JP4797143B2 - Catalytic reaction control method - Google Patents
Catalytic reaction control method Download PDFInfo
- Publication number
- JP4797143B2 JP4797143B2 JP2001024090A JP2001024090A JP4797143B2 JP 4797143 B2 JP4797143 B2 JP 4797143B2 JP 2001024090 A JP2001024090 A JP 2001024090A JP 2001024090 A JP2001024090 A JP 2001024090A JP 4797143 B2 JP4797143 B2 JP 4797143B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- stimulus
- temperature
- responsive
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、異なる刺激応答性を有する2種以上のポリマーにそれぞれ少なくとも触媒活性の異なる触媒を固定化し、刺激によってその状態を変化させることでそれぞれの触媒活性の発現を制御し、触媒反応を制御する方法に関する。さらには、該刺激応答性ポリマーを磁性微粒子に固定化し、ポリマーの状態変化と磁場を利用して触媒活性の発現を制御し、触媒反応を制御する方法に関する。
【0002】
【従来の技術】
刺激応答性ポリマーを蛋白の活性部位に結合させ溶液の状態変化により活性を制御する方法が考えられており、例えば、Nature(1995),vol.378,472-474ではストレプトアビジンのビオチン結合部位に、水溶液中で温度応答性を示し、下限臨界溶液温度を30℃付近に有するポリマーとして知られているポリイソプロピルアクリルアミド(PNIPAM)を結合させ、PNIPAMが溶解している30℃以下の温度ではビオチンがストレプトアビジンに結合するのに対し、PNIPAMが凝集する30℃以上の温度ではビオチンが結合しにくくなる方法を報告している。
【0003】
また、特表2000−500733号には、種々のアッセイ、分離、プロセッシング等で有用な部位特異的結合体を形成するための相互作用性分子と刺激応答性成分とを組み合わせた、刺激に応答する相互作用性分子結合体が記載されており、刺激を与えることにより、ポリマー−結合生体分子の選択的な分割、相分離、沈殿等が達成されることが記載される。
【0004】
しかしながら、これらの方法では一種類の酵素活性のみしか制御できず、2種以上の蛋白の活性の簡便な制御方法が望まれていた。また、全ての蛋白の活性部位に上手くポリマーを結合させることは困難であった。
【0005】
【発明が解決しようとする課題】
従って本発明の目的は、各種バイオリアクターやセンサー、コポリマーの合成等に幅広く応用できる、触媒の活性の発現を制御し、触媒反応を簡便に制御できる方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは前述の問題を解決すべく鋭意努力した結果、刺激応答性を示す2種以上のポリマーにそれぞれ少なくとも触媒活性の異なる触媒を固定化することにより、それぞれのポリマーの性能に悪影響を及ぼすことなく刺激応答性が良好に発現できること、すなわち、それぞれのポリマーの刺激応答性の違いを利用して触媒活性の発現を制御し、触媒反応を制御できることを見出したものである。更に本発明では、ポリマーを蛋白質に固定化させることによりポリマーごと蛋白質を回収するものであるため、ポリマーが蛋白質に固定化(結合も含む)すればそれがどの部位でもよく、従来法と比較して格段に操作が行い易いという利点を有する。すなわち、本発明は以下の構成からなる。
【0007】
(1)刺激応答性の異なる少なくとも2種のポリマーに、それぞれ触媒活性が異なる少なくとも1種の触媒を固定化し、該少なくとも2種のポリマーの刺激応答性の差を利用して、該ポリマー上の触媒活性の発現を制御することを特徴とする触媒反応制御方法。
【0008】
(2)該触媒を固定化した刺激応答性ポリマーの少なくとも1種を磁性微粒子に固定化することを特徴とする上記(1)に記載の触媒反応制御方法。
【0009】
(3)該刺激応答性の異なる少なくとも2種のポリマーが、相転移温度の異なる少なくとも2種の温度応答性ポリマーを含むことを特徴とする上記(1)または(2)記載の触媒反応制御方法。
【0010】
(4)該刺激応答性の異なる少なくとも2種のポリマーが、下限臨界溶液温度(LCST)を示すポリマーおよび上限臨界溶液温度(UCST)を示すポリマーを含むことを特徴とする上記(1)または(2)記載の触媒反応制御方法。
【0011】
(5)触媒活性が異なる少なくとも1種の触媒をそれぞれ固定化した、刺激応答性の異なる少なくとも2種のポリマーを含む、上記(1)に記載の触媒反応制御方法を用いたバイオリアクターまたはセンサー。
【0012】
本発明によれば、触媒反応を容易に制御できると共に、触媒を繰り返し使用でき、また触媒を用いて製造した生成物と触媒との分離も簡単に行うことができる。従って、温度変化を繰り返し行うことにより、コポリマー、ペプチド等の化合物を同一バッチ内で合成したり、pHや温度等に応答して信号(発色等)を出す各種センサーに応用したり、触媒として酵素を用いることにより各種バイオリアクターに応用したりすることができる。
【0013】
【発明の実施の形態】
以下、本発明をさらに詳しく説明する。
本発明に使用する刺激応答性ポリマーは何らかの物理的または化学的な外部刺激に応答して、構造的変化(例えば凝集など)を生じるポリマーであり、かかる外部刺激としては、温度、pH、塩濃度、光等が挙げられる。
【0014】
本発明では、少なくとも2種の刺激応答性ポリマーを用いることにより、その刺激応答性の差を利用して、該刺激応答性ポリマーに固定化した触媒の活性の発現を制御することができる。より具体的には、それぞれ異なる触媒活性を有し、且つ異なる刺激応答性を有する2種以上のポリマーに外部刺激を与え、それにより少なくとも1つの刺激応答性ポリマーが凝集している状態で、遠心分離、濾過等の分離手段により該凝集しているポリマーを触媒ごと溶液から取り除くことにより、それ以外の溶解しているままの状態のポリマーに固定化している触媒の活性のみを発現させることができる。この各種刺激に対応して触媒活性が発現し、各種反応を制御できる機構を利用することにより、種々の反応設計を行うことができる。
【0015】
本発明では、異なる刺激応答性ポリマーを少なくとも2種用い、かつそのうちの少なくとも2種の刺激応答性ポリマーが少なくとも互いに異なる触媒活性を有する触媒を固定していることを特徴とする。これにより、刺激応答性の差を利用して触媒活性の発現を制御することができる。具体的には、例えば下記の如き態様が挙げられる。
【0016】
【表1】
【0017】
ここで、ポリマーA、BおよびCはそれぞれ刺激応答性の異なるポリマーを示す。刺激応答性が異なるポリマーには、外部刺激が異なる場合(例えば温度応答性とpH応答性)や、同じ外部刺激(例えば温度応答性)であっても、その相転移温度が異なる場合や、構造変化の仕方が異なる場合(例えばLCSTとUCST)等が含まれる。
【0018】
また上記表1において、触媒α、βおよびγはそれぞれ異なる種類の触媒を示す。但し、本発明においては、少なくとも2種の刺激応答性ポリマーが有する触媒活性が異なっていればよく、上記表1のように少なくとも2種の刺激応答性ポリマーにそれぞれ異なる種類の触媒を固定化した場合に限らず、同じ触媒を用いてその量を調節して異なる触媒活性とする場合も含むものである。
【0019】
本発明の刺激応答性ポリマーは、公知の刺激応答性ポリマーのいずれでも用いることができる。例えば温度応答性ポリマーとして、下限臨界溶液温度(LCST)を有するポリマーが知られており、ポリイソプロピルアクリルアミド(相転移温度約32℃)、ポリイソプロピルメタクリルアミド(相転移温度約38℃)、ポリビニルメチルエーテル(相転移温度約30℃)、ポリNビニルイソブチルアミド(相転移温度約38℃)、メチルセルロース(相転移温度約65℃)等が挙げられる。例えば、これらの中から相転移温度の異なる2種を選び、それぞれに異なった活性を有する触媒を結合させ、同一の容器内で混合後、溶液の温度を片方だけが凝集する温度とし、凝集したポリマーを遠心分離やろ過等によって取り除くことにより、残りの溶液中では溶解しているポリマーに結合していた触媒活性のみとなる。このようにして容易に触媒活性の発現を制御することができる。
【0020】
また、上限臨界溶液温度(UCST)有するポリマーも知られており、例えば特開2000−86729号では、アクリルアミドとN-アセチルアクリルアミドの共重合体がUCSTを示す事が報告されている。例えば、LCSTを示すポリマー1種とUCSTを示すポリマー1種にそれぞれ異なる触媒を結合させ、同様に溶液の温度変化により触媒活性の制御を行う事も出来る。
【0021】
また、pH応答性ポリマーとしては、ポリアクリル酸またはアクリル酸とイソプロピルアクリルアミドとの共重合体等を挙げることができる。また、光応答性ポリマーとしては、例えばスピロピランをポリイソプロピルアクリルアミドと結合させることにより、光に応答し、凝集収縮を繰り返すポリマーを得ることができる。
【0022】
更に本発明に用いる刺激応答性ポリマーは磁性微粒子に固定化することも出来る。少なくとも1つの刺激応答性ポリマー、好ましくは触媒の固定化した全ての刺激応答性ポリマーを、磁性微粒子に結合させておくことにより、刺激応答性を有する磁性微粒子とすることができ、これにより遠心等の分離操作を行わずに、磁場の操作だけで外部刺激により凝集したポリマーを触媒ごと取り除くことができ、より簡便に、溶解しているポリマーに固定化した触媒の活性のみを発現することができる。
【0023】
なお、本発明において、LCST(下限臨界溶液温度)とは、特定温度以下では溶解状態を維持するが、その特定温度以上の溶液中では不溶性となり凝集する温度を言い、「LCSTを有する磁性微粒子」とは、ある特定温度以下の溶液中では均一に分散するが、溶液の温度を特定温度以上にすると凝集する性質を有する磁性微粒子を意味する。同様に、UCSTとは、特定温度以上では溶解状態を維持するが、その特定温度以下の溶液中では不溶性となり凝集する温度を言い、「UCSTを有する磁性微粒子」とは、ある特定温度以下の溶液中では均一に分散するが、溶液の温度を特定温度以上にすると凝集する性質を有する磁性微粒子を意味する。
【0024】
利用する磁性微粒子はその粒径が1μm以下のものが好ましく、更に1〜100nmの範囲が好ましい。磁性微粒子としては、例えばマグネタイトの粒子等が挙げられる。
またその調整法としては例えば Biocatalysis, 1991, vol.5, 61-69 で述べられているオレイン酸ナトリウムとドデシルベンゼンスルホン酸ナトリウムを使用し、マグネタイトを二重のミセルとし、水溶液中に分散させる方法等が挙げられる。
【0025】
刺激応答性ポリマーを磁性微粒子の表面に固定化する方法は、物理吸着、水素結合や共有結合などの化学結合等、いずれでもよい。具体的には、刺激応答性ポリマーの合成時に磁性微粒子を存在させる方法や、合成した刺激応答性ポリマーと磁性微粒子を接触させる方法等が挙げられる。また、磁性微粒子表面にカップリング剤を結合させ、そのSH基を基点として刺激応答性を有するポリマーをグラフト重合させることによっても製造することもできる。
【0026】
具体的には、磁性微粒子を例えば刺激応答性を示すポリマー重合時に溶液中に存在させておくことにより、刺激応答性を有するポリマーが磁性微粒子に固定化され、その結果磁性微粒子が刺激応答性を示す様になる。通常1μm以下の粒径の磁性微粒子は磁石での短時間の回収は困難であるが、この方法により得られた磁性微粒子は固定化された刺激応答材料の性質により回収が容易になる。例えば PNIPAMを結合させたものは、LCSTを示すようになる。この磁性微粒子を含む溶液はその温度が LCST以下では溶液中に分散し磁石で回収することが難しいが、温度を LCST以上とすることにより直ちに凝集し、磁石により回収することが出来る。従って、この様な性質を示す磁性微粒子を2種以上調製し、そこへそれぞれ異なる触媒を結合させると、刺激を与えて凝集したものを磁石により回収することにより、溶解したままの磁性微粒子に結合している触媒活性のみが残ることができる。
【0027】
本発明に用いることができる触媒としては特に限定されるものではなく、例えば、酵素、核酸(リボザイム、DNAzyme)、金属触媒等が挙げられる。
これらの触媒を刺激応答性ポリマーへ固定化する方法も特に限定されず、イオン結合、共有結合、特異的相互作用を行う生体分子を用いる方法、包括法等が挙げられ、全ての化学的、物理的あるいは生物的な固定化法が含まれる。
【0028】
例えば刺激応答性ポリマーへ酵素(蛋白)を結合する方法としては、例えば、ポリマー重合時にメタクリル酸等を共重合させる等して、カルボキシル基等の蛋白質と結合し得る官能基を有するポリマーを設計し、カルボジイミド等を用いる既知の蛋白質固定化方法により、酵素等を固定化する方法が挙げられる。また、クラウンエーテルのモノマーを本発明のポリマーに重合させ、Ca2+を配位させることもできる。
【0029】
また、上記の如く蛋白を直接ポリマーに結合する方法に限定されるものでなく、何らかの特異的結合を利用する方法でもよい。例えば、予めビオチンを固定化したポリマーにアビジン化された酵素を結合させたり、あるいはアビジンを介してさらにその空いているビオチン結合部位へ適当なビオチン化酵素を結合させることも出来る。このような特異的結合を利用するものとして、他に、抗原−抗体、抗体−プロテインA(G)、ポリヌクレオチド−相補的塩基配列をもつポリヌクレオチド等が挙げられる。
【0030】
この様なリガンドの結合方法は、先述したように何らかの官能基を持つ様に設計したポリマーに後から結合させても良いし、あるいは重合性を持つように合成したリガンド化合物を用い、ポリマー重合時に予め混合させておくことにより、共重合させることもできる。この重合性を有するリガンド化合物としては、例えば下記一般式(I)で示されるビオチン誘導体を挙げることができる。
【0031】
【化1】
【0032】
式(I)中、R2は水素原子またはアルキル基を示す。R3及びR4はそれぞれ独立に水素原子、アルキル基またはアリール基を示す。Tは酸素原子または=NH基を示す。Wは単結合またはカルボニル基、チオカルボニル基もしくは炭素数1〜5のアルキレン基を示す。Uは単結合または−NH−基、1,2−ジオキシエチレン基もしくは1,2−ジアミノエチレン基を示す。Zは単結合またはカルボニル基、チオカルボニル基、炭素数1〜5のアルキレン基、酸素原子もしくは−NH−基を示す。Vは単結合または炭素数1〜5のアルキレン基を示す。
【0033】
さらに具体的には、下記(Ia)〜(Ic)で表される(イミノ)ビオチン誘導体が好ましい。
【0034】
【化2】
【0035】
一般式(Ia)〜(Ic)中、R1は単結合または炭素数1〜4のアルキレン基を示し、R5は炭素数2または3のアルキレン基を示す。X1は酸素原子または硫黄原子を示し、X2〜X5はそれぞれ独立に酸素原子または−NH−基を示す。T、R2、R3およびR4はそれぞれ上記式(I)で定義される通りである。
【0036】
一般式(Ia)で示される重合性(イミノ)ビオチン誘導体は、一般に下記式(a1)で示される(イミノ)ビオチンまたは(イミノ)ビオチン誘導体の側鎖カルボキシル基を適当な脱離基に変換後、下記一般式(a2)で示されるアクリル誘導体と縮合反応させることにより得ることが出来る。
【0037】
【化3】
【0038】
上記一般式(Ib)で示される重合性(イミノ)ビオチン誘導体は、一般に下記一般式(b1)で示される(イミノ)ビオチン誘導体を、適当なアクリル化剤(b2)(メタクリル化剤も含む。例えばアクリル酸、アクリル酸クロリド、無水アクリル酸、アクリロキシスクシンイミド等のアクリル化剤、メタクリル酸、メタクリル酸クロリド、無水メタクリル酸、メタクリロキシスクシンイミド等のメタクリル化剤)と反応させて得ることが出来る。
【0039】
【化4】
【0040】
ここで、式(b1)の(イミノ)ビオチン誘導体は、式(a1)の(イミノ)ビオチンまたは(イミノ)ビオチン誘導体を適当な還元剤で還元することによりアルコール体(X4=酸素原子)を得ることが出来、更に該アルコール体の水酸基を脱離基機能を有する官能基に変換後、アミン誘導体(X4=−NH−)と置換反応させることにより得ることが出来る。
【0041】
上記一般式(Ic)で示される重合性(イミノ)ビオチン誘導体は、一般に下一般式(c1)で示される(イミノ)ビオチン誘導体を、THF、DMSO、エーテル、ジクロロメタン、クロロホルム、酢酸エチル、アセトン、脂肪族炭化水素、ベンゼン、トルエン等の非プロトン性溶媒中で、式(c2)で示されるイソシアネート化合物と反応させることにより得ることが出来る。
【0042】
【化5】
【0043】
本発明の重合性ビオチンモノマーの具体例を以下に挙げるが、本発明はこれらに限定されるものではない。下記重合性ビオチンモノマーの中でも、特に化合物(B-1)が好ましい。
【0044】
【化6】
【0045】
【化7】
【0046】
本発明の方法を用いることにより、バイオリアクターや各種センサー、コポリマーの共重合などにおいてその触媒活性の発現を有効に制御して触媒反応を制御することができ、その応用範囲は格段に広いものである。
【0047】
【実施例】
以下、実施例を示してこの発明をさらに詳細にかつ具体的に説明するが、この発明は以下の例に限定されるものではない。
【0048】
合成例1[ペルオキシダーゼ結合PNIPAM の調製]
N-イソプロピルアクリルアミド488mgと上記化合物(B-1)16mgを蒸留水25ml中でよく混合し、過硫酸アンモニウム25mgを添加して一晩撹拌しながら重合を行った。これを一昼夜透析し、得られたビオチン共重合PNIPAM(約2%溶液)100μlに市販のアビジン化ペルオキシダーゼを500μlの蒸留水中で良く混合し、ペルオキシダーゼが結合したPNIPAM を得た。得られた高分子は約30℃付近を境に溶解と凝集を繰り返した。
【0049】
合成例2[アルカリフォスファターゼ結合 UCST ポリマーの調製]
N-アクロイルグリシンアミド550mgと上記化合物(B-1)16mgを蒸留水25ml中でよく混合し、過硫酸アンモニウム25mgを添加して6時間撹拌しながら重合を行った。これを一昼夜透析し、得られたビオチン共重合 UCST ポリマー(約2%溶液)100μl に市販のアビジン化アルカリフォスファターゼを500μlの蒸留水中でよく混合し、アルカリフォスファターゼが結合した UCSTポリマーを得た。得られた高分子は約15℃付近を境に溶解と凝集を繰り返した。
【0050】
実施例1[温度変化による酵素活性発現の制御]
合成例1および合成例2で得られたそれぞれのポリマー1mlずつを試験管内で混同し、下記表2に示すように温度をそれぞれ変え、各温度毎に凝集物を遠心分離し、その上清のペルオキシダーゼ活性およびアルカリフォスファターゼ活性を調べた。なお、それぞれの活性は両方のポリマーが溶解している25℃の時の活性を100として示した。温度を変化させることにより、触媒活性の発現を制御できることが分かる。
【0051】
【表2】
【0052】
合成例3[磁性微粒子の調製]
1L容のフラスコ内で硫酸第一鉄83gと亜硫酸ナトリウム0.4gを蒸留水500ml中でよく混合し、40℃で20分間撹拌した。その後、濃アンモニウム125mlを添加し、不溶物を回収し、蒸留水で洗浄しマグネタイトを得た。得られたマグネタイトを1L容のフラスコないで蒸留水500mlに添加し、温度を80℃とした後、オレイン酸ナトリウム7.5gを添加し、同温度で20分間撹拌した。その後、1Nの塩酸でpHを5.5に調製し、得られた不溶物をろ過により集め、蒸留水で洗浄し、オレイン酸の層を有するマグネタイトを得た。これを再度1L容のフラスコに添加し、蒸留水を500ml添加し、溶液の温度を溶液の温度を70℃とした後、ドデシルベンゼンスルホン酸ナトリウム7.5gを添加し、一晩撹拌し磁性微粒子を得た。得られた磁性微粒子はネオジ磁石(0.43T)では回収する事が出来ず。光散乱光度計での分析結果よりその粒径は100nm程度であることが示された。
【0053】
合成例4[ペルオキシダーゼ結合PNIPAM固定化磁性微粒子の調製]
上記合成例3で得られた磁性微粒子1mlを入れた25mlの蒸留水中で上記合成例1と同様に重合を行い、市販のアビジン化ペルオキシダーゼが磁性微粒子上に固定化されたポリマーに結合した。得られた磁性微粒子は LCST を約30℃に有し、溶液の温度が LCST以下の場合は良く分散し、磁石での回収は困難であったが、LCST以上の温度では素早く凝集し、磁石上の5分程放置すると凝集物を回収することが出来た。
【0054】
合成例5[アルカリフォスファターゼ結合 UCSTポリマー固定化磁性微粒子の調製]
上記合成例3で得られた磁性微粒子1mlを入れた25mlの蒸留水中で上記合成例2と同様に重合を行い、市販のアビジン化アルカリフォスファターゼが磁性微粒子上に固定化されたポリマーに結合した。得られた磁性微粒子は UCST を約15℃に有し、溶液の温度が UCST以上の場合は良く分散し、磁石での回収は困難であったが、UCST以下の温度では素早く凝集し、磁石上の5分程放置すると凝集物を回収することが出来た。
【0055】
実施例2[温度変化による酵素活性発現の制御]
上記合成例4および合成例5で得られたそれぞれの磁性微粒子1mlずつをネオジ磁石上の試験管内で混同し、溶液の温度をそれぞれ変化させ磁石上に5分放置した後の上澄みの各酵素の活性を調べ、表3に示した。なお、それぞれの活性は両方の磁性微粒子がよく分散している25℃の時の活性を100として示した。温度変化により、触媒活性の発現を有効に制御できることが分かる。
【0056】
【表3】
【0057】
【発明の効果】
本発明によれば、ポリマーに有効な刺激を変化させることにより、触媒活性の発現を容易に制御して、触媒反応を制御できる。また、触媒を繰り返し使用でき、触媒を用いて製造した生成物と触媒との分離も簡単に行うことができる。従って、刺激変化を繰り返し行うことにより、コポリマー、ペプチド等を同一バッチ内で合成したり、刺激に応答して信号(発色等)を出す各種センサーに応用したりすることができる。また、触媒として酵素を用いることにより各種バイオリアクターに応用することもできる。[0001]
BACKGROUND OF THE INVENTION
The present invention immobilizes a catalyst having at least different catalytic activity on two or more kinds of polymers having different stimulation responsiveness, and controls the expression of each catalytic activity by changing the state by stimulation to control the catalytic reaction . On how to do. Furthermore, the present invention relates to a method of controlling the catalytic reaction by immobilizing the stimulus-responsive polymer on magnetic fine particles, controlling the expression of catalytic activity using a change in the state of the polymer and a magnetic field.
[0002]
[Prior art]
A method of binding a stimuli-responsive polymer to an active site of a protein and controlling the activity by changing the state of the solution has been considered.For example, Nature (1995), vol. 378, 472-474 has an aqueous solution at the biotin-binding site of streptavidin. In which polyisopropylacrylamide (PNIPAM), which is known as a polymer having a lower critical solution temperature around 30 ° C., is bound, and biotin is streptavidin at temperatures below 30 ° C. where PNIPAM is dissolved It has been reported that biotin is less likely to be bound at a temperature of 30 ° C. or higher at which PNIPAM is aggregated.
[0003]
In addition, JP 2000-500733 A responds to stimulation by combining an interactive molecule and a stimulus-responsive component for forming a site-specific conjugate useful in various assays, separation, processing, and the like. Interactive molecular conjugates have been described, and it has been described that selective partitioning, phase separation, precipitation, etc. of polymer-bound biomolecules can be achieved by applying a stimulus.
[0004]
However, these methods can control only one type of enzyme activity, and a simple method for controlling the activity of two or more proteins has been desired. In addition, it was difficult to successfully bind the polymer to the active sites of all proteins.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method that can be widely applied to the synthesis of various bioreactors, sensors, copolymers, etc., and can control the expression of the activity of the catalyst and easily control the catalytic reaction .
[0006]
[Means for Solving the Problems]
As a result of diligent efforts to solve the above-mentioned problems, the present inventors have negatively affected the performance of each polymer by immobilizing at least catalysts having different catalytic activities on two or more polymers exhibiting stimulus responsiveness. It has been found that the stimulus responsiveness can be satisfactorily expressed without exerting influence, that is, the expression of the catalytic activity can be controlled by utilizing the difference in the stimulus responsiveness of each polymer to control the catalytic reaction . Furthermore, in the present invention, the protein is recovered together with the polymer by immobilizing the polymer to the protein. Therefore, if the polymer is immobilized on the protein (including the bond), it may be at any site, and compared with the conventional method. The advantage is that it is much easier to operate. That is, the present invention has the following configuration.
[0007]
(1) the stimuli-responsive different at least two polymers, each immobilized one catalyst even without low catalytic activity that Do different, by utilizing the difference in irritation response of two polymer the at least, the A method for controlling catalytic reaction, comprising controlling the expression of catalytic activity on a polymer .
[0008]
(2) The catalytic reaction control method as described in (1) above, wherein at least one kind of stimulus-responsive polymer having the catalyst immobilized thereon is immobilized on magnetic fine particles.
[0009]
(3) the stimulus-responsive different at least two polymers, the characterized in that it comprises at least two temperature responsive polymer different phase transition temperatures (1) or (2) catalytic reaction control method according .
[0010]
(4) The stimulus-responsive different at least two polymers, the characterized in that it comprises a polymer exhibiting a lower critical solution temperature polymer showing a (LCST) and an upper critical solution temperature (UCST) (1) or ( 2) The catalytic reaction control method as described.
[0011]
(5) the catalyst activity is respectively immobilized differ by at least one catalyst and stimulus, including the response of different at least two polymers, bioreactor or Sensor using a catalytic reaction control method according to the above (1) .
[0012]
According to the present invention, the catalytic reaction can be easily controlled, the catalyst can be used repeatedly, and the product produced using the catalyst and the catalyst can be easily separated. Therefore, by repeating temperature changes, compounds such as copolymers and peptides can be synthesized in the same batch, applied to various sensors that produce signals (color development, etc.) in response to pH, temperature, etc., and enzymes as catalysts Can be applied to various bioreactors.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The stimulus-responsive polymer used in the present invention is a polymer that generates a structural change (for example, aggregation) in response to any physical or chemical external stimulus, and includes such as temperature, pH, salt concentration , Light and the like.
[0014]
In the present invention, by using at least two kinds of stimulus responsive polymers, the expression of the activity of the catalyst immobilized on the stimulus responsive polymer can be controlled using the difference in the stimulus responsiveness. More specifically, an external stimulus is applied to two or more polymers having different catalytic activities and different stimulus responsiveness, whereby at least one stimulus responsive polymer is agglomerated. By removing the agglomerated polymer from the solution together with the catalyst by separation means such as separation and filtration, only the activity of the catalyst immobilized on the polymer in the other dissolved state can be expressed. . Various reaction designs can be performed by utilizing a mechanism that can exhibit various catalytic reactions and control various reactions.
[0015]
The present invention is characterized in that at least two different stimuli-responsive polymers are used, and at least two of these stimuli-responsive polymers have immobilized catalysts having at least different catalytic activities. Thereby, the expression of catalytic activity can be controlled using the difference in stimulus responsiveness. Specific examples include the following embodiments.
[0016]
[Table 1]
[0017]
Here, the polymers A, B and C are polymers having different stimulus responsiveness. Polymers with different stimulus responsiveness have different external stimuli (for example, temperature responsiveness and pH responsiveness), even when the same external stimulus (for example, temperature responsiveness) has different phase transition temperatures, This includes cases where the way of change is different (for example, LCST and UCST).
[0018]
In Table 1 above, catalysts α, β and γ represent different types of catalysts. However, in the present invention, it is sufficient that at least two kinds of stimuli-responsive polymers have different catalytic activities, and different kinds of catalysts are immobilized on at least two kinds of stimuli-responsive polymers as shown in Table 1 above. The present invention includes not only the case but also the case where the same catalyst is used and the amount thereof is adjusted to have different catalytic activities.
[0019]
Any of the known stimulus-responsive polymers can be used as the stimulus-responsive polymer of the present invention. For example, polymers having a lower critical solution temperature (LCST) are known as temperature-responsive polymers, such as polyisopropylacrylamide (phase transition temperature about 32 ° C.), polyisopropyl methacrylamide (phase transition temperature about 38 ° C.), polyvinylmethyl Examples include ether (phase transition temperature of about 30 ° C.), poly N vinylisobutyramide (phase transition temperature of about 38 ° C.), methyl cellulose (phase transition temperature of about 65 ° C.), and the like. For example, two types having different phase transition temperatures are selected from these, catalysts having different activities are combined with each other, mixed in the same container, and then the temperature of the solution is set to a temperature at which only one of the two aggregates, thereby aggregating. By removing the polymer by centrifugation, filtration, or the like, only the catalytic activity bound to the dissolved polymer is obtained in the remaining solution. In this way, the expression of catalytic activity can be easily controlled.
[0020]
A polymer having an upper critical solution temperature (UCST) is also known. For example, JP-A-2000-86729 reports that a copolymer of acrylamide and N-acetylacrylamide exhibits UCST. For example, different catalysts can be bonded to one type of polymer showing LCST and one type of polymer showing UCST, and the catalytic activity can be similarly controlled by changing the temperature of the solution.
[0021]
Examples of the pH-responsive polymer include polyacrylic acid or a copolymer of acrylic acid and isopropylacrylamide. As the photoresponsive polymer, for example, by combining spiropyran with polyisopropylacrylamide, a polymer that responds to light and repeats aggregation and shrinkage can be obtained.
[0022]
Further, the stimulus-responsive polymer used in the present invention can be immobilized on magnetic fine particles. By binding at least one stimulus-responsive polymer, preferably all of the stimulus-responsive polymers to which the catalyst is immobilized, to the magnetic fine particles, it is possible to obtain magnetic fine particles having a stimulus-responsiveness, thereby enabling centrifugation or the like. Without the separation operation, the polymer aggregated by external stimulation can be removed only by the magnetic field operation, and only the activity of the catalyst immobilized on the dissolved polymer can be expressed more easily. .
[0023]
In the present invention, LCST (lower critical solution temperature) means a temperature at which a dissolved state is maintained below a specific temperature, but becomes insoluble and aggregates in a solution above the specific temperature. The term "means" refers to magnetic fine particles that have a property of being uniformly dispersed in a solution at a specific temperature or lower but aggregating when the temperature of the solution is higher than a specific temperature. Similarly, UCST refers to a temperature at which a dissolved state is maintained above a specific temperature, but becomes insoluble and aggregates in a solution below the specific temperature, and “magnetic particles having UCST” refers to a solution below a specific temperature. In the meantime, it means a magnetic fine particle that is uniformly dispersed but has the property of aggregating when the temperature of the solution is higher than a specific temperature.
[0024]
The magnetic fine particles used preferably have a particle size of 1 μm or less, and more preferably in the range of 1 to 100 nm. Examples of the magnetic fine particles include magnetite particles.
As the adjustment method, for example, sodium oleate and sodium dodecylbenzenesulfonate described in Biocatalysis, 1991, vol.5, 61-69 are used, and magnetite is made into double micelles and dispersed in an aqueous solution. Etc.
[0025]
The method for immobilizing the stimulus-responsive polymer on the surface of the magnetic fine particle may be any of physical adsorption, chemical bond such as hydrogen bond and covalent bond, and the like. Specific examples include a method in which magnetic fine particles are present during the synthesis of the stimulus-responsive polymer, a method in which the synthesized stimulus-responsive polymer and the magnetic fine particles are brought into contact, and the like. It can also be produced by binding a coupling agent to the surface of the magnetic fine particles and graft polymerizing a polymer having stimuli responsiveness with the SH group as a base point.
[0026]
Specifically, for example, by allowing the magnetic fine particles to be present in a solution during polymerization of a stimulus-responsive polymer, the polymer having the stimulus responsiveness is immobilized on the magnetic fine particles, and as a result, the magnetic fine particles have a stimulus responsiveness. As shown. Usually, magnetic fine particles having a particle diameter of 1 μm or less are difficult to be collected with a magnet in a short time, but magnetic fine particles obtained by this method are easily collected due to the nature of the immobilized stimulus-responsive material. For example, PNIPAM combined will show LCST. The solution containing the magnetic fine particles is dispersed in the solution at a temperature of LCST or lower and difficult to recover with a magnet. However, when the temperature is higher than LCST, the solution can be immediately aggregated and recovered with a magnet. Therefore, when two or more kinds of magnetic fine particles exhibiting such properties are prepared, and different catalysts are bound to each of them, the aggregates obtained by applying a stimulus are collected by a magnet to bind to the dissolved magnetic fine particles. Only the active catalytic activity can remain.
[0027]
The catalyst that can be used in the present invention is not particularly limited, and examples thereof include enzymes, nucleic acids (ribozymes, DNAzymes), metal catalysts, and the like.
The method for immobilizing these catalysts on the stimuli-responsive polymer is not particularly limited, and examples thereof include ionic bonds, covalent bonds, methods using biomolecules that carry out specific interactions, comprehensive methods, etc. Include biological or biological immobilization methods.
[0028]
For example, as a method for binding an enzyme (protein) to a stimulus-responsive polymer, for example, a polymer having a functional group capable of binding to a protein such as a carboxyl group is designed by copolymerizing methacrylic acid or the like during polymer polymerization. And a method of immobilizing an enzyme or the like by a known protein immobilization method using carbodiimide or the like. In addition, a monomer of crown ether can be polymerized to the polymer of the present invention to coordinate Ca 2+ .
[0029]
Further, the method is not limited to the method of directly binding the protein to the polymer as described above, and a method using some specific binding may be used. For example, an avidinized enzyme can be bound to a polymer in which biotin is immobilized in advance, or an appropriate biotinylated enzyme can be bound to the vacant biotin binding site via avidin. Others that utilize such specific binding include antigen-antibody, antibody-protein A (G), polynucleotide having a polynucleotide-complementary base sequence, and the like.
[0030]
As described above, the ligand can be bonded to a polymer designed to have some functional group as described above, or a ligand compound synthesized so as to be polymerizable can be used at the time of polymer polymerization. It can also be copolymerized by mixing in advance. Examples of the polymerizable ligand compound include a biotin derivative represented by the following general formula (I).
[0031]
[Chemical 1]
[0032]
In formula (I), R 2 represents a hydrogen atom or an alkyl group. R 3 and R 4 each independently represent a hydrogen atom, an alkyl group or an aryl group. T represents an oxygen atom or = NH group. W represents a single bond, a carbonyl group, a thiocarbonyl group or an alkylene group having 1 to 5 carbon atoms. U represents a single bond or —NH— group, 1,2-dioxyethylene group or 1,2-diaminoethylene group. Z represents a single bond or a carbonyl group, a thiocarbonyl group, an alkylene group having 1 to 5 carbon atoms, an oxygen atom or an —NH— group. V represents a single bond or an alkylene group having 1 to 5 carbon atoms.
[0033]
More specifically, (imino) biotin derivatives represented by the following (Ia) to (Ic) are preferable.
[0034]
[Chemical 2]
[0035]
In general formulas (Ia) to (Ic), R 1 represents a single bond or an alkylene group having 1 to 4 carbon atoms, and R 5 represents an alkylene group having 2 or 3 carbon atoms. X 1 represents an oxygen atom or a sulfur atom, and X 2 to X 5 each independently represents an oxygen atom or a —NH— group. T, R 2 , R 3 and R 4 are each as defined in formula (I) above.
[0036]
The polymerizable (imino) biotin derivative represented by the general formula (Ia) is generally converted to an appropriate leaving group after converting the side chain carboxyl group of the (imino) biotin or (imino) biotin derivative represented by the following formula (a1). It can be obtained by a condensation reaction with an acrylic derivative represented by the following general formula (a2).
[0037]
[Chemical 3]
[0038]
The polymerizable (imino) biotin derivative represented by the above general formula (Ib) generally contains an (imino) biotin derivative represented by the following general formula (b1) and an appropriate acrylating agent (b2) (including a methacrylating agent). For example, it can be obtained by reacting with an acrylic agent such as acrylic acid, acrylic acid chloride, acrylic acid anhydride, acryloxy succinimide, or a methacrylic agent such as methacrylic acid, methacrylic acid chloride, anhydrous methacrylic acid, methacryloxy succinimide).
[0039]
[Formula 4]
[0040]
Here, the (imino) biotin derivative of the formula (b1) reduces the alcohol form (X 4 = oxygen atom) by reducing the (imino) biotin or the (imino) biotin derivative of the formula (a1) with an appropriate reducing agent. Furthermore, after converting the hydroxyl group of the alcohol form into a functional group having a leaving group function, it can be obtained by substitution reaction with an amine derivative (X 4 = —NH—).
[0041]
The polymerizable (imino) biotin derivative represented by the above general formula (Ic) is generally an (imino) biotin derivative represented by the following general formula (c1), THF, DMSO, ether, dichloromethane, chloroform, ethyl acetate, acetone, It can be obtained by reacting with an isocyanate compound represented by the formula (c2) in an aprotic solvent such as an aliphatic hydrocarbon, benzene or toluene.
[0042]
[Chemical formula 5]
[0043]
Specific examples of the polymerizable biotin monomer of the present invention are listed below, but the present invention is not limited thereto. Among the following polymerizable biotin monomers, the compound (B-1) is particularly preferable.
[0044]
[Chemical 6]
[0045]
[Chemical 7]
[0046]
By using the method of the present invention, the catalytic reaction can be controlled by effectively controlling the expression of its catalytic activity in bioreactors, various sensors, copolymerization of copolymers, etc., and its application range is extremely wide. is there.
[0047]
【Example】
Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to the following examples.
[0048]
Synthesis Example 1 [Preparation of peroxidase-conjugated PNIPAM]
488 mg of N-isopropylacrylamide and 16 mg of the above compound (B-1) were mixed well in 25 ml of distilled water, 25 mg of ammonium persulfate was added, and polymerization was carried out with stirring overnight. This was dialyzed overnight, and 100 μl of the obtained biotin-copolymerized PNIPAM (about 2% solution) was mixed well with 500 μl of distilled water to obtain PNIPAM to which peroxidase was bound. The obtained polymer repeated dissolution and aggregation at about 30 ° C. as a boundary.
[0049]
Synthesis Example 2 [Preparation of alkaline phosphatase-bound UCST polymer]
550 mg of N-acryloylglycinamide and 16 mg of the above compound (B-1) were mixed well in 25 ml of distilled water, 25 mg of ammonium persulfate was added, and polymerization was carried out with stirring for 6 hours. This was dialyzed overnight, and 100 μl of the obtained biotin-copolymerized UCST polymer (about 2% solution) was mixed well with 500 μl of distilled water to obtain a UCST polymer to which alkaline phosphatase was bound. The obtained polymer repeated dissolution and aggregation at about 15 ° C.
[0050]
Example 1 [Control of expression of enzyme activity by temperature change]
1 ml of each polymer obtained in Synthesis Example 1 and Synthesis Example 2 was confused in a test tube, the temperature was changed as shown in Table 2 below, the aggregate was centrifuged at each temperature, and the supernatant Peroxidase activity and alkaline phosphatase activity were examined. In addition, each activity was shown as 100 at 25 ° C. in which both polymers were dissolved. It can be seen that the expression of the catalytic activity can be controlled by changing the temperature.
[0051]
[Table 2]
[0052]
Synthesis Example 3 [Preparation of magnetic fine particles]
In a 1 L flask, 83 g of ferrous sulfate and 0.4 g of sodium sulfite were mixed well in 500 ml of distilled water and stirred at 40 ° C. for 20 minutes. Thereafter, 125 ml of concentrated ammonium was added, and insoluble matter was recovered and washed with distilled water to obtain magnetite. The obtained magnetite was added to 500 ml of distilled water without using a 1 L flask, the temperature was adjusted to 80 ° C., 7.5 g of sodium oleate was added, and the mixture was stirred at the same temperature for 20 minutes. Thereafter, the pH was adjusted to 5.5 with 1N hydrochloric acid, and the obtained insoluble matter was collected by filtration and washed with distilled water to obtain a magnetite having an oleic acid layer. Add this to the 1 L flask again, add 500 ml of distilled water, and set the temperature of the solution to 70 ° C. Then add 7.5 g of sodium dodecylbenzenesulfonate and stir overnight to remove the magnetic fine particles. Obtained. The magnetic fine particles obtained cannot be recovered with a neodymium magnet (0.43T). The result of analysis with a light scattering photometer showed that the particle size was about 100 nm.
[0053]
Synthesis Example 4 [Preparation of Peroxidase-conjugated PNIPAM-immobilized magnetic fine particles]
Polymerization was performed in 25 ml of distilled water containing 1 ml of the magnetic fine particles obtained in Synthesis Example 3 in the same manner as in Synthesis Example 1, and a commercially available avidinized peroxidase was bound to the polymer immobilized on the magnetic fine particles. The obtained magnetic fine particles had an LCST of about 30 ° C. and were well dispersed when the solution temperature was lower than LCST, and recovery with a magnet was difficult. The agglomerates could be recovered after 5 minutes.
[0054]
Synthesis Example 5 [Preparation of Alkaline Phosphatase-Coupled UCST Polymer Immobilized Magnetic Fine Particles]
Polymerization was carried out in 25 ml of distilled water containing 1 ml of the magnetic fine particles obtained in Synthesis Example 3 in the same manner as in Synthesis Example 2, and a commercially available avidinized alkaline phosphatase was bound to the polymer immobilized on the magnetic fine particles. The obtained magnetic fine particles have UCST at about 15 ° C, and when the temperature of the solution is above UCST, it is well dispersed and difficult to collect with a magnet. The agglomerates could be recovered after 5 minutes.
[0055]
Example 2 [Control of expression of enzyme activity by temperature change]
1 ml of each of the magnetic fine particles obtained in Synthesis Example 4 and Synthesis Example 5 are confused in a test tube on a neodymium magnet, and the temperature of each enzyme in the supernatant after being left on the magnet for 5 minutes while changing the temperature of the solution. The activity was examined and shown in Table 3. In addition, each activity was shown as 100 at 25 ° C. where both magnetic fine particles are well dispersed. It can be seen that the change in temperature can effectively control the expression of catalytic activity.
[0056]
[Table 3]
[0057]
【The invention's effect】
According to the present invention , the catalytic reaction can be controlled by easily controlling the expression of the catalytic activity by changing the effective stimulus to the polymer. Further, the catalyst can be used repeatedly, and the product produced using the catalyst can be easily separated from the catalyst. Therefore, it is possible to synthesize copolymers, peptides, and the like in the same batch by repeatedly performing stimulus changes, and to apply to various sensors that output signals (color development, etc.) in response to stimuli. Moreover, it can also apply to various bioreactors by using an enzyme as a catalyst.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001024090A JP4797143B2 (en) | 2001-01-31 | 2001-01-31 | Catalytic reaction control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001024090A JP4797143B2 (en) | 2001-01-31 | 2001-01-31 | Catalytic reaction control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002223793A JP2002223793A (en) | 2002-08-13 |
JP4797143B2 true JP4797143B2 (en) | 2011-10-19 |
Family
ID=18889287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001024090A Expired - Lifetime JP4797143B2 (en) | 2001-01-31 | 2001-01-31 | Catalytic reaction control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4797143B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1316599B1 (en) * | 2000-08-21 | 2014-03-26 | National Institute of Advanced Industrial Science and Technology | Magnetic particles and process for producing the same |
US20090054596A1 (en) * | 2004-08-25 | 2009-02-26 | Kagoshima University | Composite Particulate and Manufacturing Method for the Same |
US7981688B2 (en) | 2007-03-08 | 2011-07-19 | University Of Washington | Stimuli-responsive magnetic nanoparticles and related methods |
US8426214B2 (en) | 2009-06-12 | 2013-04-23 | University Of Washington | System and method for magnetically concentrating and detecting biomarkers |
US9080933B2 (en) | 2009-11-09 | 2015-07-14 | University Of Washington Through Its Center For Commercialization | Stimuli-responsive polymer diagnostic assay comprising magnetic nanoparticles and capture conjugates |
CN109964927B (en) * | 2019-04-04 | 2021-12-03 | 江南大学 | Preparation method of temperature/pH dual-response nano antibacterial system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2230557A1 (en) * | 1995-09-01 | 1997-03-13 | University Of Washington | Interactive molecular conjugates |
JPH10139689A (en) * | 1996-11-07 | 1998-05-26 | Yoshihito Osada | Temperature/electric field response-type copolymer |
EP1194228A1 (en) * | 1999-05-11 | 2002-04-10 | Japan Chemical Innovation Institute | Affinity-controlling material with the use of stimulus-responsive polymer and separation/purification method with the use of the material |
-
2001
- 2001-01-31 JP JP2001024090A patent/JP4797143B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002223793A (en) | 2002-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ambrosini et al. | Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition | |
CN102639581B (en) | Preparation of molecularly imprinted polymers | |
CN1104276C (en) | Polyvinyl alcohol-based magnetic polymer particles, method for their preparation and their use | |
Khumsap et al. | Epitope-imprinted polymers: applications in protein recognition and separation | |
EP1312671B1 (en) | Magnetic particles having lower limit critical solution temperature | |
Mosbach | Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics) | |
US4678814A (en) | Polyacrolein microspheres | |
Pang et al. | Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization | |
US20040157209A1 (en) | Molecular imprinting | |
EP1312627B1 (en) | Polymers | |
JPH0723893B2 (en) | Antibody immobilization method | |
Li et al. | Fabrication of surface protein-imprinted nanoparticles using a metal chelating monomer via aqueous precipitation polymerization | |
Silvestri et al. | Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses | |
Ashley et al. | Dispersive solid-phase imprinting of proteins for the production of plastic antibodies | |
JP4797143B2 (en) | Catalytic reaction control method | |
JP2001521625A (en) | Methods, capture phases, detection phases, and reagents for isolating target biological material | |
DE10108483A1 (en) | Phosphorus-containing polymers for optical signal converters | |
JP7305623B2 (en) | Particles, Particle Production Method, Affinity Particles, Reagents and Kits Containing the Same, and Target Substance Detection Method | |
JP5409671B2 (en) | Affinity hydrogel and its label-independent detection method | |
JP4903449B2 (en) | MAGNETIC COMPLEX AND MANUFACTURING METHOD THEREOF, METHOD FOR REMOVING SUBSTANCE HAVING MANNOSE ON SURFACE AND CONCENTRATION METHOD FOR MATERIAL HAVING MANNOSE ON SURFACE | |
JP2545707B2 (en) | Immunological diagnostic reagent | |
JP4435950B2 (en) | Thermoresponsive polymer with coacervate-forming ability and liquid-liquid phase partition method, immobilized enzyme and drug release agent using the same | |
Lee et al. | Design of size-tunable molecularly imprinted polymer for selective adsorption of pharmaceuticals and biomolecules | |
JP3021865B2 (en) | Fine particle polymer and method for producing the same | |
US7163998B2 (en) | Stabilized polymer beads and method of preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4797143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |