Nothing Special   »   [go: up one dir, main page]

JP4709954B2 - Direct synthesis of hydrogen peroxide - Google Patents

Direct synthesis of hydrogen peroxide Download PDF

Info

Publication number
JP4709954B2
JP4709954B2 JP2005273694A JP2005273694A JP4709954B2 JP 4709954 B2 JP4709954 B2 JP 4709954B2 JP 2005273694 A JP2005273694 A JP 2005273694A JP 2005273694 A JP2005273694 A JP 2005273694A JP 4709954 B2 JP4709954 B2 JP 4709954B2
Authority
JP
Japan
Prior art keywords
noble metal
hydrogen peroxide
reaction
solution
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005273694A
Other languages
Japanese (ja)
Other versions
JP2007084372A (en
Inventor
正和 岩本
智之 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Tokyo Institute of Technology NUC
Original Assignee
Tanaka Kikinzoku Kogyo KK
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Tokyo Institute of Technology NUC filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2005273694A priority Critical patent/JP4709954B2/en
Publication of JP2007084372A publication Critical patent/JP2007084372A/en
Application granted granted Critical
Publication of JP4709954B2 publication Critical patent/JP4709954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、水素と酸素とを直接反応させて過酸化水素を製造する、過酸化水素の直接合成に関する。   The present invention relates to the direct synthesis of hydrogen peroxide, which produces hydrogen peroxide by directly reacting hydrogen and oxygen.

過酸化水素は、強力な酸化力を有し、漂白・殺菌作用を持つことから、紙、パルプ、繊維、水産加工品等の漂白剤、殺菌剤として利用されている。また、過酸化水素は分化しても水と酸素にしかならないためグリーンケミストリーの観点から重要な位置付けがなされており、塩素系漂白剤の代替材料としても着目されている。   Hydrogen peroxide has a strong oxidizing power and has a bleaching and sterilizing action, so it is used as a bleaching agent and a sterilizing agent for paper, pulp, fiber, processed fishery products and the like. In addition, hydrogen peroxide is differentiated from water and oxygen even when differentiated, so it is important from the viewpoint of green chemistry, and has attracted attention as an alternative material for chlorine bleach.

従来、過酸化水素は、有機法、アントラキノン法、電解法等より製造されており、特に工業的な製造方法としてアントラキノン法が用いられている。しかし、アントラキノン法は、アントラキノン媒体の還元、酸化、生成過酸化水素の抽出、精製、濃縮等といったように多段階からなり、エネルギーを多量に使用するため製造コストが非常に高くなるという欠点がある。   Conventionally, hydrogen peroxide has been produced by an organic method, an anthraquinone method, an electrolytic method, and the like, and an anthraquinone method has been used as an industrial production method. However, the anthraquinone method has many drawbacks such as reduction of the anthraquinone medium, oxidation, extraction of the generated hydrogen peroxide, purification, concentration, etc., and the use of a large amount of energy makes the production cost very high. .

そこで、上記問題を考慮して、水素と酸素とを直接反応させることにより過酸化水素を合成する方法の検討が進んでいる。この直接合成法では、貴金属触媒の存在下で水素と酸素とを反応させるものであり、白金族金属を活性炭、無定型シリカ、ゼオライト、希土類酸化物、チタニアなど種々の担体に担持させた触媒を用いて反応を進行させる方法が公知となっている。
特開昭63−156005号公報 特開平4−238802号公報 特開平4−285003号公報 特開平5−17106号公報 特開平5−43206号公報 特開平9−301705号公報
In view of the above problems, a method for synthesizing hydrogen peroxide by directly reacting hydrogen and oxygen has been studied. In this direct synthesis method, hydrogen and oxygen are reacted in the presence of a noble metal catalyst. Methods for using them to advance the reaction are known.
JP 63-156005 A JP-A-4-238802 JP-A-4-285003 JP-A-5-17106 Japanese Patent Laid-Open No. 5-43206 JP-A-9-301705

過酸化水素の直接合成法では、合成反応の選択性、生成速度等の諸因子を基にして総合的に判定される製造効率が重要となる。この点、上記従来法によれば、ある程度の過酸化水素を製造することができが、反応速度等を含めて判断すべき製造効率を満足させつつ反応を進行させるものではなく、また、方法によっては高い反応圧力を必要とするものもあり、工業的製造に対応できるレベルにまで達していないのが現状である。   In the direct synthesis method of hydrogen peroxide, the production efficiency that is comprehensively determined based on various factors such as the selectivity of the synthesis reaction and the production rate is important. In this regard, according to the conventional method, hydrogen peroxide can be produced to some extent, but the reaction is not allowed to proceed while satisfying the production efficiency to be judged including the reaction rate and the like. Some require high reaction pressure, and the current situation is that they do not reach a level that can be used for industrial production.

