JP4711250B2 - Nickel electrode for secondary battery and its manufacturing method - Google Patents
Nickel electrode for secondary battery and its manufacturing method Download PDFInfo
- Publication number
- JP4711250B2 JP4711250B2 JP2003272271A JP2003272271A JP4711250B2 JP 4711250 B2 JP4711250 B2 JP 4711250B2 JP 2003272271 A JP2003272271 A JP 2003272271A JP 2003272271 A JP2003272271 A JP 2003272271A JP 4711250 B2 JP4711250 B2 JP 4711250B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- substrate
- active material
- base material
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、二次電池用ニッケル極及びその製造方法に関する。 The present invention relates to a nickel electrode for a secondary battery and a method for producing the same.
近年、携帯用機器、移動用機器などの多くの用途において、各種の二次電池が用いられている。例えば、携帯電話やパソコン等の小形機器用の二次電池としては、従来からニッケル-水素電池が用いられており、リチウムイオン電池の使用も拡大している。また、電動工具、シェーバ、リモコン玩具、掃除機等に用いられる大容量の電源としては、ニッケル-カドミウム電池やニッケル-水素電池等が用いられている。 In recent years, various secondary batteries have been used in many applications such as portable devices and mobile devices. For example, nickel-hydrogen batteries have been used as secondary batteries for small devices such as mobile phones and personal computers, and the use of lithium-ion batteries is also expanding. Also, nickel-cadmium batteries, nickel-hydrogen batteries, and the like are used as large-capacity power supplies used for electric tools, shavers, remote control toys, vacuum cleaners, and the like.
一方、近年、エンジンと電池で駆動するハイブリッド車が省エネルギー性と低公害性を備えたものとして注目されており、自動車メーカーが商品化に積極的となっており、将来の広範囲な普及が期待されている。 On the other hand, in recent years, hybrid vehicles driven by engines and batteries have been attracting attention as having energy-saving properties and low pollution, and automakers have become active in commercialization, and widespread use in the future is expected. ing.
ハイブリッド車用の電源としては、高出力特性が重要であり、円筒型や角型のニッケル-水素電池が実用化され、その燃費の良さが実証されている。また、この様な二次電池については、高出力特性の他に、低価格、長寿命、低公害、信頼性などの各種性能が要求され、ニッケル-水素電池のほかにリチウムイオン電池や鉛蓄電池についても開発や実用化が進められているが、現在のところ総合的に判断してニッケル-水素電池が最も適した電池であるとして実用化が進められている。 As a power source for hybrid vehicles, high output characteristics are important. Cylindrical and prismatic nickel-hydrogen batteries have been put into practical use and their fuel efficiency has been proven. For such secondary batteries, in addition to high output characteristics, various performances such as low price, long life, low pollution, and reliability are required. In addition to nickel-hydrogen batteries, lithium ion batteries and lead storage batteries are also required. Is being developed and put into practical use, but at present it is being put into practical use as a nickel-hydrogen battery is the most suitable battery based on a comprehensive judgment.
ニッケル-水素電池は、正極としてニッケル極を用い、負極として水素を吸蔵、放出できる合金を充填した水素極を用いる電池であり、通常、負極としては、主にパンチングメタルからなる芯材に水素吸蔵合金粉末を含むペーストを塗布し、加圧して得られた電極が用いられている。 A nickel-hydrogen battery is a battery that uses a nickel electrode as a positive electrode and a hydrogen electrode filled with an alloy capable of occluding and releasing hydrogen as a negative electrode. Usually, a negative electrode is mainly composed of a core material made of punching metal. An electrode obtained by applying and pressing a paste containing an alloy powder is used.
一方、正極のニッケル極については、活物質である水酸化ニッケルをコバルト化合物で被覆して導電性を向上させる等の改良がなされているが、それでも負極の活物質である金属と比較すると導電性が劣るものである。このため、ニッケル極では、焼結体や発泡状多孔体に活物質を充填した三次元構造とすることによって、性能の向上が図られており、焼結体からなる基材や発泡状多孔体について、種々の改良がなされている(例えば、下記特許文献1、2、3等参照)。
On the other hand, the nickel electrode of the positive electrode has been improved by coating nickel hydroxide, which is an active material, with a cobalt compound to improve conductivity, but it is still more conductive than the metal, which is the active material of the negative electrode. Is inferior. For this reason, in the nickel electrode, the performance is improved by adopting a three-dimensional structure in which a sintered body or a foamed porous body is filled with an active material. Various improvements have been made (see, for example,
しかしながら、この様な三次元構造のニッケル極とすると、焼結式ニッケル極や発泡式ニッケル極に用いる基板自体が高価であり、しかも活物質の充填工程が複雑となる。このため、ニッケル極は、負極で採用されているようなパンチングメタルを基板とするペースト式電極と比べてコスト高となり、電池価格のかなりの部分を占めることになる。 However, when the nickel electrode has such a three-dimensional structure, the substrate itself used for the sintered nickel electrode and the foamed nickel electrode is expensive, and the filling process of the active material becomes complicated. For this reason, the nickel electrode is more expensive than a paste electrode having a punching metal substrate as used in the negative electrode, and occupies a considerable part of the battery price.
電池が機器の電源である以上、すべての用途で低価格化が要望されており、特に、電気自動車用電池、ハイブリッド車用電池、据置き電池など大容量の電池や、多くの電池を必要とする用途等においては、電池に対する低価格化の要求は一層厳しいものとなっている。 As long as the battery is the power source of the equipment, it is required to reduce the price for all applications. In particular, it requires a large capacity battery such as a battery for electric vehicles, a battery for hybrid vehicles, a stationary battery, and many batteries. In such applications, the demand for lower prices for batteries has become more severe.
この様な現状において、ニッケル-水素電池などニッケル極を用いる二次電池のコストアップの原因となるニッケル極については、その構造や活物質充填方法の改良のために数多くの提案がなされている。 Under such circumstances, many proposals have been made for improving the structure and the active material filling method of the nickel electrode that causes the cost increase of the secondary battery using the nickel electrode such as a nickel-hydrogen battery.
例えば、ニッケル極用基材として、負極と同様にパンチングメタル等の二次元構造の基材を用いればニッケル極の低価格化が可能と考えられる(例えば、下記特許文献4参照)。この場合、きわめて薄い電極とすれば、活物質と基板との距離が短くなって利用率や出力の低下が少なくなり、実用化が可能と思われる。しかしながらが、薄形化に限界があるために、利用率を向上させるために優れた導電剤が必要であり、また長寿命化のために優れた結着剤が必要であり、二次元構造の基材を用いたニッケル極は、いまだ十分な性能を発揮するには至っていない。
For example, if a base material having a two-dimensional structure, such as a punching metal, is used as the base material for the nickel electrode, it is possible to reduce the price of the nickel electrode (for example, see
ところで、ニッケル-カドミウム電池のカドミウム極やニッケル-水素電池の合金負極など実用化されているペースト式電極は、通常、パンチングメタル、スクリーン等の二次元構造の基材を用い、これに活物質ペーストを塗着させた状態で、一定間隔を有するスリット間を通過させてペーストの表面を平滑化し、その後、乾燥し、加圧して製造されている。 By the way, paste-type electrodes such as cadmium electrodes of nickel-cadmium batteries and alloy negative electrodes of nickel-hydrogen batteries are usually used as a base material having a two-dimensional structure such as punching metal and screen, and an active material paste. In the state which applied, it passes between the slits which have a fixed space | interval, and the surface of a paste is smooth | blunted, Then, it dries and pressurizes and is manufactured.
