Nothing Special   »   [go: up one dir, main page]

JP4710214B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4710214B2
JP4710214B2 JP2003047075A JP2003047075A JP4710214B2 JP 4710214 B2 JP4710214 B2 JP 4710214B2 JP 2003047075 A JP2003047075 A JP 2003047075A JP 2003047075 A JP2003047075 A JP 2003047075A JP 4710214 B2 JP4710214 B2 JP 4710214B2
Authority
JP
Japan
Prior art keywords
comparative example
battery
positive electrode
lithium
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003047075A
Other languages
Japanese (ja)
Other versions
JP2004259508A (en
Inventor
竹規 石津
亮 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003047075A priority Critical patent/JP4710214B2/en
Publication of JP2004259508A publication Critical patent/JP2004259508A/en
Application granted granted Critical
Publication of JP4710214B2 publication Critical patent/JP4710214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に係り、特に、正極活物質にリチウムマンガン複酸化物を用い、電極群を非水電解液に浸潤させたリチウム二次電池に関する。
【0002】
【従来の技術】
従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高エネルギー密度を有するリチウム二次電池が着目され、その研究、開発及び商品化が急速に進められた結果、現在では、携帯電話やノートパソコン向けに小型民生用リチウム二次電池が広く普及している。
【0003】
一方、地球温暖化や燃料枯渇の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源としてより高容量で高出力な二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水溶液系のリチウム二次電池が注目されている。
【0004】
リチウム二次電池の正極活物質には一般にリチウム遷移金属酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが広く用いられているが、原料であるコバルトは資源量が少なくコスト高となることから、電気自動車用やハイブリッド電気自動車用電池の正極活物質としてはリチウムマンガン複酸化物が有望視され開発が進められている。
【0005】
例えば、正極活物質にリチウムマンガン複酸化物を用いたリチウム二次電池に、平均粒子径0.5μm付近の層状マンガン酸リチウム(例えば、特許文献1参照)や平均粒子径8μm程度のスピネル型リチウムマンガン複合酸化物(例えば、特許文献2参照)を用いることにより高容量の電池が得られることが開示されている。また、平均粒径0.01μm以上5.0μm以下の一次粒子が凝集してなる平均粒径0.1μm以上15μm以下の一次粒子凝集体を用いた電池が開示されている(例えば、特許文献3参照)。
【0006】
【特許文献1】
特開2001−202947号公報(段落番号「0014」、「0072」、表2、表4)
【特許文献2】
特開2001−146426号公報(段落番号「0010」、「0017」、「0021」)
【特許文献3】
特開平6−325791号公報(段落番号「0009」、「0047」)
【0007】
【発明が解決しようとする課題】
しかしながら、リチウムマンガン複酸化物を正極活物質に用いたリチウム二次電池の出力特性は、電気自動車用を想定した場合に必ずしも十分とは言えない。これに対して、電極面積を広くして電池を高容量化することが検討されているが、電池サイズが大きくなり、車載スペースを考慮すると実用上難点を生じる。
【0008】
本発明は上記事案に鑑み、電池サイズを大きくすることなく出力特性を向上させたリチウム二次電池を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、正極活物質にリチウムマンガン複酸化物を用い、電極群を非水電解液に浸潤させたリチウム二次電池において、前記リチウムマンガン複酸化物が層状結晶構造を有しており、分級することによって、一次粒子が凝集した二次粒子の平均粒子径が5.0μm以上15μm以下であり、かつ、前記一次粒子の平均粒子径が0.5μm乃至1.5μmであり、前記二次粒子の粒子径の最大値aと最小値bとの比a/bが21以上32以下であることを特徴とする。
【0010】
本発明によれば、正極活物質に層状結晶構造のリチウムマンガン複酸化物が用いられるので、リチウムマンガン複酸化物が酸素層間にリチウム単独の二次元拡散層を有することから、スピネル結晶構造に比べリチウムの拡散係数が小さくリチウムの挿入、脱離が容易となるため、内部抵抗が低減すると共に、二次粒子の平均粒子径が5.0μm未満では、非水電解液との反応面積は増加するが結晶の成長が不十分なため、反応抵抗が増大して出力を低下させ、逆に、二次粒子の平均粒子径が15μmを超えると、反応面積が減少し正極活物質重量当たりの電流密度が大きくなるため、出力低下を招くので、分級することによって、二次粒子の平均粒子径を5.0μm以上15μm以下とすることで反応面積が適正化され、かつ、一次粒子の平均粒子径を0.5μm乃至1.5μmとし、二次粒子の粒子径の最大値aと最小値bとの比a/bを21以上32以下とすることで、電極表面の凹凸が減少し均一な厚みの電極作製が可能となるため、電池内部での微小短絡が抑制されるので、電池サイズを大きくすることなく出力特性を向上させたリチウム二次電池を得ることができる。
【0012】
【発明の実施の形態】
<第1実施形態>
以下、図面を参照して、本発明を電気自動車用電源として用いられる円筒型リチウムイオン二次電池に適用した第1の実施の形態について説明する。
【0013】
(正極活物質)
正極活物質として層状岩塩型結晶構造を有するリチウムマンガン複酸化物を用いた。使用したリチウムマンガン複酸化物は、分級装置により粒子径制御することで一次粒子の平均粒子径(以下、一次粒子平均径という。)が0.1〜2.0μm、一次粒子が凝集した二次粒子の平均粒子径(以下、二次粒子平均径という。)が2.0〜25μmの平均粒子径材料とした。平均粒子径はレーザー回折式粒度分布測定装置により測定した。
【0014】
(正極板)
上述した平均粒子径材料のリチウムマンガン複酸化物粉末と、導電材として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)と、を重量比85:10:5で混合し、これに分散溶媒のN−メチルピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布した。このとき、正極長寸方向の一方の側縁に幅30mmの未塗布部を残した。その後、乾燥、プレス、裁断することにより厚さ170μmの正極板を得た。側縁に残した未塗布部に切り欠きを入れ、切り欠き残部を正極リード片2とした。隣り合う正極リード片2を50mm間隔とし、正極リード片2の幅を5mmとした。
【0015】
(負極板)
負極活物質として人造黒鉛粉末90質量部に対し、結着剤としてPVDFを10質量部添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの電解銅箔の両面に塗布した。このとき、負極長寸方向の一方の側縁に幅30mmの未塗布部を残した。その後乾燥、プレス、裁断することにより厚さ130μmの負極板を得た。側縁に残した未塗布部に正極と同様に切り欠きを入れ、切り欠き残部を負極リード片3とした。隣り合う負極リード片3を50mm間隔とし、負極リード片3の幅を5mmとした。
【0016】
(電池の作製)
図1に示すように、作製した正負極板を、これら両極板が直接接触しないように、厚さ40μmのポリエチレン製セパレータと共に捲回して捲回群6を作製した。捲回の中心には、ポリプロピレン製の中空円筒状の軸芯1を用いた。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。
【0017】
正極リード片2を変形させ、その全てを正極集電リング4の周囲から一体に張り出した鍔部周面付近に集合、接触させた後、正極リード片2と鍔部周面とを超音波溶接して正極リード片2を鍔部周面に接続した。一方、負極集電リング5と負極リード片3との接続操作も、正極集電リング4と正極リード片2との接続操作と同様に実施した。その後、正極集電リング4の鍔部及び捲回群6周面全周に絶縁被覆を施し、捲回群6をニッケルメッキが施されたスチール製の電池容器7内に挿入した。
【0018】
負極集電リング5には、予め電気的導通のための負極リード板8を溶接しておき、電池容器7に捲回群6を挿入後、電池容器7の底部と負極リード板8とを溶接した。一方、正極集電リング4には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード9の一端を溶接しておき、正極リード9の他端を、電池容器7を封口するための電池蓋の下面に溶接した。電池蓋は、蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、アルミニウム合金製で薄板状の内圧低減機構の開裂弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメることによって組立てられている。開裂弁11の開裂圧は約9×10Paに設定した。
【0019】
捲回群6全体を浸潤可能な所定量の非水電解液を電池容器7内に注入し、その後、正極リード9を折りたたむようにして電池蓋で電池容器7に蓋をし、EPDM樹脂製ガスケット10を介してカシメて密封し、容量9.0Ahの円筒型リチウムイオン二次電池20を完成させた。
【0020】
非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比1:1:1の割合で混合した混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。
【0021】
<第2実施形態>
次に、本発明を電気自動車用電源として用いられる円筒型リチウムイオン二次電池に適用した第2の実施の形態について説明する。本実施形態では、第1実施形態の平均粒子径制御に加えて二次粒子の粒子径範囲を制限したものである。なお、本実施形態において、第1実施形態と同一の部材には同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
【0022】
本実施形態では、正極活物質のリチウムマンガン複酸化物は、二次粒子平均径が5.0〜15μm、二次粒子の粒子径の最大値aと最小値bとの比a/bが32以下の粒子径範囲材料とした。粒子径の最大値a及び最小値bはレーザー回折式粒度分布測定装置により測定した。
【0023】
【実施例】
次に、以上の実施形態に従って作製した円筒型リチウムイオン二次電池20の実施例について説明する。なお、以下に示す実施例1〜10は参考のために記載したものである。また、比較のために作製した比較例の電池についても併記する。
【0024】
(実施例1)
下表1に示すように、実施例1は第1実施形態に従い、正極活物質に二次粒子平均径が2.0μm、一次粒子平均径が0.1μmの層状構造リチウムマンガン複酸化物粉末を用いた。
【0025】
【表1】

Figure 0004710214
【0026】
(実施例2〜実施例10)
表1に示すように、実施例2〜実施例10では、二次粒子平均径及び一次粒子平均径を変える以外は実施例1と同様にした。二次粒子平均径は、実施例2では3.0μm、実施例3では4.0μm、実施例4では5.0μm、実施例5では7.5μm、実施例6では10.0μm、実施例7では12.5μm、実施例8では15.0μm、実施例9では20.0μm、実施例10では25.0μmとし、一次粒子平均径は、実施例2では0.1μm、実施例3及び実施例4では0.5μm、実施例5及び実施例6では1.0μm、実施例7及び実施例8では1.5μm、実施例9及び実施例10では2.0μmとした。
【0027】
(比較例1〜比較例4)
表1に示すように、比較例1〜比較例4では、二次粒子平均径及び一次粒子平均径を変える以外は実施例1と同様にした。二次粒子平均径は、比較例1では1.0μm、比較例2では1.5μm、比較例3では30.0μm、比較例4では35.0μmとし、一次粒子平均径は、比較例1及び比較例2では0.05μm、比較例3では2.5μm、比較例4では3.0μmとした。
【0028】
(比較例5)
表1に示すように、比較例5では、正極活物質に二次粒子平均径が2.0μm、一次粒子平均径が0.1μmのスピネル構造リチウムマンガン複酸化物粉末を用いる以外は実施例1と同様にした。
【0029】
(比較例6〜比較例9)
表1に示すように、比較例6〜比較例9では、二次粒子平均径及び一次粒子平均径を変える以外は比較例5と同様にした。二次粒子平均径は、比較例6では5.0μm、比較例7では10.0μm、比較例8では15.0μm、比較例9では30.0μmとし、一次粒子平均径は、比較例6では0.5μm、比較例7では1.0μm、比較例8では1.5μm、比較例9では2.5μmとした。
【0030】
(実施例11)
下表2に示すように、実施例11は第2実施形態に従い、正極活物質に二次粒子平均径が5.0μm、一次粒子平均径が0.5μm、二次粒子の粒子径の最大値aが21.10μm、最小値bが1.01μmの層状構造リチウムマンガン複酸化物粉末を用いた。この最大値aと最小値bとの比a/bは21となる。
【0031】
【表2】
Figure 0004710214
【0032】
(実施例12)
表2に示すように、実施例12では、二次粒子平均径を7.0μm、一次粒子平均径を1.0μm、最大値aを29.85μm、最小値bを1.01μmとする以外は実施例11と同様にした。比a/bは30となる。
【0033】
(実施例13〜実施例14)
表2に示すように、実施例13〜実施例14では、二次粒子平均径を変える以外は実施例12と同様にした。実施例13では7.5μm、実施例14では8.0μmとした。比a/bは、実施例13、実施例14共に30となる。
【0034】
(実施例15)
表2に示すように、実施例15では、二次粒子平均径を8.5μm、一次粒子平均径を1.0μm、最大値aを21.10μm、最小値bを0.66μmとする以外は実施例11と同様にした。比a/bは32となる。
【0035】
(実施例16)
表2に示すように、実施例16では、二次粒子平均径を9.0μmとする以外は実施例12と同様にした。比a/bは30となる。
【0036】
(実施例17)
表2に示すように、実施例17では、二次粒子平均径を10.0μm、一次粒子平均径を1.0μmとする以外は実施例11と同様にした。比a/bは21となる。
【0037】
(実施例18)
表2に示すように、実施例18では、二次粒子平均径を12.5μm、一次粒子平均径を1.5μmとする以外は実施例12と同様にした。比a/bは30となる。
【0038】
(実施例19)
表2に示すように、実施例19では、二次粒子平均径を15.0μm、一次粒子平均径を1.5μm、最大値aを42.20μm、最小値bを1.69μmとする以外は実施例11と同様にした。比a/bは25となる。
【0039】
(比較例10)
表2に示すように、比較例10では、正極活物質に二次粒子平均径が5.0μm、一次粒子平均径が0.5μm、最大値aが19.90μm、最小値bが1.15μmのスピネル構造リチウムマンガン複酸化物粉末を用いる以外は実施例11と同様にした。比a/bは17となる。
【0040】
(比較例11)
表2に示すように、比較例11では、二次粒子平均径を5.5μm、一次粒子平均径を0.5μm、最大値aを22.80μm、最小値bを1.15μmとする以外は比較例10と同様にした。比a/bは20となる。
【0041】
(比較例12)
表2に示すように、比較例12では、二次粒子平均径を6.0μm、一次粒子平均径を0.5μm、最大値aを22.80μm、最小値bを1.32μmとする以外は比較例10と同様にした。比a/bは17となる。
【0042】
(比較例13)
表2に示すように、比較例13では、二次粒子平均径を6.5μm、一次粒子平均径を0.5μm、最大値aを19.90μm、最小値bを1.32μmとする以外は比較例10と同様にした。比a/bは15となる。
【0043】
(比較例14)
表2に示すように、比較例14では、二次粒子平均径を7.5μm、一次粒子平均径を1.0μm、最大値aを22.80μm、最小値bを1.51μmとする以外は比較例10と同様にした。比a/bは15となる。
【0044】
(比較例15)
表2に示すように、比較例15では、二次粒子平均径を9.0μm、一次粒子平均径を1.0μm、最大値aを29.91μm、最小値bを1.51μmとする以外は比較例10と同様にした。比a/bは20となる。
【0045】
(比較例16)
表2に示すように、比較例16では、二次粒子平均径を10.5μm、一次粒子平均径を1.0μm、最大値aを37.00μm、最小値bを1.06μmとする以外は比較例10と同様にした。比a/bは35となる。
【0046】
(比較例17)
表2に示すように、比較例17では、二次粒子平均径を13.0μm、一次粒子平均径を1.5μm、最大値aを52.33μm、最小値bを2.12μmとする以外は比較例10と同様にした。比a/bは25となる。
【0047】
(比較例18)
表2に示すように、比較例18では、二次粒子平均径を13.5μm、一次粒子平均径を1.5μm、最大値aを37.00μm、最小値bを3.00μmとする以外は比較例10と同様にした。比a/bは12となる。
【0048】
(比較例19)
表2に示すように、比較例19では、二次粒子平均径を14.0μm、一次粒子平均径を1.5μm、最大値aを44.00μm、最小値bを2.52μmとする以外は比較例10と同様にした。比a/bは17となる。
【0049】
(比較例20)
表2に示すように、比較例20では、二次粒子平均径を14.5μmとする以外は比較例19と同様にした。比a/bは17となる。
【0050】
(比較例21)
表2に示すように、比較例21では、二次粒子平均径を15.0μm、一次粒子平均径を1.5μm、最大値aを47.98μm、最小値bを2.52μmとする以外は比較例10と同様にした。比a/bは19となる。
【0051】
(比較例22)
表2に示すように、比較例22では、二次粒子平均径を9.5μm、一次粒子平均径を1.0μm、最大値aを42.20μm、最小値bを1.01μmとする以外は実施例11と同様にした。比a/bは42となる。
【0052】
(比較例23)
表2に示すように、比較例23では、二次粒子平均径を11.5μm、一次粒子平均径を1.0μm、最大値aを42.20μm、最小値bを0.66μmとする以外は実施例11と同様にした。比a/bは64となる。
【0053】
(比較例24)
表2に示すように、比較例24では、二次粒子平均径を10.0μm、一次粒子平均径を1.0μm、最大値aを44.00μm、最小値bを1.06μmとする以外は比較例10と同様にした。比a/bは42となる。
【0054】
(比較例25)
表2に示すように、比較例25では、二次粒子平均径を13.5μm、一次粒子平均径を2.0μm、最大値aを104.70μm、最小値bを1.78μmとする以外は比較例10と同様にした。比a/bは59となる。
【0055】
<試験・評価>
(出力測定試験)
以上のように作製した実施例及び比較例の各電池について、約5時間で放電することができる電流値(0.2C)で4.2V定電圧制御し、8時間充電して満充電状態とした後、10A、20A、40A、60Aの電流値でそれぞれ30秒間放電し、30秒目の電池電圧を測定して、その電圧を電流値に対してプロットした直線が3.2Vに到達の電流値(Ia)から、出力((W)=Ia×3.2)を算出し、その出力を電池重量で除して出力密度を算出する出力測定試験を行った。この測定は25±2°Cの雰囲気で行った。
【0056】
(微小内部短絡発生数測定試験)
以上のように作製した実施例11〜実施例19及び比較例10〜比較例25の電池のそれぞれ20セルについて、上述した条件で満充電状態とした後、25°C中に放置して電圧低下速度を測定した。このとき、14日めと21日めとの電圧差を求め、1日当りの電圧低下速度が、2.7mV/dayを超えた電池を微小内部短絡発生電池とした。
【0057】
下表3に実施例1〜実施例10及び比較例1〜比較例9の電池について出力測定試験の試験結果を示す。また、下表4に実施例11〜実施例19及び比較例10〜比較例25の電池について出力測定試験及び微小内部短絡発生数測定試験の試験結果を示す。
【0058】
【表3】
Figure 0004710214
【0059】
【表4】
Figure 0004710214
【0060】
表3に示すように、正極活物質に層状構造を有するリチウムマンガン複酸化物を用い、二次粒子平均径を2.0μm未満、一次粒子平均径を0.1μm未満とした比較例1、比較例2の電池及び二次粒子平均径が25.0μmを超え、一次粒子平均径が2.0μmを超えた比較例3、比較例4の電池では、上述した測定方法による出力密度が400〜520W/kgであった。また、正極活物質にスピネル構造リチウムマンガン複酸化物を用いた比較例5〜比較例9の電池では、320〜530W/kgの出力密度であった。これに対して、二次粒子平均径が2.0〜25.0μm、一次粒子平均径が0.1〜2.0μmの層状構造リチウムマンガン複酸化物を用いた実施例1〜実施例10の電池では、600〜750W/kgの出力密度であった。また、二次粒子平均径が2.0μm、3.0μm、一次粒子平均径が0.1μmの層状構造リチウムマンガン複酸化物を用いた実施例1、実施例2の電池及び二次粒子平均径が20.0μm、25.0μm、一次粒子平均径が2.0μmの層状構造リチウムマンガン複酸化物を用いた実施例9、実施例10の電池では、600〜680W/kgと出力密度が若干低下した。これに対し、正極活物質に二次粒子平均径が4.0〜15.0μm、一次粒子平均径が0.5〜1.5μmの層状構造リチウムマンガン複酸化物を用いた実施例3〜実施例8の電池は、730〜750W/kgの優れた出力密度を示した。
【0061】
表4に示すように、二次粒子平均径が9.5μm、11.5μm、一次粒子平均径が1.0μm、比a/bが32を超えた層状構造リチウムマンガン複酸化物を正極活物質に用いた比較例22、比較例23の電池では、出力密度が740W/kgを示したものの、電池内部での微小短絡の発生を確認した。これに対して、二次粒子平均径が5.0〜15.0μm、一次粒子平均径が0.5〜1.5μm、比a/bが32以下の層状構造リチウムマンガン複酸化物を用いた実施例11〜実施例19の電池では、730〜750W/kgの優れた出力密度を示し、微小短絡の発生も確認できなかった。また、スピネル構造リチウムマンガン複酸化物を正極活物質に用いた比較例10〜比較例21、比較例24及び比較例25の電池は、490〜540W/kgの出力密度であった。中でも、比a/bが32を超えた比較例24、比較例25の電池では、微小短絡も発生した。また、最大値aが同じ42.20μmの層状構造リチウムマンガン複酸化物を使用した比較例22、比較例23の電池と実施例19の電池とを比較すると、平均粒子径が大きい粉末であっても比a/bが21以上32以下であれば、電池内部での微小短絡の発生はなかった。
【0062】
以上の試験結果から、二次粒子平均径が2.0μm〜25.0μm、一次粒子平均径が0.1〜2.0μmの層状構造リチウムマンガン複酸化物を正極活物質に用いた電池は優れた出力特性を示すことが判った。中でも、二次粒子平均径が4.0〜15.0μm、一次粒子平均径が0.5〜1.5μmの層状構造リチウムマンガン複酸化物を正極活物質に用いた電池は出力密度が高いことが判明した。また、二次粒子平均径が5.0〜15.0μm、一次粒子平均径が0.5〜1.5μm、比a/bが21〜32の層状構造リチウムマガン複酸化物を正極活物質に使用した電池では、電池内部での微小短絡を発生することなく、より優れた出力特性を示すことが判明した。
【0063】
上記実施形態では、正極活物質にリチウムマンガン複酸化物のうち層状岩塩型結晶構造のリチウムマンガン複酸化物が用いられる。層状構造はスピネル構造に比べリチウムの拡散性に関しては、酸素層間にリチウム単独の二次元拡散層を持っているため拡散係数が小さい。このため、リチウムの挿入、脱離が容易となり内部抵抗が低減するので、電池サイズを大きくすることなく出力特性を向上させたリチウム二次電池を得ることができる。従って、電気自動車のような高出力を要求され、車載スペースに限りがある場合にも、好適に使用することができる。
【0064】
また、正極活物質に二次粒子平均径が2.0μm未満、一次粒子平均径が0.1μm未満の層状構造リチウムマンガン複酸化物を用いると、非水電解液との反応面積は増加するが結晶が十分に成長していないため、反応抵抗が増大してリチウムイオン二次電池の出力を低下させ、逆に、二次粒子平均径が25μmを超え、一次粒子平均径が2.0μmを超える層状構造リチウムマンガン複酸化物を用いると、反応面積が減少し正極活物質重量当たりの電流密度が大きくなるため、リチウムイオン二次電池の出力低下を招く。このため、第1実施形態では、正極活物質に二次粒子平均径が2.0μm以上25μm以下、一次粒子平均径が0.1μm以上2.0μm以下の層状構造リチウムマンガン複酸化物が用いられる。これにより、正極活物質の反応面積が最適化され、電池サイズを大きくすることなく出力特性を向上させたリチウムイオン二次電池を得ることができる。特に、二次粒子平均径を4.0μm以上15μm以下、一次粒子平均径を0.5μm以上1.5μm以下とすることで、出力特性をより向上させることができる。
【0065】
また、二次粒子の粒子径の最大値aと最小値bとの比a/bが32を超えると、正極活物質を含むスラリをアルミニウム箔に塗布する塗工時に塗工面に凹凸が生じて、均一な厚みでの大面積塗工ができない。塗工面の凹凸により電池作製時等にセパレータを破損して微小短絡を引き起こす。これは、粒子サイズの差が大きいためにスラリの混練時に粒子径の小さな粒子が凝集し、粒子径の大きな粒子同士の間に入り、粉砕されないまま残ったことによるものと考えられる。このため、第2実施形態では、正極活物質に二次粒子平均径が5.0μm以上15.0μm以下、一次粒子平均径が0.5μm以上1.5μm以下、比a/bが21以上32以下の層状構造リチウムマガン複酸化物が用いられる。これにより、スラリの塗工時に均一な厚みでの大面積塗工が可能となるため、電池内部での微小短絡を発生することなく、優れた出力特性のリチウムイオン二次電池を得ることができる。このような電池は内部抵抗(反応抵抗)が小さく電極面積を広くしなくても高出力が得られるので、品質を向上することができ、電池サイズの小型化を図る上でも有用である。
【0066】
なお、本実施形態では、正極活物質に層状岩塩型結晶構造を有するリチウムマンガン複酸化物を例示したが、本発明はこれに限定されるものではなく、予め十分な量のリチウムを挿入した層状結晶構造のリチウムマンガン複酸化物(LiMnO)を用いた場合であれば適用可能であり、また、Al、Co、Cr、Fe、Ni等の金属元素で結晶構造中のMnの一部を置換又はドープした層状結晶構造リチウムマンガン複酸化物や結晶中の酸素の一部をS、P等で置換又はドープした材料を用いた場合にも適用可能である。
【0067】
また、本実施形態では、円筒型電池について例示したが、本発明は電池の形状についても限定されず、角形、その他の多角形の電池にも適用可能である。更に、本発明の適用可能な構造としては、上述した電池容器(缶)に電池蓋がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として正負外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。
【0068】
更に、本実施形態では、バインダとしてPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用するようにしてもよい。
【0069】
また更に、本実施形態では、EC、DEC、DMCの混合溶媒中にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにしてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等又はこれら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではない。
【0070】
【発明の効果】
以上説明したように、本発明によれば、正極活物質に層状結晶構造のリチウムマンガン複酸化物が用いられるので、リチウムマンガン複酸化物が酸素層間にリチウム単独の二次元拡散層を有することから、スピネル結晶構造に比べリチウムの拡散係数が小さくリチウムの挿入、脱離が容易となるため、内部抵抗が低減すると共に、二次粒子の平均粒子径が5.0μm未満では、非水電解液との反応面積は増加するが結晶の成長が不十分なため、反応抵抗が増大して出力を低下させ、逆に、二次粒子の平均粒子径が15μmを超えると、反応面積が減少し正極活物質重量当たりの電流密度が大きくなるため、出力低下を招くので、分級することによって、二次粒子の平均粒子径を5.0μm以上15μm以下とすることで反応面積が適正化され、かつ、一次粒子の平均粒子径を0.5μm乃至1.5μmとし、二次粒子の粒子径の最大値aと最小値bとの比a/bを21以上32以下とすることで、電極表面の凹凸が減少し均一な厚みの電極作製が可能となるため、電池内部での微小短絡が抑制されるので、電池サイズを大きくすることなく出力特性を向上させたリチウム二次電池を得ることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の円筒型リチウムイオン二次電池の断面図である。
【符号の説明】
20 円筒型リチウムイオン二次電池(リチウム二次電池)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery in which a lithium manganese complex oxide is used as a positive electrode active material and an electrode group is infiltrated with a non-aqueous electrolyte.
[0002]
[Prior art]
Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, as electric devices have become smaller and lighter, lithium secondary batteries with high energy density have attracted attention, and as a result of rapid progress in research, development, and commercialization, mobile phones and laptop computers are now available. Small-sized consumer lithium secondary batteries are widely used.
[0003]
On the other hand, electric vehicles (EV) and hybrid electric vehicles (HEV) that assist part of driving with electric motors have been developed by each automobile manufacturer due to problems of global warming and fuel depletion. Rechargeable batteries have been demanded. As a power source that meets such requirements, a non-aqueous lithium secondary battery having a high voltage has attracted attention.
[0004]
In general, lithium transition metal oxides are used as the positive electrode active material of lithium secondary batteries. Among them, lithium cobaltate is widely used from the balance of capacity and cycle characteristics, but the raw material cobalt has a resource amount. Since the cost is low and the cost is high, lithium manganese complex oxide is considered promising as a positive electrode active material for batteries for electric vehicles and hybrid electric vehicles, and is being developed.
[0005]
For example, in a lithium secondary battery using a lithium manganese complex oxide as a positive electrode active material, layered lithium manganate having an average particle size of about 0.5 μm (see, for example, Patent Document 1) or spinel type lithium having an average particle size of about 8 μm It is disclosed that a high-capacity battery can be obtained by using a manganese composite oxide (for example, see Patent Document 2). In addition, a battery using primary particle aggregates having an average particle size of 0.1 μm or more and 15 μm or less formed by aggregating primary particles having an average particle size of 0.01 μm or more and 5.0 μm or less is disclosed (for example, Patent Document 3). reference).
[0006]
[Patent Document 1]
JP 2001-202947 A (paragraph numbers “0014”, “0072”, Table 2, Table 4)
[Patent Document 2]
JP 2001-146426 A (paragraph numbers “0010”, “0017”, “0021”)
[Patent Document 3]
JP-A-6-325791 (paragraph numbers “0009” and “0047”)
[0007]
[Problems to be solved by the invention]
However, the output characteristics of a lithium secondary battery using lithium manganese complex oxide as a positive electrode active material are not necessarily sufficient when an electric vehicle is assumed. On the other hand, it has been studied to increase the battery capacity by widening the electrode area. However, the battery size becomes large, and a practically difficult point arises in consideration of the in-vehicle space.
[0008]
An object of the present invention is to provide a lithium secondary battery with improved output characteristics without increasing the battery size.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a lithium secondary battery in which a lithium manganese complex oxide is used as a positive electrode active material, and an electrode group is infiltrated with a non-aqueous electrolyte. Has a structure, By classifying, The average particle diameter of the secondary particles in which the primary particles are aggregated is 5.0 μm or more and 15 μm or less, and the primary particles Of child The average particle diameter is 0.5 μm to 1.5 μm, and the ratio a / b between the maximum value a and the minimum value b of the secondary particles is 21 or more and 32 or less.
[0010]
According to the present invention, since the lithium manganese complex oxide having a layered crystal structure is used as the positive electrode active material, the lithium manganese complex oxide has a two-dimensional diffusion layer of lithium alone between the oxygen layers. Since the diffusion coefficient of lithium is small and insertion and removal of lithium is easy, the internal resistance is reduced, and the reaction area with the non-aqueous electrolyte increases when the average particle size of the secondary particles is less than 5.0 μm. However, since the crystal growth is insufficient, the reaction resistance increases and the output decreases. Conversely, when the average particle diameter of the secondary particles exceeds 15 μm, the reaction area decreases and the current density per weight of the positive electrode active material. Will cause a decrease in output. By classifying, By making the average particle size of the secondary particles 5.0 μm or more and 15 μm or less, the reaction area is optimized, And, The average particle diameter of the primary particles is 0.5 μm to 1.5 μm, and the ratio a / b between the maximum value a and the minimum value b of the secondary particles is 21 or more and 32 or less. Since an electrode with a uniform thickness can be manufactured and a small short circuit inside the battery is suppressed, a lithium secondary battery with improved output characteristics can be obtained without increasing the battery size.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
Hereinafter, a first embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery used as a power source for an electric vehicle will be described with reference to the drawings.
[0013]
(Positive electrode active material)
A lithium manganese complex oxide having a layered rock salt type crystal structure was used as the positive electrode active material. The used lithium manganese complex oxide has a primary particle average particle diameter (hereinafter referred to as primary particle average diameter) of 0.1 to 2.0 μm and secondary particles in which primary particles are aggregated by controlling the particle diameter with a classifier. An average particle size material having an average particle size (hereinafter referred to as secondary particle average size) of 2.0 to 25 μm was used. The average particle size was measured with a laser diffraction particle size distribution analyzer.
[0014]
(Positive electrode plate)
The above-described lithium manganese complex oxide powder having an average particle size material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are mixed at a weight ratio of 85: 10: 5 and dispersed therein. A slurry in which N-methylpyrrolidone (NMP) as a solvent was added and kneaded was applied to both surfaces of an aluminum foil having a thickness of 20 μm. At this time, an uncoated portion with a width of 30 mm was left on one side edge in the positive electrode longitudinal direction. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate having a thickness of 170 μm. A notch was left in the uncoated portion left on the side edge, and the remaining notch was used as the positive electrode lead piece 2. Adjacent positive electrode lead pieces 2 were spaced 50 mm apart, and the width of the positive electrode lead pieces 2 was 5 mm.
[0015]
(Negative electrode plate)
10 parts by mass of PVDF as a binder is added to 90 parts by mass of artificial graphite powder as the negative electrode active material, and a slurry obtained by adding and kneading the dispersion solvent NMP is applied to both surfaces of a 10 μm thick electrolytic copper foil. did. At this time, an uncoated part with a width of 30 mm was left on one side edge in the negative electrode longitudinal direction. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate having a thickness of 130 μm. A notch was formed in the uncoated part left on the side edge in the same manner as the positive electrode, and the remaining part of the notch was used as the negative electrode lead piece 3. Adjacent negative electrode lead pieces 3 were spaced 50 mm apart, and the width of the negative electrode lead pieces 3 was 5 mm.
[0016]
(Production of battery)
As shown in FIG. 1, the produced positive and negative electrode plates were wound together with a polyethylene separator having a thickness of 40 μm so that the bipolar plates were not in direct contact with each other, thereby producing a wound group 6. A hollow cylindrical shaft core 1 made of polypropylene was used at the center of winding. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were respectively positioned on opposite end surfaces of the wound group 6.
[0017]
The positive electrode lead piece 2 is deformed, and all of the positive electrode lead piece 2 is gathered and brought into contact with the vicinity of the buttocks circumferential surface integrally projecting from the periphery of the positive electrode current collecting ring 4, and then the positive electrode lead piece 2 and the buttocks circumferential surface are ultrasonically welded Then, the positive electrode lead piece 2 was connected to the collar surface. On the other hand, the connection operation between the negative electrode current collection ring 5 and the negative electrode lead piece 3 was performed in the same manner as the connection operation between the positive electrode current collection ring 4 and the positive electrode lead piece 2. Thereafter, an insulating coating was applied to the collar portion of the positive electrode current collecting ring 4 and the entire circumference of the wound group 6 and the wound group 6 was inserted into a nickel-plated steel battery container 7.
[0018]
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance, and after the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 are welded. did. On the other hand, in order to seal the battery container 7 at the other end of the positive electrode lead 9, one end of the positive electrode lead 9 formed by overlapping a plurality of aluminum ribbons in advance is welded to the positive electrode current collecting ring 4. Welded to the lower surface of the battery lid. The battery lid includes a lid case 12, a lid cap 13, a valve retainer 14 that keeps airtightness, and a cleavage valve 11 that is made of an aluminum alloy and has a thin plate-like internal pressure reduction mechanism. These are laminated to form a lid case. It is assembled by caulking the periphery of 12 pieces. The cleavage pressure of the cleavage valve 11 is about 9 × 10 5 Pa was set.
[0019]
A predetermined amount of non-aqueous electrolyte that can infiltrate the entire wound group 6 is injected into the battery container 7, and then the battery container 7 is covered with a battery cover so that the positive electrode lead 9 is folded, and an EPDM resin gasket The cylindrical lithium ion secondary battery 20 having a capacity of 9.0 Ah was completed.
[0020]
As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF) was mixed into a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1: 1. 6 ) Was dissolved at 1 mol / liter.
[0021]
<Second Embodiment>
Next, a second embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery used as a power source for an electric vehicle will be described. In this embodiment, in addition to the average particle size control of the first embodiment, the particle size range of secondary particles is limited. In the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.
[0022]
In this embodiment, the lithium manganese complex oxide of the positive electrode active material has an average secondary particle diameter of 5.0 to 15 μm, and a ratio a / b between the maximum value a and the minimum value b of the secondary particle diameter is 32. The following particle size range materials were used. The maximum value a and the minimum value b of the particle diameter were measured by a laser diffraction type particle size distribution measuring device.
[0023]
【Example】
Next, examples of the cylindrical lithium ion secondary battery 20 manufactured according to the above embodiment will be described. In addition Examples 1 to 10 shown below are described for reference. Also, A comparative battery prepared for comparison is also shown.
[0024]
Example 1
As shown in Table 1 below, Example 1 is a layered structure lithium manganese complex oxide powder having a secondary particle average diameter of 2.0 μm and a primary particle average diameter of 0.1 μm according to the first embodiment. Using.
[0025]
[Table 1]
Figure 0004710214
[0026]
(Example 2 to Example 10)
As shown in Table 1, Examples 2 to 10 were the same as Example 1 except that the secondary particle average diameter and primary particle average diameter were changed. The average secondary particle diameter is 3.0 μm in Example 2, 4.0 μm in Example 3, 5.0 μm in Example 4, 7.5 μm in Example 5, 10.0 μm in Example 6, and Example 7 12.5 μm, Example 8 15.0 μm, Example 9 20.0 μm, Example 10 25.0 μm, and the average primary particle diameter is 0.1 μm in Example 2, Example 3 and Examples 4 was 0.5 μm, Examples 5 and 6 were 1.0 μm, Examples 7 and 8 were 1.5 μm, Examples 9 and 10 were 2.0 μm.
[0027]
(Comparative Examples 1 to 4)
As shown in Table 1, Comparative Example 1 to Comparative Example 4 were the same as Example 1 except that the secondary particle average diameter and primary particle average diameter were changed. The secondary particle average diameter is 1.0 μm in Comparative Example 1, 1.5 μm in Comparative Example 2, 30.0 μm in Comparative Example 3, and 35.0 μm in Comparative Example 4, and the average primary particle diameter is Comparative Example 1 and In Comparative Example 2, the thickness was 0.05 μm, Comparative Example 3 was 2.5 μm, and Comparative Example 4 was 3.0 μm.
[0028]
(Comparative Example 5)
As shown in Table 1, in Comparative Example 5, Example 1 was used except that the positive electrode active material was a spinel structure lithium manganese complex oxide powder having an average secondary particle diameter of 2.0 μm and an average primary particle diameter of 0.1 μm. And so on.
[0029]
(Comparative Example 6 to Comparative Example 9)
As shown in Table 1, Comparative Example 6 to Comparative Example 9 were the same as Comparative Example 5 except that the secondary particle average diameter and primary particle average diameter were changed. The secondary particle average diameter is 5.0 μm in Comparative Example 6, 10.0 μm in Comparative Example 7, 15.0 μm in Comparative Example 8, 30.0 μm in Comparative Example 9, and the primary particle average diameter is in Comparative Example 6. The thickness was 0.5 μm, Comparative Example 7 was 1.0 μm, Comparative Example 8 was 1.5 μm, and Comparative Example 9 was 2.5 μm.
[0030]
(Example 11)
As shown in Table 2 below, Example 11 is in accordance with the second embodiment. The positive electrode active material has a secondary particle average diameter of 5.0 μm, a primary particle average diameter of 0.5 μm, and a maximum particle diameter of the secondary particles. A layered lithium manganese complex oxide powder having a of 21.10 μm and a minimum value b of 1.01 μm was used. The ratio a / b between the maximum value a and the minimum value b is 21.
[0031]
[Table 2]
Figure 0004710214
[0032]
(Example 12)
As shown in Table 2, in Example 12, the secondary particle average diameter was 7.0 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 29.85 μm, and the minimum value b was 1.01 μm. Same as Example 11. The ratio a / b is 30.
[0033]
(Example 13 to Example 14)
As shown in Table 2, Examples 13 to 14 were the same as Example 12 except that the average secondary particle diameter was changed. In Example 13, it was 7.5 μm, and in Example 14, it was 8.0 μm. The ratio a / b is 30 for both Example 13 and Example 14.
[0034]
(Example 15)
As shown in Table 2, in Example 15, the secondary particle average diameter was 8.5 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 21.10 μm, and the minimum value b was 0.66 μm. Same as Example 11. The ratio a / b is 32.
[0035]
(Example 16)
As shown in Table 2, Example 16 was the same as Example 12 except that the average secondary particle diameter was 9.0 μm. The ratio a / b is 30.
[0036]
(Example 17)
As shown in Table 2, Example 17 was the same as Example 11 except that the average secondary particle diameter was 10.0 μm and the average primary particle diameter was 1.0 μm. The ratio a / b is 21.
[0037]
(Example 18)
As shown in Table 2, Example 18 was the same as Example 12 except that the average secondary particle diameter was 12.5 μm and the average primary particle diameter was 1.5 μm. The ratio a / b is 30.
[0038]
(Example 19)
As shown in Table 2, in Example 19, the secondary particle average diameter was 15.0 μm, the primary particle average diameter was 1.5 μm, the maximum value a was 42.20 μm, and the minimum value b was 1.69 μm. Same as Example 11. The ratio a / b is 25.
[0039]
(Comparative Example 10)
As shown in Table 2, in Comparative Example 10, the positive electrode active material had an average secondary particle size of 5.0 μm, an average primary particle size of 0.5 μm, a maximum value a of 19.90 μm, and a minimum value b of 1.15 μm. The same procedure as in Example 11 except that the spinel structure lithium manganese double oxide powder was used. The ratio a / b is 17.
[0040]
(Comparative Example 11)
As shown in Table 2, in Comparative Example 11, the secondary particle average diameter was 5.5 μm, the primary particle average diameter was 0.5 μm, the maximum value a was 22.80 μm, and the minimum value b was 1.15 μm. Same as Comparative Example 10. The ratio a / b is 20.
[0041]
(Comparative Example 12)
As shown in Table 2, in Comparative Example 12, the average secondary particle diameter was 6.0 μm, the primary particle average diameter was 0.5 μm, the maximum value a was 22.80 μm, and the minimum value b was 1.32 μm. Same as Comparative Example 10. The ratio a / b is 17.
[0042]
(Comparative Example 13)
As shown in Table 2, in Comparative Example 13, the average secondary particle diameter was 6.5 μm, the primary particle average diameter was 0.5 μm, the maximum value a was 19.90 μm, and the minimum value b was 1.32 μm. Same as Comparative Example 10. The ratio a / b is 15.
[0043]
(Comparative Example 14)
As shown in Table 2, in Comparative Example 14, the secondary particle average diameter was 7.5 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 22.80 μm, and the minimum value b was 1.51 μm. Same as Comparative Example 10. The ratio a / b is 15.
[0044]
(Comparative Example 15)
As shown in Table 2, in Comparative Example 15, the secondary particle average diameter was 9.0 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 29.91 μm, and the minimum value b was 1.51 μm. Same as Comparative Example 10. The ratio a / b is 20.
[0045]
(Comparative Example 16)
As shown in Table 2, in Comparative Example 16, the secondary particle average diameter was 10.5 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 37.00 μm, and the minimum value b was 1.06 μm. Same as Comparative Example 10. The ratio a / b is 35.
[0046]
(Comparative Example 17)
As shown in Table 2, in Comparative Example 17, the secondary particle average diameter was 13.0 μm, the primary particle average diameter was 1.5 μm, the maximum value a was 52.33 μm, and the minimum value b was 2.12 μm. Same as Comparative Example 10. The ratio a / b is 25.
[0047]
(Comparative Example 18)
As shown in Table 2, in Comparative Example 18, except that the secondary particle average diameter was 13.5 μm, the primary particle average diameter was 1.5 μm, the maximum value a was 37.00 μm, and the minimum value b was 3.00 μm. Same as Comparative Example 10. The ratio a / b is 12.
[0048]
(Comparative Example 19)
As shown in Table 2, in Comparative Example 19, the secondary particle average diameter was 14.0 μm, the primary particle average diameter was 1.5 μm, the maximum value a was 44.00 μm, and the minimum value b was 2.52 μm. Same as Comparative Example 10. The ratio a / b is 17.
[0049]
(Comparative Example 20)
As shown in Table 2, Comparative Example 20 was the same as Comparative Example 19 except that the average secondary particle diameter was 14.5 μm. The ratio a / b is 17.
[0050]
(Comparative Example 21)
As shown in Table 2, in Comparative Example 21, the secondary particle average diameter was 15.0 μm, the primary particle average diameter was 1.5 μm, the maximum value a was 47.98 μm, and the minimum value b was 2.52 μm. Same as Comparative Example 10. The ratio a / b is 19.
[0051]
(Comparative Example 22)
As shown in Table 2, in Comparative Example 22, the secondary particle average diameter was 9.5 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 42.20 μm, and the minimum value b was 1.01 μm. Same as Example 11. The ratio a / b is 42.
[0052]
(Comparative Example 23)
As shown in Table 2, in Comparative Example 23, the secondary particle average diameter was 11.5 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 42.20 μm, and the minimum value b was 0.66 μm. Same as Example 11. The ratio a / b is 64.
[0053]
(Comparative Example 24)
As shown in Table 2, in Comparative Example 24, the secondary particle average diameter was 10.0 μm, the primary particle average diameter was 1.0 μm, the maximum value a was 44.00 μm, and the minimum value b was 1.06 μm. Same as Comparative Example 10. The ratio a / b is 42.
[0054]
(Comparative Example 25)
As shown in Table 2, in Comparative Example 25, the secondary particle average diameter was 13.5 μm, the primary particle average diameter was 2.0 μm, the maximum value a was 104.70 μm, and the minimum value b was 1.78 μm. Same as Comparative Example 10. The ratio a / b is 59.
[0055]
<Test and evaluation>
(Output measurement test)
About each battery of the Example and comparative example produced as mentioned above, 4.2V constant voltage control is carried out with the electric current value (0.2C) which can be discharged in about 5 hours, it charges for 8 hours, and it is in a full charge state. After that, the battery was discharged for 30 seconds at current values of 10A, 20A, 40A, and 60A, the battery voltage at 30 seconds was measured, and the current obtained by plotting the voltage against the current value reached 3.2V. From the value (Ia), an output ((W) = Ia × 3.2) was calculated, and an output measurement test was performed to calculate the output density by dividing the output by the battery weight. This measurement was performed in an atmosphere of 25 ± 2 ° C.
[0056]
(Test for measuring the number of micro internal short circuits)
About 20 cells of each of the batteries of Examples 11 to 19 and Comparative Examples 10 to 25 produced as described above, after being fully charged under the above-described conditions, the battery was left at 25 ° C. and the voltage was lowered. The speed was measured. At this time, the voltage difference between the 14th day and the 21st day was obtained, and a battery having a voltage drop rate per day exceeding 2.7 mV / day was defined as a micro internal short circuit generating battery.
[0057]
Table 3 below shows the test results of the output measurement test for the batteries of Examples 1 to 10 and Comparative Examples 1 to 9. Table 4 below shows the test results of the output measurement test and the minute internal short circuit occurrence number measurement test for the batteries of Examples 11 to 19 and Comparative Examples 10 to 25.
[0058]
[Table 3]
Figure 0004710214
[0059]
[Table 4]
Figure 0004710214
[0060]
As shown in Table 3, Comparative Example 1 in which a lithium manganese complex oxide having a layered structure was used as the positive electrode active material, the secondary particle average diameter was less than 2.0 μm, and the primary particle average diameter was less than 0.1 μm, comparison In the battery of Example 2 and the batteries of Comparative Example 3 and Comparative Example 4 in which the average particle size of the secondary particles exceeds 25.0 μm and the average particle size of the primary particles exceeds 2.0 μm, the output density according to the measurement method described above is 400 to 520 W. / Kg. Moreover, in the batteries of Comparative Examples 5 to 9 using the spinel structure lithium manganese complex oxide as the positive electrode active material, the output density was 320 to 530 W / kg. On the other hand, Examples 1 to 10 using a layered structure lithium manganese complex oxide having a secondary particle average diameter of 2.0 to 25.0 μm and a primary particle average diameter of 0.1 to 2.0 μm. In the battery, the power density was 600 to 750 W / kg. Further, the batteries of Example 1 and Example 2 and the average secondary particle diameter using a layered structure lithium manganese complex oxide having an average secondary particle diameter of 2.0 μm, 3.0 μm, and an average primary particle diameter of 0.1 μm. Are 20.0 μm, 25.0 μm, and the batteries of Examples 9 and 10 using the layered structure lithium manganese complex oxide having an average primary particle diameter of 2.0 μm, the output density is slightly reduced to 600 to 680 W / kg. did. On the other hand, Examples 3 to 3 using a layered lithium manganese complex oxide having a secondary particle average diameter of 4.0 to 15.0 μm and a primary particle average diameter of 0.5 to 1.5 μm as the positive electrode active material. The battery of Example 8 exhibited an excellent power density of 730-750 W / kg.
[0061]
As shown in Table 4, a layered lithium manganese complex oxide having a secondary particle average diameter of 9.5 μm, 11.5 μm, a primary particle average diameter of 1.0 μm, and a ratio a / b exceeding 32 is used as a positive electrode active material. In the batteries of Comparative Example 22 and Comparative Example 23 used for the above, although the output density was 740 W / kg, the occurrence of a micro short circuit inside the battery was confirmed. In contrast, a layered structure lithium manganese complex oxide having an average secondary particle diameter of 5.0 to 15.0 μm, an average primary particle diameter of 0.5 to 1.5 μm, and a ratio a / b of 32 or less was used. The batteries of Examples 11 to 19 showed an excellent output density of 730 to 750 W / kg, and the occurrence of minute short circuits could not be confirmed. Further, the batteries of Comparative Examples 10 to 21, 21 and 24 using the spinel structure lithium manganese complex oxide as the positive electrode active material had a power density of 490 to 540 W / kg. In particular, in the batteries of Comparative Example 24 and Comparative Example 25 in which the ratio a / b exceeded 32, a minute short circuit occurred. Further, when the batteries of Comparative Example 22 and Comparative Example 23 using the same layered lithium manganese oxide having the same maximum value a of 42.20 μm were compared with the battery of Example 19, the powder had a large average particle diameter. However, if the ratio a / b was 21 or more and 32 or less, there was no occurrence of a micro short circuit inside the battery.
[0062]
From the above test results, a battery using a layered structure lithium manganese complex oxide having a secondary particle average diameter of 2.0 μm to 25.0 μm and a primary particle average diameter of 0.1 to 2.0 μm as the positive electrode active material is excellent. It was found that the output characteristics were exhibited. Among them, a battery using a layered structure lithium manganese complex oxide having a secondary particle average diameter of 4.0 to 15.0 μm and a primary particle average diameter of 0.5 to 1.5 μm as a positive electrode active material has high output density. There was found. Further, a layered structure lithium magan complex oxide having an average secondary particle diameter of 5.0 to 15.0 μm, an average primary particle diameter of 0.5 to 1.5 μm, and a ratio a / b of 21 to 32 is used as a positive electrode active material. It was found that the used battery showed better output characteristics without causing a micro short circuit inside the battery.
[0063]
In the said embodiment, the lithium manganese complex oxide of a layered rock salt type crystal structure is used for a positive electrode active material among lithium manganese complex oxides. Compared with the spinel structure, the layered structure has a small diffusion coefficient in terms of lithium diffusivity because it has a two-dimensional diffusion layer of lithium alone between oxygen layers. For this reason, lithium insertion and removal are facilitated and the internal resistance is reduced, so that a lithium secondary battery with improved output characteristics can be obtained without increasing the battery size. Therefore, it can be suitably used even when a high output such as an electric vehicle is required and the space on the vehicle is limited.
[0064]
Further, when a layered structure lithium manganese complex oxide having a secondary particle average diameter of less than 2.0 μm and a primary particle average diameter of less than 0.1 μm is used as the positive electrode active material, the reaction area with the non-aqueous electrolyte increases. Since the crystals are not sufficiently grown, the reaction resistance is increased and the output of the lithium ion secondary battery is lowered. Conversely, the secondary particle average diameter exceeds 25 μm, and the primary particle average diameter exceeds 2.0 μm. When the layered structure lithium manganese complex oxide is used, the reaction area is reduced and the current density per weight of the positive electrode active material is increased, resulting in a decrease in the output of the lithium ion secondary battery. For this reason, in the first embodiment, a layered structure lithium manganese complex oxide having an average secondary particle diameter of 2.0 μm to 25 μm and an average primary particle diameter of 0.1 μm to 2.0 μm is used for the positive electrode active material. . Thereby, the reaction area of the positive electrode active material is optimized, and a lithium ion secondary battery with improved output characteristics can be obtained without increasing the battery size. In particular, when the secondary particle average diameter is 4.0 μm or more and 15 μm or less, and the primary particle average diameter is 0.5 μm or more and 1.5 μm or less, the output characteristics can be further improved.
[0065]
Further, when the ratio a / b between the maximum value a and the minimum value b of the secondary particles exceeds 32, unevenness occurs on the coated surface during the coating of the slurry containing the positive electrode active material on the aluminum foil. Large area coating with uniform thickness is not possible. The unevenness of the coated surface breaks the separator during battery production, etc., causing a micro short circuit. This is considered to be due to the fact that the small particle size aggregates when the slurry is kneaded due to the large difference in particle size, and the particles enter between the large particle size particles and remain without being pulverized. For this reason, in the second embodiment, the positive electrode active material has an average secondary particle diameter of 5.0 μm to 15.0 μm, an average primary particle diameter of 0.5 μm to 1.5 μm, and a ratio a / b of 21 to 32. The following layered structure lithium magan complex oxide is used. As a result, large area coating with a uniform thickness is possible during slurry coating, so that a lithium ion secondary battery having excellent output characteristics can be obtained without causing a micro short circuit inside the battery. . Such a battery has a small internal resistance (reaction resistance) and can provide a high output without increasing the electrode area. Therefore, the quality can be improved and the battery can be reduced in size.
[0066]
In the present embodiment, the lithium-manganese complex oxide having a layered rock salt type crystal structure is exemplified as the positive electrode active material, but the present invention is not limited to this, and a layered state in which a sufficient amount of lithium is inserted in advance. Lithium manganese complex oxide with crystal structure (LiMnO 2 And a layered crystal structure lithium manganese composite oxide in which a part of Mn in the crystal structure is substituted or doped with a metal element such as Al, Co, Cr, Fe, Ni, etc. It can also be applied to the case where a material in which part of oxygen in the crystal is substituted or doped with S, P or the like is used.
[0067]
Further, in the present embodiment, the cylindrical battery is exemplified, but the present invention is not limited to the shape of the battery, and can be applied to a rectangular battery and other polygonal batteries. Furthermore, the structure to which the present invention can be applied may be other than a battery having a structure in which a battery lid is sealed with a caulking to the above-described battery container (can). An example of such a structure is a battery in which positive and negative external terminals pass through the battery lid and the positive and negative external terminals are pressed against each other through an axis in the battery container.
[0068]
Furthermore, although PVDF was illustrated as a binder in this embodiment, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various types Polymers such as latex, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.
[0069]
Furthermore, in this embodiment, LiPF is mixed in a mixed solvent of EC, DEC, and DMC. 6 However, the present invention may use a non-aqueous electrolyte obtained by dissolving a general lithium salt as an electrolyte and dissolving it in an organic solvent. There is no particular restriction. For example, as an electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li or the like or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, etc., or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.
[0070]
【The invention's effect】
As described above, according to the present invention, since the lithium manganese complex oxide having a layered crystal structure is used as the positive electrode active material, the lithium manganese complex oxide has a two-dimensional diffusion layer of lithium alone between oxygen layers. The lithium diffusion coefficient is small compared to the spinel crystal structure, and insertion and removal of lithium is easy, so that the internal resistance is reduced and the average particle diameter of the secondary particles is less than 5.0 μm. However, when the average particle size of the secondary particles exceeds 15 μm, the reaction area decreases and the positive electrode active is increased. Since the current density per substance weight increases, it causes a decrease in output, By classifying, By making the average particle size of the secondary particles 5.0 μm or more and 15 μm or less, the reaction area is optimized, And, The average particle diameter of the primary particles is 0.5 μm to 1.5 μm, and the ratio a / b between the maximum value a and the minimum value b of the secondary particles is 21 or more and 32 or less. Therefore, it is possible to produce a lithium secondary battery with improved output characteristics without increasing the battery size. The effect that can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical lithium ion secondary battery according to an embodiment to which the present invention is applicable.
[Explanation of symbols]
20 Cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (1)

正極活物質にリチウムマンガン複酸化物を用い、電極群を非水電解液に浸潤させたリチウム二次電池において、前記リチウムマンガン複酸化物が層状結晶構造を有しており、分級することによって、一次粒子が凝集した二次粒子の平均粒子径が5.0μm以上15μm以下であり、かつ、前記一次粒子の平均粒子径が0.5μm乃至1.5μmであり、前記二次粒子の粒子径の最大値aと最小値bとの比a/bが21以上32以下であることを特徴とするリチウム二次電池。In a lithium secondary battery in which a lithium manganese double oxide is used as a positive electrode active material and an electrode group is infiltrated with a non-aqueous electrolyte, the lithium manganese double oxide has a layered crystal structure, and is classified, the average particle diameter of the secondary particles formed by aggregation of primary particles is at 15μm inclusive 5.0 .mu.m, and the mean particle diameter of the primary particle element is 0.5μm to 1.5 [mu] m, the particle diameter of the secondary particles A lithium secondary battery characterized in that the ratio a / b between the maximum value a and the minimum value b is 21 or more and 32 or less.
JP2003047075A 2003-02-25 2003-02-25 Lithium secondary battery Expired - Lifetime JP4710214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047075A JP4710214B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047075A JP4710214B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004259508A JP2004259508A (en) 2004-09-16
JP4710214B2 true JP4710214B2 (en) 2011-06-29

Family

ID=33113418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047075A Expired - Lifetime JP4710214B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4710214B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH07183047A (en) * 1993-12-22 1995-07-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JP2000203844A (en) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc Lithium-manganese compound oxide as anodic active material for lithium secondary battery, production of the compound oxide, and lithium secondary battery using the same as anodic active material
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH07183047A (en) * 1993-12-22 1995-07-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JP2000203844A (en) * 1998-05-22 2000-07-25 Toyota Central Res & Dev Lab Inc Lithium-manganese compound oxide as anodic active material for lithium secondary battery, production of the compound oxide, and lithium secondary battery using the same as anodic active material
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Also Published As

Publication number Publication date
JP2004259508A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
EP3210252B1 (en) Nonaqueous electrolyte secondary battery
JP5300274B2 (en) Lithium secondary battery
JP2001143762A (en) Cylindrical lithium ion battery
JP2004006264A (en) Lithium secondary battery
JP2004319311A (en) Winding type cylindrical lithium ion battery
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP2001229970A (en) Cylindrical lithium battery
JP5254910B2 (en) Lithium ion secondary battery
JP4688527B2 (en) Lithium secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP5433484B2 (en) Lithium ion secondary battery
JP2001185220A (en) Cylindrical lithium ion battery
JP4710214B2 (en) Lithium secondary battery
JPH11238500A (en) Roll type cylindrical battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP2004164988A (en) Manufacturing method of lithium containing metal oxide and lithium secondary battery using same
JP4360056B2 (en) Lithium secondary battery
JP4956860B2 (en) Non-aqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP2001210330A (en) Lithium secondary battery
JP4644936B2 (en) Lithium secondary battery
JP2005085545A (en) Lithium secondary battery
JP2001185154A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100629

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250