本発明者等は、より優れた製造効率で過酸化水素を直接合成する方法として、従来の貴金属担持型の触媒を用いる方法に替えて、貴金属コロイドを触媒として用いる方法を見出している(特願2004−090821)。ここで、貴金属コロイドとは、溶媒に不溶な数〜数百nmの貴金属の微小粒子が溶媒中で分散、懸濁したものをいう。そして、本発明者等によれば、貴金属コロイドを適用することで、過酸化水素生成反応の生成速度、選択性を向上できることが確認されている。   The present inventors have found a method of using a noble metal colloid as a catalyst instead of the conventional method using a noble metal-supported catalyst as a method for directly synthesizing hydrogen peroxide with better production efficiency (Japanese Patent Application). 2004-090821). Here, the noble metal colloid means a dispersion in which a few to several hundred nanometers of noble metal fine particles insoluble in a solvent are dispersed and suspended in the solvent. According to the present inventors, it has been confirmed that the production rate and selectivity of the hydrogen peroxide production reaction can be improved by applying a noble metal colloid.

直接合成による過酸化水素の製造方法を実用化するためには、できるだけ製造効率を高めることが要求される。そこで、本発明は、上記本発明者等による過酸化水素製造方法を改良したものであって、更に高い製造効率を示すものを提供することを目的とする。   In order to put the production method of hydrogen peroxide by direct synthesis into practical use, it is required to increase the production efficiency as much as possible. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an improved hydrogen peroxide production method by the present inventors, which shows higher production efficiency.

本発明者等は、上記した貴金属コロイドを触媒とする方法を基礎とし、貴金属コロイドを含む触媒溶液に、更に他の貴金属塩を添加して還元処理を行うことで、より高効率で合成反応を進行させることができる触媒溶液を得ることができることを見出し、本発明に想到した。   Based on the above-described method using a noble metal colloid as a catalyst, the present inventors added a further noble metal salt to the catalyst solution containing the noble metal colloid to perform a reduction treatment, thereby performing a synthetic reaction with higher efficiency. The inventors have found that a catalyst solution that can be advanced can be obtained, and have arrived at the present invention.

即ち、本発明は、水素と酸素とを反応させる過酸化水素の直接合成法において、第1の貴金属のコロイド粒子が分散する溶媒に、第2の貴金属の塩を添加した後に還元処理して触媒溶液を製造し、前記触媒溶液に水素と酸素を通過させて反応させることを特徴とする過酸化水素の直接合成法である。   That is, according to the present invention, in the direct synthesis method of hydrogen peroxide in which hydrogen and oxygen are reacted, the second noble metal salt is added to the solvent in which the first noble metal colloidal particles are dispersed, and then the reduction treatment is performed. This is a direct synthesis method of hydrogen peroxide, characterized in that a solution is produced and hydrogen and oxygen are allowed to react with the catalyst solution.

本発明において、第1の貴金属コロイド溶液に、第2の貴金属塩を添加して還元処理すると、第2の貴金属は貴金属粒子として触媒溶液中で存在する。この第2の貴金属粒子は、単独で触媒溶液に分散するか、又は、第1の貴金属コロイドに取り込まれて貴金属合金のコロイドを形成すると考えられる。本発明において、還元処理後の触媒溶液が如何なる状態にあるかは定かではないが、前記した貴金属粒子の追加的分散又は貴金属合金コロイドの形成により、触媒溶液が有する反応促進作用が向上し、過酸化水素製造効率の上昇がみられると考えられる。   In the present invention, when the second noble metal salt is added to the first noble metal colloid solution for reduction treatment, the second noble metal is present as noble metal particles in the catalyst solution. The second noble metal particles are considered to be dispersed alone in the catalyst solution or taken into the first noble metal colloid to form a noble metal alloy colloid. In the present invention, it is not certain what the state of the catalyst solution after the reduction treatment is. However, the additional dispersion of the noble metal particles or the formation of the noble metal alloy colloid described above improves the reaction promoting action of the catalyst solution. An increase in hydrogen oxide production efficiency is expected.

以下、本発明につき詳細に説明する。本発明における貴金属コロイドの意義は上述の通りである。第1の貴金属のコロイド粒子を構成する貴金属は、白金、パラジウム、銀、金、ルテニウム、ロジウム、イリジウム、オスミウムといった貴金属であるが、好ましいのは、パラジウム、白金である。また、コロイドを構成する貴金属粒子の粒径は1〜10nmのものが好ましい。これらの範囲外の粒径のコロイドを適用しても合成反応は生じるが、1〜10nmの領域のコロイドが特に活性が高いからである。   Hereinafter, the present invention will be described in detail. The significance of the noble metal colloid in the present invention is as described above. The noble metal composing the first noble metal colloidal particles is a noble metal such as platinum, palladium, silver, gold, ruthenium, rhodium, iridium, or osmium, with palladium and platinum being preferred. The particle diameter of the noble metal particles constituting the colloid is preferably 1 to 10 nm. Even if a colloid having a particle size outside these ranges is applied, the synthesis reaction occurs, but the colloid in the region of 1 to 10 nm is particularly high in activity.

貴金属コロイドは、保護剤と呼ばれる化合物を含むものが一般的である。保護剤とは、コロイド溶液中でコロイド粒子の周辺に化学的又は物理的に結合、吸着する化合物であって、コロイド粒子同士の凝集を抑制し粒径分布を適性範囲に制御し安定化させるものをいう。保護剤を含むことで、細かな粒径のコロイド粒子が懸濁した状態を保持し、過酸化水素の合成反応を均質とすることができる。この保護剤としては、コロイド粒子に対して化学的又は物理的に結合、吸着することができる有機化合物であれば、特に、限定はなく、ポリビニルピロリドン(以下、PVPという。)、ポリエチレンイミン(以下、PEIという。)、ポリアクリル酸(以下、PAAという。)、カルボキシメチルセルロース(以下、CMCという。)、ポリビニルアルコール(以下、PVAという。)クエン酸、酒石酸、アルギン酸、ポリリン酸、ポリ(N−カルボキシメチル)アリルアミン、ポリ(N,N−ジカルボキシメチル)アリルアミン、ポリ(N−カルボキシメチル)エチレンイミン等の有機化合物が適用できる。発明で特に好ましい保護剤は、PVP、PAA、CMC、PVA、クエン酸、酒石酸、アルギン酸、ポリリン酸であり、特に好ましくはPVPである。   The noble metal colloid generally contains a compound called a protective agent. A protective agent is a compound that binds or adsorbs chemically or physically around colloidal particles in a colloidal solution, and suppresses aggregation of colloidal particles and controls the particle size distribution within an appropriate range to stabilize it. Say. By including the protective agent, the state in which the colloidal particles having a fine particle diameter are suspended can be maintained, and the synthesis reaction of hydrogen peroxide can be made homogeneous. The protective agent is not particularly limited as long as it is an organic compound that can be chemically or physically bound to and adsorbed on colloidal particles, and is not limited, and polyvinylpyrrolidone (hereinafter referred to as PVP), polyethyleneimine (hereinafter referred to as PVP). , PEI), polyacrylic acid (hereinafter referred to as PAA), carboxymethyl cellulose (hereinafter referred to as CMC), polyvinyl alcohol (hereinafter referred to as PVA) citric acid, tartaric acid, alginic acid, polyphosphoric acid, poly (N- Organic compounds such as carboxymethyl) allylamine, poly (N, N-dicarboxymethyl) allylamine, poly (N-carboxymethyl) ethyleneimine are applicable. Particularly preferred protective agents in the invention are PVP, PAA, CMC, PVA, citric acid, tartaric acid, alginic acid and polyphosphoric acid, particularly preferably PVP.

尚、本発明で使用する第1の貴金属コロイド溶液の製造は、まず、保護剤となる有機化合物とコロイド粒子となる第1の貴金属の金属塩溶液とを混合し、これに還元剤を添加することで製造可能である。この際、金属塩溶液中の金属イオンが還元されるとともに保護剤がクラスター粒子に吸着し、コロイド溶液となる。尚、保護剤自体が還元作用を有する有機化合物である場合には、還元剤の添加は不要である。   In the production of the first noble metal colloid solution used in the present invention, first, an organic compound serving as a protective agent and a metal salt solution of the first noble metal serving as colloid particles are mixed, and a reducing agent is added thereto. Can be manufactured. At this time, the metal ions in the metal salt solution are reduced and the protective agent is adsorbed on the cluster particles to form a colloidal solution. When the protective agent itself is an organic compound having a reducing action, it is not necessary to add a reducing agent.

一方、第1の貴金属コロイド溶液に添加する、第2の貴金属は、第1の貴金属とは異なる貴金属であり、好ましい組み合わせとしては、第1の貴金属がパラジウムであり、第2の貴金属が白金となるものである。そして、好ましい貴金属塩は、貴金属の塩化水素酸塩又は塩化物であり、塩化白金酸塩(HPtCl)、塩化金酸塩(HAuCl)、塩化ロジウム、塩化ルテニウム、塩化イリジウム等が用いられる。 On the other hand, the second noble metal added to the first noble metal colloid solution is a noble metal different from the first noble metal. As a preferable combination, the first noble metal is palladium, and the second noble metal is platinum. It will be. Preferred noble metal salts are noble metal hydrochlorides or chlorides, such as chloroplatinate (H 2 PtCl 6 ), chloroaurate (HAuCl 4 ), rhodium chloride, ruthenium chloride, iridium chloride and the like. It is done.

第2の貴金属塩添加後の還元処理としては、還元剤の添加によるのが通常であるが、好ましいのは、水素ガス導入によるものである。触媒溶液中に残留物が生じないようにするためである。尚、貴金属塩として塩化水素酸塩又は塩化物を適用する場合、還元処理後の触媒溶液中には塩素イオンが残留するが、塩素イオンは過酸化水素の合成反応には悪影響を及ぼすことはないことが確認されている。   The reduction treatment after the addition of the second noble metal salt is usually by addition of a reducing agent, but is preferably by introduction of hydrogen gas. This is to prevent a residue from being generated in the catalyst solution. When hydrochloric acid salt or chloride is applied as the noble metal salt, chlorine ions remain in the catalyst solution after the reduction treatment, but the chlorine ions do not adversely affect the hydrogen peroxide synthesis reaction. It has been confirmed.

また、触媒溶液中の第1の貴金属と第2の貴金属の存在比率が、質量比で3:1〜9:1となるようにするのが好ましい。上記のように過酸化水素の製造効率は、過酸化水素の発生量のみによらず、生成速度や選択率が関与するが、第1の貴金属と第2の貴金属の比率を前記範囲とすることにより、各因子のバランスが取れたものとなるからである。尚、触媒溶液中の全貴金属の濃度は、0.0001〜0.01重量%とするのが好ましい。   Moreover, it is preferable that the ratio of the first noble metal and the second noble metal in the catalyst solution be 3: 1 to 9: 1 by mass ratio. As described above, the production efficiency of hydrogen peroxide is related not only to the amount of hydrogen peroxide generated, but also to the production rate and selectivity, but the ratio of the first noble metal to the second noble metal is within the above range. This is because each factor is balanced. In addition, it is preferable that the density | concentration of all the noble metals in a catalyst solution shall be 0.0001 to 0.01 weight%.

過酸化水素の合成反応は、(水素)ガス対(酸素)ガスの反応であるため、貴金属コロイド溶液を反応系に共存させるためには、両者の混合ガスを反応容器内の貴金属コロイド溶液中にバブリングする手法が一般的となる。   Since the synthesis reaction of hydrogen peroxide is a reaction between (hydrogen) gas and (oxygen) gas, in order for the noble metal colloid solution to coexist in the reaction system, the mixed gas of both is put into the noble metal colloid solution in the reaction vessel. A method of bubbling is common.

尚、本発明に係る方法では、反応系に無機酸を添加して反応させるのが好ましい。これにより、過酸化水素合成反応の選択率を向上させ、製造効率を確保することができる。無機酸の添加量は、触媒溶液に対して0.001〜1重量%とするのが好ましい。そして、この無機酸としては、臭化水素又は硫酸臭化水素の適用が好ましく、両者のいずれか一方又は双方を添加するのが好ましい。   In the method according to the present invention, it is preferable to react by adding an inorganic acid to the reaction system. Thereby, the selectivity of a hydrogen peroxide synthesis reaction can be improved and manufacturing efficiency can be ensured. The amount of inorganic acid added is preferably 0.001 to 1% by weight based on the catalyst solution. And as this inorganic acid, application of hydrogen bromide or hydrogen sulfate hydrobromide is preferable, and it is preferable to add either or both of them.

合成反応時の反応条件は、反応温度は、0〜100℃、特に20〜70℃の範囲が好ましい。反応の圧力は特に制限はないが、好ましくは大気圧〜100kg/cmであり、特に大気圧〜20kg/cmが適当である。反応時間(原料ガスとコロイド粒子との接触時間)は、通常0.1〜100時間、好ましくは0.5〜10時間である。この反応は回分式でも連続式でも行うことができる。また、原料となる水素ガスと酸素ガスの流量は、爆発範囲を避け、かつ、水素に対して酸素が過剰となるような割合が好ましい。 As for the reaction conditions during the synthesis reaction, the reaction temperature is preferably in the range of 0 to 100 ° C, particularly 20 to 70 ° C. The pressure of the reaction is not particularly limited, is preferably from atmospheric pressure to 100 kg / cm 2, particularly suitably atmospheric pressure to 20 kg / cm 2. The reaction time (contact time between the raw material gas and the colloidal particles) is usually 0.1 to 100 hours, preferably 0.5 to 10 hours. This reaction can be carried out either batchwise or continuously. The flow rates of the raw material hydrogen gas and oxygen gas are preferably such that the range of explosion is avoided and oxygen is excessive with respect to hydrogen.

本発明によれば、直接合成法による過酸化水素の製造をより効率的に行なうことができる。本発明は、比較的簡易な工程で、特殊な条件によらずに過酸化水素を製造することができ、その工業的生産プロセスに質することができる。   According to the present invention, it is possible to more efficiently produce hydrogen peroxide by a direct synthesis method. The present invention is a relatively simple process, can produce hydrogen peroxide regardless of special conditions, and can be improved in its industrial production process.

実施例1
Pd0.1g相当のジニトロジアンミンパラジウム溶液に、PVPを1.0g、水100mLを加え加熱還流し、これに還元剤としてエタノール50mLを滴下しパラジウムを還元した。そして、溶液を濃縮してパラジウム濃度4wt%Pd−PVPコロイドを得た。このパラジウムコロイド粒子径は2nmであり、溶液は黒色の粘重な液体であった。そして、このPd−PVPコロイドをイオン交換水で100倍希釈して0.04wt%に調製した。そして、同時に、塩化白金酸塩(ヘキサクロロ白金(IV)酸六水和物)1gを1Lの水に溶解した。また、3NのHBr溶液を調整した。
Example 1
To a dinitrodiammine palladium solution corresponding to 0.1 g of Pd, 1.0 g of PVP and 100 mL of water were added and heated to reflux, and 50 mL of ethanol was added dropwise as a reducing agent to reduce palladium. Then, the solution was concentrated to obtain a Pd-PVP colloid having a palladium concentration of 4 wt%. The palladium colloid particle diameter was 2 nm, and the solution was a black viscous liquid. And this Pd-PVP colloid was diluted 100 times with ion-exchanged water to prepare 0.04 wt%. At the same time, 1 g of chloroplatinate (hexachloroplatinic acid (IV) hexahydrate) was dissolved in 1 L of water. A 3N HBr solution was also prepared.

上記で製造したPd−PVPコロイド溶液、塩化白金酸塩溶液を用いて過酸化水素の直接合成を行なった。合成は、図1で示す直接合成装置を使用した。過酸化水素の合成は、まず、反応器100に製造したHBr溶液10mL(最終濃度0.1N)、貴金属塩溶液、Pd−PVPコロイド溶液をこの順に加え、最後にイオン交換水で全量300mLとした。Pd−PVPコロイドと貴金属塩は、全金属量が2.5mgとなるように比率を調整しつつ添加した。   Hydrogen peroxide was directly synthesized using the Pd-PVP colloid solution and the chloroplatinate solution prepared above. For the synthesis, a direct synthesizer shown in FIG. 1 was used. For the synthesis of hydrogen peroxide, first, 10 mL of the HBr solution (final concentration 0.1 N) manufactured in the reactor 100, the noble metal salt solution, and the Pd-PVP colloid solution were added in this order, and finally the total amount was made 300 mL with ion-exchanged water. . The Pd-PVP colloid and the noble metal salt were added while adjusting the ratio so that the total metal amount was 2.5 mg.

そして、反応器100内へ水素供給口10から水素を25cc/minで1時間流して還元処理した。このときの反応温度は303Kで攪拌速度を650rpmである。この還元処理により反応器100内で触媒溶液を製造した。還元は窒素を窒素導入口30から50cc/minで20分流して気相部を置換した。   Then, reduction was performed by flowing hydrogen into the reactor 100 from the hydrogen supply port 10 at 25 cc / min for 1 hour. The reaction temperature at this time is 303K, and the stirring speed is 650 rpm. A catalyst solution was produced in the reactor 100 by this reduction treatment. In the reduction, the gas phase portion was replaced by flowing nitrogen from the nitrogen inlet 30 at 50 cc / min for 20 minutes.

過酸化水素合成反応は、反応ガスである水素、酸素、及び、バランスガスとしての窒素を、それぞれの供給口10、20、30から導入した。各ガスの供給量は、水素7cc/min、酸素31cc/min、窒素15cc/minとした。反応条件は、常圧下、反応温度303K、攪拌速度1200rpmで行った。また、反応中においては、反応器100から適宜サンプリングを行い、TCD付ガスクロマトグラフィー102で反応ガス組成を分析した。   In the hydrogen peroxide synthesis reaction, hydrogen and oxygen as reaction gases and nitrogen as a balance gas were introduced from the respective supply ports 10, 20, and 30. The supply amount of each gas was 7 cc / min for hydrogen, 31 cc / min for oxygen, and 15 cc / min for nitrogen. The reaction conditions were a normal pressure, a reaction temperature of 303K, and a stirring speed of 1200 rpm. Further, during the reaction, sampling was appropriately performed from the reactor 100, and the reaction gas composition was analyzed by the gas chromatography with TCD 102.

そして、合成した過酸化水素を30分毎にシリンジで1mlサンプリングし、吸光光度法で定量した。過酸化水素の定量は、過酸化水素−硫酸チタン錯体の410nmの吸収を利用した吸光光度法によって行った。発色液は30%硫酸チタン16mLに濃硫酸14mLを加え、イオン交換水で100mLに希釈したものを用いた。分析には発色液4mL、反応液1mLを25mLに希釈した溶液を用い、反応液量は秤量して定めた。 Then, 1 ml of the synthesized hydrogen peroxide was sampled with a syringe every 30 minutes and quantified by absorptiometry. Hydrogen peroxide was quantified by an absorptiometric method using absorption of 410 nm of hydrogen peroxide-titanium sulfate complex. As the color developing solution, a solution obtained by adding 14 mL of concentrated sulfuric acid to 16 mL of 30% titanium sulfate and diluting to 100 mL with ion-exchanged water was used. For the analysis, a solution obtained by diluting 4 mL of the color developing solution and 1 mL of the reaction solution to 25 mL was used, and the amount of the reaction solution was measured and determined.

直接合成試験の結果は、過酸化水素濃度、水素の反応速度(R)、生成選択率(S)、過酸化水素の分解速度係数(k)の4つの数値から評価した。その結果を表1に示す。尚、比較として、塩化白金酸塩を添加しないPd−PVPコロイドを触媒溶液としたときの結果を併せて示した。 The results of the direct synthesis test were evaluated based on four numerical values: hydrogen peroxide concentration, hydrogen reaction rate (R 0 ), production selectivity (S 0 ), and hydrogen peroxide decomposition rate coefficient (k d ). The results are shown in Table 1. For comparison, the results when a Pd—PVP colloid to which no chloroplatinate was added were used as a catalyst solution were also shown.

Figure 0004709954
Figure 0004709954

各数値の評価においては、過酸化水素濃度、R、Sが高いことが好ましい結果となる。一方、kは、合成反応で生じた過酸化水素の分解反応が生じる度合いを示すものであることから、この数値が大きいことは合成反応に飽和点が生じ易いことを示すため、小さいことが好ましい。かかる観点から表1の結果をみると、塩化白金酸塩を添加したコロイドを用いることで、生成選択率Sの低下はみられるものの過酸化水素濃度、反応速度の向上がみられ、その効果が確認できた。特に、パラジウムと白金との比率を3:1〜9:1とすることで各パラメータのバランスからみて効率的な合成反応進行がみられることがわかる。 In the evaluation of each numerical value, it is preferable that the hydrogen peroxide concentration, R 0 and S 0 are high. On the other hand, k d indicates the degree to which the decomposition reaction of hydrogen peroxide generated in the synthesis reaction occurs, so that a large value indicates that a saturation point is likely to occur in the synthesis reaction. preferable. From this point of view, the results in Table 1 show that the use of a colloid to which chloroplatinate was added improved the hydrogen peroxide concentration and the reaction rate, although the production selectivity S 0 was reduced. Was confirmed. In particular, it can be seen that when the ratio of palladium to platinum is 3: 1 to 9: 1, efficient synthesis reaction progress can be seen from the balance of each parameter.

実施例2
ここでは、実施例1で製造したPd−PVPコロイドに、各種の貴金属塩を添加した触媒溶液を製造し、過酸化水素の合成反応試験を行なった。ここで使用した貴金属塩は、塩化金(III)酸四水和物、塩化ロジウム(III)三水和物、塩化イリジウム(III)三水和物であり(各1g)、実施例1と同様の貴金属塩溶液を用いた。
Example 2
Here, a catalyst solution in which various noble metal salts were added to the Pd-PVP colloid produced in Example 1 was produced, and a hydrogen peroxide synthesis reaction test was conducted. The precious metal salts used here were gold chloride (III) acid tetrahydrate, rhodium chloride (III) trihydrate, and iridium chloride (III) trihydrate (each 1 g), which was the same as in Example 1. A noble metal salt solution was used.

そして、実施例1と同様の装置、手順にて過酸化水素の合成反応試験を行い評価した。パラジウムと白金との比率は3:1とした。このときの試験結果を表2に示す。   Then, a hydrogen peroxide synthesis reaction test was performed and evaluated using the same apparatus and procedure as in Example 1. The ratio of palladium to platinum was 3: 1. The test results at this time are shown in Table 2.

Figure 0004709954
Figure 0004709954

表2から、貴金属の塩化水素塩の添加・還元により製造された触媒溶液を用いた場合、総合的観点から見て、コロイド単独の場合よりも製造効率が向上することがわかる。   From Table 2, it can be seen that when a catalyst solution produced by addition / reduction of a noble metal hydrogen chloride salt is used, the production efficiency is improved as compared with the case of a colloid alone from a comprehensive viewpoint.

本実施形態で使用した合成装置の構成を示す図。The figure which shows the structure of the synthetic | combination apparatus used by this embodiment.

符号の説明Explanation of symbols

10 水素
20 酸素
30 窒素
100 反応器
101 コロイド溶液
102 ガスクロマトグラフィー
10 Hydrogen 20 Oxygen 30 Nitrogen 100 Reactor 101 Colloidal solution 102 Gas chromatography

Claims (8)

水素と酸素とを反応させる過酸化水素の直接合成法において、
第1の貴金属のコロイド粒子が分散する溶媒に、第2の貴金属の塩を添加した後に還元処理して触媒溶液を製造し、
前記触媒溶液に水素と酸素を通過させて反応させることを特徴とする過酸化水素の直接合成法。
In the direct synthesis method of hydrogen peroxide by reacting hydrogen and oxygen,
A catalyst solution is prepared by adding a second noble metal salt to a solvent in which the colloidal particles of the first noble metal are dispersed and then reducing the mixture;
A method for directly synthesizing hydrogen peroxide, wherein hydrogen and oxygen are allowed to react with the catalyst solution.
第2の貴金属の塩は、塩化水素酸塩又は塩化物である請求項1記載の過酸化水素の直接合成法。 The method for directly synthesizing hydrogen peroxide according to claim 1, wherein the salt of the second noble metal is a hydrochloride or a chloride. 第1の貴金属はパラジウムであり、第2の貴金属は白金である請求項1又は請求項2記載の過酸化水素の直接合成法。 The method for directly synthesizing hydrogen peroxide according to claim 1 or 2, wherein the first noble metal is palladium and the second noble metal is platinum. 触媒溶液中の第1の貴金属と第2の貴金属の存在比率が、質量比で3:1〜9:1である請求項1〜請求項3のいずれか1項記載の過酸化水素の直接合成法。 The direct synthesis of hydrogen peroxide according to any one of claims 1 to 3, wherein the abundance ratio of the first noble metal and the second noble metal in the catalyst solution is 3: 1 to 9: 1 by mass ratio. Law. 貴金属コロイドの保護剤は、ポリビニルピロリドンである請求項1〜請求項4のいずれか1項記載の過酸化水素の直接合成法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 4, wherein the protective agent for the noble metal colloid is polyvinylpyrrolidone. 反応系に無機酸を添加して反応させる請求項1〜請求項5のいずれか1項に記載の過酸化水素の直接合成法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 5, wherein an inorganic acid is added to the reaction system for reaction. 無機酸の添加量は、貴金属コロイド溶液に対して0.001〜1重量%である請求項6記載の過酸化水素の直接合成法。 The method for directly synthesizing hydrogen peroxide according to claim 6, wherein the amount of the inorganic acid added is 0.001 to 1% by weight based on the noble metal colloid solution. 無機酸として、臭化水素及び/又は硫酸を添加する請求項6又は請求項7記載の過酸化水素の直接合成法。

The method for directly synthesizing hydrogen peroxide according to claim 6 or 7, wherein hydrogen bromide and / or sulfuric acid is added as an inorganic acid.

JP2005273694A 2005-09-21 2005-09-21 Direct synthesis of hydrogen peroxide Active JP4709954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273694A JP4709954B2 (en) 2005-09-21 2005-09-21 Direct synthesis of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273694A JP4709954B2 (en) 2005-09-21 2005-09-21 Direct synthesis of hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2007084372A JP2007084372A (en) 2007-04-05
JP4709954B2 true JP4709954B2 (en) 2011-06-29

Family

ID=37971753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273694A Active JP4709954B2 (en) 2005-09-21 2005-09-21 Direct synthesis of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP4709954B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048643B2 (en) * 2008-12-22 2012-10-17 国立大学法人九州大学 Direct production method of hydrogen peroxide using ionic liquid
JP2010243200A (en) * 2009-04-01 2010-10-28 Adeka Corp Measuring method of hydrogen peroxide concentration in hydrogen peroxide-containing aqueous solution
US20130281290A1 (en) * 2010-12-28 2013-10-24 Nippon Sheet Glass Company, Limited Noble metal colloid particles and noble metal colloid solution, and catalyst for oxygen reduction
CN117483004A (en) * 2018-09-13 2024-02-02 三菱瓦斯化学株式会社 Palladium-containing composition and method for producing hydrogen peroxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271000A (en) * 1975-12-10 1977-06-13 Tokuyama Soda Co Ltd Production of hydrogen peroxide
JPS63156005A (en) * 1986-11-19 1988-06-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Manufacture of hydrogen peroxide
JPH03174309A (en) * 1989-09-01 1991-07-29 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
JPH06510514A (en) * 1991-03-05 1994-11-24 ゾルヴァイ アンテロクス Production method of H↓2O↓2 from elements
JPH07503447A (en) * 1992-01-21 1995-04-13 エカ ノーベル アクチェボラーグ Production of hydrogen peroxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271000A (en) * 1975-12-10 1977-06-13 Tokuyama Soda Co Ltd Production of hydrogen peroxide
JPS63156005A (en) * 1986-11-19 1988-06-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Manufacture of hydrogen peroxide
JPH03174309A (en) * 1989-09-01 1991-07-29 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
JPH06510514A (en) * 1991-03-05 1994-11-24 ゾルヴァイ アンテロクス Production method of H↓2O↓2 from elements
JPH07503447A (en) * 1992-01-21 1995-04-13 エカ ノーベル アクチェボラーグ Production of hydrogen peroxide

Also Published As

Publication number Publication date
JP2007084372A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
DK2134468T3 (en) PROCESS FOR THE SYNTHESIS OF METAL cubic nanoparticles in the presence of reducing agents TWO
Naresh et al. Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics
Gu et al. Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes
CN106861681B (en) A kind of method that efficient hydrogen reduction prepares transition metal oxide defect
CN111215060A (en) Preparation of supported platinum group metal monatomic catalyst and application thereof in deoxidation reaction
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
JP5955501B2 (en) Method for producing platinum / palladium core-shell catalyst
JP5451083B2 (en) Platinum black powder, colloid of platinum black and process for producing them
EP3269449A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP5665743B2 (en) Continuous production method of catalyst
JP4709954B2 (en) Direct synthesis of hydrogen peroxide
JP5612050B2 (en) Method for producing metal particle supported catalyst
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP4865250B2 (en) Method for producing exhaust gas treatment catalyst
CN104741118A (en) Preparation method of high-dispersion load type noble metal alloy catalyst
JP2015000398A (en) Production method of platinum core shell catalyst, and fuel cell using the same
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP5071928B2 (en) Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones
JP2020145154A (en) Manufacturing method of platinum core-shell catalyst and fuel cell using the same
Especel et al. Bimetallic Catalysts for Sustainable Chemistry: Surface Redox Reactions For Tuning The Catalytic Surface Composition
EP2944609B1 (en) Method for preparing superoxide-generating composition, and superoxide-generating composition prepared by method
JP5048643B2 (en) Direct production method of hydrogen peroxide using ionic liquid
CN107530684A (en) A kind of catalyst of producing hydrogen peroxide by direct synthesis
CN107405604A (en) Support the manufacture method of the catalyst of the catalyst granules of core/shell structure
CN108014787A (en) The preparation method of high dispersive ball shaped nano metallic catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Ref document number: 4709954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350