereinafter referred to as thin layer B) having a high Al content ratio has predetermined relatively high high temperature hardness and heat resistance.
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,V)N層は、難削材の高速重切削加工で要求される、すぐれた潤滑性を具備するものの、十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、潤滑性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記従来の硬質被覆層に相当する組成を有する(Ti,Al,V)N層、すなわち、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する、単一相構造の(Ti,Al,V)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた潤滑性に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆切削工具は、上記の難削材の高い高熱発生を伴う高速重切削加工でも、切刃部に切粉が溶着することがなく、この結果チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, V) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) has excellent lubricity required for high-speed heavy cutting of difficult-to-cut materials. Although it does not have sufficiently satisfactory high-temperature hardness and heat resistance, it is provided as the upper layer of the hard coating layer, while the lower layer is insufficient in lubricity, but relatively Al component (Ti, Al, V) N layer having a composition corresponding to the above-described conventional hard coating layer having a high content ratio and excellent high-temperature hardness and heat resistance,
Compositional formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in terms of atomic ratio) (Ti, Al, V) N layer of single phase structure,
The resulting hard coating layer has high-temperature hardness, heat resistance, and high-temperature strength, in addition to excellent lubricity. The coated cutting tool has a high wear resistance for a long period of time without chipping even at high speed heavy cutting with high heat generation of the above difficult-to-cut materials. To come to show.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、高速度工具鋼基体の表面に、
(a)いずれも(Ti,Al,V)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の一層平均層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する(Ti,Al,V)N層、
上記薄層Bは、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する(Ti,Al,V)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する(Ti,Al,V)N層、
からなる硬質被覆層を蒸着形成してなる、難削材の高速重切削加工(穴あけ切削加工、面削加工、溝加工、肩加工など)で硬質被覆層がすぐれた耐チッピング性を発揮する被覆ハイス工具(表面被覆高速度工具鋼製切削工具)に特徴を有するものである。
This invention was made based on the above research results, and on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, V) N, the upper layer has a thickness of 0.5 to 1.5 μm, and the lower layer has a thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a single layer average thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in terms of atomic ratio) (Ti , Al, V) N layer,
The thin layer B is
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein C is 0.25 to 0.40 and D is 0.20 to 0.35 in terms of atomic ratio) (Ti , Al, V) N layer,
(C) the lower layer has a single phase structure;
Composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) (Ti , Al, V) N layer,
A coating that exhibits excellent chipping resistance due to high-speed heavy cutting of difficult-to-cut materials (drilling, chamfering, grooving, shouldering, etc.) formed by vapor-depositing a hard coating layer consisting of It is characterized by a high speed tool (surface coated high speed tool steel cutting tool).
つぎに、この発明の被覆ハイス工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,V)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同V成分には潤滑性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとVとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、難削材の高速重切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Vの割合を示すF値がTiとAlとの合量に占める割合で、0.01未満では、所定の潤滑性を確保することができず、一方同F値が0.09を超えると、高温硬さおよび耐熱性が急激に低下するようになることから、F値を0.01〜0.09と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated high-speed tool of the present invention are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, V) N layer constituting the hard coating layer improves high-temperature hardness and heat resistance, while the Ti component Has the effect of improving the high temperature strength and the lubricity of the V component, and the lower layer has a relatively high Al component content to provide high high temperature hardness and heat resistance. If the E value indicating the ratio is less than 0.50 in terms of the total amount of Ti and V (atomic ratio, the same shall apply hereinafter), the ratio of Ti will be relatively high, and high-speed heavy cutting of difficult-to-cut materials The required high temperature hardness and heat resistance cannot be ensured, and the progress of wear is accelerated rapidly. On the other hand, if the E value indicating the proportion of Al exceeds 0.65, The Ti ratio becomes too small, and the high-temperature strength decreases sharply. Since chipping (slight chipping) or the like is likely to occur, the E value was set to 0.50 to 0.65.
Further, the F value indicating the proportion of V is the proportion of the total amount of Ti and Al, and if it is less than 0.01, the predetermined lubricity cannot be ensured, while the F value exceeds 0.09. Since the high temperature hardness and the heat resistance are drastically reduced, the F value is determined to be 0.01 to 0.09.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while if the layer thickness exceeds 6 μm Since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.
(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,V)NにおけるV成分は、上記の通り相対的に含有割合を著しく高くして、潤滑性を向上させ、もって高熱発生を伴う難削材の高速重切削加工に適応させる目的で含有するものであり、したがってB値が0.50未満では所望のすぐれた潤滑性を確保することができず、一方B値が0.70を越えると、層自体が具備すべき高温強度を確保することができなくなり、チッピングが発生し易くなることから、B値を0.50〜0.70と定めた。
また、Alの割合を示すA値がTiとVとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度に低下傾向が現れるようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A The V component in (Ti, Al, V) N of the upper layer thin layer A is remarkably increased in content as described above to improve lubricity. Therefore, it is contained for the purpose of adapting to high-speed heavy cutting of difficult-to-cut materials with high heat generation. Therefore, if the B value is less than 0.50, the desired excellent lubricity cannot be ensured. If the B value exceeds 0.70, the high temperature strength that the layer itself should have cannot be secured, and chipping is likely to occur. Therefore, the B value was set to 0.50 to 0.70.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and V. If it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, which causes accelerated wear. On the other hand, when the A value exceeds 0.10, a tendency to decrease in high-temperature strength appears, which causes chipping. Therefore, the A value was determined to be 0.01 to 0.10.
(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してV成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた潤滑性と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.25未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同C値が0.40を越えると、高温強度が急激に低下するようになり、上部層自体にチッピングが発生し易くなることから、C値を0.25〜0.40と定めた。
また、Vの割合を示すD値がTiとAlとの合量に占める割合で、0.20未満では、上部層全体の潤滑性低下が避けられず、一方同D値が0.35を超えると、上部層全体の高温強度が急激に低下することから、D値を0.20〜0.35と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the V component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having a relatively high high-temperature hardness and heat resistance of the thin layer B is formed, but the C value indicating the Al content in the composition formula is less than 0.25. , The predetermined high temperature hardness and heat resistance cannot be ensured, which causes wear promotion. On the other hand, when the C value exceeds 0.40, the high temperature strength rapidly decreases, Since chipping is likely to occur in the layer itself, the C value is 0.25. It was set to ˜0.40.
Further, the D value indicating the ratio of V is the ratio of the total amount of Ti and Al. If the value is less than 0.20, the lubricity of the entire upper layer is inevitably deteriorated, while the D value exceeds 0.35. Then, since the high temperature strength of the entire upper layer is drastically reduced, the D value was set to 0.20 to 0.35.
(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた潤滑性、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば潤滑性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent lubricity, further high temperature hardness and heat resistance cannot be ensured, and if the thickness of each layer exceeds 20 nm, each thin layer has defects, ie, if it is thin layer A, high temperature hardness and heat resistance Insufficient lubricity, if thin layer B, insufficient lubricity will appear locally in the layer, which may cause chipping and promote the progress of wear. It was set to ˜20 nm.
(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた潤滑性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, it cannot provide its own excellent lubricity and predetermined high temperature hardness and heat resistance to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.
この発明の被覆ハイス工具は、硬質被覆層が(Ti,Al,V)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた潤滑性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さと耐熱性を有することから、特に切粉が切刃部に溶着し易く、これが原因でチッピングが発生し易くなる高熱発生を伴う難削材の高速重切削加工(穴あけ切削加工、面削加工、溝加工、肩加工など)でも、前記硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated high-speed tool of the present invention, the hard coating layer is composed of a (Ti, Al, V) N layer. The upper layer of the hard coating layer has a predetermined laminated structure of the thin layer A and the thin layer B. It has excellent lubricity while maintaining high temperature hardness and heat resistance, and the lower layer of the single phase structure has excellent high temperature hardness and heat resistance. Easy and high-speed heavy cutting of difficult-to-cut materials with high heat generation that easily causes chipping (drilling cutting, chamfering, grooving, shoulder processing, etc.) It exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆ハイス工具を実施例により具体的に説明する。 Next, the coated high speed tool of the present invention will be described in detail with reference to examples.
直径が8mm、13mm、および26mmの3種の寸法の高速度工具鋼(JIS・SKH55)素材から、機械加工にて、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法を有し、また、いずれもねじれ角45度の4枚刃スクエア形状をもった高速度工具鋼エンドミル(以下、ハイスエンドミルという)基体1〜9をそれぞれ製造した。
From high-speed tool steel (JIS · SKH55) material with three dimensions of 8mm, 13mm, and 26mm in diameter, the diameter x length of the cutting edge is 6mm x 13mm, 10mm x 22mm, and High-speed tool steel end mill (hereinafter referred to as “high speed end mill”) bases 1 to 9 each having a size of 20 mm × 45 mm and having a four-blade square shape with a twist angle of 45 degrees were manufactured.
(a)ついで、上記ハイスエンドミル基体1〜9のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表1に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−V合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表1に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−V合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−V合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として、同じくそれぞれ表1に示される目標組成に対応した成分組成をもった下部層形成用Ti−Al−V合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を300〜400℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってハイスエンドミル基体表面を前記Ti−Al−V合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するハイスエンドミル基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記ハイスエンドミル基体の表面に、表1に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するハイスエンドミル基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記ハイスエンドミル基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記ハイスエンドミル基体の表面に、層厚方向に沿って表1に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表1に示される全体目標層厚で蒸着形成することにより、本発明被覆ハイス工具としての本発明表面被覆高速度工具鋼製エンドミル(以下、本発明被覆ハイスエンドミルと云う)1〜9を製造した。
(A) Next, each of the high-speed end mill substrates 1 to 9 is ultrasonically cleaned in acetone and dried, and then in the radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. For forming a thin layer A of an upper layer having a component composition corresponding to a target composition shown in Table 1 as a cathode electrode (evaporation source) on one side at a position separated by a predetermined distance Ti-Al-V alloy, Ti-Al-V alloy for forming upper layer thin layer B having the component composition corresponding to the target composition shown in Table 1, respectively, as the cathode electrode (evaporation source) on the other side Table 1 also shows cathode electrodes (evaporation sources) along the rotary table at positions 90 degrees apart from the Ti-Al-V alloys. The Ti-Al-V alloy for the lower layer formed having a component composition corresponding to the target composition is mounted,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 300 to 400 ° C. with a heater, and then rotated on the rotary table while rotating on the carbide substrate. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the lower layer forming Ti—Al—V alloy and the anode electrode to generate an arc discharge. Bombarded with Al-V alloy,
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the high-speed end mill base that rotates while rotating on the rotary table, and the lower part An arc discharge is generated by passing a current of 100 A between the Ti-Al-V alloy for layer formation and the anode electrode, so that the target composition and target layer thickness shown in Table 1 are simply applied to the surface of the high-speed end mill substrate. (Ti, Al, V) N layer having a one-phase structure is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the high-speed end mill base that rotates while rotating on the rotary table. In the applied state, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer A to generate arc discharge, and the high speed end mill A thin layer A having a predetermined thickness is formed on the surface of the substrate, and after the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). The The thin layer A is formed again by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer A, and the cathode electrode of the Ti-Al-V alloy for forming the thin layer B; The thin layer B is alternately and repeatedly formed by arc discharge between the anode electrodes, so that a thin layer A having a target composition and a single target layer thickness shown in Table 1 along the layer thickness direction is formed on the surface of the high-speed end mill substrate. An upper layer composed of alternating layers of thin layers B is vapor-deposited with an overall target layer thickness also shown in Table 1, so that the present invention surface-coated high-speed tool steel end mill (hereinafter referred to as the present invention) 1-9 were produced (referred to as coated high-speed end mills).
また、比較の目的で、上記のハイスエンドミル基体1〜9の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより、比較表面被覆高速度工具鋼製エンドミル(以下、比較被覆ハイスエンドミルと云う)1〜9をそれぞれ製造した。
For comparison purposes, the surfaces of the high-speed end mill bases 1 to 9 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1. By depositing a hard coating layer composed of a (Ti, Al, V) N layer having a single phase structure with the target composition and target layer thickness shown in Table 2 under the same conditions as in Table 1, the comparative surface coating height Speed tool steel end mills (hereinafter referred to as comparative coated high speed end mills) 1 to 9 were produced.