この場合、スリットの間隔については、ペーストを塗着させた基材を通過させる必要があるために、例えば、厚さ50μm程度のパンチングメタルを基材とする場合には、0.3mm程度にスリット間隔を設定し、この間を通過させた後、加圧して電極の厚さ調整して、所望の厚さの電極を形成している。 In this case, since it is necessary to pass the base material to which the paste is applied, the slit interval is about 0.3 mm when a punching metal having a thickness of about 50 μm is used as the base material. An interval is set, and after passing through this interval, pressure is applied to adjust the thickness of the electrode to form an electrode having a desired thickness.
このように、従来のペースト式電極の製造方法では、基材の厚さより間隔を大きくしたスリット間を通過させる方法が一般的である。このため、ペーストの水分の影響やスリットによる平滑性の精度に問題があり、大量生産の場合に電極間にバラツキが発生し、これが容量や出力の不均一性の原因となるケースが多い。 Thus, in the conventional method for manufacturing a paste-type electrode, a method of passing between slits having an interval larger than the thickness of the base material is common. For this reason, there is a problem in the effect of the moisture of the paste and the accuracy of smoothness due to the slits, and in mass production, variations occur between the electrodes, which often causes non-uniformity in capacity and output.
また、この様な方法でニッケル極を作製する場合には、水酸化ニッケル等の導電性に劣る活物質を用いると、ニッケル極の表面部分に存在する基材から離れた部分の活物質層の利用率が低くなるという欠点があり、更に、充放電で活物質の脱落が生じやすく、電極寿命が短くなるという問題点もある。
本発明は、上記した如き従来技術の課題に鑑みてなされたものであり、その主な目的は、容量、出力等のばらつきが少なく、出力特性に優れ、しかも低価格で長寿命を有する二次電池用ニッケル極であって、特に、高出力が可能なニッケル極を提供することである。 The present invention has been made in view of the problems of the prior art as described above, and its main purpose is that there are few variations in capacity, output, etc., excellent output characteristics, low cost and long life. It is a nickel electrode for batteries, and in particular, to provide a nickel electrode capable of high output.
本発明者は、上記した目的を達成すべく鋭意検討を重ねてきた。その結果、エンボス加工によって凹凸部が形成された開孔度5〜20%、厚さ20〜50μmのパンチングメタルを電極用基材として用い、この基材の凹部に大部分のニッケル極用活物質を充填し、基材の凸部、即ち基材表面については、実質的に露出した状態又は活物質の付着量が非常に少ない状態とすることによって、高出力と高い利用率を有し、しかも長寿命のニッケル極が得られることを見出した。そして、この様な構造のニッケル極の製造方法として、特に、エンボス加工したパンチングメタル基材にニッケル極用活物質ペーストを塗着させた後、基材の厚さと実質的に同じ間隔を有するスリット間を該基材を通過させ、その後加圧加工する方法を採用する場合には、比較的効率よく上記した構造のニッケル極を製造できることを見出した。本発明は、この様な知見に基づいて完成されたものである。 The inventor has intensively studied to achieve the above-described object. As a result, a punching metal having an opening degree of 5 to 20% and a thickness of 20 to 50 μm in which uneven portions were formed by embossing was used as an electrode substrate, and most of the active material for nickel electrode in the recesses of the substrate. The convex portion of the substrate, that is, the surface of the substrate has a high output and a high utilization rate by being substantially exposed or having a very small amount of active material attached, and It has been found that a long-life nickel electrode can be obtained. And as a manufacturing method of the nickel electrode having such a structure, in particular, after applying the active material paste for nickel electrode to the embossed punching metal base material, the slit having substantially the same interval as the thickness of the base material It has been found that a nickel electrode having the above-described structure can be manufactured relatively efficiently when a method of passing the substrate through the gap and then pressurizing is employed. The present invention has been completed based on such findings.
即ち、本発明は、下記の二次電池用ニッケル極及びその製造方法を提供するものである。
1. エンボス加工によって凹凸部が形成された開孔度5〜20%、厚さ20〜50μmのパンチングメタルからなる電極用基材及び電極用活物質を含む二次電池用ニッケル極であって、該基材の凹部に活物質が充填され、該基材の凸部は表面が露出した状態又は活物質が付着した状態であることを特徴とする二次電池用ニッケル極。
2. 基材の凸部に付着した活物質の量が、全活物質充填量の10重量%以下である上記項1に記載の二次電池用ニッケル極。
3. 基材に活物質を充填後、基材表面に付着した活物質を除去して得られる、基材の凸部の表面が露出した状態である上記項1又は2に記載の二次電池用ニッケル極。
4. 電極用基材が、機械的にエンボス加工してパンチングメタルに凹凸部が形成されたものである上記項1〜3のいずれかに記載の二次電池用ニッケル極。
5. パンチングメタルの開孔度が5〜15%である上記項1〜4のいずれかに記載の二次電池用ニッケル極。
6. パンチングメタルのエンボス加工によって凹凸部が形成された電極用基材の見掛けの厚さが0.2〜0.5mm、該基材の単位面積当たりの重量が200〜500g/m2である上記項1〜5のいずれかに記載の二次電池用ニッケル極。
7. 電極用活物質が、表面がコバルト化合物で被覆された球状の水酸化ニッケルである上記項1〜6のいずれかに記載の二次電池用ニッケル極。
8. エンボス加工によって凹凸部が形成された開孔度5〜20%、厚さ20〜50μmのパンチングメタルからなる電極用基材に電極用活物質を含むペーストを塗着させた後、基材を通過させる際に基材の見掛けの厚さと実質的に同じ間隔となるスリット間に基材を通過させ、その後加圧することを特徴とする二次電池用ニッケル極の製造方法。
9. 基材を通過させる際に基材の見掛けの厚さと実質的に同じ間隔となるスリット間に基材を通過させる方法が、該基材の厚さと同一間隔又は該基材の厚さより狭い間隔に設定され、スリット間隔を狭くする方向に弾性付勢されたスリット形成部材によって形成されたスリット間に該基材を通過させる方法である上記項8に記載のニッケル極の製造方法。
10. 弾性付勢されたスリット形成部材によって形成されたスリットが、弾性を有する材料によって形成されたスリット、スプリングを用いてスリット間隔を狭くする方向に押しつけることが可能な構造とした部材によって形成されたスリット又は両端が弾性体で固定された円柱状の部材によって形成されたスリットである上記項8又は9に記載のニッケル極の製造方法。
That is, the present invention provides the following nickel electrode for a secondary battery and a method for producing the same.
1. A nickel electrode for a secondary battery comprising an electrode base material and an electrode active material made of a punching metal having a porosity of 5 to 20% and a thickness of 20 to 50 μm , wherein the irregularities are formed by embossing, A nickel electrode for a secondary battery, wherein a concave portion of the material is filled with an active material, and the convex portion of the base material is in a state where a surface is exposed or an active material is attached.
2.
3.
4).
5. Item 5. The nickel electrode for a secondary battery according to any one of Items 1 to 4, wherein the punching metal has a porosity of 5 to 15%.
6). The apparent thickness of the punching metal of d Nbosu processed by uneven portion formed electrode substrate 0.2 to 0.5 mm, the weight per unit area of substrate ranges from 200-500 g / m 2 The nickel electrode for secondary batteries in any one of claim | item 1 -5.
7). Item 7. The nickel electrode for secondary battery according to any one of Items 1 to 6, wherein the electrode active material is spherical nickel hydroxide whose surface is coated with a cobalt compound.
8). A paste containing an electrode active material is applied to an electrode substrate made of a punching metal having a porosity of 5 to 20% and a thickness of 20 to 50 μm where uneven portions are formed by embossing, and then passes through the substrate. A method for producing a nickel electrode for a secondary battery, wherein the substrate is passed between slits having substantially the same spacing as the apparent thickness of the substrate and then pressurized.
9. When passing the substrate, the method of passing the substrate between the slits that are substantially the same as the apparent thickness of the substrate is the same interval as the thickness of the substrate or an interval narrower than the thickness of the substrate. Item 9. The method for producing a nickel electrode according to Item 8, wherein the substrate is passed between slits formed by a slit forming member that is set and elastically biased in the direction of narrowing the slit interval.
10. A slit formed by an elastically biased slit forming member, a slit formed by an elastic material, a slit formed by a member that can be pressed in the direction of narrowing the slit interval using a spring Item 10. The method for producing a nickel electrode according to Item 8 or 9, wherein the nickel electrode is a slit formed by a cylindrical member having both ends fixed by an elastic body.
本発明では、ニッケル極の電極用基材として、エンボス加工によって凹凸部が形成された開孔度5〜20%、厚さ20〜50μmのパンチングメタルを用いる。 In the present invention, a punching metal having an opening degree of 5 to 20% and a thickness of 20 to 50 μm in which uneven portions are formed by embossing is used as the electrode substrate for the nickel electrode.
この様な電極用基材の製造方法については、特に限定的ではないが、例えば、薄板状の金属材料を用い、パンチングメタル加工可能な成型用型とエンボス構造に成型するための型を用い、機械的に加工して製造することが好ましい。機械的加工によってパンチングメタル化とエンボス加工を行う場合には、精度良く加工することができ、基材の厚さや凹部を容易に均一に製造できるので、ニッケル極用活物質充填時の部分的なバラツキが大幅に減少して高性能の電極とすることができる。 The method for producing such an electrode substrate is not particularly limited, for example, using a thin metal material, using a mold for punching metal processing and a mold for forming an embossed structure, It is preferable to manufacture by mechanical processing. When performing punching metalization and embossing by mechanical processing, it can be processed with high precision, and the thickness and recess of the base material can be easily and uniformly manufactured. The variation is greatly reduced, and a high-performance electrode can be obtained.
電極用基材の材質については、特に限定はなく、例えば、ニッケル板やニッケルめっきを施した鉄板等の金属板を用いることができる。
電極用基材を形成するためのパンチングメタルの厚さについては、機械的加工を容易に行うことができる厚さであれば良く、20〜50μmとすればよい。
The material of the electrode substrate is not particularly limited, and for example, a metal plate such as a nickel plate or a nickel-plated iron plate can be used.
For punching the thickness of the metal for forming the electrode base material may be any thickness that can perform machine械的machining easily may be set to 2 0~50μm.
本発明では、パンチングメタルとして開孔度5〜20%程度、好ましくは5〜15%程度のものを用いる。従来用いられている汎用のパンチングメタルの開孔度は40〜60%程度であり、開孔度を大きくして、基材両面の活物質層をこの孔の部分で結合することで活物質の基材への付着力を高めている。本発明では、エンボス加工によってパンチングメタルに凹凸部を形成し、活物質の大部分を凹部に充填することにより、活物質と基材との接触面積が増加し、これにより活物質の基材への付着力を向上させることができる。その結果、5〜20%という開孔度の少ないパンチングメタルを用いる場合であっても、充分な結合力を得ることができ、基材と活物質との接触面積が大きくなって、利用率及び電位を向上させることができる。 In the present invention, the opening degree of from 5 to 20% extent as punching metal, preferably used of about 5-15%. Conventionally used general-purpose punching metal has an opening degree of about 40 to 60%. The opening degree is increased, and the active material layers on both sides of the base material are bonded at the hole portions. Increases adhesion to the substrate. In the present invention, by forming embossed portions on the punching metal by embossing and filling most of the active material into the recesses, the contact area between the active material and the base material is increased, whereby the active material becomes a base material. The adhesion force of can be improved. As a result, even when using a punching metal with a low porosity of 5 to 20% , a sufficient bonding force can be obtained, the contact area between the base material and the active material is increased, the utilization rate and The potential can be improved.
パンチングメタルの孔径については特に限定はないが、通常、0.1〜1mm程度とすれば良く、0.3〜0.8mm程度とすることが好ましい。 Although there is no limitation in particular about the hole diameter of a punching metal, Usually, it may be about 0.1-1 mm, and it is preferable to set it as about 0.3-0.8 mm.
エンボス加工によって形成する凹凸部の大きさにについては、特に限定は無く、活物質を充填できる程度の凹凸部が交互に形成されていればよい。例えば、凹部と凹部の間隔、即ち、凹部の幅を0.5〜1.5mm程度とすればよい。 There is no particular limitation on the size of the concavo-convex portions formed by embossing, and it is only necessary that the concavo-convex portions that can be filled with the active material are alternately formed. For example, the distance between the recesses, that is, the width of the recesses may be about 0.5 to 1.5 mm.
パンチングメタル基材にエンボス加工を施した後の基材の見掛け厚さについては、特に限定はないが、例えば、0.2〜0.5mm程度とすればよい。また、基材の単位面積あたりの重量については、通常、200〜500g/m2程度とすればよい。 Although there is no limitation in particular about the apparent thickness of the base material after embossing to a punching metal base material, it should just be about 0.2-0.5 mm, for example. In addition, the weight per unit area of the substrate is usually about 200 to 500 g / m 2 .
基材は、全体として面状であればよく、電極の使用形態に応じて平面状や曲面状とすることができる。 The base material should just be planar as a whole, and can be made into planar shape or curved surface shape according to the usage form of an electrode.
本発明のニッケル極は、上記した構造の基材の凹部にニッケル用活物質が充填され、該基材の凸部は表面が露出した状態又は活物質が付着した状態としたものである。 In the nickel electrode of the present invention, the concave portion of the base material having the structure described above is filled with an active material for nickel, and the convex portion of the base material is in a state where the surface is exposed or an active material is attached.
この様な構造のニッケル極を製造するには、まず、ニッケル用活物質を含むペーストを電極用基材の凹部を含む全体に十分に塗着させる。 In order to manufacture a nickel electrode having such a structure, first, a paste containing an active material for nickel is sufficiently applied to the whole of the electrode substrate including the recesses.
活物質を含むペースト自体は、従来からペーストを塗着させて形成される電極、いわゆるペースト式電極において使用されているペーストと同様のものを使用できる。 As the paste itself containing the active material, the same paste as that conventionally used for electrodes formed by applying paste, so-called paste type electrodes, can be used.
例えば、活物質としては、水酸化ニッケルを用いることができる。特に、表面にオキシ水酸化コバルトなどのコバルト化合物を被覆した球状の水酸化ニッケルが、利用率や放電率に優れている点で好適である。 For example, nickel hydroxide can be used as the active material. In particular, spherical nickel hydroxide having a surface coated with a cobalt compound such as cobalt oxyhydroxide is preferable because of its excellent utilization rate and discharge rate.
ニッケル極のバインダーとしても、公知のバインダーを用いることができる。例えば、ポリオレフィンが、性能と寿命のいずれにも優れている点で好ましい。ポリオレフィンは単独で用いる他に、フッ素樹脂と併用してもよい。 A known binder can also be used as a binder for the nickel electrode. For example, polyolefin is preferable because it is excellent in both performance and life. The polyolefin may be used alone or in combination with a fluororesin.
活物質を含むペーストを電極用基材に塗着させる方法については特に限定はなく、通常のペースト塗着法と同様とすれば良い。最も簡単な方法としては、ペースト中に基材を通過させる方法が挙げられる。その他、ペーストを両面から噴射させる方法等の方法を適宜適用して、凹部を含む基材の全体にペーストを塗着させればよい。 The method for applying the paste containing the active material to the electrode substrate is not particularly limited, and may be the same as the normal paste application method. The simplest method includes a method of passing a substrate through the paste. In addition, a method such as a method of spraying the paste from both sides may be applied as appropriate to apply the paste to the entire substrate including the recesses.
本発明では、この様にして凹凸構造を有する基材に活物質を含むペーストを塗着させた後、該基材の凹部に活物質が充填され、該基材の凸部は基材表面が露出した状態又は活物質が付着した状態とする。 In the present invention, after applying the paste containing the active material to the base material having the concavo-convex structure in this way, the concave portion of the base material is filled with the active material, and the convex portion of the base material has the surface of the base material. The exposed state or the active material is attached.
この様な充填状態とすることによって、活物質の大部分が基材の凹部に均一に充填され、該基材の凸部、即ち、基材表面については活物質の付着量が少ない状態となり、部分的なバラツキが大幅に削減でき、安定した性能の電極となり、更に、活物質の利用率の低下や脱落を抑制できる。 By having such a filling state, most of the active material is uniformly filled into the concave portion of the base material, and the convex portion of the base material, that is, the surface of the base material has a small amount of active material attached, Partial variation can be greatly reduced, and the electrode can have stable performance, and further, it is possible to suppress a decrease in the utilization rate and dropout of the active material.
基材の凸部における活物質の付着量については、活物質の全充填量の10重量%程度以下とすることが好ましく、5重量%程度以下とすることがより好ましい。この様に、活物質の大部分が基材の凹部に充填され、凸部における活物質の付着量が非常に少ない状態とすることによって、得られるニッケル極は、特に高出力と高い利用率を有し、しかも長寿命となる。 About the adhesion amount of the active material in the convex part of a base material, it is preferable to set it as about 10 weight% or less of the total filling amount of an active material, and it is more preferable to set it as about 5 weight% or less. In this way, most of the active material is filled in the concave portions of the base material, and the amount of the active material attached to the convex portions is very small, so that the obtained nickel electrode has particularly high output and high utilization rate. It has a long life.
特に、基材の凸部において付着した活物質をほぼ完全に除去し、基材表面が露出した状態にする場合には、活物質に対する基材の比率が増加するので容量は低下するが、高出力のニッケル極とすることができる。 In particular, when the active material adhering to the convex portion of the base material is almost completely removed and the surface of the base material is exposed, the ratio of the base material to the active material increases, so the capacity decreases. The output nickel electrode can be used.
上記した活物質の充填状態とする方法については、特に限定的ではなく、例えば、基材に活物質ペーストを塗着させた後、乾燥し、基材の凸部に付着している活物質ペーストを鋭利な刃などで除去する方法などを採用できる。 The method of filling the active material described above is not particularly limited. For example, after the active material paste is applied to the base material, the active material paste is dried and adhered to the convex portions of the base material. It is possible to adopt a method of removing the surface with a sharp blade.
また、活物質を含むペーストを基材に塗着させた後、基材を通過させる際に該基材の見掛けの厚さと実質的に同じ間隔となるスリット間に該基材を通過させる方法によれば、非常に効率良く上記した充填状態とすることができる。 Also, after the paste containing the active material is applied to the base material, when the base material is passed, the base material is passed through a slit that is substantially the same as the apparent thickness of the base material. According to this, the above-described filling state can be achieved very efficiently.
このための方法としては、スリット間隔を狭くする方向に弾性付勢されたスリット形成部材を用い、スリットの間隔を基材の厚さと同一、或いは、基材の厚さより若干狭い間隔に設定し、このスリット間に基材を通過させればよい。弾性付勢されたスリット形成部材としては、ゴムなどの弾性を有する材料、スプリング等を用いてスリット間隔を狭くする方向に押しつけることが可能な構造とした部材、両端が弾性体で固定された円柱状の部材等を用いることができる。この様なスリット形成部材において、弾性の強さを適宜設定することによって、スリット間を基材が通過する際に、スリットの間隔を基材の厚さと実質的に同じ厚さとすることができる。例えば、ゴム製のスリット形成部材を用いる場合には、該部材が基材の進行方向に変形し、スリット形成部材が基材にほぼ密着した状態となり、スリット間隔を基材の厚さと実質的に同じ厚さとすることができる。また、両端が弾性体で固定された円柱状部材をスリット形成部材とするスリットでは、スリット間に基材が通過する際に、該円柱状部材の間隔が基材とほぼ同じ厚さに広がってとなり、円柱状部材が基材に密着した状態となる。 As a method for this, using a slit forming member elastically biased in the direction of narrowing the slit interval, the slit interval is set to be the same as the thickness of the base material, or slightly narrower than the thickness of the base material, What is necessary is just to let a base material pass between these slits. The elastically formed slit forming member includes a material having elasticity such as rubber, a member that can be pressed in the direction of narrowing the slit interval using a spring, etc., and a circle having both ends fixed by an elastic body. A columnar member or the like can be used. In such a slit forming member, by appropriately setting the strength of elasticity, when the base material passes between the slits, the interval between the slits can be made substantially the same as the thickness of the base material. For example, when a rubber slit forming member is used, the member is deformed in the direction of travel of the base material so that the slit forming member is in close contact with the base material, and the slit interval is substantially equal to the thickness of the base material. The same thickness can be used. In addition, in a slit in which a cylindrical member whose both ends are fixed by an elastic body is a slit forming member, when the base material passes between the slits, the interval between the cylindrical members spreads to substantially the same thickness as the base material. Thus, the columnar member is in close contact with the substrate.
特に、スリット形成部材として、円柱状部材を用いる場合には、鋭利な断面を持つスリット形成部材を用いる場合と比較して、スリット間の基材の通過を円滑とすることができる。 In particular, when a cylindrical member is used as the slit forming member, passage of the base material between the slits can be made smoother than when a slit forming member having a sharp cross section is used.
上記した方法によって、基材の凹部に活物質を充填した後、常法に従って二次電池用ニッケル極とすることができる。例えば、活物質を充填した基材を乾燥し、所定の厚さとなるように平板加圧やローラープレス等により加圧加工する操作を行えばよい。加圧後のニッケル極の厚さについては、特に限定的ではないが、高出力特性と活物質利用率を勘案すると、0.4mm程度以下であることが好ましく、0.2〜0.35mm程度であることがより好ましい。 By filling the concave portion of the base material with the active material by the above-described method, a nickel electrode for a secondary battery can be obtained according to a conventional method. For example, the base material filled with the active material may be dried and subjected to pressure processing by a flat plate pressure, a roller press or the like so as to have a predetermined thickness. The thickness of the nickel electrode after pressurization is not particularly limited, but is preferably about 0.4 mm or less in consideration of high output characteristics and active material utilization, and about 0.2 to 0.35 mm. It is more preferable that
以上の方法によれば、基材の凹部には活物質が均一に充填されて部分的なバラツキが大幅に削減でき、安定した性能の電極となる。また、活物質の大部分が基材の凹部に充填され、基材の凸部については、表面の活物質の付着量が少なく、基材表面が露出した状態又は少量の活物質が付着した状態となる。この様な構造とすることによって、活物質の利用率の低下や脱落を抑制できる。 According to the above method, the concave portion of the base material is uniformly filled with the active material, so that the partial variation can be greatly reduced, and the electrode has stable performance. In addition, most of the active material is filled in the recesses of the base material, and the convex part of the base material has a small amount of active material on the surface and the surface of the base material is exposed or a small amount of active material is attached. It becomes. By adopting such a structure, it is possible to suppress a decrease in the utilization rate and dropout of the active material.
この様にして得られるニッケル極は、二次電池用の電極として有用であり、特に、ニッケル−水素二次電池用電極として有効に使用できる。 The nickel electrode thus obtained is useful as an electrode for a secondary battery, and can be effectively used as an electrode for a nickel-hydrogen secondary battery.
本発明によって得られるニッケル極は、基材の凹部に活物質が十分に充填され、凸部の基材については活物質の付着が少ない状態である。このため、容量のばらつきが少なく、出力特性に優れたものとなり、また、活物質の脱落が少ないことにより、長寿命のニッケル極となる。更に、開孔度5〜20%という開口部が少ないパンチングメタルを基材とするため、活物質が基材と接する割合が高くなり、高出力且つ高い利用率のニッケル極とすることができる。 In the nickel electrode obtained by the present invention, the concave portion of the base material is sufficiently filled with the active material, and the active material is less adhered to the convex portion of the base material. For this reason, there is little dispersion | variation in a capacity | capacitance, it becomes what was excellent in the output characteristic, and it becomes a long-life nickel electrode by little dropping of an active material. Further, since the punching metal having a small opening of 5 to 20% is used as the base material, the ratio of the active material in contact with the base material is increased, and a nickel electrode having a high output and a high utilization factor can be obtained.
また、本発明で用いる基材は、機械加工して得ることができるので焼結式ニッケル極や発泡式ニッケル極に用いる基材と比べて非常に安価に作製できる。また、簡単な塗着法により活物質の充填が可能である。よって、この様な基材を用いることにより、低価格でしかも高性能を有する工業的価値が極めて大きいニッケル極を得ることができる。 Moreover, since the base material used by this invention can be obtained by machining, it can be produced very cheaply compared with the base material used for a sintered nickel electrode or a foamed nickel electrode. Moreover, the active material can be filled by a simple coating method. Therefore, by using such a base material, it is possible to obtain a nickel electrode having a very high industrial value with low cost and high performance.
以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
平均厚さ2.5μmのニッケルめっき皮膜を形成した鉄製薄板(厚さ30μm)を用い、孔径0.5mm、開孔度10%のパンチングメタルを作製した。 Using a steel thin plate (thickness 30 μm) on which a nickel plating film having an average thickness of 2.5 μm was formed, a punching metal having a hole diameter of 0.5 mm and a degree of opening of 10% was prepared.
このパンチングメタルにエンボス加工を施して凹凸部を形成して、電極用基材を得た。該基材では、凹部と凹部の間隔は0.8mmであり、基材の見掛けの厚さは0.42mm、単位あたりの重量は280g/m2であった。 This punching metal was embossed to form an uneven portion to obtain an electrode substrate. In the substrate, the distance between the recesses was 0.8 mm, the apparent thickness of the substrate was 0.42 mm, and the weight per unit was 280 g / m 2 .
該基材の平面図及び断面図を図1に示す。図1において1がパンチングメタル部分で2が孔部分、3がエンボスパンチングメタルの凹部、4が凸部であり、この3と4により凹凸構造を有する。 A plan view and a sectional view of the substrate are shown in FIG. In FIG. 1, 1 is a punching metal portion, 2 is a hole portion, 3 is a concave portion of embossed punching metal, and 4 is a convex portion.
4重量%相当のオキシ水酸化コバルトで表面を被覆した水酸化ニッケル粉末を活物質として用い、この水酸化ニッケル92重量部と水酸化コバルト4重量部に、更に、ペースト状にするために1%のカルボキシメチルセルロース水溶液を加え、結着剤として2%のフッ素樹脂懸濁液と2%のポリエチレンエマルジョンを加えて、活物質を含むペーストを得た。 Nickel hydroxide powder whose surface was coated with 4% by weight of cobalt oxyhydroxide was used as an active material, and 92% by weight of nickel hydroxide and 4 parts by weight of cobalt hydroxide were further added to make 1% paste. A 2% fluororesin suspension and 2% polyethylene emulsion were added as binders to obtain a paste containing an active material.
この様にして得られたペースト中にエンボス加工して得られた上記基材を通過させて、活物質を含むペーストを基材に十分に塗着させた。 The paste obtained in this manner was passed through the substrate obtained by embossing, and the paste containing the active material was sufficiently applied to the substrate.
一方、両端が軟ゴム製部材によって固定された直径20mmのステンレス製円柱を2個用い、各円柱を外周面が向き合う形に設置して、円柱間の間隔が実質的にゼロの状態としてスリットを形成し、上記方法で活物質ペーストを塗着させた基材を、2個の円柱で形成されたスリット間を開くようにして通過させて、基材の表面を平滑化させた。この状態における基材の断面図の外観を図2示す。図2のように、凹部に活物質が充填され、凸部には活物質の塗着が少ないニッケル極が得られた。 On the other hand, two stainless steel cylinders with a diameter of 20 mm, which are fixed by soft rubber members at both ends, are installed in such a way that the outer peripheral surfaces face each other, and the slits are set so that the interval between the cylinders is substantially zero. The base material formed and coated with the active material paste by the above-described method was passed through the slits formed by the two cylinders so as to smooth the surface of the base material. The appearance of the cross-sectional view of the substrate in this state is shown in FIG. As shown in FIG. 2, an active material was filled in the concave portion, and a nickel electrode with less active material coating was obtained in the convex portion.
次いで、乾燥後、ローラープレスで加圧して厚さを平均0.27mmとし、乾燥してペースト式ニッケル極を得た。このようにして得られたニッケル極をニッケル極aとする。 Subsequently, after drying, it was pressed with a roller press to obtain an average thickness of 0.27 mm, and dried to obtain a paste-type nickel electrode. The nickel electrode thus obtained is defined as a nickel electrode a.
尚、上記した方法と同様にして基材に活物質を充填した後、凸部に付着した活物質層を除去し、その重量を求めたところ、全活物質充填量の3.5重量%であった。 In addition, after filling the base material with the active material in the same manner as described above, the active material layer adhering to the convex portion was removed, and the weight was determined to be 3.5% by weight of the total active material filling amount. there were.
比較のために、厚さ0.04mm、開孔度50%の二次元構造のニッケルめっき鉄板からなるパンチングメタルに、上記したものと同様の活物質ペーストを塗着させ、鋼製部材で形成された間隔0.38mmのスリット間を通過させて、ペーストを平滑化した。次いで、乾燥後、ローラープレスで加圧して厚さを平均0.27mmとしてニッケル極を得た。このようにして得られたニッケル極をニッケル極bとする。 For comparison, an active material paste similar to that described above was applied to a punching metal made of a nickel-plated iron plate having a thickness of 0.04 mm and a porosity of 50%, and formed of a steel member. The paste was smoothed by passing between slits with a spacing of 0.38 mm. Subsequently, after drying, it was pressed with a roller press to obtain a nickel electrode having an average thickness of 0.27 mm. The nickel electrode thus obtained is referred to as a nickel electrode b.
また、厚さを調整した後活物質を充填して得られた厚さ0.27mmの汎用の発泡状ニッケル極をニッケル極cとした。 Further, a general-purpose foamed nickel electrode having a thickness of 0.27 mm obtained by filling the active material after adjusting the thickness was used as a nickel electrode c.
上記ニッケル極a〜cを正極として用い、以下の構造の電池を作製した。 Using the nickel electrodes a to c as positive electrodes, a battery having the following structure was produced.
まず、MmNi系合金にAl、Mn及びCoを加えた公知の5元系水素吸蔵合金であるMmNiCoAlMn合金に1%のカルボキシメチルセルロース水溶液を加えてペースト状とし、これを厚さ50μm、開孔度50%のパンチングメタルに塗着させた。これを間隔0.22mmに設定した鋼製部材からなるスリット間を通過させ、乾燥後、ローラープレスで加圧して厚さを0.18mmとして負極を得た。この負極の実際の容量は、正極容量に対して170%とした。 First, a 1% carboxymethylcellulose aqueous solution is added to an MmNiCoAlMn alloy, which is a known ternary hydrogen storage alloy obtained by adding Al, Mn, and Co to an MmNi alloy, to form a paste, which has a thickness of 50 μm and an opening degree of 50 % Perforated metal. This was passed between slits made of steel members set at an interval of 0.22 mm, dried, and then pressed with a roller press to obtain a negative electrode having a thickness of 0.18 mm. The actual capacity of this negative electrode was set to 17.0% with respect to the positive electrode capacity.
セパレータとしては、厚さ0.13mmの親水処理を施したポリプロピレン製不織布を用い、電極群を捲回し、公知のSubCの電槽に挿入した。また、電解液としては、30%の水酸化カリウム水溶液に25g/リットルの水酸化リチウムを溶解した水溶液を添加した。封口後、公知のタブレス方式で電池を作製した。 As a separator, a polypropylene non-woven fabric having a thickness of 0.13 mm was used, and the electrode group was wound and inserted into a known SubC battery case. Further, as an electrolytic solution, an aqueous solution in which 25 g / liter of lithium hydroxide was dissolved in a 30% aqueous potassium hydroxide solution was added. After sealing, a battery was produced by a known tabless method.
上記方法でニッケル極aを用いて得られた電池を電池A、ニッケル極bを用いて得られた電池を電池B、ニッケル極cを用いて得られた電池を電池Cとする。いずれの電池も、完全充電での0.1C放電における容量は2.82Ahであった。 The battery obtained using the nickel electrode a by the above method is referred to as battery A, the battery obtained using the nickel electrode b as battery B, and the battery obtained using the nickel electrode c as battery C. All the batteries had a capacity of 2.82 Ah at 0.1 C discharge in a full charge.
この様にして得られた電池A、B、Cについて、0.1Cで容量の150%充電、0.1Cで終止電圧0.9Vまでの放電を2回繰り返して化成とし、放電容量を調べた。充電は放電容量の120%、周囲温度は30℃とし、測定は40サイクル付近で行った。周囲温度30℃で行った放電電流と放電容量値を下記表1に示す。なお、放電電流5Aまでは0.9V、それ以上の放電電流では0.7Vを終止電圧とした。 The batteries A, B, and C thus obtained were formed by repeating twice charging to 150% of the capacity at 0.1 C and discharging to 0.1 V at the final voltage of 0.1 C, and examining the discharge capacity. The charge was 120% of the discharge capacity, the ambient temperature was 30 ° C., and the measurement was performed in the vicinity of 40 cycles. Table 1 below shows the discharge current and discharge capacity values performed at an ambient temperature of 30 ° C. The final voltage was 0.9V for discharge currents up to 5A, and 0.7V for discharge currents higher than that.
表1から明らかなように、ニッケル極aを用いた電池Aは、発泡ニッケル極cを用いた電池Cと同様の放電特性であり、優れた利用率を示すものであった。なお、電池Bについては、放電電流の増加とともに容量が大きく低下し、30A放電での放電容量は0.5C放電の半分以下となり、放電は不可能に近いといえる。 As is clear from Table 1, the battery A using the nickel electrode a had the same discharge characteristics as the battery C using the foamed nickel electrode c, and exhibited an excellent utilization rate. Regarding battery B, the capacity greatly decreases with the increase of the discharge current, the discharge capacity at 30 A discharge becomes less than half of 0.5 C discharge, and it can be said that the discharge is almost impossible.
つぎに、電池A、B、Cについて、放電電流と放電平均電圧(中間値)の関係を求めた。結果を下記表2に示す。この場合も、充電は放電容量の120%、周囲温度は30℃とし、測定は80サイクル付近で行った。 Next, for batteries A, B, and C, the relationship between the discharge current and the discharge average voltage (intermediate value) was determined. The results are shown in Table 2 below. In this case as well, charging was performed at 120% of the discharge capacity, the ambient temperature was 30 ° C., and the measurement was performed in the vicinity of 80 cycles.
表2に示すように、電池Aは、電池Bと比較して高出力であった。これは、電池Aで用いたニッケル極aでは、基材の凸部の表面には活物質が少なく、凹部に大部分の活物質が充填されていることによるものと思われる。 As shown in Table 2, the battery A had a higher output than the battery B. This is presumably due to the fact that in the nickel electrode a used in the battery A, the surface of the convex part of the base material has little active material and the concave part is filled with most of the active material.
このように出力特性を重視した厚さの薄い電極では、本発明方法によって得られるニッケル極aは、従来の発泡状ニッケル極cと同程度の特性を示すものとなる。また、従来のパンチングメタル基材を用いたニッケル極bよりも大電流での利用率や電圧低下が少なく、高放電特性に優れていることが判る。 Thus, in a thin electrode with an emphasis on output characteristics, the nickel electrode a obtained by the method of the present invention exhibits the same characteristics as the conventional foamed nickel electrode c. In addition, it can be seen that the utilization rate and voltage drop at a large current are less than that of the nickel electrode b using a conventional punching metal base material, and the high discharge characteristics are excellent.
つぎに、電池A及びBについて寿命を確認した。条件としては、周囲温度25℃において、0.5Cで放電容量の110%充電、1Cで端子電圧0.9Vの条件で充放電を繰り返した。25サイクルでの容量を100とした場合のサイクル数と容量維持率の関係を下記表3に示す。 Next, the lifetimes of the batteries A and B were confirmed. As conditions, charging and discharging were repeated at an ambient temperature of 25 ° C. under conditions of 110% charge of discharge capacity at 0.5 C and a terminal voltage of 0.9 V at 1 C. Table 3 below shows the relationship between the number of cycles and the capacity retention ratio when the capacity at 25 cycles is 100.
以上の結果から明らかなように、ニッケル極aを用いた電池Aは、電池Bよりもはるかに長寿命化であり、高価な発泡状ニッケル極cを用いた電池Cと同程度であった。 As is clear from the above results, the battery A using the nickel electrode a has a much longer life than the battery B, and is about the same as the battery C using the expensive foamed nickel electrode c.
これは、二次元構造のパンチングメタルを基材とするニッケル極bは、基材と活物質層との距離が大きく脱落しやすいのに対して、エンボス加工して得られる凹凸構造を有する基材を用いたニッケル極aは、凸部表面には活物質量が少なく、凹部に大部分の活物質が充填されていることにより、基材骨格と活物質との接触度が高く、活物質の脱落が抑制されていることによるものと考えられる。 This is because the nickel electrode b having a two-dimensional structure of punching metal as a base material has a concavo-convex structure obtained by embossing, whereas the distance between the base material and the active material layer is large and easily falls off. The nickel electrode a using a small amount of active material on the surface of the convex part and a large part of the active material filled in the concave part has a high degree of contact between the base material skeleton and the active material, This is thought to be due to the suppression of dropout.
平均厚さ2.5μmのニッケルめっきを施した鉄製薄板(厚さ30μm)を用い、孔径0.5mmで、開孔度0、5、15、25及び30%の5種類のパンチングメタルを作製した。 Using an iron thin plate (thickness 30 μm) plated with nickel with an average thickness of 2.5 μm, five types of punching metals with a hole diameter of 0.5 mm and a degree of opening of 0, 5, 15, 25 and 30% were produced.
これらのパンチングメタルを用いて、実施例1におけるニッケル極aと同様にしてニッケル極を作製した。これらのニッケル極を、それぞれニッケル極d(開孔度0%)、ニッケル極e(開孔度5%)、ニッケル極f(開孔度15%)、ニッケル極g(開孔度25%)、ニッケル極h(開孔度30%)とする。 Using these punching metals, a nickel electrode was produced in the same manner as the nickel electrode a in Example 1. These nickel electrodes are respectively a nickel electrode d (opening degree 0%), a nickel electrode e (opening degree 5%), a nickel electrode f (opening degree 15%), and a nickel electrode g (opening degree 25%). Nickel electrode h (opening degree 30%).
次いで、これらのニッケル極を用いて実施例1の電池Aと同様の構成の電池を作製した。それぞれ電池D、E、F、G、Hとする。 Next, a battery having the same configuration as the battery A of Example 1 was produced using these nickel electrodes. Assume that batteries D, E, F, G, and H respectively.
これらの各電池と実施例1で得られた電池Aについて、30A放電時の放電容量と放電平均電圧(中間値)、および1000サイクル後の放電容量を下記表4に示す。 For each of these batteries and the battery A obtained in Example 1, the discharge capacity and discharge average voltage (intermediate value) at 30 A discharge and the discharge capacity after 1000 cycles are shown in Table 4 below.
表4より明らかなように、開孔度10%以下の基材を用いた電池A、D、Eは放電平均電圧が1Vより高く、電池F,G,Hと比較して高出力であった。また、放電容量については、基材の開孔度が25%以上になると急激に低下した。 As is clear from Table 4, the batteries A, D, and E using the base material with a porosity of 10% or less had a discharge average voltage higher than 1 V, and higher output than the batteries F, G, and H. . Further, the discharge capacity rapidly decreased when the degree of opening of the base material was 25% or more.
これらの結果から、基材の開孔度が低くなるほど活物質が有効に利用されていることが判る。 From these results, it can be seen that the active material is more effectively used as the porosity of the base material becomes lower.
また、サイクル特性については、放電容量と平均放電電圧の傾向とほぼ同じであるが、基材の開孔度が0%の電池Dでは特性が低くなっている。これは開口部がないと活物質保持特性が大きく低下することによるものと考えられる。 Further, the cycle characteristics are almost the same as the trends of the discharge capacity and the average discharge voltage, but the characteristics are low in the battery D in which the opening degree of the base material is 0%. This is considered to be due to the fact that the active material retention characteristics are greatly reduced if there is no opening.
以上の結果より、基材の開孔度は、5〜15%程度の範囲が好ましいと考えられる。 From the above results, it is considered that the range of the porosity of the base material is preferably about 5 to 15%.
平均厚さ2.5μmのニッケルめっきを施した、厚さ20μm、25μm、40μm、50μm及び60μmの5種類のニッケルめっき鉄板を用い、孔径0.5mm、開孔度10%の5種類のパンチングメタルを作製した。 Five types of punched metal with a hole diameter of 0.5 mm and an opening degree of 10% were used using five types of nickel-plated iron plates with a thickness of 20 μm, 25 μm, 40 μm, 50 μm and 60 μm, which were plated with an average thickness of 2.5 μm. Produced.
これらのパンチングメタルを用いて、実施例1におけるニッケル極aと同様にして、ニッケル極を作製した。これらのニッケル極を、それぞれニッケル極i(厚さ20μm)、ニッケル極j(厚さ25μm)、ニッケル極k(厚さ40μm)、ニッケル極l(厚さ50μm)、ニッケル極m(厚さ60μm)とする。 Using these punching metals, a nickel electrode was produced in the same manner as the nickel electrode a in Example 1. These nickel electrodes are respectively a nickel electrode i (thickness 20 μm), a nickel electrode j (thickness 25 μm), a nickel electrode k (thickness 40 μm), a nickel electrode l (thickness 50 μm), and a nickel electrode m (thickness 60 μm). ).
これらの各ニッケル極を用いて実施例1の電池Aと同様の構成の電池を作製した。それぞれ電池I、J、K、L、Mとする。 A battery having the same configuration as that of the battery A of Example 1 was produced using each of these nickel electrodes. Assume that batteries I, J, K, L, and M, respectively.
これらの各電池と実施例1で得られた電池Aについて、30A放電時の放電容量と放電平均電圧(中間値)、および1000サイクル後の放電容量を表5に示す。 Table 5 shows the discharge capacity and discharge average voltage (intermediate value) at the time of 30 A discharge and the discharge capacity after 1000 cycles for each of these batteries and the battery A obtained in Example 1.
表5より、放電容量と放電平均電圧については、基材厚さが厚くなるに従って大きくなり高出力化していくが、基材厚さが50μmを越えると低下することが判る。これは、基材厚さが厚くなると基材の電気抵抗が低下して高出力放電時の電圧低下が軽減されるが、厚くなり過ぎると基材体積が大きくなるために電極の空隙率が小さくなり、高率放電特性が低下することによるものと思われる。 From Table 5, it can be seen that the discharge capacity and the discharge average voltage increase as the substrate thickness increases and increase in output, but decrease when the substrate thickness exceeds 50 μm. This is because when the substrate thickness is increased, the electrical resistance of the substrate is reduced and the voltage drop during high output discharge is reduced. However, if the substrate is too thick, the volume of the substrate is increased and the porosity of the electrode is reduced. This is considered to be due to the deterioration of the high rate discharge characteristics.
また、サイクル特性についても、基材厚さが50μmを越えると大きく低下する結果であった。 In addition, the cycle characteristics were greatly reduced when the substrate thickness exceeded 50 μm.
以上の結果より、基材厚さとしては20〜50μm程度が好ましいと考えられる。 From the above results, it is considered that the base material thickness is preferably about 20 to 50 μm.
1 パンチングメタル
2 孔部分
3 凹部
4 凸部
1 Punching
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003272271A JP4711250B2 (en) | 2003-07-09 | 2003-07-09 | Nickel electrode for secondary battery and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003272271A JP4711250B2 (en) | 2003-07-09 | 2003-07-09 | Nickel electrode for secondary battery and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005032642A JP2005032642A (en) | 2005-02-03 |
JP4711250B2 true JP4711250B2 (en) | 2011-06-29 |
Family
ID=34209879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003272271A Expired - Lifetime JP4711250B2 (en) | 2003-07-09 | 2003-07-09 | Nickel electrode for secondary battery and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4711250B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101512799B (en) | 2006-08-29 | 2011-12-07 | 松下电器产业株式会社 | Current collector, electrode, and non-aqueous electrolyte secondary battery |
KR101142589B1 (en) | 2006-11-15 | 2012-05-10 | 파나소닉 주식회사 | Collector for nonaqueous secondary battery, and nonaqueous secondary battery electrode plate and nonaqueous secondary battery using the collector |
DE102011003722A1 (en) * | 2011-02-07 | 2012-08-09 | Robert Bosch Gmbh | Structured arrester for battery cells |
DE102012009413A1 (en) * | 2012-05-11 | 2013-11-14 | Hans Kilian Fremmer | Cathode plate for use in lead rechargeable battery of motor car, has partly porous surface and baggy structure, where plate is dipped in diluted sulfur-acid solution and separated at cathode metallic lead |
JP6624432B2 (en) * | 2015-11-16 | 2019-12-25 | トヨタ自動車株式会社 | Electrode structure for secondary battery |
JP6686789B2 (en) * | 2016-08-16 | 2020-04-22 | トヨタ自動車株式会社 | Stacked alkaline secondary battery |
CN117996004A (en) | 2017-05-19 | 2024-05-07 | 高级电池概念有限责任公司 | Battery polar plate for bipolar battery assembly and preparation method |
JP7194940B2 (en) * | 2018-05-31 | 2022-12-23 | パナソニックIpマネジメント株式会社 | lithium secondary battery |
JP7289072B2 (en) * | 2018-05-31 | 2023-06-09 | パナソニックIpマネジメント株式会社 | lithium secondary battery |
WO2020102677A1 (en) | 2018-11-15 | 2020-05-22 | Advanced Battery Concepts, LLC | Active materials useful in balancing power and energy density of a battery assembly |
JP7510958B2 (en) | 2019-05-24 | 2024-07-04 | アドバンスト バッテリー コンセプツ エルエルシー | Battery assembly with integral edge seal and method of forming same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52118532A (en) * | 1976-03-31 | 1977-10-05 | Shin Kobe Electric Machinery | Storage battery |
JPS59128771A (en) * | 1983-01-14 | 1984-07-24 | Fuji Elelctrochem Co Ltd | Manufacture of current collector for battery |
JPH1032006A (en) * | 1996-05-17 | 1998-02-03 | Katayama Tokushu Kogyo Kk | Metal sheet for battery electrode plate and electrode for battery using the metal sheet |
JP2003151542A (en) * | 2000-12-28 | 2003-05-23 | Hitachi Maxell Ltd | Positive electrode for alkaline storage battery, alkaline storage battery and manufacturing method of these |
JP2004039295A (en) * | 2002-06-28 | 2004-02-05 | National Institute Of Advanced Industrial & Technology | Nickel electrode for secondary battery |
-
2003
- 2003-07-09 JP JP2003272271A patent/JP4711250B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52118532A (en) * | 1976-03-31 | 1977-10-05 | Shin Kobe Electric Machinery | Storage battery |
JPS59128771A (en) * | 1983-01-14 | 1984-07-24 | Fuji Elelctrochem Co Ltd | Manufacture of current collector for battery |
JPH1032006A (en) * | 1996-05-17 | 1998-02-03 | Katayama Tokushu Kogyo Kk | Metal sheet for battery electrode plate and electrode for battery using the metal sheet |
JP2003151542A (en) * | 2000-12-28 | 2003-05-23 | Hitachi Maxell Ltd | Positive electrode for alkaline storage battery, alkaline storage battery and manufacturing method of these |
JP2004039295A (en) * | 2002-06-28 | 2004-02-05 | National Institute Of Advanced Industrial & Technology | Nickel electrode for secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2005032642A (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5033164B2 (en) | Manufacturing method of paste type thin electrode for battery | |
JP3553417B2 (en) | Manufacturing method of battery electrode | |
JP4711250B2 (en) | Nickel electrode for secondary battery and its manufacturing method | |
JP4429569B2 (en) | Nickel metal hydride storage battery | |
CN108550800B (en) | Composite electrode and battery | |
JPH09283133A (en) | Nickel electrodefor alkaline storage battery and manufacture thereof | |
JP2012086272A (en) | Method for manufacturing metal-made three-dimensional substrate for electrodes, metal-made three-dimensional substrate for electrodes and electrochemical applied products using the same | |
JP5487384B2 (en) | Alloy negative electrode for fiber battery | |
JP2002198055A (en) | Paste-like thin electrode for battery, its manufacturing method and secondary battery | |
JP3928039B2 (en) | Active material filling method of nickel electrode for secondary battery | |
JPH05205746A (en) | Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery | |
JP2000048823A (en) | Non-sintering type electrode and manufacture thereof | |
JP4411388B2 (en) | Manufacturing method of negative electrode for secondary battery | |
JP2002343366A (en) | Electrode plate for alkaline storage battery and alkaline battery using same | |
JP6686789B2 (en) | Stacked alkaline secondary battery | |
JP4967229B2 (en) | A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied. | |
JP4359678B2 (en) | Secondary battery electrode and secondary battery using the same | |
JP2005071788A (en) | Alkaline battery | |
JP4997529B2 (en) | Nickel electrode for alkaline battery and method for producing the same | |
JP3761763B2 (en) | Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof | |
JPH03165469A (en) | Manufacture of alkaline storage battery having nickel electrode | |
JP4454260B2 (en) | Separator for alkaline secondary battery | |
JP2009187692A (en) | Electrode for secondary battery, and secondary battery | |
JPH10334899A (en) | Manufacture of alkaline storage battery and its electrode | |
JP5396702B2 (en) | battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050808 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060404 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080229 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080229 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090817 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101126 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4711250 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |