Nothing Special   »   [go: up one dir, main page]

JP4705384B2 - Gallium nitride semiconductor device - Google Patents

Gallium nitride semiconductor device Download PDF

Info

Publication number
JP4705384B2
JP4705384B2 JP2005057479A JP2005057479A JP4705384B2 JP 4705384 B2 JP4705384 B2 JP 4705384B2 JP 2005057479 A JP2005057479 A JP 2005057479A JP 2005057479 A JP2005057479 A JP 2005057479A JP 4705384 B2 JP4705384 B2 JP 4705384B2
Authority
JP
Japan
Prior art keywords
layer
type
gallium nitride
type layer
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005057479A
Other languages
Japanese (ja)
Other versions
JP2005286319A (en
Inventor
真人 小早川
秀喜 友澤
久幸 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005057479A priority Critical patent/JP4705384B2/en
Publication of JP2005286319A publication Critical patent/JP2005286319A/en
Application granted granted Critical
Publication of JP4705384B2 publication Critical patent/JP4705384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、発光ダイオード(LED)、レーザーダイオード(LD)やpin型受光素子等のp型窒化ガリウム系半導体層を備えた窒化ガリウム系半導体素子に関する。   The present invention relates to a gallium nitride semiconductor device including a p-type gallium nitride semiconductor layer such as a light emitting diode (LED), a laser diode (LD), or a pin-type light receiving device.

組成式AlXGaYInZN(0≦X,Y,Z≦1、X+Y+Z=1)等で表記される窒化ガリウム(GaN)系半導体材料は、短波長可視光から紫外光領域に相当するエネルギーの直接遷移型のバンドギャップ(band gap)を有するため、従来から、青色、緑色、或いは紫外LEDやLD等のpn接合型構造の発光素子を構成するに利用されている(例えば、特許文献1参照)。 A gallium nitride (GaN) -based semiconductor material represented by a composition formula Al X Ga Y In Z N (0 ≦ X, Y, Z ≦ 1, X + Y + Z = 1) or the like corresponds to a short wavelength visible light to an ultraviolet light region. Since it has a band gap of energy direct transition type, it has been conventionally used to construct a pn junction type light emitting element such as blue, green, or ultraviolet LED or LD (for example, Patent Documents). 1).

pn接合型窒化ガリウム系半導体発光素子を構成するための、p型伝導性のGaN系半導体層は従来から元素周期律表の第II族元素をp型不純物(第II属不純物)として添加して形成されている。例えば、GaN層にイオン注入手段に依り、マグネシウム(Mg)や亜鉛(Zn)等の第II族不純物を添加する技術が既に開示されている(例えば、特許文献2参照)。   A p-type conductive GaN-based semiconductor layer for forming a pn junction type gallium nitride-based semiconductor light-emitting device has conventionally added a group II element of the periodic table of elements as a p-type impurity (group II impurity). Is formed. For example, a technique for adding a Group II impurity such as magnesium (Mg) or zinc (Zn) to the GaN layer by means of ion implantation has already been disclosed (see, for example, Patent Document 2).

第II族不純物を添加した窒化ガリウム系半導体層は、しかしながら、そのままではp型の伝導を呈する良導層とは一般にならない。この原因は、例えば、気相成長時に成長環境から層内に浸透して来る水素(H)が、添加された第II族不純物を電気的に補償し、不活性化させるためとされている。このため、従来では、第II族不純物を添加した窒化ガリウム系半導体層を形成した後、層内の水素を層外へ出来るだけ逸脱させるために熱処理(例えば、特許文献3参照)を施す技術手段が採られている。その他、第II族不純物を電気的に活性化させる技術手段として荷電粒子照射手段が既知である(例えば、特許文献4参照)。
特公昭55− 3834号公報 特開昭51−71590号公報 特開平6−237012号公報 特開昭53−20882号公報
However, a gallium nitride based semiconductor layer doped with a Group II impurity is not generally a good conducting layer exhibiting p-type conduction as it is. This is because, for example, hydrogen (H) penetrating into the layer from the growth environment during vapor phase growth electrically compensates for the added Group II impurities and inactivates them. For this reason, conventionally, after forming a gallium nitride based semiconductor layer to which a Group II impurity is added, a technical means for performing a heat treatment (see, for example, Patent Document 3) in order to deviate hydrogen in the layer as much as possible out of the layer. Has been adopted. In addition, charged particle irradiation means is known as technical means for electrically activating Group II impurities (see, for example, Patent Document 4).
Japanese Patent Publication No. 55-3834 JP 51-71590 A Japanese Patent Laid-Open No. 6-237012 JP-A-53-20882

ところが、第II族元素をp型不純物として添加したGaN系半導体層から殆どの量の水素を除去して得た低抵抗でp型の導電層を利用して、例えば、pn接合型LEDを構成しても、必ずしも良好な整流特性或いは静電耐圧特性が安定して得られるとは限らない。特に、静電耐圧に関しては、p型GaN系半導体層を設けるための基板として、導電性の例えば、珪素(Si)単結晶(シリコン)、炭化珪素(SiC)、及び砒化ガリウム(GaAs)を用いた場合でさえも、必ずしも安定して良好とはならないのが現状である。   However, for example, a pn junction type LED is constructed using a low resistance p-type conductive layer obtained by removing most of hydrogen from a GaN-based semiconductor layer doped with a Group II element as a p-type impurity. Even so, good rectification characteristics or electrostatic withstand voltage characteristics are not always obtained stably. In particular, with regard to electrostatic withstand voltage, conductive substrates such as silicon (Si) single crystal (silicon), silicon carbide (SiC), and gallium arsenide (GaAs) are used as a substrate for providing a p-type GaN-based semiconductor layer. Even if it is, it is not always stable and good.

禁止体幅が広く、且つ高抵抗な層を挿入して、例えば、局所的な耐圧不良(local breakdown)を防止する一手段も考慮される。しかし、この様な高抵抗の層を利用して、例えば、オーミック電極を形成するためのコンタクト(contact)層として利用し、其処にオーミック電極を設けて、例えば、GaN系半導体LEDやLDを構成しても、順方向電圧(Vf)或いは閾値電圧(Vth)が徒に増加してしまう問題点があった。   For example, a means for preventing a local breakdown failure by inserting a high-resistance layer having a wide prohibited body width is also considered. However, such a high resistance layer is used as, for example, a contact layer for forming an ohmic electrode, and an ohmic electrode is provided there, for example, to form a GaN-based semiconductor LED or LD. However, there is a problem that the forward voltage (Vf) or the threshold voltage (Vth) increases easily.

本発明は、上記の様な従来のp型GaN系半導体層を用いて構成された、例えば窒化ガリウム系LEDに於ける静電耐圧の不安定さや例えば、順方向電圧の増加を克服する目的でなされたものである。本発明は、特に、第II族不純物が添加されたGaN系半導体層の内部に含まれる水素を、故意に層外へ除去するのではなく、層内の特定領域においてそのまま層内へ残存させ、尚且つ、特定領域状の層(表層部)には、低抵抗の領域(低抵抗層)を設けて、静電耐圧を向上させた、低順方向電圧等を有するGaN系半導体素子を提供する。   The present invention aims at overcoming the instability of electrostatic withstand voltage and, for example, the increase in forward voltage, for example, in a gallium nitride-based LED configured using the conventional p-type GaN-based semiconductor layer as described above. It was made. In particular, the present invention does not intentionally remove the hydrogen contained inside the GaN-based semiconductor layer to which the Group II impurity is added, but intentionally removes the hydrogen from the outside of the layer. In addition, a low resistance region (low resistance layer) is provided in the specific region layer (surface layer portion) to provide a GaN-based semiconductor element having a low forward voltage and the like with improved electrostatic withstand voltage. .

本発明は上記の課題を解決するためになされたもので以下の各項の発明からなる。
(1)p型不純物を含み、p型の伝導性を示す窒化ガリウム(GaN)系化合物半導体層(p型層)を備えてなる、窒化ガリウム系半導体素子に於いて、p型層は表層部とそれより内部の深底部からなり、深底部はp型不純物と、水素とを共存させた領域であり、p型層の深底部の水素濃度が1×1018cm−3以上不純物濃度以下で、表層部の水素濃度より高く、かつ不純物濃度が1×1018cm−3〜1×1021cm−3であり、p型層の表層部は、不純物濃度が1×1018cm−3〜1×1021cm−3であり、かつIII族構成元素とV族構成元素とを、化学量論的比率からIII族構成元素を富裕とする側にずれた非化学量論的な原子濃度比率で含む領域を有することを特徴とするp型層を含む窒化ガリウム系半導体素子。
(2)p型層の深底部の厚さがp型層の厚さの40〜99.9%である上記(1)に記載の窒化ガリウム系半導体素子。
The present invention has been made to solve the above-described problems, and comprises the inventions of the following items.
(1) In a gallium nitride based semiconductor device including a gallium nitride (GaN) based compound semiconductor layer (p-type layer) containing p-type impurities and exhibiting p-type conductivity, the p-type layer is a surface layer portion. And the deep bottom portion is a region in which p-type impurities and hydrogen coexist, and the hydrogen concentration in the deep bottom portion of the p-type layer is 1 × 10 18 cm −3 or more and less than or equal to the impurity concentration. Higher than the hydrogen concentration of the surface layer portion and the impurity concentration is 1 × 10 18 cm −3 to 1 × 10 21 cm −3 , and the surface layer portion of the p-type layer has an impurity concentration of 1 × 10 18 cm −3 to A non-stoichiometric atomic concentration ratio that is 1 × 10 21 cm −3 , and the group III constituent element and the group V constituent element are shifted from the stoichiometric ratio to the rich side of the group III constituent element. A gallium nitride based semiconductor element including a p-type layer, characterized by having a region including .
(2) The gallium nitride based semiconductor device according to (1), wherein the thickness of the deep bottom portion of the p-type layer is 40 to 99.9% of the thickness of the p-type layer.

(3)III族構成元素とV族構成元素とを、非化学量論的な原子濃度比率で含む領域の厚さがp型層の表面から1〜10nmの範囲である上記(1)または(2)に記載の窒化ガリウム系半導体素子。
(4)p型層の表層部の表面にGa元素が析出していることを特徴とする上記(1)〜(3)のいずれか1項に記載の窒化ガリウム系半導体素子。
(5)p型層の表面に、III族構成元素とV族構成元素とを、非化学量論的な原子濃度比率で含む窒化ガリウム系半導体材料が接合されている、ことを特徴とする上記(1)〜(4)のいずれか1項に記載のp型層を含む窒化ガリウム系半導体素子。
(6)p型不純物を含み、p型の伝導性を示す窒化ガリウム(GaN)系化合物半導体層(p型層)を備えてなる、窒化ガリウム系半導体素子の製造方法に於いて、p型層の表層部をIII族構成元素とV族構成元素とを、化学量論的比率からIII族構成元素を富裕とする側にずれた非化学量論的な原子濃度比率で含む領域とし、かつp型層を不活性雰囲気下または水素ガスを40体積%以下含む不活性雰囲気下で熱処理し、p型層の深底部の水素濃度を表層部の水素濃度より高くして深底部を表層部より高抵抗としたことを特徴とする窒化ガリウム系半導体素子の製造方法。
(7)p型層の深底部の水素濃度が1×1018cm−3以上不純物濃度以下であって、表層部の水素濃度より高く、かつ不純物濃度が1×1018cm−3〜1×1021cm−3であり、p型層の表層部は、不純物濃度が1×1018cm−3〜1×1021cm−3である上記(6)に記載の窒化ガリウム系半導体素子の製造方法。
(3) The above (1) or (3) wherein the thickness of the region containing the group III constituent element and the group V constituent element in a non-stoichiometric atomic concentration ratio is in the range of 1 to 10 nm from the surface of the p-type layer. 2. The gallium nitride based semiconductor device according to 2).
(4) The gallium nitride based semiconductor device described in any one of (1) to (3) above, wherein Ga element is deposited on the surface of the surface layer portion of the p-type layer.
(5) A gallium nitride based semiconductor material containing a group III constituent element and a group V constituent element in a non-stoichiometric atomic concentration ratio is bonded to the surface of the p-type layer. A gallium nitride based semiconductor device including the p-type layer according to any one of (1) to (4).
(6) In a method for manufacturing a gallium nitride based semiconductor device comprising a gallium nitride (GaN) based compound semiconductor layer (p-type layer) containing p-type impurities and exhibiting p-type conductivity, a p-type layer The surface layer of the substrate is a region containing a group III constituent element and a group V constituent element in a non-stoichiometric atomic concentration ratio shifted from a stoichiometric ratio to a richer group III constituent element , and p The mold layer is heat-treated in an inert atmosphere or in an inert atmosphere containing 40% by volume or less of hydrogen gas, and the hydrogen concentration in the deep bottom portion of the p-type layer is made higher than the hydrogen concentration in the surface layer portion, and the deep bottom portion is made higher than the surface layer portion. A method of manufacturing a gallium nitride based semiconductor device, characterized by comprising a resistor.
(7) The hydrogen concentration in the deep bottom portion of the p-type layer is not less than 1 × 10 18 cm −3 and not more than the impurity concentration, is higher than the hydrogen concentration in the surface layer portion, and the impurity concentration is 1 × 10 18 cm −3 to 1 ×. 10 21 cm −3 , and the surface layer portion of the p-type layer has an impurity concentration of 1 × 10 18 cm −3 to 1 × 10 21 cm −3. Method.

本発明に依れば、水素を残留させた高抵抗の領域を層の深底部に内在させ、且つ、その深底部の上方の層の表層部に、非化学量論的な組成を有する領域を設けた、p型不純物を添加したp型GaN系半導体層を利用してGaN系半導体発光素子を形成することとしたので、静電耐圧に優れると共に順方向電圧の低い例えば、GaN系半導体LEDを構成することができる。   According to the present invention, a region having a non-stoichiometric composition is provided in the deep bottom portion of the layer, and the surface layer of the layer above the deep bottom portion has a high resistance region in which hydrogen remains. Since the GaN-based semiconductor light emitting device is formed by using the provided p-type GaN-based semiconductor layer to which a p-type impurity is added, for example, a GaN-based semiconductor LED having excellent electrostatic withstand voltage and low forward voltage is used. Can be configured.

本発明の窒化ガリウム系半導体素子はp型の伝導性を示す窒化ガリウム(GaN)化合物半導体層(p型層)を備えており、そのp型層は表層部とそれよりも内部の深底部からなり、その深底部はp型不純物と共に所定の範囲で水素が共存し、また表層部はIII族構成元素とV族構成とを非化学量論的な原子濃度比率で含む領域を有していることが特徴である。
半導体素子のその他の構成は従来公知のものをそのまま利用することができる。
The gallium nitride based semiconductor device of the present invention includes a gallium nitride (GaN) compound semiconductor layer (p-type layer) exhibiting p-type conductivity, and the p-type layer is formed from a surface layer portion and a deep bottom portion inside thereof. In the deep bottom portion, hydrogen coexists in a predetermined range together with p-type impurities, and the surface layer portion has a region containing a group III constituent element and a group V constituent in a non-stoichiometric atomic concentration ratio. It is a feature.
Conventionally known structures can be used as they are for the other components of the semiconductor element.

本発明におけるp型層はp型GaN系クラッド層、p型GaN系コンタクト層などp型のGaN系層であれば制限なく適用することができ、これらの層の少なくとも一つの層に適用することができる。p型層を、それとは格子整合しない結晶基板上に積層するに際しては、シーディングプロセス(Seeding Process:SP)法(特開2003−243302号公報)と呼ばれる格子不整合結晶エピタキシャル成長技術を好都合に利用できる。
p型層を成長させるには、分子線エピタキシャル(MBE)、有機金属化学的気相堆積(MOCVD)、ハイドライド気相成長(HVPE)などの気相成長手段を利用することができる。GaN系半導体層を構成する窒素の原料(窒素源)としてアンモニア、ヒドラジン、アジ化物などを用いることができる。また、第III族構成元素の原料として、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリメチルアルミニウムなどを用いることができる。
The p-type layer in the present invention can be applied without limitation as long as it is a p-type GaN-based layer such as a p-type GaN-based cladding layer or a p-type GaN-based contact layer, and is applied to at least one of these layers. Can do. When a p-type layer is stacked on a crystal substrate that is not lattice-matched therewith, a lattice-mismatched crystal epitaxial growth technique called a seeding process (SP) method (Japanese Patent Laid-Open No. 2003-243302) is advantageously used. it can.
In order to grow the p-type layer, vapor phase growth means such as molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) can be used. Ammonia, hydrazine, azide, or the like can be used as a nitrogen source (nitrogen source) constituting the GaN-based semiconductor layer. Further, trimethylgallium, triethylgallium, trimethylindium, trimethylaluminum, or the like can be used as a raw material for the Group III constituent element.

p型層の気相成長時に添加するp型不純物(ドーパント)しては、Mg、亜鉛(Zn)、ベリリウム(Be)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、カドミウム(Cd)、及び水銀(Hg)等の第II族元素を例示できる。炭素(C)等の第IV族に属する両性(amphoteric)不純物もあるが(寺本 巌著、「半導体デバイス概論」、(株)培風館、1995年3月30日発行、初版、113頁参照)、Mg等の第II族元素をp型不純物として利用するのが望ましい。   The p-type impurity (dopant) added during the vapor phase growth of the p-type layer is Mg, zinc (Zn), beryllium (Be), calcium (Ca), strontium (Sr), barium (Ba), cadmium (Cd And Group II elements such as mercury (Hg). Although there are amphoteric impurities belonging to Group IV, such as carbon (C) (see Teramoto Satoshi, "Introduction to Semiconductor Devices", Baifukan Co., Ltd., published on March 30, 1995, first edition, page 113), It is desirable to use a Group II element such as Mg as a p-type impurity.

Mg等のp型不純物は、p型層内の表層部と深底部でその濃度は殆ど変わらず大凡1×1018cm-3以上、好ましくは5×1018cm-3以上で、1×1021cm-3以下である。p型層内の表層部には水素は少ないが、深底部には水素がそれ以上含有している。その量は一般的には1×1018cm-3以上、好ましくは1×1018〜1×1020cm-3である。p型層の内部のp型不純物及び水素原子の濃度は、一般的な2次イオン質量分析法(SIMS)、オージェ(Auger)電子分光法(AES)等の分析手段に依り定量できる。 The concentration of p-type impurities such as Mg is almost 1 × 10 18 cm −3 or more, preferably 5 × 10 18 cm −3 or more, and almost 1 × 10 18 cm −3 or more in the surface layer portion and deep bottom portion in the p-type layer. 21 cm −3 or less. The surface layer in the p-type layer contains little hydrogen, but the deep bottom contains more hydrogen. The amount is generally 1 × 10 18 cm −3 or more, preferably 1 × 10 18 to 1 × 10 20 cm −3 . The concentration of p-type impurities and hydrogen atoms inside the p-type layer can be quantified by analysis means such as general secondary ion mass spectrometry (SIMS) and Auger electron spectroscopy (AES).

p型層の深底部を含む全体の膜厚(全厚)は、一般的には0.5μm以下であり、望ましくは、0.2μm以下、更に望ましくは、0.1μm以下である。膜厚の下限は1nm程度である。p型層の全厚は、気相成長時に於ける、成長反応系への第III族構成元素の原料の供給時間を調節すれば、制御できる。p型層の全厚は、例えば、光学顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等の観察より知れる。この様な全厚を有するp型層にあって、本発明では、層内の深底部に敢えて、水素を特定の範囲で残存させる。深底部とはp型層の表面からみた奥部であり、図1の例で示すとコンタクト層107−1の領域である。   The total film thickness (total thickness) including the deep bottom of the p-type layer is generally 0.5 μm or less, desirably 0.2 μm or less, and more desirably 0.1 μm or less. The lower limit of the film thickness is about 1 nm. The total thickness of the p-type layer can be controlled by adjusting the supply time of the Group III constituent elements to the growth reaction system during vapor phase growth. The total thickness of the p-type layer is known, for example, from observation with an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. In the p-type layer having such a total thickness, in the present invention, hydrogen is intentionally left in a specific range at the deep bottom portion in the layer. The deep bottom portion is a back portion viewed from the surface of the p-type layer, and is a region of the contact layer 107-1 as shown in the example of FIG.

添加したp型不純物を電気的に不活性化させるために水素を残存させると、順方向電圧(Vf)や閾値電圧(Vth)が増加することも考えられるが、膜厚が薄いため現実には殆ど影響がない。深底部の厚さは、p型層の厚さに対して、40%以上で99.9%以下の厚さが好ましく、特にp型層の厚さに対し、70%以上で99.9%以下の領域が更に好ましい。p型層内の表層部と深底部の境界面はp型層で最も高い水素濃度の2/3の濃度の位置としSIMSで判別する。   If hydrogen is left to electrically inactivate the added p-type impurity, the forward voltage (Vf) and threshold voltage (Vth) may increase. There is almost no effect. The thickness of the deep bottom is preferably 40% or more and 99.9% or less with respect to the thickness of the p-type layer, and particularly 70% or more and 99.9% with respect to the thickness of the p-type layer. The following regions are more preferable. The boundary surface between the surface layer portion and the deep bottom portion in the p-type layer is determined by SIMS as the position of the concentration of 2/3 of the highest hydrogen concentration in the p-type layer.

p型不純物と電気的に不活性な複合体を形成している殆ど全ての水素を層外へできるだけ逸脱させる従来の熱処理手段は、本発明に係わる深底部の領域に特定量の水素を残存させる技術手段とは異なるものである。
本発明では、p型不純物を添加してp型不純物を含む層を形成したる後、不活性ガスを主体として構成した雰囲気内に於いて熱処理し、特定量のの水素を残存させた領域を形成することができる。
熱処理は、成長を行った成長炉を用いても良い。冷却を開始する温度がp型不純物を含む層の形成温度である場合、冷却速度が大きい程、水素を残存させた領域の厚みは減少する。また、冷却速度が同一である場合、冷却を開始する温度が高温である程、水素を残存させた領域の厚みは減少する。
The conventional heat treatment means for causing almost all the hydrogen forming an electrically inactive complex with the p-type impurity to deviate as much as possible out of the layer allows a specific amount of hydrogen to remain in the deep bottom region according to the present invention. It is different from technical means.
In the present invention, after adding a p-type impurity to form a layer containing the p-type impurity, heat treatment is performed in an atmosphere mainly composed of an inert gas, and a region in which a specific amount of hydrogen remains is left. Can be formed.
For the heat treatment, a grown growth furnace may be used. When the temperature at which the cooling is started is the formation temperature of the layer containing the p-type impurity, the thickness of the region in which hydrogen is left decreases as the cooling rate increases. Further, when the cooling rate is the same, the higher the temperature at which the cooling is started, the smaller the thickness of the region where hydrogen remains.

p型不純物を含む層の冷却は、例えば、窒素(N2)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスと水素(H2)ガスとの混合雰囲気内でも実施できる。水素の体積含有率をより大とする雰囲気中で冷却すると、水素を残存させた領域の厚みをより増加させられる。しかし、水素ガスの体積含有率は40%以下とするのが好適である。水素ガスの含有量を極端に大とすると、雰囲気中からp型不純物を含む層の内部へ入り込み水素の量が増えるため、水素を残存させる領域の厚みを良好に制御するに難を来たす。 The cooling of the layer containing the p-type impurity can be performed in a mixed atmosphere of an inert gas such as nitrogen (N 2 ), argon (Ar), helium (He) and hydrogen (H 2 ) gas, for example. When cooling is performed in an atmosphere in which the volume content of hydrogen is larger, the thickness of the region in which hydrogen remains can be further increased. However, the volume content of hydrogen gas is preferably 40% or less. When the content of hydrogen gas is extremely large, the amount of hydrogen entering the layer containing the p-type impurity from the atmosphere increases, so that it is difficult to control the thickness of the region where the hydrogen remains.

p型層内に特定量の水素を残存させる領域の厚みは、冷却開始温度、冷却速度、及び雰囲気の構成に加え、冷却を行う設備の形状等にも依存して異なるものとなる。このためこれらの条件は一概には規定できないが、MgをドーピングしたGaN層を、その成長温度である1050℃から、窒素95体積%−水素体積5%の混合雰囲気内で、室温に至る迄、冷却する場合、本発明に係わる水素を残存させた領域を形成するに適する冷却速度は、総じて、毎分40℃以上で120℃以下である。アルミニウム(Al)を含む例えば、AlXGaYN(0<X,Y<1,X+Y=1)層の場合、冷却速度はより小さい(遅い)場合も許容される。
冷却速度並びに冷却する際の雰囲気ガスの構成を変化させても、p型層内に添加されたp型不純物の原子濃度の分布は、然して変化しない。
The thickness of the region in which the specific amount of hydrogen remains in the p-type layer varies depending on the cooling start temperature, the cooling rate, the configuration of the atmosphere, and the shape of the facility for cooling. Therefore, these conditions cannot be defined unconditionally, but the Mg-doped GaN layer is grown from 1050 ° C., which is the growth temperature, to room temperature in a mixed atmosphere of 95% by volume of nitrogen and 5% by volume of hydrogen. In the case of cooling, the cooling rate suitable for forming the region in which hydrogen is left according to the present invention is generally 40 ° C. or more and 120 ° C. or less per minute. For example, in the case of an Al x Ga y N (0 <X, Y <1, X + Y = 1) layer containing aluminum (Al), the cooling rate may be smaller (slower).
Even if the cooling rate and the structure of the atmospheric gas at the time of cooling are changed, the atomic concentration distribution of the p-type impurity added in the p-type layer does not change.

p型層の層内の全てに水素を残存させると、また低い接触抵抗のオーミック電極の形成を阻害する。これらのことから、p型層を、オーミック電極を形成するためのコンタクト(contact)層等として利用する場合、水素を残留させる領域を深部に設け、一方で表面側は低抵抗としたp型層を用いるのが好都合である。   If hydrogen remains in all the layers of the p-type layer, formation of an ohmic electrode having a low contact resistance is also inhibited. From these facts, when the p-type layer is used as a contact layer for forming an ohmic electrode, a p-type layer in which a region where hydrogen remains is provided in a deep portion while the surface side has a low resistance. Is convenient to use.

本発明ではp型層内の表面部を低抵抗化(低い順方向電圧)するために表層部の少なくとも一部の領域をIII族元素とV族元素とを非化学量論的な比率で含む層とする。非化学量論的とは、例えばGaNの場合、GaとNの元素比率が1:1からずれていることを云う。化学量論的に組成のずれた低抵抗層は、p型層の表面から深さにして1nmから10nmの範囲に設けるのが望ましい。そして化学量論的な組成は、第III族構成元素を富裕とする側にずれているのが望ましく、さらに表面の1%以上から全面の領域においてGa元素が析出しているのが好ましい。本発明においてGaとNの組成比のずれはGaN化合物としての組成のずれの外、上記のGa元素の析出により、表層部全体として組成がずれる場合も含む。GaNから構成するにあって、化学量論的組成から、ガリウム(Ga)を富裕とする側にずれた組成の低抵抗のp型GaNから低抵抗層を構成する。   In the present invention, in order to reduce the resistance of the surface portion in the p-type layer (low forward voltage), at least a part of the surface layer portion includes a group III element and a group V element in a non-stoichiometric ratio. Layer. Non-stoichiometric means that, for example, in the case of GaN, the element ratio of Ga and N deviates from 1: 1. The low resistance layer having a stoichiometrically shifted composition is desirably provided in a range from 1 nm to 10 nm in depth from the surface of the p-type layer. The stoichiometric composition is desirably shifted toward the rich side of the Group III constituent elements, and Ga elements are preferably deposited in the entire region from 1% or more of the surface. In the present invention, the deviation of the composition ratio of Ga and N includes not only the deviation of the composition as the GaN compound but also the case where the composition of the entire surface layer portion is shifted due to the precipitation of the Ga element. The low-resistance layer is formed of p-type GaN having a composition shifted from the stoichiometric composition toward the gallium (Ga) rich side.

p型層の表層部に化学量論的組成からずれたp型の低抵抗層を設けるには、例えば、MOCVD法等の気相成長手段によっても形成できる。例えば、p型不純物を含むp型GaN系半導体層を気相成長させるに併せて、所謂、V/III比率を変化させて形成できる。例えば、V/III比率が小となる様に、成長反応系へのV族構成元素の供給量を一定に保ちつつ、一方でIII族構成元素の供給量を増加させて、p型層の低抵抗層を形成する。逆に、III族構成元素の供給量を一定に保ちつつ、V族構成元素の供給量を減少させて、p型層の低抵抗層を形成する。   In order to provide a p-type low resistance layer deviating from the stoichiometric composition in the surface layer portion of the p-type layer, for example, it can also be formed by vapor phase growth means such as MOCVD. For example, it can be formed by changing the so-called V / III ratio in conjunction with vapor phase growth of a p-type GaN-based semiconductor layer containing a p-type impurity. For example, the supply amount of the group V constituent element to the growth reaction system is kept constant so that the V / III ratio becomes small, while the supply amount of the group III constituent element is increased to reduce the p-type layer. A resistance layer is formed. Conversely, the p-type low resistance layer is formed by reducing the supply amount of the group V constituent element while keeping the supply amount of the group III constituent element constant.

本発明の半導体素子はp型層の表面に、さらに化学量論的組成のずれた例えばp型GaN系半導体層を設けることができる。その方法としては例えば、予め化学量論的な組成からずらして得たターゲット材料や蒸着材料を使用して、一般的な高周波スパッタリング手段や蒸着手段で接合させる方法が挙げられる。また、MBE手段などを利用して、Gaを窒素より多量に供給しつつ、p型層の表面に化学量論的素子のずれたp型GaN系半導体層を成長させても良い。p型層内或いはp型層の表面に設けたIII族元素とV族元素の化学量論的なずれの量は、ごく僅かである。   In the semiconductor element of the present invention, for example, a p-type GaN-based semiconductor layer having a stoichiometric composition shifted can be provided on the surface of the p-type layer. As the method, for example, a target material or vapor deposition material obtained by shifting from the stoichiometric composition in advance is used, and bonding is performed by a general high-frequency sputtering means or vapor deposition means. Further, a p-type GaN-based semiconductor layer with a stoichiometric element shifted may be grown on the surface of the p-type layer while supplying Ga more than nitrogen using MBE means. The amount of stoichiometric deviation between the group III element and the group V element provided in the p-type layer or on the surface of the p-type layer is very small.

p型層の表面に接合させる非化学量論的な組成の材料は、p型層と同一のGaN系半導体材料と同一の材料から構成する必要は必ずしもない。例えば、水素原子を残留させてなる高抵抗の領域を内包するp型AlXGaYN(0≦X,Y≦1,X+Y=1)層の表面に、例えば、非化学量論的な組成のp型燐化硼素(BP)系化合物半導体層を接合させても構わない。その他にGaN、AlGaNなども使用できる。特に、III族元素である硼素(B)を燐(P)に対し富裕に含む、単量体の燐化硼素(BP)からはアンドープで低抵抗のp型導電層を容易に構成できるので便利である。このBP等の厚さは0.01μm〜1μmが好ましい。
前述したp型層の表面に化学量論的に組成のずれたp型のGaN系半導体層を設ける方法は、またBP層の表層部の生成に用いることも可能である。
The material having a non-stoichiometric composition to be bonded to the surface of the p-type layer is not necessarily composed of the same material as the GaN-based semiconductor material same as that of the p-type layer. For example, a non-stoichiometric composition is formed on the surface of a p-type Al x Ga y N (0 ≦ X, Y ≦ 1, X + Y = 1) layer including a high resistance region in which hydrogen atoms remain. The p-type boron phosphide (BP) compound semiconductor layer may be bonded. In addition, GaN, AlGaN, etc. can be used. In particular, monomeric boron phosphide (BP) containing boron (B), which is a group III element rich in phosphorus (P), can be easily constructed as an undoped, low-resistance p-type conductive layer. It is. The thickness of this BP is preferably 0.01 μm to 1 μm.
The above-described method of providing a p-type GaN-based semiconductor layer having a stoichiometrically shifted composition on the surface of the p-type layer can also be used for generating the surface layer portion of the BP layer.

表層部を非化学当量的組成として低抵抗化した領域、或いは表面に接合させた非化学量論的な組成の低抵抗層は、その上に、低接触抵抗のp型オーミック電極を形成する上で優位に作用する。従って、順方向電圧の低いLEDを供給するのに効果がある。なお、この効果は金属によって限定されず、知りうるあらゆる金属に対して優位に作用する。   The low-resistance layer having a non-stoichiometric composition in which the surface layer portion has a low resistance with a non-stoichiometric composition or a non-stoichiometric composition bonded to the surface forms a p-type ohmic electrode with a low contact resistance thereon. It works preferentially. Therefore, it is effective to supply an LED having a low forward voltage. In addition, this effect is not limited by a metal, but acts preferentially on any known metal.

本発明のIII族窒化物p型半導体およびその製造方法は、各種半導体素子の製造に用いることができる。例えば、発光ダイオードやレーザーダイオードなどの半導体発光素子の他、各種高速トランジスターや受光素子などIII族窒化物p型半導体を必要とする半導体素子の製造であるなら、どのような半導体素子の製造にも用いることが可能である。これら各種半導体素子の中でも、pn接合の形成と良好な特性の正極の形成を必要とする半導体発光素子の製造に特に好適に用いることができる。   The group III nitride p-type semiconductor and the manufacturing method thereof of the present invention can be used for manufacturing various semiconductor devices. For example, in addition to semiconductor light-emitting elements such as light-emitting diodes and laser diodes, any semiconductor element such as various high-speed transistors and light-receiving elements that require group III nitride p-type semiconductors can be manufactured. It is possible to use. Among these various semiconductor elements, it can be particularly suitably used for the production of a semiconductor light emitting element that requires formation of a pn junction and formation of a positive electrode with good characteristics.

本発明のIII族窒化物p型半導体およびその製造方法を用いて製造したIII族窒化物半導体発光素子の構造の一例を示すと、基板上に必要に応じてバッファ層を介し、III族窒化物のn型半導体層、発光層およびp型半導体層を順次積層し、n型半導体層に負極を、p型半導体層に正極をそれぞれ設ける。ここで、最表面のp型の半導体層は、本発明で説明する構造をとる。   An example of the structure of a group III nitride semiconductor light-emitting device manufactured using the group III nitride p-type semiconductor of the present invention and the method for manufacturing the group III nitride semiconductor is shown as follows. The n-type semiconductor layer, the light emitting layer, and the p-type semiconductor layer are sequentially stacked, and the negative electrode is provided in the n-type semiconductor layer and the positive electrode is provided in the p-type semiconductor layer. Here, the p-type semiconductor layer on the outermost surface has a structure described in the present invention.

素子基板には、サファイア、SiC、GaN、AlN、Si、ZnO等その他の酸化物基板等従来公知の材料を何ら制限なく用いることができる。好ましくはサファイアである。バッファ層は、基板とその上に成長させるn型半導体層との格子不整合を調整するために必要に応じて設けられる。従来公知のバッファ層技術が必要に応じて用いられる。   Conventionally known materials such as sapphire, SiC, GaN, AlN, Si, ZnO and other oxide substrates can be used for the element substrate without any limitation. Sapphire is preferable. The buffer layer is provided as necessary in order to adjust the lattice mismatch between the substrate and the n-type semiconductor layer grown thereon. Conventionally known buffer layer technology is used as needed.

n型半導体層の組成および構造は、この技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。通常、n型半導体層は負極と良好なオーミック接触が得られるコンタクト層と発光層よりも大きなバンドギャップエネルギーを有するクラッド層からなる。負極もこの技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。   The composition and structure of the n-type semiconductor layer may be set to a desired composition and structure using well-known techniques well known in this technical field. Usually, the n-type semiconductor layer is composed of a contact layer capable of obtaining good ohmic contact with the negative electrode and a cladding layer having a larger band gap energy than the light emitting layer. The negative electrode may also have a desired composition and structure using known techniques well known in the art.

発光層も、単一量子井戸構造(SQW)および多重量子井戸構造(MQW)等従来公知の組成および構造を何ら制限なく用いることができる。   For the light emitting layer, a conventionally known composition and structure such as a single quantum well structure (SQW) and a multiple quantum well structure (MQW) can be used without any limitation.

p型半導体層は本発明の製造方法によって表層部と深底部が形成される。それ以外の組成および構造については、この技術分野でよく知られている公知の技術を用いて所望の組成および構造にすればよい。通常、n型半導体層と同様、正極と良好なオーミック接触が得られるコンタクト層と発光層よりも大きなバンドギャップエネルギーを有するクラッド層からなる。   The p-type semiconductor layer has a surface layer portion and a deep bottom portion formed by the manufacturing method of the present invention. About another composition and structure, what is necessary is just to make it a desired composition and structure using the well-known technique well known in this technical field. Usually, like an n-type semiconductor layer, it consists of a clad layer which has a larger band gap energy than a light emitting layer and a contact layer that provides good ohmic contact with the positive electrode.

本発明の方法で作製したp型層に接触させる正極の材料としては、Au、Ni、Co、Cu、Pd、Pt、Rh、Os、Ir、Ruなどの金属を用いることができる。また、ITOやNiO、CoOなどの透明酸化物を含んでも構わない。透明酸化物を含む形態としては、塊として上記金属膜中に含んでも良いし、層状として上記金属膜と重ねて形成しても良い。   As the positive electrode material to be brought into contact with the p-type layer produced by the method of the present invention, metals such as Au, Ni, Co, Cu, Pd, Pt, Rh, Os, Ir, and Ru can be used. Moreover, you may include transparent oxides, such as ITO, NiO, and CoO. As a form containing a transparent oxide, you may include in the said metal film as a lump, and you may form in a layer form and overlap with the said metal film.

特に、Pd、Pt、Rh、Os、Ir、Ru、などの白金族金属を正極材料として用いた場合に本発明を使用すると、ボンディングの際の熱による駆動電圧の上昇を防ぐことができるので、より大きな効果を発揮する。中でも、Pd、Pt、Rhは高純度のものが比較的容易に入手することができ、使用しやすい。   In particular, when the present invention is used when a platinum group metal such as Pd, Pt, Rh, Os, Ir, Ru, etc. is used as a positive electrode material, an increase in driving voltage due to heat during bonding can be prevented. Greater effect. Among them, high purity Pd, Pt, and Rh can be obtained relatively easily and are easy to use.

本発明の方法で作製したp型層に接触させる材料は、ITOやZnO、SnO、InOなどの透明材料であっても良い。これらの透明導電性材料は、一般に金属の薄膜よりも良好な透光性を示すため、透明電極としてはむしろ積極的に使用したい材料である。
しかしこれまで、これらの材料の導電型はn型であり、p型のGaNとは接触させてもオーミック接触を形成できなかった。本発明の技術を用いることにより、これらの導電性の透明材料とオーミック接触を実現することができる。
The material brought into contact with the p-type layer produced by the method of the present invention may be a transparent material such as ITO, ZnO, SnO, or InO. Since these transparent conductive materials generally exhibit better translucency than a metal thin film, they are materials that are desired to be actively used as transparent electrodes.
However, until now, the conductivity type of these materials is n-type, and ohmic contact could not be formed even if they were brought into contact with p-type GaN. By using the technique of the present invention, ohmic contact with these conductive transparent materials can be realized.

また、正極はほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。正極を形成した後に、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。   The positive electrode may be formed so as to cover almost the entire surface, or may be formed in a lattice shape or a tree shape with a gap. After forming the positive electrode, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.

素子の形態としては、透明正極を用いて半導体側から発光を取り出す、いわゆるフェイスアップ(FU)型としても良いし、反射型の正極を用いて基板側から発光を取り出す、いわゆるフリップチップ(FC)型としても良い。
(作用)
p型不純物を添加したGaN系半導体層内に残存させた水素は、同層の内部に高抵抗の領域を創出する作用を有し、耐静電圧特性を向上させる。
残存させた水素によって形成される高抵抗領域の上方のp型層の表層部に設けた非化学量論的な組成からなるIII−V族元素層は、表層部を低抵抗化させる作用を有する。
p型層の表面に接合させて設けた非化学量論的な組成からなるIII−V族元素層は、電極の接触抵抗を低下させる作用を有する。
As a form of the element, a so-called face-up (FU) type in which light emission is extracted from the semiconductor side using a transparent positive electrode, or so-called flip chip (FC) in which light emission is extracted from the substrate side using a reflection type positive electrode. It is good as a type.
(Function)
The hydrogen remaining in the GaN-based semiconductor layer to which the p-type impurity is added has an action of creating a high resistance region inside the same layer, and improves the withstand voltage characteristics.
The group III-V element layer having a non-stoichiometric composition provided in the surface layer portion of the p-type layer above the high resistance region formed by the remaining hydrogen has an action of reducing the resistance of the surface layer portion. .
The group III-V element layer having a non-stoichiometric composition provided bonded to the surface of the p-type layer has an action of reducing the contact resistance of the electrode.

(実施例1)
本実施例では、p型層内に水素を残留させた領域(深底部)と、非化学量論的組成からなる領域を含む表層部を設けたp型GaN系半導体層を用いてGaN系半導体LEDを構成する場合を例にして本発明の内容を具体的に説明する。
Example 1
In this example, a p-type GaN-based semiconductor layer using a p-type GaN-based semiconductor layer provided with a region (deep bottom portion) in which hydrogen remains in the p-type layer and a surface layer portion including a region having a non-stoichiometric composition is used. The contents of the present invention will be described specifically with reference to the case of configuring an LED.

図1に本実施例に記載のLEDを作製するために使用した積層構造体11の断面模式図を示す。また、図2には、積層体11の上に電極を付けたLED10の平面模式図を示す。   FIG. 1 is a schematic cross-sectional view of a laminated structure 11 used for manufacturing the LED described in this example. FIG. 2 shows a schematic plan view of the LED 10 in which electrodes are attached on the laminate 11.

積層構造体11は、基板101としたサファイアのc面((0001)結晶面)上に、順次、アンドープGaN層(層厚=2μm)102、珪素(Si)ドープn型GaN層(層厚=2μm、キャリア濃度=1×1019cm-3)103、Siドープn型Al0.07Ga0.93Nクラッド層(層厚=12.5nm、キャリア濃度=1×1018cm-3)104、6層のSiドープGaN障壁層(層厚=14.0nm、キャリア濃度=1×1018cm-3)と5層のアンドープIn0.20Ga0.80Nの井戸層(層厚=2.5nm)から多重量子構造の発光層105、Mgドープp型Al0.07Ga0.93Nクラッド層(層厚=10nm)106、及びMgドープGaNコンタクト層(層厚=100nm)107を積層して構成した。上記の積層構造体11の各構成層102〜107は、一般的な減圧MOCVD手段で成長させた。 The laminated structure 11 has an undoped GaN layer (layer thickness = 2 μm) 102 and a silicon (Si) doped n-type GaN layer (layer thickness = layer thickness = sequentially on the c-plane ((0001) crystal plane) of sapphire as the substrate 101. 2 μm, carrier concentration = 1 × 10 19 cm −3 ) 103, Si-doped n-type Al 0.07 Ga 0.93 N cladding layer (layer thickness = 12.5 nm, carrier concentration = 1 × 10 18 cm −3 ) 104, 6 layers From a Si-doped GaN barrier layer (layer thickness = 14.0 nm, carrier concentration = 1 × 10 18 cm −3 ) and five undoped In 0.20 Ga 0.80 N well layers (layer thickness = 2.5 nm) The light emitting layer 105, the Mg-doped p-type Al 0.07 Ga 0.93 N clad layer (layer thickness = 10 nm) 106, and the Mg-doped GaN contact layer (layer thickness = 100 nm) 107 were laminated. Each of the constituent layers 102 to 107 of the laminated structure 11 was grown by a general low pressure MOCVD means.

特に、MgドープGaNコンタクト層107は以下の手順に依り成長させた。
(1)MgドープのAl0,07Ga0.98Nクラッド層106の成長が終了した後、成長反応炉内の圧力を2×104パスカル(Pa)とした。
(2)トリメチルガリウム((CH33Ga)とアンモニア(NH3)を原料とし、ビスシクロペンタマグネシウム(bis−(C552Mg)をMgのドーピング源として、1050℃でMgドープGaN層の気相成長を開始した。
(3)トリメチルガリウムとアンモニアとMgのドーピング源とを、成長反応炉内へ4分間に亘り継続して供給して、層厚を80nmとするMgドープp型GaN層を成長させた。この際、V/III(=NH3/(CH33Ga)比率は1.9×104とした。これにより深底部107−1を形成した。
(4)次に、トリメチルガリウムの供給量を変化させずに、アンモニアの流量を急激に減少させて、V/III比率を9×103とし、30秒間に亘り成長を継続して、Gaを富裕とする非化学量論的な組成のGaN層を表層部107−2として成長させた。
(5)トリメチルガリウムとbis−(C552Mgの成長反応炉内への供給を停止し、Mgドープp型GaN層の成長を停止した。
In particular, the Mg-doped GaN contact layer 107 was grown according to the following procedure.
(1) After the growth of the Mg-doped Al 0,07 Ga 0.98 N cladding layer 106 was completed, the pressure in the growth reactor was set to 2 × 10 4 pascals (Pa).
(2) Trimethylgallium ((CH 3 ) 3 Ga) and ammonia (NH 3 ) as raw materials, biscyclopentamagnesium (bis- (C 5 H 5 ) 2 Mg) as Mg doping source, and Mg at 1050 ° C. Vapor phase growth of the doped GaN layer was started.
(3) A trimethylgallium, ammonia, and Mg doping source was continuously supplied into the growth reactor for 4 minutes to grow a Mg-doped p-type GaN layer having a layer thickness of 80 nm. At this time, the V / III (= NH 3 / (CH 3 ) 3 Ga) ratio was set to 1.9 × 10 4 . Thereby, the deep bottom part 107-1 was formed.
(4) Next, without changing the supply amount of trimethylgallium, the flow rate of ammonia is sharply decreased to set the V / III ratio to 9 × 10 3, and the growth is continued for 30 seconds, so that Ga is reduced. A rich non-stoichiometric GaN layer was grown as a surface layer 107-2.
(5) The supply of trimethylgallium and bis- (C 5 H 5 ) 2 Mg into the growth reactor was stopped, and the growth of the Mg-doped p-type GaN layer was stopped.

Mgドープp型GaN層107の気相成長を終了させた後、直ちに、基板101の加熱するために利用していた、高周波誘導加熱式ヒータへの通電を停止した。これより、各構成層102〜107を気相成長させた成長反応炉内で積層構造体11を1050℃から冷却し始めた。冷却時の雰囲気は、積層構造体11の各構成層を気相成長させるに使用した水素キャリアガスに、窒素を混合させて構成した。窒素と水素の混合比率は、体積比率で95:5とした。1050℃から室温に至る迄、平均して毎分50℃の速度で降温した。   Immediately after the vapor phase growth of the Mg-doped p-type GaN layer 107 was terminated, energization to the high frequency induction heating type heater used to heat the substrate 101 was stopped. Thus, the laminated structure 11 began to be cooled from 1050 ° C. in the growth reactor in which the constituent layers 102 to 107 were vapor-phase grown. The atmosphere during cooling was configured by mixing nitrogen into the hydrogen carrier gas used for vapor phase growth of each constituent layer of the laminated structure 11. The mixing ratio of nitrogen and hydrogen was 95: 5 by volume ratio. The temperature was decreased at an average rate of 50 ° C. from 1050 ° C. to room temperature.

室温迄、冷却後、成長反応炉より積層構造体11を取り出し、MgドープGaN層107内でのマグネシウム及び水素の原子濃度を一般的なSIMS分析法で定量した。Mg原子は、7×1019cm-3の濃度で、表面から深さ方向に略一定の濃度で分布していた。一方、水素原子は、表層で多少、少なくなっているものの、表面から深さ30nmより深部では6×1019cm-3の略一定の濃度で存在していた。このため、この領域では、殆どのMg原子が水素原子に因り電気的に不活性化されているため、高抵抗となっていた。MgドープGaN層107の表層部の表面にはGa元素が析出しており、これを含めて表層部にはGaとNの元素比率が1:1よりGaが多くなっていた。Ga元素が表面に析出していることにより、電極との接触抵抗を下げることもできた。 After cooling to room temperature, the laminated structure 11 was taken out from the growth reactor, and the atomic concentrations of magnesium and hydrogen in the Mg-doped GaN layer 107 were quantified by a general SIMS analysis method. Mg atoms were distributed at a concentration of 7 × 10 19 cm −3 at a substantially constant concentration in the depth direction from the surface. On the other hand, although hydrogen atoms were somewhat reduced in the surface layer, they existed at a substantially constant concentration of 6 × 10 19 cm −3 at a depth of 30 nm from the surface. For this reason, in this region, most of the Mg atoms are electrically inactivated due to the hydrogen atoms, so that the resistance is high. Ga element was deposited on the surface of the surface portion of the Mg-doped GaN layer 107, and the elemental ratio of Ga and N was more than 1: 1 in the surface layer portion including this. Since the Ga element was deposited on the surface, the contact resistance with the electrode could be lowered.

上記のMgドープp型GaN層107を備えた積層構造体11を用いてLED10を作製した。先ず、n型オーミック電極108を形成する予定の領域に一般的なドライエッチングを施し、その領域に限り、SiドープGaN層103の表面を露出させた。露出させた表面部分には、チタン(Ti)/アルミニウム(Al)を重層させてなるn型オーミック電極108を形成した。その他の領域に在る、表層部を、Gaを富裕とする非化学量論的な組成とするMgドープp型GaN層107の表面の略全域には、発光層からの発光をサファイア基板101側へ反射する機能を持たせた、白金(Pt)膜/ロジウム(Rh)膜/金(Au)膜を重層させたp型オーミック電極109を形成した。Mgドープp型GaN層107の表面と接触する金属膜は白金膜とした。   An LED 10 was fabricated using the multilayer structure 11 including the Mg-doped p-type GaN layer 107 described above. First, general dry etching was performed on a region where the n-type ohmic electrode 108 is to be formed, and the surface of the Si-doped GaN layer 103 was exposed only in that region. An n-type ohmic electrode 108 formed by stacking titanium (Ti) / aluminum (Al) was formed on the exposed surface portion. In the other region, the surface layer portion has a non-stoichiometric composition enriched in Ga, and the light is emitted from the light emitting layer to the sapphire substrate 101 side substantially over the entire surface of the Mg-doped p-type GaN layer 107. A p-type ohmic electrode 109 having a platinum (Pt) film / rhodium (Rh) film / gold (Au) film layered thereon was formed. The metal film in contact with the surface of the Mg-doped p-type GaN layer 107 was a platinum film.

p型及びn型のオーミック電極108,109を形成した後、サファイア基板101の裏面を、ダイヤモンド微粒などの砥粒を使用して研削し、基板101を約350μmから約85μmに薄板化した。最終的には、精密研磨により基板裏面を鏡面に仕上げた。その後、積層構造体11を裁断し、350μm角の正方形の個別のLED10へと分離した。次に、サブマウントに、オーミック電極108,109を各々、接着して、フリップ(flip)型のチップとした。更にそれをリードフレーム上に載置した後、金(Au)線でリードフレームと結線した。   After the p-type and n-type ohmic electrodes 108 and 109 were formed, the back surface of the sapphire substrate 101 was ground using abrasive grains such as diamond fine grains, and the substrate 101 was thinned from about 350 μm to about 85 μm. Finally, the back surface of the substrate was mirror finished by precision polishing. Thereafter, the laminated structure 11 was cut and separated into individual square LEDs 10 having a 350 μm square. Next, ohmic electrodes 108 and 109 were bonded to the submount to form a flip chip. Further, after placing it on the lead frame, it was connected to the lead frame with a gold (Au) wire.

フリップ型にマウントしたLEDのp側およびn側のオーミック電極108,109間に順方向電流を流して電気的特性及び発光特性を評価した。順方向電流を20mAとした際の順方向電圧(Vf)は3.1Vであった。また、サファイア基板101より外部へ透過して来る発光の波長は455nmであった。また、一般的な積分球で測定された発光出力は10mWであった。この様な特性を示すLEDは、直径2インチの円形基板101の略全面に形成された外観不良品を除く約10000個のLEDについて、ばらつきなく得られた。   A forward current was passed between the p-side and n-side ohmic electrodes 108 and 109 of the LED mounted in a flip type, and the electrical characteristics and the light emission characteristics were evaluated. The forward voltage (Vf) when the forward current was 20 mA was 3.1V. The wavelength of light emitted from the sapphire substrate 101 to the outside was 455 nm. The light emission output measured with a general integrating sphere was 10 mW. The LEDs having such characteristics were obtained with no variation for about 10,000 LEDs excluding defective products formed on substantially the entire surface of the circular substrate 101 having a diameter of 2 inches.

また、LED10について、簡易な静電破壊試験を実施した。静電気が突発的に印加されるのを想定して、パルス(plus)電圧を電極間に瞬間的に加え、その後、逆方向での電極間ショート(短絡)の有無を調査した。100個の検体の内、1000Vのパルス電圧印加で破壊されるLEDチップは、1個であった。即ち、逆方向電圧(Vr)の不良発生率は、1%であった。   Moreover, the simple electrostatic breakdown test was implemented about LED10. Assuming that static electricity is suddenly applied, a pulse voltage was instantaneously applied between the electrodes, and then the presence or absence of a short circuit between the electrodes in the reverse direction was investigated. Among 100 specimens, one LED chip was destroyed by applying a 1000 V pulse voltage. That is, the defect occurrence rate of the reverse voltage (Vr) was 1%.

(実施例2)
実施例2では、実施例1に記載したのと同一の積層構造体の表面に、非化学量論的な組成を有する材料を接合させて設けて、LEDを構成する場合を例にして、本発明の内容を説明する。
(Example 2)
In Example 2, an example in which an LED is configured by bonding a material having a non-stoichiometric composition to the surface of the same stacked structure described in Example 1 is described. The contents of the invention will be described.

図3に、本実施例に記載のLED20の断面模式図を示す。図1及び図2に掲示したのと同一の構成要素については同一の符号を付して、その説明を省略する。   In FIG. 3, the cross-sectional schematic diagram of LED20 as described in a present Example is shown. The same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.

Mgドープp型GaN層107の気相成長を終了させた後、直ちに、基板101の加熱するために利用していた、高周波誘導加熱式ヒータへの通電を停止した。これより、各構成層102〜107を気相成長させた成長反応炉内で積層構造体11を1050℃から冷却し始めた。冷却時の雰囲気は、積層構造体11の各構成層を気相成長させるに使用した水素キャリアガスに、窒素を混合させて構成した。窒素と水素の混合比率は、体積比率で9:1とした。1050℃から850℃に至る迄、毎分120℃の速度で降温した。   Immediately after the vapor phase growth of the Mg-doped p-type GaN layer 107 was terminated, energization to the high frequency induction heating type heater used to heat the substrate 101 was stopped. Thus, the laminated structure 11 began to be cooled from 1050 ° C. in the growth reactor in which the constituent layers 102 to 107 were vapor-phase grown. The atmosphere during cooling was configured by mixing nitrogen into the hydrogen carrier gas used for vapor phase growth of each constituent layer of the laminated structure 11. The mixing ratio of nitrogen and hydrogen was 9: 1 by volume ratio. The temperature was decreased from 1050 ° C. to 850 ° C. at a rate of 120 ° C. per minute.

次に、積層構造体11の温度を850℃に保持したままで、一般的な常圧(略大気圧)MOCVD手段により、Mgドープp型GaN層107の表面に、アンドープの燐化硼素(BP)層110を気相成長させた。燐化硼素層110は、トリエチル硼素((C253B)とホスフィン(PH3)ガスを原料として成長させた。成長時のV/III比率(=PH3/(C253B比率)は、硼素(B)を富裕とする燐化硼素層110を形成するため、10とした。アンドープの燐化硼素層110はp型の伝導を呈し、室温でのキャリア(正孔)濃度は1×1019cm-3で、抵抗率は5×10-2Ω・cmの低抵抗層となった。燐化硼素層110の化学量論的からのずれは、格子定数の差異からして0.5%程度であった。非化学量論的な組成のアンドープの燐化硼素層110の層厚は、0.1μmとした。 Next, while maintaining the temperature of the laminated structure 11 at 850 ° C., an undoped boron phosphide (BP) is formed on the surface of the Mg-doped p-type GaN layer 107 by a general atmospheric pressure (substantially atmospheric pressure) MOCVD means. ) Layer 110 was vapor grown. The boron phosphide layer 110 was grown using triethyl boron ((C 2 H 5 ) 3 B) and phosphine (PH 3 ) gas as raw materials. The V / III ratio (= PH 3 / (C 2 H 5 ) 3 B ratio) at the time of growth was set to 10 in order to form the boron phosphide layer 110 rich in boron (B). The undoped boron phosphide layer 110 exhibits p-type conduction, a carrier (hole) concentration at room temperature is 1 × 10 19 cm −3 , and a resistivity is 5 × 10 −2 Ω · cm. became. The deviation from the stoichiometric amount of the boron phosphide layer 110 was about 0.5% due to the difference in lattice constant. The layer thickness of the undoped boron phosphide layer 110 having a non-stoichiometric composition was 0.1 μm.

SIMS分析に依れば、水素原子は、Mgドープp型GaN層107の表面から深さ15nmまでは3×1019cm-3で、深さ15nmより深部では6×1019cm-3の略一定の濃度で存在していた。一方、Mg原子は、同層107の表面から深さ方向に略一定の7×1019cm-3の濃度で存在した。即ち、下層106との接合界面から層厚の増加方向に85nmの厚さに至るMgドープp型GaN層107の深底部には、Mgと水素の原子が略同一の濃度で存在する高抵抗領域が形成されていた。Mgドープp型GaN層107の電流−電圧(I−V)特性から高抵抗領域の抵抗率は約10Ω・cmであると推定された。 According to SIMS analysis, a hydrogen atom, stands for Mg-doped p-type GaN layer from the 107 surface to a depth 15nm is 3 × 10 19 cm -3, a deeper than the depth 15nm 6 × 10 19 cm -3 It was present at a constant concentration. On the other hand, Mg atoms were present at a substantially constant concentration of 7 × 10 19 cm −3 in the depth direction from the surface of the same layer 107. That is, in the deep bottom portion of the Mg-doped p-type GaN layer 107 extending from the junction interface with the lower layer 106 to a thickness of 85 nm in the increasing direction of the layer thickness, a high resistance region in which Mg and hydrogen atoms exist at substantially the same concentration. Was formed. From the current-voltage (IV) characteristics of the Mg-doped p-type GaN layer 107, the resistivity in the high resistance region was estimated to be about 10 Ω · cm.

実施例1に記載したのと同様に、n型オーミック電極108をn型GaN層103に設けた。一方のp型オーミック電極109は非化学量論的な組成のアンドープ燐化硼素層に設けて図3に断面図で示す積層体20を構成した。フリップ型にマウントした積層体20のp側およびn側のオーミック電極108,109間に順方向電流を流して電気的特性及び発光特性を評価した。順方向電流を20mAとした際の順方向電圧(Vf)は3.0Vであり、実施例1のLEDチップ10より低値となった。また、サファイア基板101より外部へ透過して来る発光の波長は455nmであった。また、一般的な積分球で測定された発光出力は12mWであった。この様な特性を示すLEDは、直径2インチの円形基板101の略全面に形成された外観不良品を除く約10000個のLEDについて、ばらつきなく得られた。   In the same manner as described in Example 1, an n-type ohmic electrode 108 was provided on the n-type GaN layer 103. One p-type ohmic electrode 109 was provided on an undoped boron phosphide layer having a non-stoichiometric composition to form a laminate 20 shown in a sectional view in FIG. A forward current was passed between the p-side and n-side ohmic electrodes 108 and 109 of the laminate 20 mounted in a flip type, and the electrical characteristics and the light emission characteristics were evaluated. The forward voltage (Vf) when the forward current was 20 mA was 3.0 V, which was lower than that of the LED chip 10 of Example 1. The wavelength of light emitted from the sapphire substrate 101 to the outside was 455 nm. Moreover, the light emission output measured with a general integrating sphere was 12 mW. The LEDs having such characteristics were obtained with no variation for about 10,000 LEDs excluding defective products formed on substantially the entire surface of the circular substrate 101 having a diameter of 2 inches.

また、積層体20について、簡易な静電破壊試験を実施した。静電気が突発的に印加されるのを想定して、パルス(plus)電圧を電極間に瞬間的に加え、その後、逆方向での電極間ショート(短絡)の有無を調査した。100個の検体の内、1000Vのパルス電圧印加で破壊されるLEDチップは、1個であった。即ち、逆方向電圧(Vr)の不良発生率は、1%であった。   In addition, a simple electrostatic breakdown test was performed on the laminate 20. Assuming that static electricity is suddenly applied, a pulse voltage was instantaneously applied between the electrodes, and then the presence or absence of a short circuit between the electrodes in the reverse direction was investigated. Among 100 specimens, one LED chip was destroyed by applying a 1000 V pulse voltage. That is, the defect occurrence rate of the reverse voltage (Vr) was 1%.

(実施例3)
実施例3では、実施例1に加え、MgドープAlGaN層からなるコンタクト層107の気相成長を終了させた後、直ちにキャリアガスを水素から窒素へと切り替え、アンモニアの流量を低下させ、そして低下させた分だけキャリアガスの窒素の流量を増加した。具体的には、成長中には全流通ガス量のうち体積にして50%を占めていたアンモニアを、0.2%まで下げた。同時に、基板101を加熱するために利用していた、高周波誘導加熱式ヒータへの通電を停止した。
(Example 3)
In Example 3, in addition to Example 1, after the vapor phase growth of the contact layer 107 made of the Mg-doped AlGaN layer was completed, the carrier gas was immediately switched from hydrogen to nitrogen, and the flow rate of ammonia was reduced. The nitrogen flow rate of the carrier gas was increased by the amount that was increased. Specifically, during the growth, ammonia, which accounted for 50% of the total circulation gas volume, was reduced to 0.2%. At the same time, the energization of the high frequency induction heating type heater used to heat the substrate 101 was stopped.

更に、この状態で2分間保持した後、アンモニアの流通を停止した。このとき、基板の温度は850℃であった。   Furthermore, after maintaining for 2 minutes in this state, the circulation of ammonia was stopped. At this time, the temperature of the substrate was 850 ° C.

この状態で室温まで冷却後、成長反応炉より積層構造体11を取り出し、コンタクト層107のマグネシウム及び水素の原子濃度を一般的なSIMS分析法で定量した。Mg原子は、7×1019cm-3の濃度で、表面から深さ方向に略一定の濃度で分布していた。一方、水素原子は、表層領域で多少、少なくなっているものの、表面から深さ20nmより深部では6×1019cm−3の略一定の濃度で存在していた。このため、この領域では、殆どのMg原子が水素原子に因り電気的に不活性化されているため、高抵抗となっていた。MgドープGaN層107内の表面から深さ30nm以下の表層部は、V/III比率を極端に低比率として形成したため、室温での抵抗率を約0.5Ω・cmとする低抵抗層となっていた。 After cooling to room temperature in this state, the laminated structure 11 was taken out from the growth reactor, and the atomic concentrations of magnesium and hydrogen in the contact layer 107 were quantified by a general SIMS analysis method. Mg atoms were distributed at a concentration of 7 × 10 19 cm −3 at a substantially constant concentration in the depth direction from the surface. On the other hand, although hydrogen atoms were somewhat reduced in the surface region, they existed at a substantially constant concentration of 6 × 10 19 cm −3 at a depth of 20 nm from the surface. For this reason, in this region, most of the Mg atoms are electrically inactivated due to the hydrogen atoms, so that the resistance is high. Since the surface layer portion having a depth of 30 nm or less from the surface in the Mg-doped GaN layer 107 is formed with an extremely low V / III ratio, it becomes a low resistance layer having a resistivity at room temperature of about 0.5 Ω · cm. It was.

上記のMgドープp型GaN層107を備えた積層構造体11を用いてLED10を作製した。先ず、n型オーミック電極108を形成する予定の領域に一般的なドライエッチングを施し、その領域に限り、SiドープGaN層103の表面を露出させた。露出させた表面部分には、チタン(Ti)/アルミニウム(Al)を重層させてなるn型オーミック電極108を形成した。その他の領域に在る、表層部を、Gaを富裕とする非化学量論的な組成とするMgドープp型GaN層107の表面の略全域には、発光層からの発光をサファイア基板101側へ反射する機能を持たせた、白金(Pt)膜/ロジウム(Rh)膜/金(Au)膜を重層させたp型オーミック電極109を形成した。Mgドープp型GaN層107の表面と接触する金属膜は白金膜とした。 An LED 10 was fabricated using the multilayer structure 11 including the Mg-doped p-type GaN layer 107 described above. First, general dry etching was performed on a region where the n-type ohmic electrode 108 is to be formed, and the surface of the Si-doped GaN layer 103 was exposed only in that region. An n-type ohmic electrode 108 formed by stacking titanium (Ti) / aluminum (Al) was formed on the exposed surface portion. In the other region, the surface layer portion has a non-stoichiometric composition enriched in Ga, and the light is emitted from the light emitting layer to the sapphire substrate 101 side substantially over the entire surface of the Mg-doped p-type GaN layer 107. A p-type ohmic electrode 109 having a platinum (Pt) film / rhodium (Rh) film / gold (Au) film layered thereon was formed. The metal film in contact with the surface of the Mg-doped p-type GaN layer 107 was a platinum film.

p型及びn型のオーミック電極108,109を形成した後、サファイア基板101の裏面を、ダイヤモンド微粒などの砥粒を使用して研削し、基板101を約350μmから約85μmに薄板化した。最終的には、精密研磨により基板裏面を鏡面に仕上げた。その後、積層構造体11を裁断し、350μm角の正方形の個別のLED10へと分離した。次に、サブマウントに、オーミック電極108,109を各々、接着して、フリップ(flip)型のチップとした。更にそれをリードフレーム上に載置した後、金(Au)線でリードフレームと結線した。 After the p-type and n-type ohmic electrodes 108 and 109 were formed, the back surface of the sapphire substrate 101 was ground using abrasive grains such as diamond fine grains, and the substrate 101 was thinned from about 350 μm to about 85 μm. Finally, the back surface of the substrate was mirror finished by precision polishing. Thereafter, the laminated structure 11 was cut and separated into individual square LEDs 10 having a 350 μm square. Next, ohmic electrodes 108 and 109 were bonded to the submount to form a flip chip. Further, after placing it on the lead frame, it was connected to the lead frame with a gold (Au) wire.

フリップ型にマウントしたLEDのp側およびn側のオーミック電極108,109間に順方向電流を流して電気的特性及び発光特性を評価した。順方向電流を20mAとした際の順方向電圧(Vf)は3.1Vであった。また、サファイア基板101より外部へ透過して来る発光の波長は455nmであった。また、一般的な積分球で測定された発光出力は10mWであった。この様な特性を示すLEDは、直径2インチの円形基板101の略全面に形成された外観不良品を除く約10000個のLEDについて、ばらつきなく得られた。 A forward current was passed between the p-side and n-side ohmic electrodes 108 and 109 of the LED mounted in a flip type, and the electrical characteristics and the light emission characteristics were evaluated. The forward voltage (Vf) when the forward current was 20 mA was 3.1V. The wavelength of light emitted from the sapphire substrate 101 to the outside was 455 nm. The light emission output measured with a general integrating sphere was 10 mW. The LEDs having such characteristics were obtained with no variation for about 10,000 LEDs excluding defective products formed on substantially the entire surface of the circular substrate 101 having a diameter of 2 inches.

また、LED10について、簡易な静電破壊試験を実施した。静電気が突発的に印加されるのを想定して、パルス(plus)電圧を電極間に瞬間的に加え、その後、逆方向での電極間ショート(短絡)の有無を調査した。100個の検体の内、1000Vのパルス電圧印加で破壊されるLEDチップは、1個であった。即ち、逆方向電圧(Vr)の不良発生率は、1%であった。 Moreover, the simple electrostatic breakdown test was implemented about LED10. Assuming that static electricity is suddenly applied, a pulse voltage was instantaneously applied between the electrodes, and then the presence or absence of a short circuit between the electrodes in the reverse direction was investigated. Among 100 specimens, one LED chip was destroyed by applying a 1000 V pulse voltage. That is, the defect occurrence rate of the reverse voltage (Vr) was 1%.

本発明の半導体素子は発光ダイオード、レーザーダイオードやpin型受光素子等に利用される。   The semiconductor element of the present invention is used for a light emitting diode, a laser diode, a pin type light receiving element, and the like.

実施例1に記載の積層構造体の積層構成を示す断面模式図である。3 is a schematic cross-sectional view showing a laminated configuration of the laminated structure described in Example 1. FIG. 実施例1に記載のLEDの平面模式図である。1 is a schematic plan view of an LED described in Example 1. FIG. 実施例2に記載の積層構造体の断面模式図である。3 is a schematic cross-sectional view of a laminated structure described in Example 2. FIG.

符号の説明Explanation of symbols

10 LED
11、20 積層構造体
101 結晶基板
102 アンドープGaN層
103 n型GaN層
104 n型AlGaNクラッド層
105 多重量子井戸構造発光層
106 p型AlGaNクラッド層
107 p型GaNコンタクト層
107−1 p型GaNコンタクト層の深底部
107−2 p型GaNコンタクト層の表層部
108 n型オーミック電極
109 p型オーミック電極
110 非化学量論的な燐化ホウ素層
10 LED
11, 20 Multilayer structure 101 Crystal substrate 102 Undoped GaN layer 103 n-type GaN layer 104 n-type AlGaN clad layer 105 multiple quantum well structure light emitting layer 106 p-type AlGaN clad layer 107 p-type GaN contact layer 107-1 p-type GaN contact 107-2 Surface layer part of p-type GaN contact layer 108 n-type ohmic electrode 109 p-type ohmic electrode 110 Non-stoichiometric boron phosphide layer

Claims (7)

p型不純物を含み、p型の伝導性を示す窒化ガリウム(GaN)系化合物半導体層(p型層)を備えてなる、窒化ガリウム系半導体素子に於いて、p型層は表層部とそれより内部の深底部からなり、深底部はp型不純物と、水素とを共存させた領域であり、p型層の深底部の水素濃度が1×1018cm−3以上不純物濃度以下で、表層部の水素濃度より高く、かつ不純物濃度が1×1018cm−3〜1×1021cm−3であり、p型層の表層部は、不純物濃度が1×1018cm−3〜1×1021cm−3であり、かつIII族構成元素とV族構成元素とを、化学量論的比率からIII族構成元素を富裕とする側にずれた非化学量論的な原子濃度比率で含む領域を有することを特徴とするp型層を含む窒化ガリウム系半導体素子。 In a gallium nitride-based semiconductor device comprising a gallium nitride (GaN) -based compound semiconductor layer (p-type layer) containing p-type impurities and exhibiting p-type conductivity, the p-type layer includes a surface layer portion and a surface layer portion thereof. The deep bottom portion is a region where a p-type impurity and hydrogen coexist, and the hydrogen concentration in the deep bottom portion of the p-type layer is 1 × 10 18 cm −3 or more and less than or equal to the impurity concentration. The impurity concentration is 1 × 10 18 cm −3 to 1 × 10 21 cm −3 , and the surface concentration of the p-type layer is 1 × 10 18 cm −3 to 1 × 10. A region that is 21 cm −3 and includes a group III constituent element and a group V constituent element at a non-stoichiometric atomic concentration ratio that is shifted from a stoichiometric ratio toward a richer group III constituent element. A gallium nitride based semiconductor device including a p-type layer. p型層の深底部の厚さがp型層の厚さの40〜99.9%である請求項1に記載の窒化ガリウム系半導体素子。   The gallium nitride based semiconductor device according to claim 1, wherein the thickness of the deep bottom portion of the p-type layer is 40 to 99.9% of the thickness of the p-type layer. III族構成元素とV族構成元素とを、非化学量論的な原子濃度比率で含む領域の厚さがp型層の表面から1〜10nmの範囲である請求項1または2に記載の窒化ガリウム系半導体素子。   The nitriding according to claim 1 or 2, wherein the thickness of the region containing the group III constituent element and the group V constituent element in a non-stoichiometric atomic concentration ratio is in the range of 1 to 10 nm from the surface of the p-type layer. Gallium-based semiconductor device. p型層の表層部の表面にGa元素が析出していることを特徴とする請求項1〜3のいずれか1項に記載の窒化ガリウム系半導体素子。   The gallium nitride based semiconductor device according to any one of claims 1 to 3, wherein a Ga element is deposited on a surface of a surface layer portion of the p-type layer. p型層の表面に、III族構成元素とV族構成元素とを、非化学量論的な原子濃度比率で含む窒化ガリウム系半導体材料が接合されている、ことを特徴とする請求項1〜4のいずれか1項に記載のp型層を含む窒化ガリウム系半導体素子。   A gallium nitride based semiconductor material containing a group III constituent element and a group V constituent element in a non-stoichiometric atomic concentration ratio is bonded to the surface of the p-type layer. 5. A gallium nitride based semiconductor device including the p-type layer according to claim 1. p型不純物を含み、p型の伝導性を示す窒化ガリウム(GaN)系化合物半導体層(p型層)を備えてなる、窒化ガリウム系半導体素子の製造方法に於いて、p型層の表層部をIII族構成元素とV族構成元素とを、化学量論的比率からIII族構成元素を富裕とする側にずれた非化学量論的な原子濃度比率で含む領域とし、かつp型層を不活性雰囲気下または水素ガスを40体積%以下含む不活性雰囲気下で熱処理し、p型層の深底部の水素濃度を表層部の水素濃度より高くして深底部を表層部より高抵抗としたことを特徴とする窒化ガリウム系半導体素子の製造方法。 In a method for manufacturing a gallium nitride based semiconductor device comprising a gallium nitride (GaN) based compound semiconductor layer (p-type layer) containing p-type impurities and exhibiting p-type conductivity, a surface layer portion of the p-type layer Is a region containing a group III constituent element and a group V constituent element in a non-stoichiometric atomic concentration ratio shifted from a stoichiometric ratio to a richer group III constituent element , and a p-type layer is Heat treatment was performed under an inert atmosphere or an inert atmosphere containing 40% by volume or less of hydrogen gas, and the hydrogen concentration in the deep bottom portion of the p-type layer was made higher than the hydrogen concentration in the surface layer portion so that the deep bottom portion had a higher resistance than the surface layer portion. A method for manufacturing a gallium nitride based semiconductor device. p型層の深底部の水素濃度が1×1018cm−3以上不純物濃度以下であって、表層部の水素濃度より高く、かつ不純物濃度が1×1018cm−3〜1×1021cm−3であり、p型層の表層部は、不純物濃度が1×1018cm−3〜1×1021cm−3である請求項6に記載の窒化ガリウム系半導体素子の製造方法。
The hydrogen concentration in the deep bottom portion of the p-type layer is not less than 1 × 10 18 cm −3 and not more than the impurity concentration, is higher than the hydrogen concentration in the surface layer portion, and the impurity concentration is 1 × 10 18 cm −3 to 1 × 10 21 cm. The method for manufacturing a gallium nitride based semiconductor element according to claim 6, wherein the surface layer portion of the p-type layer has an impurity concentration of 1 × 10 18 cm −3 to 1 × 10 21 cm −3 .
JP2005057479A 2004-03-04 2005-03-02 Gallium nitride semiconductor device Active JP4705384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057479A JP4705384B2 (en) 2004-03-04 2005-03-02 Gallium nitride semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004060585 2004-03-04
JP2004060585 2004-03-04
JP2005057479A JP4705384B2 (en) 2004-03-04 2005-03-02 Gallium nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2005286319A JP2005286319A (en) 2005-10-13
JP4705384B2 true JP4705384B2 (en) 2011-06-22

Family

ID=35184303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057479A Active JP4705384B2 (en) 2004-03-04 2005-03-02 Gallium nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP4705384B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906341B2 (en) * 2005-12-26 2012-03-28 昭和電工株式会社 Group III nitride p-type semiconductor manufacturing method
JP2012089678A (en) * 2010-10-19 2012-05-10 Showa Denko Kk Group iii nitride semiconductor device and multi-wavelength light emitting group iii nitride semiconductor layer
JP2012089651A (en) * 2010-10-19 2012-05-10 Showa Denko Kk Group iii nitride semiconductor device, multi-wavelength light emitting group iii nitride semiconductor layer, and method for manufacturing multi-wavelength light emitting group iii nitride semiconductor layer
JP5934575B2 (en) 2012-05-16 2016-06-15 サンケン電気株式会社 Manufacturing method of nitride semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177133A (en) * 1997-12-09 1999-07-02 Rohm Co Ltd Semiconductor light emitting element
JP2000101139A (en) * 1998-09-25 2000-04-07 Toshiba Corp Semiconductor light-emitting element, manufacture thereof and device using the same
JP2000294828A (en) * 1999-04-07 2000-10-20 Mitsubishi Cable Ind Ltd MANUFACTURE OF GaN SEMICONDUCTOR DEVICE
JP2002203798A (en) * 2001-12-06 2002-07-19 Matsushita Electric Ind Co Ltd P-type nitride semiconductor and its manufacturing method
JP2003297855A (en) * 2002-04-01 2003-10-17 Mitsubishi Electric Corp Method of manufacturing semiconductor device, and semiconductor device
JP2004014810A (en) * 2002-06-07 2004-01-15 Showa Denko Kk Group iii nitride-based semiconductor light emitting device, its fabricating method and led

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177133A (en) * 1997-12-09 1999-07-02 Rohm Co Ltd Semiconductor light emitting element
JP2000101139A (en) * 1998-09-25 2000-04-07 Toshiba Corp Semiconductor light-emitting element, manufacture thereof and device using the same
JP2000294828A (en) * 1999-04-07 2000-10-20 Mitsubishi Cable Ind Ltd MANUFACTURE OF GaN SEMICONDUCTOR DEVICE
JP2002203798A (en) * 2001-12-06 2002-07-19 Matsushita Electric Ind Co Ltd P-type nitride semiconductor and its manufacturing method
JP2003297855A (en) * 2002-04-01 2003-10-17 Mitsubishi Electric Corp Method of manufacturing semiconductor device, and semiconductor device
JP2004014810A (en) * 2002-06-07 2004-01-15 Showa Denko Kk Group iii nitride-based semiconductor light emitting device, its fabricating method and led

Also Published As

Publication number Publication date
JP2005286319A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
TWI252599B (en) N-type group III nitride semiconductor layered structure
US7456445B2 (en) Group III nitride semiconductor light emitting device
JP2001230447A (en) Manufacture method for iii nitride-based compound semiconductor element
JP2006310819A (en) Gallium nitride compound semiconductor laminate and manufacturing method thereof
JP4901115B2 (en) Gallium nitride semiconductor device
US7436045B2 (en) Gallium nitride-based semiconductor device
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP4705384B2 (en) Gallium nitride semiconductor device
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
JP5105738B2 (en) Method for producing gallium nitride compound semiconductor laminate
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
JP2005277401A (en) Gallium nitride-based compound semiconductor laminate and manufacturing method thereof
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP4841206B2 (en) Gallium nitride compound semiconductor light emitting device
JP4720519B2 (en) Method for manufacturing p-type nitride semiconductor
JP2016143771A (en) Epitaxial wafer, semiconductor light-emitting element, light-emitting device, and manufacturing method of epitaxial wafer
JP4297884B2 (en) Group III nitride p-type semiconductor and method of manufacturing the same
JP4647286B2 (en) Semiconductor device and manufacturing method thereof
WO2005106982A1 (en) Group iii nitride semiconductor light-emitting device
JP2005340789A (en) Group iii nitride semiconductor light-emitting element
JP3874779B2 (en) Ge-doped n-type group III nitride semiconductor layered product, method for producing the same, and group III nitride semiconductor light-emitting device using the same
JP2003309074A (en) Method for manufacturing gallium aluminum nitride layer, iii nitride semiconductor light emitting element and method for manufacturing the same
JP4906341B2 (en) Group III nitride p-type semiconductor manufacturing method
JP2002203798A (en) P-type nitride semiconductor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350