つぎに、本発明被覆ハイスエンドミル1〜9および比較被覆ハイスエンドミル1〜9のうち、
(a−1)本発明被覆ハイスエンドミル1〜3および比較被覆ハイスエンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH1の板材、
切削速度: 40 m/min.、
溝深さ(切り込み): 4.5 mm、
テーブル送り: 80 mm/分、
の条件でのマンガン鋼の乾式高速溝切削加工試験(通常の切削速度、切り込み、送りは、それぞれ20m/min.、3.0mm、60mm/分)を行い、
(a−2)本発明被覆ハイスエンドミル4〜6および比較被覆ハイスエンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS316の板材、
切削速度: 45 m/min.、
溝深さ(切り込み): 7 mm、
テーブル送り: 180 mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験(通常の切削速度、切り込み、送りは、それぞれ20m/min.、4mm、75mm/分)を行い、
(a−3)本発明被覆ハイスエンドミル7〜9および比較被覆ハイスエンドミル7〜9については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・S15Cの板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 16 mm、
テーブル送り: 130 mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度、切り込み、送りは、それぞれ20m/min.、10mm、65mm/分)を行い、
上記(a−1)〜(a−3)のいずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記(a−1)〜(a−3)の測定結果を表1,2にそれぞれ示した。
Next, of the present invention coated high speed end mills 1-9 and comparative coated high speed end mills 1-9,
(A-1) About this invention coated high speed end mills 1-3 and comparative coated high speed end mills 1-3,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS / SCMnH1 plate,
Cutting speed: 40 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 80 mm / min,
A dry high-speed grooving test of manganese steel under the conditions (normal cutting speed, cutting and feeding are 20 m / min, 3.0 mm, and 60 mm / min, respectively)
(A-2) About this invention coated high speed end mills 4-6 and comparative coated high speed end mills 4-6,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 45 m / min. ,
Groove depth (cut): 7 mm,
Table feed: 180 mm / min,
A stainless steel dry-type high-speed grooving test (normal cutting speed, infeed and feed are 20 m / min, 4 mm and 75 mm / min, respectively)
(A-3) About this invention coated high speed end mills 7-9 and comparative coated high speed end mills 7-9,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 16 mm,
Table feed: 130 mm / min,
Perform a dry high-speed grooving test of mild steel under the conditions (normal cutting speed, cutting and feeding are 20 m / min, 10 mm, and 65 mm / min, respectively)
In any of the above groove cutting tests (a-1) to (a-3), the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. It was measured.
The measurement results of the above (a-1) to (a-3) are shown in Tables 1 and 2, respectively.
上記の実施例1で用いた高速度工具鋼(JIS・SKH55)素材を用い、研削加工にて、寸法の異なる3種の高速度工具鋼製のドリル基体(以下、ハイスドリル基体という)を製造した。溝形成部の直径×長さは、それぞれ4mm×25mm(ハイスドリル基体1〜3)、8mm×45mm(ハイスドリル基体4〜6)および16mm×90mm(ハイスドリル基体7〜9)であり、いずれもねじれ角30度の2枚刃形状をもつ。
Using the high-speed tool steel (JIS SKH55) material used in Example 1 above, three types of high-speed tool steel drill bases (hereinafter referred to as high-speed drill bases) having different dimensions were manufactured by grinding. . The diameter x length of the groove forming portion is 4 mm × 25 mm (high-speed drill bases 1 to 3), 8 mm × 45 mm (high-speed drill bases 4 to 6) and 16 mm × 90 mm (high-
ついで、これらのハイスドリル基体1〜9の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表3に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる下部層と、同じく層厚方向に沿って表3に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3に示される全体目標層厚で蒸着形成することにより、本発明表面被覆ハイスドリル(以下、本発明被覆ハイスドリルと云う)1〜9をそれぞれ製造した。 Next, the cutting blades of these high-speed drill bases 1 to 9 are subjected to honing, ultrasonically cleaned in acetone, and in the dried state, the arc ion plating apparatus shown in FIG. 1. Under the same conditions as 1, the lower layer composed of a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 3, and also in Table 3 along the layer thickness direction. The surface-coated high-speed drill (hereinafter referred to as the present invention) is formed by vapor-depositing an upper layer composed of alternating layers of the thin layer A and the thin layer B having a target composition and a single target layer thickness with the overall target layer thickness shown in Table 3 below. (Referred to as the present invention coated high-speed drill) 1 to 9 were produced.
また、比較の目的で、上記のハイスドリル基体1〜9の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく
表4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより、比較表面被覆ハイスドリル(以下、比較被覆ハイスドリルと云う)1〜9をそれぞれ製造した。
For comparison purposes, the surfaces of the high-speed drill bases 1 to 9 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the arc ion plating apparatus shown in FIG. By vapor-depositing a hard coating layer composed of a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 4 under the same conditions as in Example 1 above, Comparative surface-coated high-speed drills (hereinafter referred to as comparative-coated high-speed drills) 1 to 9 were produced.
つぎに、上記本発明被覆ハイスドリル1〜9および比較被覆ハイスドリル1〜9のうち、
(b−1)本発明被覆ハイスドリル1〜3および比較被覆ハイスドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもったJIS・S15Cの板材、
切削速度: 45 m/min.、
送り: 0.15 mm/rev、
穴深さ: 8 mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度、送り、穴深さは、それぞれ、18m/min.、0.1mm/rev、6mm)を行い、
(b−2)本発明被覆ハイスドリル4〜6および比較被覆ハイスドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH1の板材、
切削速度: 35 m/min.、
送り: 0.45 mm/rev、
穴深さ: 16 mm、
の条件でのマンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度、送り、穴深さは、それぞれ、18m/min.、0.18mm/rev、12mm)を行い、
(b−3)本発明被覆ハイスドリル7〜9および比較被覆ハイスドリル7〜9については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS316の板材、
切削速度: 35 m/min.、
送り: 0.4 mm/rev、
穴深さ: 44 mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度、送り、穴深さは、それぞれ、18m/min.、0.32mm/rev、24mm)を行い、
いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
上記(b−1)〜(b−3)の測定結果を表3,4にそれぞれ示した。
Next, of the present invention coated high speed drills 1-9 and comparative coated high speed drills 1-9,
(B-1) About this invention coated high speed drills 1-3 and comparative coated high speed drills 1-3,
Work material-Plane: 100 mm × 250, thickness: 50 mm JIS / S15C plate,
Cutting speed: 45 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 8 mm,
Wet mild high-speed drilling cutting test under normal conditions (normal cutting speed, feed, hole depth are 18 m / min, 0.1 mm / rev, 6 mm, respectively)
(B-2) About this invention coated high speed drills 4-6 and comparative coated high speed drills 4-6,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS / SCMnH1 plate,
Cutting speed: 35 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 16 mm,
We perform wet high-speed drilling test of manganese steel under the conditions of (normal cutting speed, feed, hole depth are 18 m / min, 0.18 mm / rev, 12 mm, respectively)
(B-3) About this invention coated high speed drills 7-9 and comparative coated high speed drills 7-9,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 35 m / min. ,
Feed: 0.4 mm / rev,
Hole depth: 44 mm,
Wet stainless steel under high-speed wet drilling test (normal cutting speed, feed, hole depth are 18 m / min, 0.32 mm / rev, 24 mm, respectively)
In any wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured.
The measurement results of (b-1) to (b-3) are shown in Tables 3 and 4, respectively.
この結果得られた本発明被覆ハイス工具(本発明表面被覆高速度工具製切削工具)としての本発明被覆ハイスエンドミル1〜9および本発明被覆ハイスドリル1〜9の(Ti,Al,V)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに、比較被覆ハイスエンドミル1〜9および比較被覆ハイスドリル1〜9の(Ti,Al,V)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
From the (Ti, Al, V) N of the present coated high speed end mills 1 to 9 and the present coated high speed drills 1 to 9 as the present coated high speed tool (cutting tool made from the present surface coated high speed tool) obtained as a result. Thin layer A and thin layer B of the upper layer constituting the hard coating layer, and the composition of the lower layer, and (Ti, Al, V) N of comparative coated high-speed end mills 1-9 and comparative coated high-speed drills 1-9 When the composition of the hard coating layer consisting of was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, each showed substantially the same composition as the target composition.
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表1〜4に示される結果から、本発明被覆ハイス工具(本発明表面被覆高速度工具鋼製切削工具)である本発明被覆ハイスエンドミル1〜9および本発明被覆ハイスドリル1〜9は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,V)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さおよび耐熱性、さらに前記上部層がすぐれた潤滑性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高い発熱を伴う高速重切削加工に用いた場合にも、すぐれた潤滑性を発揮し、切削時に切粉が切刃部に溶着することがなく、すぐれた耐チッピング性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,V)N層からなる比較被覆ハイスエンドミル1〜9、比較被覆ハイスドリル1〜9は、前記難削材の高速重切削加工では、特に潤滑性不足が原因で切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 1 to 4, the present coated high speed end mills 1 to 9 and the present coated high speed drills 1 to 9 which are the present coated high speed tools (the present surface coated high speed tool steel cutting tools) A lower layer having a single-phase structure made of (Ti, Al, V) N and a laminated layer structure of thin layers A and B each having a thickness of 5 to 20 nm. In particular, since the lower layer has excellent high-temperature hardness and heat resistance, and the upper layer has excellent lubricity, and the hard coating layer has these excellent characteristics, particularly mild steel Even when used for high-speed heavy cutting with high heat generation of highly viscous difficult-to-cut materials such as stainless steel and high-manganese steel, it exhibits excellent lubricity, and the chips adhere to the cutting edge during cutting. Good without The comparative coated high-speed end mills 1 to 9 and the comparative coated high-speed drills 1 to 9 whose hard coating layer is composed of a (Ti, Al, V) N layer having a single-phase structure while exhibiting chipping properties are the above difficult-to-cut materials. In high-speed heavy cutting, it is clear that chipping occurs at the cutting edge due to lack of lubrication, and the service life is reached in a relatively short time.
上述のように、この発明の被覆ハイス工具は、特に各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に難削材の高熱発生を伴なう高速重切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して広い汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated high-speed tool according to the present invention is not only capable of cutting under normal cutting conditions such as various carbon steels, low alloy steels, and ordinary cast iron, but also generates high heat particularly in difficult-to-cut materials. Therefore, it exhibits excellent chipping resistance even in high-speed heavy cutting, exhibits excellent cutting performance over a long period of time, and has wide versatility with work materials. It is possible to respond satisfactorily to energy saving, energy saving, and cost reduction.
Claims (1)
(a)いずれもTiとAlとV(バナジウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の一層平均層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足するTiとAlとVの複合窒化物層、
上記薄層Bは、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足するTiとAlとVの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足するTiとAlとVの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆高速度工具鋼製切削工具。 On the surface of the cutting tool base made of high-speed tool steel,
(A) All are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and V (vanadium), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a single layer average thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in atomic ratio) A composite nitride layer of Al and V;
The thin layer B is
Ti satisfying the composition formula: (Ti 1- (C + D) Al C V D ) N (wherein C represents 0.25 to 0.40 and D represents 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and V,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E represents 0.50 to 0.65 and F represents 0.01 to 0.09 in atomic ratio) A composite nitride layer of Al and V;
A surface-coated high-speed tool steel cutting tool that exhibits excellent chipping resistance in high-speed heavy cutting of difficult-to-cut materials, formed by vapor-depositing a hard coating layer made of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263364A JP4720993B2 (en) | 2005-09-12 | 2005-09-12 | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263364A JP4720993B2 (en) | 2005-09-12 | 2005-09-12 | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007075911A JP2007075911A (en) | 2007-03-29 |
JP4720993B2 true JP4720993B2 (en) | 2011-07-13 |
Family
ID=37936709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005263364A Expired - Fee Related JP4720993B2 (en) | 2005-09-12 | 2005-09-12 | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4720993B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020137325A1 (en) * | 2018-12-27 | 2020-07-02 | 日本特殊陶業株式会社 | Surface-coated cutting tool |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08134629A (en) * | 1994-09-16 | 1996-05-28 | Sumitomo Electric Ind Ltd | Ultrafine particle laminated film and composite high hardness material for tools having the same |
JP3416937B2 (en) * | 1994-10-28 | 2003-06-16 | 住友電気工業株式会社 | Laminate |
JP3719731B2 (en) * | 1995-01-31 | 2005-11-24 | 日立ツール株式会社 | Coated cutting tool / Coated wear-resistant tool |
JP4528373B2 (en) * | 1997-02-20 | 2010-08-18 | 住友電工ハードメタル株式会社 | Coated tool and manufacturing method thereof |
JP4062582B2 (en) * | 2001-07-23 | 2008-03-19 | 株式会社神戸製鋼所 | Hard coating for cutting tool, method for producing the same, and target for forming hard coating |
-
2005
- 2005-09-12 JP JP2005263364A patent/JP4720993B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007075911A (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP5041222B2 (en) | Surface coated cutting tool | |
JP2009125832A (en) | Surface-coated cutting tool | |
JP2009119551A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work | |
JP5088480B2 (en) | Surface coated cutting tool | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP4697661B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy | |
JP5783462B2 (en) | Surface coated cutting tool | |
JP5234499B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP4706918B2 (en) | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials | |
JP4720993B2 (en) | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials | |
JP4702535B2 (en) | Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5234332B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP4687965B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4702538B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4582412B2 (en) | Cutting tool made of surface-coated high-speed tool steel that provides excellent wear resistance with a hard coating layer in high-speed cutting of high-hardness steel | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP5099495B2 (en) | Surface coated cutting tool | |
JP4766443B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4720996B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4706921B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP2008260098A (en) | Surface-coated cutting tool | |
JP4771197B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4697659B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110322 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |