Nothing Special   »   [go: up one dir, main page]

JP4701406B2 - Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program - Google Patents

Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program Download PDF

Info

Publication number
JP4701406B2
JP4701406B2 JP2006543104A JP2006543104A JP4701406B2 JP 4701406 B2 JP4701406 B2 JP 4701406B2 JP 2006543104 A JP2006543104 A JP 2006543104A JP 2006543104 A JP2006543104 A JP 2006543104A JP 4701406 B2 JP4701406 B2 JP 4701406B2
Authority
JP
Japan
Prior art keywords
data
image
oxygen
cerebral
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006543104A
Other languages
Japanese (ja)
Other versions
JPWO2006043674A1 (en
Inventor
秀博 飯田
浩司 渡部
拓也 林
信之 久冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2006543104A priority Critical patent/JP4701406B2/en
Publication of JPWO2006043674A1 publication Critical patent/JPWO2006043674A1/en
Application granted granted Critical
Publication of JP4701406B2 publication Critical patent/JP4701406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Neurosurgery (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、陽電子放射断層撮影(Positron Emission Tomography(PET))による脳血流、脳酸素代謝および脳酸素摂取率の定量画像評価に関するものである。   The present invention relates to quantitative image evaluation of cerebral blood flow, cerebral oxygen metabolism, and cerebral oxygen uptake rate by positron emission tomography (PET).

O−15標識酸素(すなわち15O)を用いた陽電子放射断層撮影による検査は、以下の量について実用化されている。脳局所酸素代謝(15Oガス)、脳局所血液量(C15Oガス)。脳局所血流量(C15O2ガス)、脳局所血流量(H2 15O)。ここで、()内に示す0-15標識酸素を含む標識化合物が、それぞれの量の検査に使用されている。PET撮像による検査には、以下の利点がある。
(1)投与する標識薬剤はもともと生体内に存在する分子を構成する元素の同位元素であることから、生体内に存在する分子を修飾することなく標識薬剤として生体の機能を観察できる。
(2)半減期が短いため、生体の被爆が少ない。そのため反復検査や不可検査が容易である。
(3)半減期が短いため比放射能が高く極微量の核種で診断が可能である。
Examination by positron emission tomography using O-15 labeled oxygen (ie, 15 O) has been put to practical use in the following amounts. Cerebral local oxygen metabolism ( 15 O 2 gas), cerebral local blood volume (C 15 O gas). Cerebral local blood flow (C 15 O 2 gas), cerebral local blood flow (H 2 15 O). Here, a labeled compound containing 0-15 labeled oxygen shown in parentheses is used for each amount of examination. Inspection by PET imaging has the following advantages.
(1) Since the labeled drug to be administered is originally an isotope of an element constituting a molecule present in the living body, the function of the living body can be observed as a labeled drug without modifying the molecule present in the living body.
(2) Since the half-life is short, there is little exposure of the living body. Therefore, it is easy to perform repetitive inspection and non-inspection.
(3) Since the half-life is short, the specific radioactivity is high and diagnosis is possible with a very small amount of nuclide.

PET検査により脳血流、脳酸素代謝および脳酸素摂取率の定量画像評価が可能であり、脳卒中などの検査が行われている。この検査は、O-15標識酸素を投与することで実施されている。0-15標識酸素は、酸素分子の体内挙動をトレースする診断プローブであるが、その脳内動態は、組織酸素代謝だけでなく、代謝生成水分子の洗い出しすなわち血流量に依存する。さらに酸素摂取率が正常では40%程度と低いため、血管内の放射能濃度が酸素代謝画像に寄与する。このため、PET検査ではO-15標識酸素ガスの吸入に基づく検査だけでなく、O-15標識水を使った血流検査および0-15標識一酸化炭素吸入に基づく血液量検査が行われる。これら脳酸素代謝、脳血流および脳酸素摂取率のための3つの検査は独立して行われるが、検査の間に放射性減衰を待つ。広く使われる定常法では、検査毎に体内放射能濃度分布が一定になるまで持続的に薬剤を投与し続ける必要があった(以下の論文参照。(1)Correia JA, Alpert NM, Buxton RB, Ackerman RH (1985)Analysis of some errors in the measurement of oxygen extraction and oxygen consumption by the equilibrium inhalation method, J Cereb Blood Flow Metab 5:591-9、(2)Frackowiak RS, Jones T, Lenzi GL, Heather JD (1980a) Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography, Acta Neurol Scand 62:336-344、(3)Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography theory, procedure, and normal values, J Comput Assist Tomogr. 4:727-36、および、(4)Lammertsma AA, Heather JD, Jones T, Frackowiak RS, Lenzi GL, (1982) A statistical study of the steady state technique for measuring regional cerebral blood flow and oxygen utilization using 150, J Comput Assist Tomogr 6:566-573)。   Quantitative image evaluation of cerebral blood flow, cerebral oxygen metabolism, and cerebral oxygen uptake rate is possible by PET examination, and examinations such as stroke are performed. This test is performed by administering O-15 labeled oxygen. Although 0-15 labeled oxygen is a diagnostic probe that traces the behavior of oxygen molecules in the body, its kinetics in the brain depend not only on tissue oxygen metabolism but also on washing out metabolized water molecules, ie, blood flow. Furthermore, since the oxygen uptake rate is as low as about 40% under normal conditions, the radioactive concentration in the blood vessel contributes to the oxygen metabolism image. For this reason, in PET examination, not only examination based on inhalation of O-15 labeled oxygen gas but also blood flow examination using O-15 labeled water and blood volume examination based on 0-15 labeled carbon monoxide inhalation are performed. These three tests for cerebral oxygen metabolism, cerebral blood flow, and cerebral oxygen uptake rate are performed independently, but wait for radioactive decay during the test. In the routine method that is widely used, it was necessary to continue to administer the drug continuously until the distribution of radioactivity concentration in the body became constant for each test (see the following paper. (1) Correia JA, Alpert NM, Buxton RB, Ackerman RH (1985) Analysis of some errors in the measurement of oxygen extraction and oxygen consumption by the equilibrium inhalation method, J Cereb Blood Flow Metab 5: 591-9, (2) Frackowiak RS, Jones T, Lenzi GL, Heather JD ( 1980a) Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography, Acta Neurol Scand 62: 336-344, (3) Frakkowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography theory, procedure, and normal values, J Comput Assist Tomogr. 4: 727-36, and (4) Lammertsma AA, Heather JD, Jones T, Frackowiak RS , Lenzi GL, (1982) A statistical study of the steady state technique for measuring regional cerebral blood flow and oxygen utilization using 150, J Comput Assist Tomogr 6: 566-573).

これに対して、3種類の標識化合物の短期間投与に基づく方法が開発され、検査時間は1時間程度と短縮された(以下の論文参照。(5)Mintun MA, Raichle ME, Martin WR, Herscovitch P, (1984) J Nucl Med 25:177-187、(6)Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miwa S, Murakami M, Okudera T,Inugami A, Ogawa T, et al., (1995) Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method, Ann Nucl Med. 9:15-21、(7)Shidahara M, Watabe H, Kim KM, Oka H, Sago M, Hayashi T, Miyake Y, Ishida Y, Hayashida K, Nakamura T, Iida H, (2002) Evaluation of a commercial PET tomograph-based system for the quantitative assessment of rCBF, rOEF and rCMRO2 by using sequential administration of 15O-labeled compounds, Ann Nucl Med. 16:317-327)。図1に、この方法によるPET撮像の時間経過を示す。まず、血液量検査のため、0-15標識一酸化炭素の吸入の後にPET撮像を6分間行う。さらに、放射性減衰のため15〜20分待って、脳酸素代謝検査のため、O-15標識酸素ガスの吸入を行い、その後にPET撮像を3分間行う。ふたたび、放射性減衰のため15〜20分待って、血流検査のため、O-15標識水ガスの投与を行い、その後にPET撮像を2分間行う。従って、検査時間は全体として40〜50分かかっている。   In contrast, a method based on short-term administration of three kinds of labeled compounds was developed, and the test time was reduced to about 1 hour (see the following paper. (5) Mintun MA, Raichle ME, Martin WR, Herscovitch P, (1984) J Nucl Med 25: 177-187, (6) Hatazawa J, Fujita H, Kanno I, Satoh T, Iida H, Miwa S, Murakami M, Okudera T, Inugami A, Ogawa T, et al. , (1995) Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method, Ann Nucl Med. 9: 15-21, (7) Shidahara M , Watabe H, Kim KM, Oka H, Sago M, Hayashi T, Miyake Y, Ishida Y, Hayashida K, Nakamura T, Iida H, (2002) Evaluation of a commercial PET tomograph-based system for the quantitative assessment of rCBF, rOEF and rCMRO2 by using sequential administration of 15O-labeled compounds, Ann Nucl Med. 16: 317-327). FIG. 1 shows the time course of PET imaging by this method. First, for blood volume examination, PET imaging is performed for 6 minutes after inhalation of 0-15 labeled carbon monoxide. Further, after waiting for 15 to 20 minutes for radioactive decay, O-15 labeled oxygen gas is inhaled for cerebral oxygen metabolism test, and then PET imaging is performed for 3 minutes. Again, wait for 15-20 minutes for radioactive decay, administer O-15 labeled water gas for blood flow examination, then PET imaging for 2 minutes. Therefore, the inspection time takes 40 to 50 minutes as a whole.

0-15標識酸素を用いた酸素分子の体内挙動の従来の検査では、0-15標識酸素を含む3種類のそれぞれの標識化合物の短期間投与に基づき上述の脳酸素代謝を検査するが、3回の独立したPET撮像の間の待ち時間が標識化合物を減衰させるために必要である。PET撮像をその前のPET撮像のために投与された薬剤の減衰を待ちながら行うため、検査時間が30分から1時間と長くなるが、この長い時間にわたって被検体の頭部が固定されている必要がある。この固定処置は被検体にとって大きな負担となっている。したがって、より短時間(たとえば10分以内)でPET撮像を行うことが望ましい。これにより、PET検査で局所脳血流、局所脳酸素摂取率、局所酸素代謝量を短時間で検査可能となる。   In the conventional examination of the in vivo behavior of oxygen molecules using 0-15 labeled oxygen, the above-mentioned cerebral oxygen metabolism is examined on the basis of short-term administration of each of three kinds of labeled compounds containing 0-15 labeled oxygen. Latency between multiple independent PET imaging is necessary to attenuate the labeled compound. Since the PET imaging is performed while waiting for the attenuation of the drug administered for the previous PET imaging, the examination time increases from 30 minutes to 1 hour, but the head of the subject needs to be fixed over this long time There is. This fixing procedure is a heavy burden on the subject. Therefore, it is desirable to perform PET imaging in a shorter time (for example, within 10 minutes). Thereby, it becomes possible to examine the local cerebral blood flow, the local cerebral oxygen uptake rate, and the local oxygen metabolism in a short time by the PET examination.

この発明の目的は、0-15標識酸素を用いた酸素分子の体内挙動の検査をより短時間で行えるようにすることである。   An object of the present invention is to make it possible to test the behavior of oxygen molecules in the body using 0-15 labeled oxygen in a shorter time.

本発明に係るPET撮像による画像定量化方法では、標識酸素と標識水及び標識二酸化炭素のいずれか1つとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度画像のデータCi(t)と、このPET撮影と並行して得られた被検体の血液中の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)を入力する。そして、前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式The image quantification method using PET imaging according to the present invention is obtained by performing one continuous PET imaging while administering labeled oxygen and any one of labeled water and labeled carbon dioxide to a subject with a time difference. The data C i (t) of the radiation density image reconstructed from the sinogram of the subject's tissue or the sinogram, and the radioactivity concentration A o of the oxygen component in the blood of the subject obtained in parallel with this PET imaging Enter (t) and the radioactive concentration A w (t) of the water component. And the following formula representing the sinogram or radiation concentration data C i (t) in the tissue

Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,

Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.

Figure 0004701406
とfのテーブルとして記憶しておく。次に、前記のテーブルを用いて、前記の離散的なfの値に対して
Figure 0004701406
And f are stored as a table. Next, for the discrete values of f using the table,

Figure 0004701406
におけるEとVoに対する解を最小自乗法により求める。次に、
Figure 0004701406
Find the solution to E and Vo at next,

Figure 0004701406
を最小とするf,E、Voを求める。
Figure 0004701406
Find f, E, and Vo that minimize.

本発明に係る画像定量化装置は、
標識酸素と標識水及び標識二酸化炭素のいずれかとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度のデータCi(t)と、このPET撮影と並行して得られた被検体の血液の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)とを入力するデータ入力手段と、
前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式
An image quantification device according to the present invention is
Radiation reconstructed from the sinogram or sinogram of the tissue of the subject obtained by performing one continuous PET imaging while administering the labeled oxygen and either labeled water or labeled carbon dioxide to the subject with a time difference Concentration data C i (t) and the radioactivity concentration A o (t) of the oxygen component of the blood of the subject obtained in parallel with this PET imaging and the radioactivity concentration A w (t) of the water component Data input means for inputting;
The following formula representing the sinogram or radiation concentration data C i (t) in the tissue

Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,

Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.

Figure 0004701406
とfのテーブルとして記憶しておくテーブル作成手段と、
前記のテーブルを用いて、前記の離散的なfの値に対して
Figure 0004701406
And a table creation means for storing as a table of f,
Using the table, for the discrete f value

Figure 0004701406
におけるEとVoに対する解を最小自乗法により求め、次に、
Figure 0004701406
Find the solution to E and Vo at, using the least squares method, then

Figure 0004701406
を最小とするf,E,Voを求める未知数決定手段とからなる。
Figure 0004701406
And an unknown quantity determining means for obtaining f, E, and Vo that minimizes.

本発明に係るコンピュータにより実行されるPET撮像による画像定量化プログラムは、
標識酸素と標識水及び標識二酸化炭素のいずれかとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度画像のデータCi(t)を入力するステップと、
前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式
An image quantification program by PET imaging executed by a computer according to the present invention is:
Radiation reconstructed from the sinogram or sinogram of the tissue of the subject obtained by performing one continuous PET imaging while administering the labeled oxygen and either labeled water or labeled carbon dioxide to the subject with a time difference A step of inputting density image data C i (t);
The following formula representing the sinogram or radiation concentration data C i (t) in the tissue

Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,

Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.

Figure 0004701406
とfのテーブルとして記憶しておくステップと、
次に、前記のテーブルを用いて、前記の離散的なfの値に対して
Figure 0004701406
Storing as a table of and f;
Next, for the discrete values of f using the table,

Figure 0004701406
におけるEとVoに対する解を最小自乗法により求めるステップと、
次に、
Figure 0004701406
Finding a solution for E and Vo at, using the method of least squares;
next,

Figure 0004701406
を最小とするf,E、Voを求めるステップとからなる。ここで、投与した2つの薬剤のうち、先に投与した薬剤の血夜中および脳組織中の残留放射は上記の数式により予測し、後に投与した薬剤の放射線濃度は、先に投与した薬剤による残留放射の予測値を差し引くことにより評価する。
Figure 0004701406
F, E, and Vo for minimizing. Here, of the two administered drugs, the residual radiation in the blood night and brain tissue of the previously administered drug is predicted by the above formula, and the radiation concentration of the subsequently administered drug is the residual due to the previously administered drug. Evaluate by subtracting the predicted value of radiation.

本発明の効果は、2種の薬剤を連続的に投与しつつ1回のPET撮像を行うだけで、測定精度を維持しつつ検査時間が短縮できることである。
The effect of the present invention is that the inspection time can be shortened while maintaining the measurement accuracy only by performing one PET imaging while continuously administering two kinds of drugs.

従来のPET検査法の時間経過を示す図である。It is a figure which shows the time passage of the conventional PET inspection method. 発明の1実施形態におけるPET検査法の時間経過を示す図である。It is a figure which shows the time passage of the PET inspection method in one Embodiment of invention. PET撮像のためのシステムのブロック図である。1 is a block diagram of a system for PET imaging. コンピュータの構成を示すブロック図である。It is a block diagram which shows the structure of a computer. 定量解析のフローチャートである。It is a flowchart of quantitative analysis. PET検査により検出される放射線濃度の時間経過の1例を示す図である。It is a figure which shows an example of the time passage of the radiation density detected by PET test | inspection. カニクイザルを使った測定結果の図である。It is a figure of the measurement result using a cynomolgus monkey.

以下、本発明の実施の形態を添付の図面を参照して説明する。
0-15標識酸素を用いた酸素分子の体内挙動のPET撮像による検査において、従来は3種類の標識化合物である標識一酸化炭素、標識酸素と標識水をそれぞれ独立して投与してPET撮像を行っていた(図1参照)。これに対して、本発明の実施形態では、以下の3点を導入することにより、PET検査時間を飛躍的に短時間化させる。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In the examination by PET imaging of the in vivo behavior of oxygen molecules using 0-15 labeled oxygen, PET imaging is conventionally performed by independently administering three types of labeled compounds, labeled carbon monoxide, labeled oxygen and labeled water. (See Figure 1). On the other hand, in the embodiment of the present invention, the PET inspection time is dramatically shortened by introducing the following three points.

1点目は、従来標識一酸化炭素投与検査により行っていた脳血液量補正において、脳血液量を数式理論により推定可能としたことである。これにより、標識一酸化炭素検査を要しない。   The first point is that the cerebral blood volume can be estimated by mathematical theory in the cerebral blood volume correction conventionally performed by the labeled carbon monoxide administration test. This eliminates the need for a labeled carbon monoxide test.

2点目は、従来別々に行っていたO-15標識水とO-15標識酸素ガスの投与の代わりに、O-15標識水とO-15標識酸素ガスをたとえば3分間隔という短時間間隔で連続的に投与する検査法を採用したことである。これにより、従来は別々に計算して求めていた酸素代謝量と血流量を、同時に計算できる。これにより、1回のPET撮像で検査ができる。   Secondly, instead of the administration of O-15 labeled water and O-15 labeled oxygen gas, which were performed separately in the past, O-15 labeled water and O-15 labeled oxygen gas were separated at short intervals of, for example, 3 minutes. The test method of continuous administration was adopted. As a result, the oxygen metabolism and blood flow, which were conventionally calculated separately, can be calculated simultaneously. Thereby, it can test | inspect by one PET imaging.

3点目は、数式理論を用い、1回の撮像のデータから短時間(おおむね2分)内に局所酸素代謝量、局所脳酸素摂取率、局所脳血流といった複数の機能の画像の計算を可能としたことである。具体的には、次のように計算する。まず、脳内での酸素動態を記述する既存の式において、非線形な部分、すなわち、酸素の組織への取り込みを記述する部分と、水の取り込みを記述する部分とを、それぞれ、変数f(血流量)についてテーブル化する。通常、血流量は脳組織において0〜2mL/g/minの範囲内で0.01mL/g/minごとに計算すれば十分であり、テーブル化された部分はfに対して0〜2mL/g/minの範囲内で離散的に0.01mL/g/minごとに200通りの値を持つ。これらのテーブル化された2項を変数として扱うことで、酸素動態を記述する式は線形化され、未知数は最小自乗法として解くことができる。ここで、fに対して200通りの組み合わせが得られ、これらの中で最も酸素動態としてふさわしい組み合わせを取り出し、脳酸素代謝量と血流量を得る。   The third point is to use mathematical theory to calculate images of multiple functions such as local oxygen metabolism, local cerebral oxygen uptake rate, and local cerebral blood flow within a short time (roughly 2 minutes) from the data of one imaging. It is possible. Specifically, the calculation is performed as follows. First, in an existing equation describing oxygen dynamics in the brain, a non-linear part, that is, a part describing oxygen uptake into a tissue and a part describing water uptake are respectively represented by a variable f (blood Table of flow rate). Normally, it is sufficient to calculate the blood flow in brain tissue every 0.01 mL / g / min within the range of 0 to 2 mL / g / min, and the tabulated part is 0 to 2 mL / g with respect to f. Within the range of / min, there are 200 values discretely every 0.01 mL / g / min. By treating these two tabulated terms as variables, the equation describing the oxygen dynamics is linearized and the unknown can be solved as a least square method. Here, 200 combinations are obtained with respect to f, and the most suitable combination of oxygen kinetics is taken out of these, and the cerebral oxygen metabolism and blood flow are obtained.

以下で、さらに具体的に説明する。発明の1つの実施の形態では、図2に示すように、標識酸素(15Oガス)と標識水(H2 15O)を、短い時間差(たとえば3分間隔)で連続的に被検体に投与する。これにより、1回のPET撮像で、先に投与した薬剤の減衰を待たずに、2つの薬剤について連続的に測定を行う。また、標識一酸化炭素吸入(投与)に基づく脳血液量補正のための検査を要しない計算法を開発したので、一酸化炭素投与によるPET撮像を省略できる。したがって、標識酸素および標識水の連続投与法による撮像と、一酸化炭素投与による撮像の省略とにより、通常1時間程度を要していた撮像時間を10分程度に短縮できる。このためPET撮像を受ける被検体の負担が大幅に軽減する。こうして得られた測定データを基に、後で説明するように、脳血流、脳酸素代謝量および脳酸素摂取率の定量画像評価をおこなう。More specific description will be given below. In one embodiment of the invention, as shown in FIG. 2, labeled oxygen ( 15 O 2 gas) and labeled water (H 2 15 O) are continuously applied to a subject at a short time difference (eg, every 3 minutes). Administer. Thereby, it is possible to continuously measure two drugs without waiting for attenuation of the previously administered drug in one PET imaging. In addition, since a calculation method that does not require a test for cerebral blood volume correction based on labeled carbon monoxide inhalation (administration) has been developed, PET imaging by carbon monoxide administration can be omitted. Therefore, the imaging time which normally required about 1 hour can be shortened to about 10 minutes by imaging by the continuous administration method of labeled oxygen and labeled water and omission of imaging by carbon monoxide administration. This greatly reduces the burden on the subject receiving the PET imaging. Based on the measurement data thus obtained, quantitative image evaluation of cerebral blood flow, cerebral oxygen metabolism, and cerebral oxygen uptake rate is performed as described later.

PET撮像のためのシステムについて説明すると、図3に示すように、PET装置(すなわち陽電子断層撮像装置)10は、被検体の放射線濃度の測定に使用される。ベッド12の上で、被検体(図示しない)の頭部をPET装置の視野内に固定しておく。一方、サイクロトロン14によりO−15を生成し、標識薬剤合成装置16において、そのO−15を用いてO−15標識酸素とO−15標識水を合成する。所定の時間順序で、標識ガス投与装置18により、O−15標識酸素を被検体の口から吸入させ、次に、標識水注入装置20により、O−15標識水を被検体のたとえば静脈に投与する。一方、撮像時には、被検体のたとえば腕から、採血用ポンプ22により連続的に血液を引き出しつつ、放射線濃度測定装置である血液入力関数モニター24(たとえばGSOセンサ(N. Kudomi, E. Choi, H. Watabe, K. M. Kim, M. Shidahara, M. Ogawa, N. Teramoto, E. Sakamoto, H. Iida, (2003) Development of a GSO Detector Assembly for a Continuous Blood Sampling System, IEEE TNS 50:70-73)やAloka製のBGO検出器)で血液中の放射線濃度を測定する。PET装置10と血液入力関数モニター24の測定データは、コンピュータ26に格納される。   A system for PET imaging will be described. As shown in FIG. 3, a PET apparatus (that is, a positron tomographic imaging apparatus) 10 is used to measure the radiation concentration of a subject. On the bed 12, the head of a subject (not shown) is fixed in the visual field of the PET apparatus. On the other hand, O-15 is generated by the cyclotron 14, and the labeled drug synthesizer 16 synthesizes O-15 labeled oxygen and O-15 labeled water using the O-15. O-15 labeled oxygen is inhaled from the mouth of the subject by the labeled gas administration device 18 in a predetermined time sequence, and then O-15 labeled water is administered by the labeled water injection device 20 to, for example, a vein of the subject. To do. On the other hand, at the time of imaging, blood is continuously drawn from the subject's arm, for example, by the blood collection pump 22, and the blood input function monitor 24 (eg, GSO sensor (N. Kudomi, E. Choi, H Watabe, KM Kim, M. Shidahara, M. Ogawa, N. Teramoto, E. Sakamoto, H. Iida, (2003) Development of a GSO Detector Assembly for a Continuous Blood Sampling System, IEEE TNS 50: 70-73) And the radiation concentration in the blood is measured with a BGO detector manufactured by Aloka). Measurement data of the PET apparatus 10 and the blood input function monitor 24 is stored in the computer 26.

コンピュータ26は、たとえば、通常のパーソナルコンピュータである。そのシステムの構成は従来と同様である。図4は、コンピュータ26の内部の構成を示す。全体を制御するCPU30は、プログラム、データなどを記憶するROM32、ワークエリアであるRAM34、キーボード、マウスなどの入力装置36、ディスプレイ装置38、PET装置10と血液入力関数モニター24との間で信号を送受信するインタフェース40および記憶装置であるハードディスク装置42を備える。ハードディスク装置42のハードディスクには、画像データ、血液データなどの測定データ44や、この測定データを解析する定量解析プログラム46が記憶される。   The computer 26 is, for example, a normal personal computer. The configuration of the system is the same as the conventional one. FIG. 4 shows an internal configuration of the computer 26. A CPU 30 that controls the entire system includes a ROM 32 that stores programs, data, a RAM 34 that is a work area, an input device 36 such as a keyboard and a mouse, a display device 38, a PET device 10, and a blood input function monitor 24. An interface 40 for transmitting and receiving and a hard disk device 42 as a storage device are provided. The hard disk of the hard disk device 42 stores measurement data 44 such as image data and blood data, and a quantitative analysis program 46 for analyzing the measurement data.

次に、PET撮像データの解析について説明する。標識酸素および標識水の連続投与により得られたPET撮像データの解析において、先に投与した薬剤の血夜中および脳組織中の残留放射は数式理論により予測する。また、後に投与した薬剤の放射線濃度は、先に投与した薬剤による残留放射の予測値を差し引くことにより評価する。また、脳血液量の補正は、数式理論に脳血液量の効果を組み込んで同時に評価するので、標識一酸化炭素投与によるPET撮像は不要になる。   Next, analysis of PET imaging data will be described. In the analysis of PET imaging data obtained by continuous administration of labeled oxygen and labeled water, residual radiation in the blood night and brain tissue of the previously administered drug is predicted by mathematical theory. Further, the radiation concentration of the drug administered later is evaluated by subtracting the predicted value of the residual radiation due to the drug administered earlier. In addition, the correction of the cerebral blood volume is evaluated simultaneously by incorporating the effect of the cerebral blood volume into the mathematical formula theory, so that PET imaging by administration of labeled carbon monoxide becomes unnecessary.

さらに詳しく説明すると、O-15標識酸素は、酸素分子の体内挙動をトレースする診断プローブであるが、その脳内動態は、組織酸素代謝だけでなく、血流量と血管内の放射能濃度が寄与する。この酸素動態は次の式(1)で記述できる(Mintun MA et al. (1984) J Nucl Med 25:177-187参照)。   In more detail, O-15-labeled oxygen is a diagnostic probe that traces the in vivo behavior of oxygen molecules, but its brain dynamics contribute not only to tissue oxygen metabolism but also to blood flow and radioactivity concentration in blood vessels. To do. This oxygen dynamics can be described by the following equation (1) (see Mintun MA et al. (1984) J Nucl Med 25: 177-187).

Figure 0004701406
式(1)において、Ci(t)はPET装置10により観測される組織中の画素iでの放射線濃度の時間tによる経過を示す。また、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、Ao(t)およびAw(t)はそれぞれ血液中の酸素成分および水成分の放射能濃度、pは水の分配定数を示し、
Figure 0004701406
In the equation (1), C i (t) represents the progress of the radiation concentration at the pixel i in the tissue observed by the PET apparatus 10 over time t. F is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, A o (t) and A w (t) are the radioactive concentrations of the oxygen and water components in the blood, respectively, and p is The partition constant of water,

Figure 0004701406
は重畳積分を示す。酸素代謝量は酸素摂取率Eと血流量fを乗ずることで得られる。放射線濃度Ci(t)は右辺に示される3つの寄与の和である。右辺第1項は、組織の酸素分子の挙動、すなわち酸素分子の取り込みとその代謝物である水分子の洗い出しを示し、酸素代謝量E・fに関連する。右辺第2項は、体内での代謝により生成された水分子の挙動を示し、血流量に関連する。右辺第3項は、血管内の放射能濃度を示し、血液量に関連する。血液中の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)は、血液中の全放射線濃度を測定し、体内での代謝により生成された標識水分子の量を評価して酸素成分および水成分に分離することで得られる(Iida H, Jones T, Miura S (1993) Modeling approach to eliminate the need to separate arteral plasma in oxygen-15 inhalation positron emission tomography, J Nucl Med 34:1333-1340参照)。また、式(1)において脳の検査に対しては水の分配定数p=0.8mL/g/minとすることができる(Iida JCBFM (1989)参照)。したがって、式(1)において、酸素摂取率E、血流量fおよび血管内の放射能濃度Voが評価すべき未知量である。
Figure 0004701406
Indicates a superposition integral. The oxygen metabolism is obtained by multiplying the oxygen uptake rate E and the blood flow f. The radiation concentration C i (t) is the sum of three contributions shown on the right side. The first term on the right side shows the behavior of oxygen molecules in the tissue, that is, the uptake of oxygen molecules and the washing out of water molecules that are metabolites thereof, and is related to the oxygen metabolism E · f. The second term on the right side shows the behavior of water molecules generated by metabolism in the body and is related to blood flow. The third term on the right side indicates the radioactive concentration in the blood vessel and is related to the blood volume. The radioactivity concentration A o (t) of the oxygen component in the blood and the radioactivity concentration A w (t) of the water component measure the total radiation concentration in the blood, and the labeled water molecules produced by metabolism in the body. It is obtained by evaluating the amount and separating it into oxygen and water components (Iida H, Jones T, Miura S (1993) Modeling approach to eliminate the need to separate arteral plasma in oxygen-15 inhalation positron emission tomography, J Nucl Med 34: 1333-1340). In the formula (1), the water distribution constant p = 0.8 mL / g / min can be used for the brain examination (see Iida JCBFM (1989)). Therefore, in equation (1), the oxygen uptake rate E, the blood flow f, and the radioactive concentration Vo in the blood vessels are unknown amounts to be evaluated.

次に、酸素摂取率E、血流量fおよび血管内の放射能濃度Voを導出する方法を示す。式(1)において右辺の酸素の組織への取り込みを記述する第1項と水の取り込みを記述する第2項の重畳積分部分がそれぞれ非線形である。そこでこの2項を離散的に血流量fに対してテーブル化する。具体的には、現実的にありうるfの範囲内(0〜2mL/g/min)で0.01mL/g/min毎にその時曲線を次のように定義しておく。   Next, a method for deriving the oxygen uptake rate E, the blood flow f, and the radioactive concentration Vo in the blood vessel will be shown. In Equation (1), the first integral term describing oxygen uptake into the tissue on the right side and the second integral term describing water uptake are nonlinear. Therefore, these two terms are discretely tabulated for the blood flow f. Specifically, the curve at that time is defined as follows for each 0.01 mL / g / min within the practical range f (0 to 2 mL / g / min).

Figure 0004701406
これにより、式(1)は酸素摂取率Eと血管内の放射能濃度Voのみを未知数とする式(3)として次のように書ける。
Figure 0004701406
As a result, the equation (1) can be written as the following equation (3) in which only the oxygen uptake rate E and the radioactive concentration V o in the blood vessel are unknown.

Figure 0004701406
式(3)はある特定の血流量fに対して線形方程式として最小自乗法を用いて解くことができる。ここで、所定範囲内(0〜2mL/g/min)の200通りのfについて酸素摂取率Eと放射能濃度Voに対する解をいったん求める。次に、最小自乗法の誤差
Figure 0004701406
Equation (3) can be solved using a least square method as a linear equation for a specific blood flow f. Here, a solution for the oxygen uptake rate E and the radioactivity concentration Vo is obtained once for 200 types of f within a predetermined range (0 to 2 mL / g / min). Next, the least squares error

Figure 0004701406
を最小とするf,E,Voの組み合わせを求め、血流量f、酸素摂取率E、血管内の放射能濃度Voに対する解とする。これを用いて式(1)より被検体の画像を再構成できる。
Figure 0004701406
The combination of f, E, and Vo that minimizes is obtained as a solution for the blood flow f, the oxygen uptake rate E, and the radioactive concentration Vo in the blood vessel. Using this, the image of the subject can be reconstructed from the equation (1).

なお、水の分配定数pは脳に対しては0.8mL/g/minと一定にしたが、他の臓器に対してもその数値が求められており、一定とすることができる。   In addition, although the water distribution constant p is constant at 0.8 mL / g / min for the brain, the value is obtained for other organs and can be constant.

次に、検査手順について説明する。   Next, the inspection procedure will be described.

まず、患者または実験動物をPET装置10の視野内に固定する。   First, a patient or an experimental animal is fixed in the visual field of the PET apparatus 10.

また、標識薬剤合成装置16では、標識酸素および標識水を合成する。二種類の標識化合物を短時間に合成する必要があるが、標識一酸化炭素を合成する必要がなくなるため、合成面での作業負荷が軽減される。   The labeled drug synthesizer 16 synthesizes labeled oxygen and labeled water. Although it is necessary to synthesize two kinds of labeled compounds in a short time, it is not necessary to synthesize labeled carbon monoxide, so the work load on the synthesis surface is reduced.

最初の薬剤投与のおおむね30秒前より動脈からの血液の採血を開始し、検査中それを持続する。これにより血液中全放射能濃度曲線を得る。   Blood collection from the artery is started approximately 30 seconds before the first drug administration, and is continued during the test. This gives a total radioactivity concentration curve in blood.

次に、薬剤投与装置18により標識酸素を投与し、3分後に薬剤注入装置20により標識水(もしくは薬剤投与装置18により標識二酸化炭素)を被検体に投与する。これらの薬剤の投与の順はこの逆でも可能である。薬剤投与から「3分後」の状態では、まだ最初に投与した薬剤が減衰していないが、本検査法では、その状態で第2の薬剤を投与する。   Next, labeled oxygen is administered by the drug administration device 18, and after 3 minutes, labeled water (or labeled carbon dioxide by the drug administration device 18) is administered to the subject by the drug injection device 20. The order of administration of these drugs can be reversed. In the state of “3 minutes” after drug administration, the first administered drug has not yet decayed, but in this test method, the second drug is administered in that state.

最初の薬剤投与と同時にPET装置10による撮像を開始し、撮像はこの例では6分間続ける。これにより、脳内の放射能分布の投影データ(1次データ、サイノグラムと呼ばれる)を得る。このサイノグラムを時間tごとに画像再構成することで、放射線濃度のデータの時系列曲線Ci(t)を脳内の放射能分布ごとに得る。放射線濃度のデータCi(t)を用いて、脳血流、脳酸素代謝および脳酸素摂取率の定量画像評価を行う。   Simultaneously with the first drug administration, imaging by the PET apparatus 10 is started, and imaging is continued for 6 minutes in this example. Thereby, projection data of radiation distribution in the brain (primary data, called sinogram) is obtained. By reconstructing this sinogram for each time t, a time series curve Ci (t) of radiation concentration data is obtained for each radioactivity distribution in the brain. Quantitative image evaluation of cerebral blood flow, cerebral oxygen metabolism, and cerebral oxygen uptake rate is performed using the radiation concentration data Ci (t).

このように、PET検査による脳血流、脳酸素代謝量および脳酸素摂取率の定量画像評価において、O−15標識ガスおよびO−15標識水を3分間隔という短時間間隔に投与する検査法を採用するので、検査時間を10分以下に短縮できる。また、脳血液量補正のための標識一酸化炭素投与検査を要しない。これにより、通常1時間程度を要していた検査時間を10分程度に短縮できる。   Thus, in quantitative image evaluation of cerebral blood flow, cerebral oxygen metabolism, and cerebral oxygen uptake rate by PET examination, an examination method in which O-15 labeled gas and O-15 labeled water are administered at short intervals of 3 minutes. Therefore, the inspection time can be shortened to 10 minutes or less. Moreover, the labeled carbon monoxide administration test for cerebral blood volume correction is not required. As a result, the inspection time, which normally takes about 1 hour, can be reduced to about 10 minutes.

図5は、前述の解析手順を実行する定量解析プログラム46のフローチャートである。PET装置10から画像データである画素iでの放射線濃度Ci(t)を読み込む(S10)。また、血液入力関数モニター24から血液中の全放射線濃度曲線データを読み込み(S12)、血液中の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)に分離する(S14)。   FIG. 5 is a flowchart of the quantitative analysis program 46 for executing the above-described analysis procedure. The radiation density Ci (t) at pixel i, which is image data, is read from the PET apparatus 10 (S10). Further, the total radiation concentration curve data in the blood is read from the blood input function monitor 24 (S12) and separated into the radioactivity concentration Ao (t) of the oxygen component and the radioactivity concentration Aw (t) of the water component (S12). S14).

次に、所定範囲(0〜2mL/g/min)内の複数の離散値について200通りの血流量fについて式(2)の2つの非線形部分(重畳積分部分)F,Fのテーブル化を行い、記憶する(S16)。Next, the two nonlinear parts (superimposed integral parts) F 1 and F 2 of the formula (2) are tabulated for 200 different blood flow rates f for a plurality of discrete values within a predetermined range (0 to 2 mL / g / min). Is stored (S16).

次に、画像の画素iごとに、前記の200通りのfについて最小自乗法により酸素摂取率Eと血管内の放射能濃度Voを計算する(S18)。次に、式(4)の最小自乗法の誤差sを最小とする血流量f、酸素摂取率E、血管内の放射能濃度Voを決定する(S20)。そして、得られた測定データ(機能画像データ)を記憶するとともに、ディスプレイ装置38に画像を表示する(S22)。Next, for each pixel i in the image, the oxygen uptake rate E and the radioactivity concentration Vo in the blood vessel are calculated by the least square method for the above-mentioned 200 types of f (S18). Next, to determine the blood flow f that minimizes the error s 2 of the least squares method of Formula (4), oxygen uptake rate E, the radioactivity concentration Vo in the vessel (S20). Then, the obtained measurement data (functional image data) is stored, and an image is displayed on the display device 38 (S22).

図6に、PET検査により検出される放射線濃度の時間経過の1例を示す。この例では、時刻0分において標識酸素を投与し時刻3分で標識水を投与している。図5において、実線61は上式の左辺つまりPETにおける画素iでの放射線濃度の測定量Ci(t)を、破線62は式(1)の右辺第1項(組織中の酸素分子の挙動)、破線63は式(1)の右辺第2項(体内の代謝で得られた水分子の挙動)、点線64は式(1)の右辺第3項(血管内の放射能濃度)を示す。破線63は、時刻3分での標識水の投与に対応して急に増加している。   FIG. 6 shows an example of the time lapse of the radiation concentration detected by the PET examination. In this example, labeled oxygen is administered at time 0 minutes and labeled water is administered at time 3 minutes. In FIG. 5, the solid line 61 represents the measured value Ci (t) of the radiation concentration at the left side of the above equation, that is, the pixel i in PET, and the broken line 62 represents the first term on the right side of the equation (1) (the behavior of oxygen molecules in the tissue). The broken line 63 represents the second term on the right side of the equation (1) (behavior of water molecules obtained by metabolism in the body), and the dotted line 64 represents the third term on the right side of the equation (1) (radioactivity concentration in the blood vessel). The broken line 63 suddenly increases corresponding to the administration of labeled water at time 3 minutes.

図7は、カニクイザルを被検体として用いて上述の新規の検査法と3種類の標識化合物の短期間投与に基づく従来法とでそれぞれ得られた脳血流量、脳酸素摂取率および脳酸素代謝量の測定データ(画像)を示す。新規の検査法では、1回のPET検査のみで検査を終了できるので測定時間が10分以内に大幅に短縮できる一方、従来法と同等の測定精度の測定結果が得られた。これにより、検査法の正当性と妥当性を確認できた。   FIG. 7 shows cerebral blood flow, cerebral oxygen uptake rate, and cerebral oxygen metabolism obtained respectively by the above-described new test method using cynomolgus monkey as a subject and the conventional method based on short-term administration of three kinds of labeled compounds. Measurement data (image) is shown. With the new inspection method, since the inspection can be completed with only one PET inspection, the measurement time can be greatly shortened within 10 minutes, while a measurement result with the same measurement accuracy as the conventional method was obtained. This confirmed the correctness and validity of the inspection method.

なお、血流検査のため、標識水の代わりに標識二酸化炭素を用いることもできる。標識二酸化炭素は、標識ガス投与装置18により投与する。この場合、標識水を用いる場合と同様に、標識酸素と標識二酸化炭素を、時間間隔をあけて連続的に被検体に投与し、一回のPET撮像で放射線濃度を求める。   For the blood flow test, labeled carbon dioxide can be used instead of labeled water. The labeled carbon dioxide is administered by the labeled gas administration device 18. In this case, as in the case of using labeled water, labeled oxygen and labeled carbon dioxide are continuously administered to the subject with a time interval, and the radiation concentration is obtained by one PET imaging.

先に投与した薬剤の血夜中および脳組織中の残留放射は数式理論により予測し、後に投与した薬剤の放射線濃度は、先に投与した薬剤による残留放射の予測値を差し引くことにより評価するが、標識酸素と標識水(または標識二酸化炭素)の2つの薬剤の投与の順番は、逆にしてもよい。   Residual radiation in the blood night and brain tissue of the previously administered drug is predicted by mathematical theory, and the radiation concentration of the subsequently administered drug is evaluated by subtracting the predicted residual radiation from the previously administered drug, The order of administration of the two drugs, labeled oxygen and labeled water (or labeled carbon dioxide), may be reversed.

また、上述の例ではPET装置10からの一次データであるサイノグラム(投影データ)をまず放射線濃度の画像データCi(t)に再構成してから、局所ごとに脳酸素代謝量等を計算した。そして、脳酸素代謝量等の定量化画像を得た。しかし、その代わりに、投影データの時曲線から投影データとしての脳酸素代謝量等を同様に計算し、その計算結果から定量化画像を再構成してもよい。   In the above example, the sinogram (projection data), which is the primary data from the PET apparatus 10, is first reconstructed into the image data Ci (t) of the radiation concentration, and then the cerebral oxygen metabolism and the like are calculated for each region. Then, a quantified image such as cerebral oxygen metabolism was obtained. However, instead, the cerebral oxygen metabolism amount as projection data may be calculated in the same manner from the time curve of the projection data, and the quantified image may be reconstructed from the calculation result.

以上に説明した画像定量化では、従来標識一酸化炭素投与検査により行っていた脳血液量補正について、脳血液量を数式理論により推定可能としたので、標識一酸化炭素を用いた検査が不要となる。また、従来別々に行っていたO-15標識水とO-15標識酸素ガスをたとえば3分という短時間間隔で連続的に投与する検査法を採用したので、1回のPET撮像で検査ができる。さらに、数式理論を用い、1回の撮像のデータから短時間(おおむね2分)内に酸素代謝量、酸素摂取率、血流といった複数の機能の画像の計算を可能となる。したがって、2種の薬剤を連続的に投与しつつ1回のPET撮像を行うだけで、測定精度を維持しつつ、検査時間が短縮できる。

In the image quantification described above, the cerebral blood volume correction, which has been performed by the labeled carbon monoxide administration test in the past, can be estimated by mathematical theory, so that a test using labeled carbon monoxide is unnecessary. Become. In addition, since a test method in which O-15-labeled water and O-15-labeled oxygen gas have been continuously administered separately at a short interval of, for example, 3 minutes has been adopted, the test can be performed with a single PET imaging. . Furthermore, using mathematical theory, it is possible to calculate images of a plurality of functions such as oxygen metabolism, oxygen uptake rate, and blood flow within a short time (approximately 2 minutes) from the data of one imaging. Therefore, the inspection time can be shortened while maintaining the measurement accuracy only by performing one PET imaging while continuously administering two kinds of drugs.

Claims (16)

標識酸素と標識水及び標識二酸化炭素のいずれか1つとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度のデータCi(t)と、このPET撮影と並行して得られた被検体の血液の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)とを入力するデータ入力手段と、
前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式
[数1]
Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
[数2]
Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
[数3]
Figure 0004701406
とfのテーブルとして記憶しておくテーブル作成手段と、
前記のテーブルを用いて、前記の離散的なfの値に対して
[数4]
Figure 0004701406
におけるEとVoに対する解を最小自乗法により求め、次に、
[数5]
Figure 0004701406
を最小とするf,E,Voを求める未知数決定手段とからなる
PET撮像による画像定量化装置。
Reconstructed from the sinogram or sinogram of the tissue of the subject obtained by performing one continuous PET imaging while administering the labeled oxygen and any one of labeled water and labeled carbon dioxide to the subject with a time difference. The radiation concentration data C i (t), the radioactivity concentration A o (t) of the oxygen component of the blood of the subject obtained in parallel with the PET imaging, and the radioactivity concentration A w (t) of the water component Data input means for inputting
The following equation representing the sinogram or radiation concentration data C i (t) in the tissue:
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,
[Equation 2]
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.
[Equation 3]
Figure 0004701406
And a table creation means for storing as a table of f,
Using the table, for the discrete f value, [Equation 4]
Figure 0004701406
Find the solution to E and Vo at, using the least squares method, then
[Equation 5]
Figure 0004701406
An image quantification apparatus based on PET imaging, comprising unknown quantity determining means for obtaining f, E, and Vo that minimizes f.
前記のデータCi(t)が放射線濃度画像のデータであり、さらに、求められたf,E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を計算する画像計算手段を備える、請求項1に記載された画像定量化装置。The data C i (t) is radiation density image data, and further, using the obtained f, E, and Vo, a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate, or cerebral oxygen metabolism amount The image quantification apparatus according to claim 1, further comprising image calculation means for calculating 前記のデータCi(t)がサイノグラムのデータであり、さらに、求められたf,E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を再構成する画像計算手段を備える、請求項1に記載された画像定量化装置。The data C i (t) is sinogram data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism uptake rate or cerebral oxygen metabolism is reproduced using the obtained f, E, and Vo. The image quantification apparatus according to claim 1 , further comprising an image calculation unit configured. 標識酸素と標識水及び標識二酸化炭素のいずれかとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度画像のデータCi(t)と、このPET撮影と並行して得られた被検体の血液中の酸素成分の放射能濃度Ao(t)および水成分の放射能濃度Aw(t)を入力し、
前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式
[数6]
Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
[数7]
Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
[数8]
Figure 0004701406
とfのテーブルとして記憶しておき、
次に、前記のテーブルを用いて、前記の離散的なfの値に対して
[数9]
Figure 0004701406
におけるEとVoに対する解を最小自乗法により求め、
次に、
[数10]
Figure 0004701406
を最小とするf,E、Voを求める
PET撮像による画像定量化方法。
Radiation reconstructed from the sinogram or sinogram of the tissue of the subject obtained by performing one continuous PET imaging while administering the labeled oxygen and either labeled water or labeled carbon dioxide to the subject with a time difference Concentration image data C i (t), radioactivity concentration A o (t) of oxygen component in the blood of the subject obtained in parallel with this PET imaging, and radioactivity concentration A w (t) of water component Enter
The following equation representing the sinogram or radiation concentration data C i (t) in the tissue:
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,
[Equation 7]
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.
[Equation 8]
Figure 0004701406
And f as a table,
Next, using the table, for the discrete f value, [Equation 9]
Figure 0004701406
Find the solution to E and Vo at
next,
[Equation 10]
Figure 0004701406
An image quantification method by PET imaging that obtains f, E, and Vo that minimize the frequency.
前記のデータCi(t)が放射線濃度画像のデータであり、さらに、求められたf、E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を計算する、請求項4に記載された画像定量化方法。The data C i (t) is radiation density image data. Further, using the obtained f, E, and Vo, a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate, or cerebral oxygen metabolism is obtained. The image quantification method according to claim 4, wherein: 前記のデータCi(t)がサイノグラムのデータであり、さらに、求められたf、E,Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を再構成する、請求項4に記載された画像定量化方法。The data C i (t) is sinogram data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate, or cerebral oxygen metabolism is reproduced using the obtained f, E, and Vo. The image quantification method according to claim 4, which is configured. 前記のデータCi(t)が放射線濃度画像のデータであり、求められたf、E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を計算する請求項4に記載された画像定量化法。The data C i (t) is radiation density image data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate or cerebral oxygen metabolism is calculated using the obtained f, E, and Vo. The image quantification method according to claim 4. 前記のデータCi(t)がサイノグラムのデータであり、求められたf、E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を再構成する請求項4に記載された画像定量化方法。The data C i (t) is sinogram data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate, or cerebral oxygen metabolism is reconstructed using the obtained f, E, and Vo. The image quantification method according to claim 4. 投与した前記の2つの薬剤のうち、先に投与した薬剤の血夜中および脳組織中の残留放射を上記の数式により予測し、次に、後に投与した薬剤の放射線濃度を、先に投与した薬剤による残留放射の予測値を差し引くことにより評価する、請求項4に記載された画像定量化方法。Of the above two administered drugs, the residual radiation in the blood night and brain tissue of the previously administered drug is predicted by the above formula, and then the radiation concentration of the subsequently administered drug is determined by the previously administered drug. The image quantification method according to claim 4, wherein the evaluation is performed by subtracting a predicted value of residual radiation according to claim 5. さらに、PET撮影と並行して得られた被検体の血液の放射能濃度のデータを入力して、このデータから、血液中の酸素成分の放射能濃度および水成分の放射能濃度を計算して、計算されたこれらの放射能濃度を前記の入力データAo(t)、Aw(t)とする、請求項4に記載された画像定量化方法。Furthermore, the blood concentration data of the subject obtained in parallel with the PET imaging is input, and from this data, the radioactivity concentration of the oxygen component in the blood and the radioactivity concentration of the water component are calculated. 5. The image quantification method according to claim 4, wherein the calculated radioactivity concentrations are the input data A o (t) and A w (t). 標識酸素と標識水及び標識二酸化炭素のいずれかとを時間差を設けて被検体に投与しつつ1回の連続的PET撮像を行って得られた被検体の組織のサイノグラムまたはサイノグラムから再構成された放射線濃度画像のデータCi(t)を入力するステップと、
前記の組織中のサイノグラムまたは放射線濃度のデータCi(t)を表す以下の数式
[数11]
Figure 0004701406
(ここに、fは血流量、Eは酸素摂取率、Voは血管内の放射能濃度、pは水の分配定数、tは時間を示し、
[数12]
Figure 0004701406
は重畳積分を示す)において、2つの重畳積分部分を、pを所定の一定値として、あるfの範囲内の複数の離散的なfの値に対して計算し、下記のF,F
[数13]
Figure 0004701406
とfのテーブルとして記憶しておくステップと、
次に、前記のテーブルを用いて、前記の離散的なfの値に対して
[数14]
Figure 0004701406
におけるEとVoに対する解を最小自乗法により求めるステップと、
次に、
[数15]
Figure 0004701406
を最小とするf,E、Voを求めるステップと
からなり、コンピュータにより実行されるPET撮像による画像定量化プログラム。
Radiation reconstructed from the sinogram or sinogram of the tissue of the subject obtained by performing one continuous PET imaging while administering the labeled oxygen and either labeled water or labeled carbon dioxide to the subject with a time difference A step of inputting density image data C i (t);
The following equation representing the sinogram or radiation concentration data C i (t) in the tissue:
Figure 0004701406
(Where f is the blood flow rate, E is the oxygen uptake rate, Vo is the radioactive concentration in the blood vessel, p is the partition constant of water, and t is the time,
[Equation 12]
Figure 0004701406
Is a superposition integral), and two superposition integral parts are calculated with respect to a plurality of discrete f values within a range of f, where p is a predetermined constant value, and the following F 1 and F 2 are calculated.
[Equation 13]
Figure 0004701406
Storing as a table of and f;
Next, using the table, for the discrete f value, [Equation 14]
Figure 0004701406
Finding a solution for E and Vo at, using the method of least squares;
next,
[Equation 15]
Figure 0004701406
An image quantification program based on PET imaging, which is executed by a computer.
前記のデータCi(t)が放射線濃度画像のデータであり、求められたf、E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を計算する請求項11に記載された画像定量化プログラム。The data C i (t) is radiation density image data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate or cerebral oxygen metabolism is calculated using the obtained f, E, and Vo. The image quantification program according to claim 11. 前記のデータCi(t)がサイノグラムのデータであり、求められたf、E、Voを用いて、局所脳血流、脳酸素代謝摂取率または脳酸素代謝量の定量化画像を再構成する請求項11に記載された画像定量化プログラム。The data C i (t) is sinogram data, and a quantified image of local cerebral blood flow, cerebral oxygen metabolism intake rate, or cerebral oxygen metabolism is reconstructed using the obtained f, E, and Vo. The image quantification program according to claim 11. 投与した前記の2つの薬剤のうち、先に投与した薬剤の血夜中および脳組織中の残留放射を上記の数式により予測し、次に、後に投与した薬剤の放射線濃度を、先に投与した薬剤による残留放射の予測値を差し引くことにより評価する、請求項11に記載された画像定量化プログラム。Of the above two administered drugs, the residual radiation in the blood night and brain tissue of the previously administered drug is predicted by the above formula, and then the radiation concentration of the subsequently administered drug is determined by the previously administered drug. The image quantification program according to claim 11, wherein the evaluation is performed by subtracting a predicted value of residual radiation according to. さらに、PET撮影と並行して得られた被検体の血液の放射能濃度のデータを入力して、このデータから、血液中の酸素成分の放射能濃度および水成分の放射能濃度を計算するステップを備え、計算されたこれらの放射能濃度を前記の入力データAo(t)、Aw(t)とする、請求項11に記載された画像定量化プログラム。Further, a step of inputting blood concentration data of the subject obtained in parallel with the PET imaging, and calculating a radioactivity concentration of an oxygen component and a water component in the blood from this data The image quantification program according to claim 11, wherein the calculated radioactivity concentrations are the input data A o (t) and A w (t). 請求項11から15のいずれかに記載された画像定量化プログラムを記録したコンピュータ読み出し可能な記録媒体。A computer-readable recording medium on which the image quantification program according to any one of claims 11 to 15 is recorded.
JP2006543104A 2004-10-21 2005-10-21 Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program Active JP4701406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543104A JP4701406B2 (en) 2004-10-21 2005-10-21 Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004307455 2004-10-21
JP2004307455 2004-10-21
PCT/JP2005/019420 WO2006043674A1 (en) 2004-10-21 2005-10-21 Device and method for quantizing image by pet imaging
JP2006543104A JP4701406B2 (en) 2004-10-21 2005-10-21 Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program

Publications (2)

Publication Number Publication Date
JPWO2006043674A1 JPWO2006043674A1 (en) 2008-05-22
JP4701406B2 true JP4701406B2 (en) 2011-06-15

Family

ID=36203086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543104A Active JP4701406B2 (en) 2004-10-21 2005-10-21 Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program

Country Status (2)

Country Link
JP (1) JP4701406B2 (en)
WO (1) WO2006043674A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576265B1 (en) 1999-12-22 2003-06-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
JP5113378B2 (en) * 2006-12-20 2013-01-09 富士フイルムRiファーマ株式会社 Time-series data analysis method, program and recording medium for brain image data
JP5380201B2 (en) * 2009-08-19 2014-01-08 独立行政法人国立循環器病研究センター Labeled compound supply system
EP2443994A3 (en) * 2010-10-19 2013-03-13 Nihon Medi-Physics Co., Ltd. Apparatus, program and method for determining cerebral blood flow
JP5422543B2 (en) * 2010-12-15 2014-02-19 富士フイルムRiファーマ株式会社 Blood flow estimation apparatus, method, and computer program
KR102461893B1 (en) * 2020-12-23 2022-11-01 동아대학교 산학협력단 Pet image medium-term data prediction apparatus based on least squares method for determining brain disease, and method thereof

Also Published As

Publication number Publication date
WO2006043674A1 (en) 2006-04-27
JPWO2006043674A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
Fan et al. Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: A technical review in the era of PET/MRI
US20230346324A1 (en) System and method for single-scan rest-stress cardiac pet
Hopkins et al. Imaging lung perfusion
Sá et al. Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI
Kanno et al. Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method
Pärkkä et al. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans
JP4701406B2 (en) Image quantification apparatus, method, program by PET imaging, and computer-readable recording medium recording the image quantification program
Sá et al. Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging
Ohno et al. Pulmonary functional imaging: Part 1—state-of-the-art technical and physiologic underpinnings
Ohno et al. Oxygen-enhanced MR imaging: correlation with postsurgical lung function in patients with lung cancer
US20160166212A1 (en) Lung function analysis method and apparatus
Harris et al. Cerebral blood flow response to acute hypoxic hypoxia
JP2014524012A (en) System and method for quantitative dynamic molecular imaging fast scanning
Renne et al. Chronic lung allograft dysfunction: oxygen-enhanced T1-mapping MR imaging of the lung
Hopkins Ventilation/perfusion relationships and gas exchange: measurement approaches
EP2271257B1 (en) Imaging technique
EP2148615B1 (en) Imaging technique
Pack et al. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method
van den Boomen et al. Blood oxygen level–dependent MRI of the myocardium with multiecho gradient-echo spin-echo imaging
JP6060302B1 (en) Method and apparatus for analyzing myocardial nuclear medicine image data
US20060173301A1 (en) Novel method of analysis and measurement of the distribution or reserve of the coronary blood flow
Holroyd et al. The quantitative analysis of renograms using the gamma camera
JP2020500071A (en) Synthetic Magnetic Resonance Imaging and Magnetic Resonance Fingerprinting Using Contrast Agent and Determination of Contrast Injection Protocol
Herscovitch Principles of positron emission tomography
Krishnamurthi et al. Functional imaging in small animals using X-ray computed tomography-study of physiologic measurement reproducibility

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350