JP4790489B2 - Converter steelmaking - Google Patents
Converter steelmaking Download PDFInfo
- Publication number
- JP4790489B2 JP4790489B2 JP2006139855A JP2006139855A JP4790489B2 JP 4790489 B2 JP4790489 B2 JP 4790489B2 JP 2006139855 A JP2006139855 A JP 2006139855A JP 2006139855 A JP2006139855 A JP 2006139855A JP 4790489 B2 JP4790489 B2 JP 4790489B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- amount
- converter
- furnace
- recycled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、脱C精錬後のスラグの熱間での再利用(リサイクル)を図るための転炉製鋼法に関する。 The present invention relates to a converter steelmaking method for reusing (recycling) hot slag after de-C refining.
従来の転炉における溶銑の精錬は、転炉へ高炉溶銑を装入し、生石灰を主体とするフラックス投入と、酸素吹錬により溶銑を脱P、脱Cし、鋼を溶製する方法が一般的であった。その後、多工程にわたる精錬機能を転炉に集約して行い、溶銑のもつエネルギーを有効活用し、エネルギーロスを大幅に低減するとともに、転炉前後工程の固定費(設備費、労務費)の大幅な軽減を可能とする発明がある(例えば、特許文献1参照)。 Hot metal refining in conventional converters is generally performed by charging blast furnace hot metal into the converter, charging flux mainly composed of quick lime, removing P and C from hot metal by oxygen blowing, and melting steel. It was the target. After that, refining functions over multiple processes are concentrated in the converter, effectively using the energy of the hot metal, greatly reducing energy loss, and increasing fixed costs (equipment costs, labor costs) before and after the converter. There is an invention that makes it possible to reduce it easily (for example, see Patent Document 1).
該発明は、第一工程として溶銑を転炉に挿入し、第二工程としてフラックス添加と酸素吹込を行って脱Si・脱P精錬を施し、所定のP含有量まで低減させ、第三工程として前記転炉を傾動して第二工程で生成したスラグを排出し、その後第四工程として同一転炉にてフラックス添加と酸素吹錬により、所定のC含有量まで脱Cを行い、第五工程として第四工程で生成したスラグを該転炉内に残したまま出鋼して再び第一工程へ戻り、前記第五工程までを繰り返し実施するもので、場合によっては、第四工程で生成したスラグを第一工程に戻さず、第五工程において出鋼した後、スラグを全量排出する方法である。 The present invention inserts hot metal into the converter as the first step, performs flux addition and oxygen blowing as the second step, performs de-Si / de-P refining, reduces to a predetermined P content, and as the third step The converter is tilted to discharge the slag generated in the second step, and then, as the fourth step, degassing is performed to the predetermined C content by flux addition and oxygen blowing in the same converter, and the fifth step. The slag produced in the fourth step is left as it is in the converter and then returned to the first step, and the process is repeated until the fifth step. In some cases, the slag was produced in the fourth step. This is a method of discharging the entire amount of slag after steel is produced in the fifth step without returning the slag to the first step.
また、上底吹き転炉型精錬装置を用いて前チャージで生成したスラグを排出することなく受銑する工程(工程1)、溶銑の脱燐精錬工程(工程2)、排滓工程(工程3)、脱C工程(工程4)、出鋼工程(工程5)を連続して実施する転炉製鋼法において、工程5の後、スラグを炉内に残留させた状態で炉を直立させ、工程4と同一もしくは、他の上吹きランスから窒素、アルゴン、一酸化炭素、二酸化炭素の1種もしくは、2種以上を混合せしめたガスを吹き付けた後、工程1を実施して脱C滓をリサイクルする転炉製鋼法がある(例えば、特許文献2参照)。
In addition, the process of receiving the slag generated by the pre-charge using the top-bottom blowing converter type refining apparatus without discharging (process 1), the dephosphorization refining process of hot metal (process 2), and the waste process (process 3) ), In the converter steelmaking method in which the de-C process (process 4) and the steel output process (process 5) are carried out continuously, after the
一方、連鋳滓および/または造塊滓と酸化鉄、さらに必要に応じて転炉滓とを含む脱燐剤を溶銑に添加し、所要の酸化力を有する溶滓を生成させ、該溶滓と溶銑とを攪拌することを特徴とする溶銑の脱燐処理方法が提案され(例えば、特許文献3参照)、また、少なくとも脱P処理された溶銑を転炉形式の脱炭炉で精錬した後、取鍋を経て鋳造を行うにあたり、転炉スラグおよび/もしくは取鍋スラグを精錬スラグの一部としてリサイクル使用し、或いは溶銑を転炉形式の予備処理炉を用いて少なくとも脱P処理した後転炉形式の脱炭炉で精錬を行い、次いで取鍋を経て鋳造を行うにあたり、取鍋スラグを脱P用予備処理スラグの一部としてリサイクル使用する方法が提案されている(例えば、特許文献4参照)。 On the other hand, a dephosphorization agent containing continuous cast iron and / or ingot-making iron and iron oxide and, if necessary, a converter iron is added to the hot metal to produce hot metal having a required oxidizing power, A hot metal dephosphorization method characterized by stirring the hot metal and the hot metal is proposed (see, for example, Patent Document 3), and at least after the de-P treatment of the hot metal is refined in a converter-type decarburization furnace. When casting through the ladle, the converter slag and / or ladle slag is recycled as part of the refining slag, or the hot metal is at least de-P treated using a converter-type pretreatment furnace and then converted. In refining in a furnace-type decarburization furnace, and then performing casting through a ladle, a method of recycling the ladle slag as a part of the pretreatment slag for P removal has been proposed (for example, Patent Document 4). reference).
前記特許文献1による方法では、同一転炉を用いて脱P、脱C工程を続けて行うプロセスで実施するので、溶銑のもつエネルギーを有効活用し、エネルギーロスを大幅に低減するとともに、転炉前後工程の固定費(設備費、労務費)の大幅な軽減が可能である。ところが、第三工程でのスラグ排出量が少ないと、第二工程でスラグ中に除去したPが第四工程で再び溶鋼中に戻ってくるため、第四工程にて再び脱Pする必要が生じ、生石灰等のフラックス量を増加させねばならずコスト増につながる。しかもこの第四工程でP濃度が高くなったスラグが第二工程で再び使用されるため、第二工程での脱P負荷が増加し、コスト増に繋がる。このように第三工程でのスラグ排出量が少ないと、脱Pを行うための負荷の増大を避けることが出来ず、コストアップに繋がるという問題があった。
In the method according to the above-mentioned
さらに特許文献1に開示されている方法では、溶銑の移し替えに伴う熱ロスは発生しないが、脱Cスラグはスラグ中のT.Feが高いため、溶融状態で次チャージの溶銑を装入すると、溶銑中のCと急激に反応し、スラグが炉外に噴出する、いわゆる突沸が起きるという問題がある。これを回避するために、溶銑装入前に石灰やスクラップを冷材としてスラグに添加し、転炉を数回傾動させるという手法が取られているが、添加した冷却材がスラグ中で冷却に長時間を要するため生産性を著しく阻害するという課題があった。
Furthermore, in the method disclosed in
CaO分を含む冷却材を使用した場合、冷却材中のCaO分の一部は未滓化のまま脱Pスラグに残留し、該スラグの路盤材等への利用を阻害していた。そこで該スラグの利用を図るためには、当該スラグを路盤材へ適用するための処理時間(エージング期間)を設けなければならず、そのための期間を必要とするので、設備・労力・時間等コストアップに繋がるという欠点があった。また、スクラップについても比較的大きい(100mm以上)形状のものを冷却材として用いた場合、スラグから冷却材への熱移動に長時間(5分以上)を要するため、生産性を低下する問題があった。 When the coolant containing the CaO component is used, a part of the CaO component in the coolant remains undehumidified in the de-P slag, which hinders the use of the slag for roadbed materials and the like. Therefore, in order to use the slag, it is necessary to provide a processing time (aging period) for applying the slag to the roadbed material, which requires a period of time, and thus costs such as equipment, labor, time, etc. There was a drawback that led to up. In addition, when a scrap having a relatively large shape (100 mm or more) is used as a coolant, a long time (5 minutes or more) is required for heat transfer from the slag to the coolant. there were.
また特許文献2ではスラグを冷却することにより、溶銑装入時の突沸を防止しているが、転炉を直立した状態でアルゴン、一酸化炭素、二酸化炭素を冷却ガスとして用いているので、表面のスラグが過冷却になり次の脱P処理時に該スラグが溶けるまでに時間を要し、そのため処理時間の延長に繋がると共に脱P反応効率が悪化する。
In
一方、特許文献3では連鋳滓および/または造塊滓さらに必要に応じて転炉滓を含む脱P剤を溶銑に添加しているが、これらのスラグは融点が1500℃以上と高く、また密な構造を有していることから、脱P処理時の炉内温度では溶解が不完全となる問題がある。溶解が不完全となった場合は、スラグは脱P剤として機能を果たさないばかりでなく、脱Pのバラツキ増大、熱ロスの原因となりコストの大幅悪化につながる。 On the other hand, in Patent Document 3, continuous casting iron and / or ingot-making iron and, if necessary, a de-P agent containing a converter iron is added to the hot metal, but these slags have a melting point as high as 1500 ° C. or higher. Since it has a dense structure, there is a problem that melting is incomplete at the furnace temperature during the de-P treatment. When the dissolution is incomplete, the slag not only functions as a P-removing agent, but also increases the variation in P-removal and causes heat loss, leading to a significant deterioration in cost.
さらに、特許文献4では、取鍋スラグをリサイクル使用することとしているが、取鍋スラグには生成処理時に脱酸剤として使用したアルミまたは硅素が溶鋼中またはスラグ中の酸素と反応してアルミナまたはシリカが生成し、たとえばアルミナでは取鍋スラグ中に10〜20%も含有していることから、脱P処理時へのリサイクル使用によって脱P滓の粘性を上昇させ、スロッピングを誘発させて炉外への溶銑の溢れだしによる歩留低下を引き起こす。また転炉スラグをリサイクルするにあたっては、直前チャージの転炉スラグの一部を転炉内に残した状態で次チャージの溶銑を装入し、補充用のフラックス原料を添加することとし、かつリサイクル使用するスラグ量は全スラグ原料に占める比率で50〜60%程度以下に抑えることが望ましいとしているが、転炉内に残留させるスラグ量を制御する方法がなく、実際に行うにあたってはスラグのリサイクル使用によってリサイクルされるスラグ量がばらつくことにより当該精錬の精度そのものが悪化するという課題があった。 Furthermore, in Patent Document 4, ladle slag is recycled, but in ladle slag, aluminum or silicon used as a deoxidizer during the generation treatment reacts with oxygen in molten steel or slag to react with alumina or Silica is produced. For example, in alumina, ladle slag contains 10 to 20% of the ladle. Therefore, the viscosity of dephosphorized soot is increased by recycle use during de-P treatment, and slopping is induced to induce the furnace. It causes a decrease in yield due to overflowing hot metal to the outside. Also, when recycling converter slag, the hot metal of the next charge is charged with a part of the converter slag of the previous charge left in the converter, and the supplementary flux material is added and recycled. The amount of slag used is preferably about 50 to 60% or less as a percentage of the total slag raw material. However, there is no method for controlling the amount of slag that remains in the converter, and slag recycling is required when actually used. There has been a problem that the accuracy of the refining itself deteriorates due to variations in the amount of slag recycled by use.
上記従来の知見において、前チャージのスラグを次ぎチャージにリサイクルし、しかも熱間のままリサイクルする方法については、数多く技術開示がなされている。しかし、それら技術は大きく2種に分類され、第1は前チャージの生成スラグ量を全量リサイクルすることを前提としたもの、第2は一部をリサイクルすることを前提としたものである。 In the above-mentioned conventional knowledge, many technical disclosures have been made regarding a method of recycling the slag of the previous charge to the next charge and recycle while still hot. However, these technologies are roughly classified into two types. The first is based on the premise that the amount of generated slag of the precharge is fully recycled, and the second is based on the assumption that a part is recycled.
しかし、第1の全量リサイクル前提では、連続リサイクル使用するにあたり、炉内のスラグ量が排滓不能なまでに増大することに加え、繰り返し利用により徐々に燐成分の蓄積が起こり、脱P効率に悪影響を及ぼしたり、溶鋼への復P等の問題を引き起こす。一方、第2の一部リサイクル前提では、溶鋼への復P等の悪影響を及ぼすことはなくなるものの、転炉内に残留させるスラグ量を制御する方法がなく、実際に行うにあたってはスラグのリサイクル使用によってリサイクルされるスラグ量がばらつくことにより当該チャージ精錬時の精度そのものが悪化するという課題がある。 However, in the first total amount recycling premise, in continuous recycling use, the amount of slag in the furnace increases to the point where it cannot be discharged, and in addition, the phosphorus component gradually accumulates due to repeated use, resulting in de-P efficiency. It will cause adverse effects and cause problems such as returning P to molten steel. On the other hand, under the second partial recycling premise, there will be no adverse effects such as recovery P on the molten steel, but there is no way to control the amount of slag that remains in the converter. There is a problem that the accuracy of the charge refining itself deteriorates due to variations in the amount of slag that is recycled.
本発明はかかる課題を解決することを目的とし、転炉で予備処理と脱炭を連続して行う製鋼法において、脱炭後のスラグの熱間リサイクル使用にあたって、一部スラグをリサイクルする際にそのスラグ量を制御する方法を提供するものであり、リサイクルに有効な量を過不足なく、あるいはリサイクルした量を精度良く把握し、脱P精錬の制御性を悪化させることなくリサイクルする方法を提供するものである。 The present invention aims to solve such a problem, and in the steelmaking method in which preliminary treatment and decarburization are continuously performed in a converter, when partially recycling slag in the hot recycling of slag after decarburization. Provides a method to control the amount of slag, and provides a method to recycle without deteriorating the controllability of de-P refining by accurately determining the amount that is effective for recycling, or accurately grasping the amount recycled. To do.
転炉に溶銑、または溶銑とスクラップ、または溶銑とスクラップと銑鉄を主原料として装入する第一工程、脱Si・脱Pを行う第二工程、転炉を傾動させ第二工程で生成したスラグを排滓する第三工程、炉を直立させ上吹きランスから酸素を供給して脱Cせしめる第四工程、生成した溶鋼を出鋼する第五工程、第五工程にて生成した脱C精錬後のスラグを炉内に残留させた後に第一工程に戻り、第一工程から第五工程を繰り返し実施する転炉製鋼法において、脱炭後のリサイクルする一部スラグ量を制御する方法について鋭意研究し、第五工程後に炉内生成スラグを排滓する際に、種々の傾動角において排滓後の炉内残留スラグ量重量を測定する実験を繰り返し実施した結果、傾動角と炉内残留スラグ量に明瞭な相関が得られることを見出し、また、転炉炉回数毎に同様の実験を繰り返して実施すると、炉回数が増大するにしたがって、同一傾動角でも炉内に残留するスラグ量が増大する可能性があることも見出し、さらに、炉内に残留させるスラグ量は、適正な量があることを見出して本発明を完成した。
Hot metal into the converter or molten iron and scrap or first step of charging a molten iron and scrap and pig iron as the main raw material, slag generated in the second step the second step of performing de-Si · de P, and the converter is tilted, After the de-C refining process generated in the fifth process, the fifth process of removing the produced molten steel, and the fifth process of removing the generated molten steel. Studying how to control the amount of partially slag to be recycled after decarburization in the converter steelmaking method in which the slag is left in the furnace and then returned to the first process and the first to fifth processes are repeated. When the generated slag in the furnace was discharged after the fifth step, the results of repeated experiments to measure the weight of the residual slag in the furnace after the discharge at various tilt angles resulted in the tilt angle and the residual slag amount in the furnace. That clear correlation is obtained In addition, if the same experiment is repeated for each number of converters, the amount of slag remaining in the furnace may increase even with the same tilt angle as the number of furnaces increases. The present invention was completed by finding that there is an appropriate amount of slag to be left inside.
本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
(1) 転炉に溶銑、または溶銑とスクラップ、または溶銑とスクラップと銑鉄を主原料として挿入する第一工程、脱Si・脱Pを行う第二工程、転炉を傾動させ第二工程で生成したスラグを排滓する第三工程、炉を直立させ上吹きランスから酸素を供給して脱Cせしめる第四工程、生成した溶鋼を出鋼する第五工程、第五工程にて生成した脱C精錬後のスラグを炉内に残留させた後に第一工程に戻り、第一工程から第五工程を繰り返し実施する転炉製鋼法において、前記第五工程の後に転炉を傾動して炉内に残留している生成スラグの一部を排滓するにあたり、排滓時の転炉傾動角を基に炉内に残留させるスラグ量を制御し、残留させるスラグ量(WRSV)は下記(1)式と(2)式を共に満たすように算出し、残留させるスラグ量を基に次チャージ第二工程で投入するフラックス量を算出することを特徴とする転炉製鋼法。
(21×HM[Si]×Z)/(%CaO×(Z−1))≦WRSV≦(30×HM[Si]×Z)/(%CaO×(Z−1.4)) ・・・(1)
ここで、WRSV:目標スラグ量(Kg/T)、HM[Si]:転炉装入溶銑[Si]濃度×0.01(%)、Z:第四工程にて生成しリサイクルするスラグの塩基度(−)、%CaO:第四工程にて生成しリサイクルするスラグ中のCaO濃度(%)
WRSV≦2.29/%P 2 O 5 ×A×HM[P]/(100−A) ・・・(2)
ここでWRSV:目標スラグ量(Kg/T)、%P 2 O 5 :第四工程にて生成しリサイクルするスラグ中のP 2 O 5 濃度(%)、HM[P]:転炉装入溶銑[P]濃度×0.001(%)、A:第二工程終了後の炉内スラグ量のうち第三工程にて炉外に排出されるスラグ量の割合(%)
(1) produced in the first step, the second step of performing de-Si · de P, a second step by tilting the converter to insert hot metal into the converter, or molten iron and scrap, or molten iron and scrap and pig iron as main components The third step of discharging the slag, the fourth step of standing the furnace upright and supplying oxygen from the top blowing lance to de-C, the fifth step of removing the produced molten steel, the de-C generated in the fifth step In the converter steelmaking method in which the slag after refining is left in the furnace, the process returns to the first process, and the fifth process is repeated from the first process. After the fifth process, the converter is tilted into the furnace. When part of the remaining generated slag is discharged, the amount of slag that remains in the furnace is controlled based on the tilt angle of the converter at the time of discharge, and the amount of slag that remains (WRSV) is expressed by the following equation (1) Based on the amount of slag that remains , A converter steelmaking method, characterized in that the amount of flux charged in the second charge second step is calculated.
(21 × HM [Si] × Z) / (% CaO × (Z−1)) ≦ WRSV ≦ (30 × HM [Si] × Z) / (% CaO × (Z−1.4)) (1)
Here, WRSV: target slag amount (Kg / T), HM [Si]: converter charge hot metal [Si] concentration x 0.01 (%), Z: base of slag generated and recycled in the fourth step Degree (-),% CaO: CaO concentration (%) in slag generated and recycled in the fourth step
WRSV ≦ 2.29 /% P 2 O 5 × A × HM [P] / (100-A) (2)
WRSV: target slag amount (Kg / T),% P 2 O 5 : P 2 O 5 concentration (%) in slag generated and recycled in the fourth step , HM [P]: converter charging molten iron [P] Concentration × 0.001 (%), A: Ratio of slag amount discharged out of the furnace in the third step among the slag amount in the furnace after the second step (%)
(2)前記排滓時の転炉傾動角を制御するに際し、転炉炉回数で転炉傾動角を補正することを特徴とする上記(1)記載の転炉製鋼法。 (2) The converter steelmaking method as described in (1) above, wherein the converter tilt angle is corrected by the number of converters when controlling the converter tilt angle during the discharge.
(3)転炉炉回数で、次チャージのフラックス量を補正することを特徴とする上記(1)記載の転炉製鋼法。 (3) The converter steelmaking method as described in (1) above, wherein the flux amount of the next charge is corrected by the number of converter furnaces.
本発明によれば、脱炭後のスラグを熱間のまま再使用するにあたり、再使用されるスラグ量を精度良く制御できること、または精度良くリサイクルスラグ量を推定できるようになることから、次チャージでの脱Si脱P工程におけるフラックス量を適正な量に精度良く決定できる。結果として脱P効率の悪化またはスロッピング等の操業異常をおこすことなく、フラックス量を削減できるとともに、系外に排出されるスラグ量総量も削減できる。さらに、従来はリサイクルされるスラグ量の推定がオペレータの経験と勘に頼っていたことから精度が悪く、上述した脱P効率悪化またはスロッピング等の操業異常が発生する可能性が大きかったことから、それを防止するために生石灰等のフラックスを過剰に投入して脱Si脱P工程の塩基度を高めに設定して操業せざるを得なかったが、本発明によればリサイクルスラグ量が精度良く制御できる、または精度よく推定できるようになったことから、過剰に塩基度を高く設定する必要がなくなり、フラックスの削減も実現できる。さらに第三工程におけるスラグの排滓について、第二工程でのフラックス過剰投入による過剰塩基度になることに伴って発生する排滓不良を防止することが可能となり、第四工程での脱P負荷が軽減され、第四工程で使用する脱P用フラックス削減および脱P不足による品質異常を防止できる。 According to the present invention, when the slag after decarburization is reused while being hot, the amount of slag to be reused can be accurately controlled, or the amount of recycled slag can be accurately estimated. The amount of flux in the de-Si de-P process at can be accurately determined to an appropriate amount. As a result, the flux amount can be reduced and the total amount of slag discharged to the outside of the system can be reduced without deteriorating the P removal efficiency or causing an operation abnormality such as slapping. Furthermore, since the estimation of the amount of slag to be recycled has relied on the experience and intuition of the operator, the accuracy was poor, and there was a high possibility that the above-described deterioration of the P-efficiency or the operation abnormality such as slopping would occur. In order to prevent this, it was forced to operate by setting an excessive amount of flux such as quick lime to increase the basicity of the de-Si de-P process, but according to the present invention, the amount of recycled slag is accurate. Since it can be controlled well or can be estimated accurately, it is not necessary to set the basicity excessively high, and the flux can be reduced. Furthermore, regarding the slag drainage in the third step, it becomes possible to prevent the poor drainage caused by the excessive basicity due to the excessive input of flux in the second step, and the de-P load in the fourth step Is reduced, and it is possible to reduce the flux for removing P used in the fourth step and to prevent quality abnormality due to insufficient removal of P.
本発明者らは、転炉に溶銑、または溶銑とスクラップ、または溶銑とスクラップと銑鉄を主原料として装入する第一工程、脱Si・脱Pを行う脱二工程、転炉を傾動させ第二工程で生成したスラグを排滓する第三工程、炉を直立させ上吹きランスから酸素を供給して脱Cせしめる第四工程、生成した溶鋼を出鋼する第五工程、第五工程にて生成した脱C精錬後のスラグを炉内に残留させた後に第一工程に戻り、第一工程から第五工程を繰り返し実施する転炉製鋼法において、炉内に残留させて第二工程に熱間でリサイクルするスラグ量の制御精度をあげ、第二工程の精錬制御性を悪化させることなく、かつ第二工程における脱Si・脱P用フラックスを削減するためには、工業的に可能な方法、具体的にはサイクルタイムを延長せずに(=生産性を落とすことなく)、かつ高価な設備を設置することなく、平易に実施できる方法について鋭意検討をかさねた。 The present inventors include a first step of charging hot metal, or hot metal and scrap, or hot metal and scrap and pig iron as main raw materials into the converter, a removal step of removing Si and de-P, and tilting the converter. In the third step of discharging the slag generated in two steps, the fourth step of standing the furnace upright and supplying oxygen from the top blowing lance to de-C, the fifth step and the fifth step of removing the generated molten steel In the converter steelmaking method in which the generated slag after de-C refining is left in the furnace, the process returns to the first process, and the fifth process is repeated from the first process. An industrially feasible method to improve the control accuracy of the amount of slag recycled between the two processes without reducing the refining controllability of the second process and reducing the flux for de-Si / de-P in the second process Specifically, without extending the cycle time (= raw Without lowering the sex), and without installing expensive equipment and intensive studies on methods that can be easy to implement.
さらに、第五工程の後の炉内生成スラグ量を全量リサイクルすることは、前述したように連続リサイクル使用するにあたり、炉内のスラグ量が排滓不能なまでに増大することに加え、繰り返し利用により徐々に燐成分の蓄積が起こり、脱P効率に悪影響を及ぼしたり、溶鋼への復P等の問題を引き起こすことから、適当な排滓処理を行うことが現実的であることを勘案して、第一工程〜第五工程を繰り返す本プロセスにおいては、スラグ量を低減し、また燐の濃縮を防止するためにおこなう排滓作業時に、次チャージにリサイクルするスラグ量を制御することが最も望ましいことを見出した。 Furthermore, the total amount of slag generated in the furnace after the fifth step is recycled in addition to increasing the amount of slag in the furnace until it cannot be discharged, as described above. In consideration of the fact that it is practical to perform appropriate waste treatment because the phosphorus component gradually accumulates, which adversely affects the P removal efficiency and causes problems such as returning P to the molten steel. In this process of repeating the first step to the fifth step, it is most desirable to control the amount of slag that is recycled to the next charge at the time of evacuation work to reduce the amount of slag and prevent phosphorus concentration. I found out.
しかし、従来、前記排滓作業は、作業者が傾動排滓するにあたり、排滓鍋内に排出されるスラグ量を見ながら適当な量、例えば排滓鍋が一杯になるまで、例えば排滓鍋の八分目等、適当に目安を定めて実施していて、リサイクル可能なスラグ量の最適条件を決めることができなかった。これは、そもそも炉内に生成しているスラグ量を正確に把握することが技術的に困難である中で、リサイクルするスラグ量を一定量に制御する、またはスラグ量を把握するという技術的な着眼が全くなかったことによる。したがって、従来の先行技術においても、できるだけ多くのスラグをリサイクルすることにより、次チャージのフラックス削減に寄与できると考えざるを得ず、結果的にリサイクルスラグ量を制御するのではなく、ばらつくことを容認した上で、次チャージのフラックス量を削減する方法を選択せざるを得なかったのである。または一部排滓する場合においても、炉内残留スラグ量を制御することができず、結果的には作業者の経験と勘に頼って炉内残留スラグ量を推定するしかなかったのである。したがって、これまでリサイクル可能なスラグ量を決めることができなかったのが現状である。 However, conventionally, when the operator performs tilting and evacuation, an appropriate amount of the slag discharged into the slag pan is observed, for example, until the slag pan is full, for example, the slag pan In the eighth minute, etc., an appropriate guideline was set and implemented, and the optimum conditions for the amount of slag that could be recycled could not be determined. This is because it is technically difficult to accurately grasp the amount of slag generated in the furnace in the first place, but it is technically necessary to control the amount of slag to be recycled to a certain amount or to grasp the amount of slag. This is because there was no eye. Therefore, even in the conventional prior art, it must be thought that by recycling as much slag as possible, it can contribute to reducing the flux of the next charge, and as a result, the amount of recycled slag is not controlled but varies. After accepting it, they had to choose a method to reduce the amount of flux of the next charge. Alternatively, even when part of the waste is discharged, the amount of residual slag in the furnace cannot be controlled, and as a result, the amount of residual slag in the furnace must be estimated based on the experience and intuition of the operator. Therefore, it has been impossible to determine the amount of slag that can be recycled so far.
本発明者らは炉内残留スラグ量を目標量に制御する方法として、第五工程後に炉内生成スラグを排滓する際に、種々の傾動角において排滓後の炉内残留スラグ量重量を測定する実験を繰り返し実施した結果、傾動角と炉内残留スラグ量に明瞭な相関が得られることを見出した。したがって、この関係を利用すれば、リサイクルするスラグ量を一定に制御することが可能となった。また、別の操業方法として、前記傾動角と炉内残留スラグ量の関係から、排滓毎の傾動角を一定ではなく従来のように排滓鍋内にスラグ量を例えば鍋一杯あるいは例えば鍋八分目まで排滓する場合においても、その際の傾動角から炉内に残留しているスラグ量が正確に把握可能であり、この把握された残留スラグ量の値を用いて、次チャージ第二工程におけるフラックス削減量を正確に精度よく算出が可能となった。 As a method of controlling the residual slag amount in the furnace to the target amount, the present inventors set the residual slag weight in the furnace after discharging at various tilt angles when discharging the generated slag in the furnace after the fifth step. As a result of repeated experiments, it was found that a clear correlation was obtained between the tilt angle and the amount of residual slag in the furnace. Therefore, if this relationship is used, the amount of slag to be recycled can be controlled to be constant. As another operation method, from the relationship between the tilt angle and the amount of residual slag in the furnace, the tilt angle for each waste is not constant, and the amount of slag is, for example, a full pot or a pot eighth Can be accurately grasped from the tilt angle at that time, and the value of this grasped residual slag amount can be used in the second charge second process. The amount of flux reduction can be calculated accurately and accurately.
但し、転炉炉回数毎に同様の実験を繰り返して実施すると、炉回数が増大するにしたがって、同一傾動角でも炉内に残留するスラグ量が増大する可能性があることも見出した。したがって、炉回数毎、あるいはある期間の炉回数範囲毎に傾動角と炉内残留スラグ量の関係を事前に調査しておけば転炉使用(=炉回数増大)に伴う転炉炉内耐火物損耗にともなう炉内形状変化による炉内残留スラグ量への影響についても精度良く評価可能となる。 However, it has also been found that if the same experiment is repeated for each number of converters, the amount of slag remaining in the furnace may increase with the same tilt angle as the number of furnaces increases. Therefore, if the relationship between the tilt angle and the amount of residual slag in the furnace is investigated in advance for each furnace frequency or for each furnace frequency range in a certain period, the refractories in the converter furnace associated with the use of the converter (= increase in the number of furnaces) It is possible to accurately evaluate the influence on the amount of residual slag in the furnace due to the change in the furnace shape accompanying wear and tear.
さらに、炉内に残留させるスラグ量は、適正な量があることを見出した。すなわち、炉内残留スラグ量(=リサイクルスラグ量)が多すぎる場合、前述したように連続リサイクル使用するにあたり、炉内のスラグ量が排滓不能なまでに増大することに加え、繰り返し利用により徐々に燐成分の蓄積が起こり、脱P効率に悪影響を及ぼして、溶鋼への復P等の問題を引き起こし、規格燐濃度上限を越える品質異常を引き起こす。また、リサイクルスラグは脱炭吹錬にて生成するスラグであり一般的には塩基度が2.5〜4.5以上という高塩基度スラグであることから、リサイクル量が多すぎた場合は、次チャージに持ち越されるスラグ中のCaO分が過剰となり、仮に次チャージの第二工程でCaOフラックスを投入しないとしても第二工程における脱P効率および第三工程での排滓性から決定される適正な塩基度を越えることになり、排滓性の悪化を引き起こし、最終的には次チャージの第四工程での脱P負荷増大に伴うフラックス増大または規格P濃度外れ等の品質異常を引き起こす。 Furthermore, it has been found that there is an appropriate amount of slag that remains in the furnace. That is, if the amount of residual slag in the furnace (= recycled slag amount) is too large, the amount of slag in the furnace will increase to the point where it cannot be discharged as described above. Accumulation of phosphorus components occurs, adversely affecting the de-P efficiency, causing problems such as returning P to the molten steel, and causing quality abnormalities exceeding the upper limit of the standard phosphorus concentration. In addition, recycled slag is slag produced by decarburization blowing and is generally a high basicity slag having a basicity of 2.5 to 4.5 or more. Even if the CaO content in the slag carried over to the next charge becomes excessive, and the CaO flux is not charged in the second step of the next charge, the appropriateness determined from the de-P efficiency in the second step and the rejectability in the third step As a result, the basicity will be exceeded, and the excretion will be deteriorated. Finally, quality abnormalities such as an increase in flux accompanying the increase in the de-P load in the fourth step of the next charge or a deviation from the standard P concentration will be caused.
一方、炉内残留スラグ量が少なすぎた場合は、次チャージでの第二工程において追加の生石灰等塩基度調整用のフラックス使用が増大し、本発明の効果を充分に享受することができないとともに、次チャージで投入したフラックスの溶解遅れまたは塩基度不足によるスロッピング等の操業上の大きな障害を引き起こす。 On the other hand, when the amount of residual slag in the furnace is too small, the use of additional flux for adjusting basicity such as quicklime in the second step in the next charge increases, and the effect of the present invention cannot be fully enjoyed. This causes major operational problems such as slapping due to the delay of dissolution of flux introduced in the next charge or the lack of basicity.
本発明者らは、これらの条件をともに満たす目標残留スラグ量が、次チャージの溶銑成分(溶銑[Si]、溶銑[P])や当該チャージ第五工程における生成スラグの塩基度、さらには第三工程での炉内生成スラグの排滓率を用いて、前記請求項4に示す(1)式および(2)式を共に満たす条件が適正であることを見出した。すなわち、(1)式および(2)式は、次の通りである。
(21×HM[Si]×Z)/(%CaO×(Z−1))≦WRSV≦(30×HM[Si]×Z)/(%CaO×(Z−1.4)) ・・・(1)
ここでWRSV:残留させるスラグ量(Kg/T)、HM[Si]:転炉装入溶銑[Si]濃度×0.01(%)、Z:第四工程にて生成しリサイクルするスラグの塩基度(−)、%CaO:第四工程にて生成しリサイクルするスラグ中のCaO濃度(%)を意味する。
WRSV≦2.29/%P2O5×A×HM[P]/(100−A) ・・・(2)
ここでWRSV:残留させるスラグ量(Kg/T)、%P2O5:第四工程にて生成しリサイクルするスラグ中のP2O5濃度(%)、HM[P]:転炉装入溶銑[P]濃度×0.001(%)、A:第二工程終了後の炉内スラグ量のうち第三工程にて炉外に排出されるスラグ量の割合(%)を意味する。
The present inventors have determined that the target residual slag amount that satisfies both of these conditions is the hot metal component (hot metal [Si], hot metal [P]) of the next charge, the basicity of the generated slag in the fifth charge step, Using the rejection rate of the in-furnace generated slag in the three steps, it was found that the conditions satisfying both the expressions (1) and (2) shown in claim 4 are appropriate. That is, the expressions (1) and (2) are as follows.
(21 × HM [Si] × Z) / (% CaO × (Z−1)) ≦ WRSV ≦ (30 × HM [Si] × Z) / (% CaO × (Z−1.4)) (1)
WRSV: amount of slag to be left (Kg / T), HM [Si]: converter molten iron [Si] concentration x 0.01 (%), Z: base of slag generated and recycled in the fourth step Degree (-),% CaO: means the CaO concentration (%) in the slag produced and recycled in the fourth step.
WRSV ≦ 2.29 /% P 2 O 5 × A × HM [P] / (100-A) (2)
WRSV: slag amount to remain (Kg / T),% P 2 O 5 : P 2 O 5 concentration (%) in slag produced and recycled in the fourth step, HM [P]: Converter charge Hot metal [P] concentration x 0.001 (%), A: The ratio (%) of the amount of slag discharged out of the furnace in the third step among the amount of slag in the furnace after the end of the second step.
(1)式における左項は次チャージ第二工程における使用フラックス量の削減効果を最大としつつスロッピング等の操業異常をおこさないための条件を規定するものであり、右項は、リサイクルスラグ量が次チャージ第三工程における排滓の効率を悪化させないための最大のリサイクルスラグ量を規定している。また、(2)式では、繰り返し利用により徐々に燐成分の蓄積が起こり、脱P効率に悪影響を及ぼして、溶鋼への復P等の問題を引き起こさないための炉内残留スラグ量の最大値を規定している。 The left term in equation (1) prescribes the conditions for avoiding operational abnormalities such as slopping while maximizing the effect of reducing the amount of flux used in the second step of the next charge, and the right term is the amount of recycled slag. Stipulates the maximum amount of recycled slag so as not to deteriorate the efficiency of evacuation in the third step of the next charge. In addition, in formula (2), the phosphorus component gradually accumulates due to repeated use, adversely affects the de-P efficiency, and the maximum amount of residual slag in the furnace so as not to cause problems such as returning P to the molten steel. Is stipulated.
これら(1)式および(2)式の形態は、実操業に適用可能な平易な構造としたなかで操業に必要な条件を全て反映し、かつそれぞれの係数については本発明者らが実際の操業において多くのテストを繰り返して最適な条件となるように見出した値である。 These forms of the formulas (1) and (2) reflect all the conditions necessary for operation in a simple structure applicable to actual operation, and the present inventors have actually calculated the respective coefficients. It is a value found so that the optimum condition is obtained by repeating many tests in the operation.
更にリサイクルスラグ量を目標量に制御するための本発明法は、極めて平易な方法ではあるものの、傾動排滓時に炉内に残留するスラグ量が、炉形状によって支配されていることに着眼した、従来にない新たな発想である。したがって、本方法によれば、実施する事業所、転炉毎に炉形状が違うことから、排滓時の傾動角と炉内残留スラグ量の関係はそれぞれ特徴的な関係となる一方、いかなる転炉においても適用できる極めて一般的な汎用技術として制御性向上に大きく寄与できるものである。 Furthermore, although the method of the present invention for controlling the amount of recycled slag to a target amount is an extremely simple method, it has been noted that the amount of slag remaining in the furnace at the time of tilting is controlled by the furnace shape. This is a new idea that has never existed before. Therefore, according to this method, the furnace shape varies depending on the establishment and converter to be implemented, so the relationship between the tilt angle at the time of discharge and the amount of residual slag in the furnace is characteristic, while any As a very general general-purpose technology that can be applied to furnaces, it can greatly contribute to improving controllability.
これらの適正T.CaOについての定性的な考え方は従来からあったものの、リサイクルするスラグ量が不明であるか、経験と勘に基づく操業によるバラツキが大きいことから、これまでは実操業に適用するこができなかった。たとえ適用したとしても上述したように、品質異常またはスロッピング等の操業異常が頻発していたものである。本発明法によりリサイクルするスラグ量を定量的に、高精度で、再現性よく、簡易に制御できると共に、実績の傾動角から炉内に残留しているスラグ量を定量的に精度よく推定できることから、初めて実操業において適正T.CaO量を見出したのである。 These proper T.P. Although there has been a qualitative way of thinking about CaO in the past, the amount of slag to be recycled is unknown, or due to large variations in operation based on experience and intuition, it could not be applied to actual operations so far. . Even if it is applied, as described above, quality abnormalities or operational abnormalities such as slopping frequently occur. The amount of slag recycled by the method of the present invention can be controlled quantitatively, with high accuracy, with good reproducibility, and easily, and the amount of slag remaining in the furnace can be estimated quantitatively with high accuracy from the actual tilt angle. Appropriate T.O. The amount of CaO was found.
以下に転炉における適用例を基にさらに詳述する。 The details will be described below based on application examples in a converter.
図1は転炉を傾動することにより排滓している概要図を示す。従来は図1に示すような形態で第五工程にて排滓をおこなっていた。すなわち、オペレーターは転炉1を傾動して転炉1からスラグ輸送設備8に搭載されている排滓鍋2内に排出された排出スラグ3量をみながら転炉1の傾動操作を行い、また排滓終了タイミングを決定していた。したがって、排滓鍋2内に排出されたスラグ量から経験と勘に基づいて炉内に残留した炉内残留スラグ4量を推定し、次チャージ第二工程におけるフラックス量を決定していたものである。
FIG. 1 shows a schematic view of exhausting by tilting the converter. Conventionally, the waste was removed in the fifth step in the form shown in FIG. That is, the operator tilts the
本発明法では、新たな発想に基づき、排滓時の水平線6と転炉中心水平線7とで形成される傾動角(α)5と炉内に残留している炉内残留スラグ4量の関係をあらかじめ実際に秤量することにより評価しておき、適切な傾動角αで一定操業とすることにより常に次チャージにリサイクルされるスラグ量を一定にすることを達成した。 In the method of the present invention, based on a new idea, the relationship between the tilt angle (α) 5 formed by the horizontal line 6 and the converter center horizontal line 7 at the time of discharge and the amount of residual slag 4 remaining in the furnace. The amount of slag recycled to the next charge was always made constant by setting the operation to a constant operation at an appropriate tilt angle α.
具体的には炉回数1000〜1500チャージにおける炉傾動角と炉内残留スラグ量の関係を図2に示すが、例えば、ある一つの転炉においては傾動角αが70°から炉外にスラグの排出が始まり、その後傾動角が大きくなるにしたがって炉外に排出されるスラグ量が増大、すなわち炉内に残留するスラグ量が減少してゆき、傾動角が120°でほぼ炉内に残留するスラグ量はゼロになる。すなわち全量排滓される。これは炉回数がほぼ同じであれば極めて再現性よく実現できることが確認できた。なお、この傾動角は転炉容器形状によって異なることから、本発明を実施する事業所毎の転炉容器形状に応じてその傾動角と炉内残留スラグ量の関係を決める必要がある。 Specifically, FIG. 2 shows the relationship between the furnace tilt angle and the amount of residual slag in the furnace when the number of furnaces is 1000 to 1500. For example, in a certain converter, the tilt angle α is 70 ° to the outside of the furnace. The amount of slag discharged to the outside of the furnace increases as the tilting angle increases and then the tilt angle increases, that is, the amount of slag remaining in the furnace decreases, and the slag that remains in the furnace at a tilt angle of 120 ° The amount is zero. That is, the entire amount is rejected. It was confirmed that this can be realized with extremely good reproducibility if the number of furnaces is almost the same. In addition, since this tilt angle changes with converter vessel shapes, it is necessary to determine the relationship between the tilt angle and the amount of residual slag in a furnace according to the converter vessel shape for every establishment which implements this invention.
したがって、上記転炉では傾動角αを90°〜110°に制御して炉内に残留・次チャージに熱間リサイクルするスラグ量を20〜40kg/Tに制御している。 Therefore, in the converter, the tilt angle α is controlled to 90 ° to 110 °, and the amount of slag to be hot recycled to the residual / next charge in the furnace is controlled to 20 to 40 kg / T.
傾動角αの適正値は、次チャージにおける精錬条件、たとえば溶銑中の硅素濃度や第四工程での吹止温度、製品での規格燐濃度上限制約等を考慮して適切なフラックス量があり、それぞれの精錬条件に応じて適切な残留リサイクルスラグ量に制御している。また、傾動角αが予定していたαよりずれた場合においても、図2の関係を用いれば炉内に残留したスラグ量が精度良く推定でき、その結果を次ぎチャージ第二工程におけるフラックス量計算に反映すれば全く操業に悪影響を及ぼすことなく、常に最適な条件を再現できる。 The appropriate value of the tilt angle α has an appropriate flux amount in consideration of the refining conditions in the next charge, for example, the silicon concentration in the hot metal, the blowing temperature in the fourth process, the upper limit of the standard phosphorus concentration in the product, etc. The amount of residual recycled slag is controlled appropriately according to the respective refining conditions. In addition, even when the tilt angle α deviates from the planned α, the amount of slag remaining in the furnace can be accurately estimated by using the relationship shown in FIG. If it is reflected in, optimum conditions can always be reproduced without adversely affecting the operation.
また、転炉は内部を耐火物で内張されており、精錬処理をする毎にわずかづつではあるものの溶損して炉内の形状は時事刻々と変化している。したがって炉回数が進む毎に前記傾動角αと炉内残留スラグ量の関係は変化してゆく。本発明者らはこのことに着目して炉回数と炉内残留スラグ量の関係を各傾動角α毎に実際に秤量して決定した。図3には、転炉において、傾動角αが105°の場合の炉回数と炉内残留スラグ量の関係をその一例として示す。図3に示すように、傾動角αが105°の一定値であっても、転炉炉回数が多くなるにしたがって、残留スラグ量が多くなるので、残留スラグ量を目標値とするためには、傾動角αが105°よりも大きな角度に補正すれば、目標とする残留スラグ量が得られることとなる。本発明者らは、今回精錬している際の転炉の炉回数毎に図3の関係に基づいたテーブルを参照し、前述した傾動角制御によるリサイクルスラグ量制御技術によって、常に精度良く目標とする残留スラグ量を実現している。 In addition, the converter is lined with refractory inside, and every time the refining process is performed, the shape inside the furnace changes with time, although it is slightly melted. Therefore, the relationship between the tilt angle α and the amount of residual slag in the furnace changes as the number of furnaces increases. The present inventors paid attention to this and determined the relationship between the number of furnaces and the amount of residual slag in the furnace by actually weighing each tilt angle α. FIG. 3 shows an example of the relationship between the number of furnaces and the amount of residual slag in the furnace when the tilt angle α is 105 ° in the converter. As shown in FIG. 3, even if the tilt angle α is a constant value of 105 °, the residual slag amount increases as the number of converters increases. If the tilt angle α is corrected to an angle larger than 105 °, a target residual slag amount can be obtained. The present inventors refer to the table based on the relationship of FIG. 3 for each number of converters during refining this time, and always achieve the target accurately with the recycle slag amount control technology based on the tilt angle control described above. The amount of residual slag is realized.
また、転炉炉回数に応じて、次チャージのフラックス量を補正することもできる。具体的には、転炉炉回数に応じて、図3に示すように残留スラグ量が多くなり、例えば1000〜1500回の転炉炉回数ではスラグ量原単位約25kg/Tに対して、転炉炉回数が1500〜2000回では約10%スラグ量原単位が増加するので、その多くなった量に応じて次チャージのフラックス量を少なくすることによって、転炉傾動角αを変えずに排滓を実施することができる。 Further, the amount of flux of the next charge can be corrected according to the number of converters. Specifically, depending on the number of converters, the amount of residual slag increases as shown in FIG. 3. For example, in the case of 1000 to 1500 converters, the slag amount per unit is about 25 kg / T. When the number of furnaces is 1500 to 2000, the basic unit of slag amount increases by about 10%. By reducing the flux amount of the next charge according to the increased amount, the converter tilt angle α is not changed. You can carry out dredging.
なお前記図2、図3に例示した関係は、転炉の形状によってそれぞれ特徴的な関係を示すことは明らかであり、実施するにあたっては各事業所で事前にこれら関係を調査することにより本発明による効果を享受できる。 The relationships illustrated in FIG. 2 and FIG. 3 clearly show characteristic relationships depending on the shape of the converter, and in implementing the present invention, these relationships are investigated in advance at each office. You can enjoy the effect.
以上説明したように本発明により、第五工程の後に熱間リサイクルするスラグ量が精度よく制御できる、あるいは精度よく推定できるようになると考えられることから、実機操業での効果の検証をおこなった。 As described above, according to the present invention, it is considered that the amount of slag to be hot recycled after the fifth step can be accurately controlled or estimated accurately, and thus the effect in actual machine operation was verified.
図4は370ton転炉を用いてN=1000回づつ本発明法と従来法を実施して第二工程(脱Si・脱P)でのスラグ塩基度制御性を比較した図である。図4に示すように従来法では第五工程後に炉内残留スラグをリサイクルされていたスラグ量の推定精度が悪いことに起因して次チャージの第二工程で過剰に生石灰を含むフラックスを使用していた、すなわち塩基度が高くかつばらついていたものが、本発明法では目標とする適正塩基度(1.1〜1.4)の制御精度が高くなり、精度良く次チャージのスラグの制御が可能となり、過剰にフラックスを投入することなく精錬することが可能となった。
さらに370ton転炉を用いて実機での操業実績例を表1に示す。以下に詳述する。
FIG. 4 is a diagram comparing the slag basicity controllability in the second step (de-Si / de-P) by implementing the method of the present invention and the conventional method N = 1000 times using a 370 ton converter. As shown in FIG. 4, in the conventional method, the residual slag in the furnace was recycled after the fifth step. Due to the poor accuracy of estimating the amount of slag, a flux containing excessive lime was used in the second step of the next charge. In other words, in the method of the present invention, the control accuracy of the target appropriate basicity (1.1 to 1.4) is increased, and the slag of the next charge can be accurately controlled. It became possible, and it became possible to refine without adding excessive flux.
In addition, Table 1 shows an example of actual operation using a 370 ton converter. This will be described in detail below.
ここで、上記において(1)・(2)式の計算で用いられる適性スラグ量を計算する際に用いた主要な数値は、スラグ成分が(%CaO)=50%、(%P2O5)=3%、第三工程でのスラグ排出割合=40%、第二工程での目標塩基度X=1.2としている。 Here, the main numerical values used in calculating the appropriate slag amount used in the calculations of the equations (1) and (2) in the above are: (% CaO) = 50%, (% P 2 O 5 ) = 3%, slag discharge ratio in the third step = 40%, and target basicity X in the second step = 1.2.
従来例である従来法1、2ではリサイクルスラグ量は不明であったことから、従来と全く同様(作業者の経験に基づいて排滓を行い、排滓鍋内のスラグ状況を目視して炉内スラグ量を推定)の方法により操業を行った後に、操業後の転炉傾動角αから炉内残留スラグ量を算定した値を「WRSV」として記載している。また参考までにその際の作業者の推定した炉内残留スラグ量を「作業者推定によるWRSV」として併記した。従来法1では排滓時に炉傾動角α=99°で排滓を行い、作業者は炉内残留スラグ量(作業者推定によるWRSV)を13kg/T程度と推定した。それに基づき起こした。また、従来法2では排滓時に炉傾動角α=112°で排滓を行い、作業者は炉内残留スラグ量(作業者推定によるWRSV)=31kg/T程度と推定した。それに基づき、次チャージ第二工程におけるスラグ塩基度(脱Si脱P処理後塩基度)=1.2狙いで生石灰量(第二工程T.CaO)=2.2kg/Tまで削減したが、実績は炉内残留スラグ量(WRSV)=21kg/Tあったことから、リサイクルスラグからのCaO分が予想より不足し、結果として次チャージ第二工程の塩基度(脱Si脱P処理後塩基度)が0.9までしか確保できず、スロッピングを発生させてしまった。
Since the amount of recycled slag was unknown in the
一方、本発明法での実施例である本法1では、前記算定式(1)(2)式に基づいてリサイクルスラグ量目標値を決定し、そのための排滓時傾動角を制御して炉内残留スラグ量を目標通りに制御した。実際に生石灰ゼロで第二工程の処理を実施したところ、リサイクルスラグ量が精度よく判明していたことから予定通り第二工程終了後のスラグ塩基度は1.1となったものの操業適正範囲に制御でき、第三工程での排滓性、および第二工程でのスロッピング等の操業異常も全くなかった。また、本発明法の実施例の本法2では、目標としたリサイクルスラグ量である炉内残留スラグ量(WRSV)=30kg/Tであり、そのための目標とする排滓時傾動角α=104°であった。しかし、実績の排滓時傾動角α=100°で傾動を終了してしまったことから、実績の炉内残留スラグ量(WRSV)=35kg/Tとなったがこれは(1)式の適正範囲にあり、次チャージ第二工程での生石灰量を適切に保つことで目標通り第二工程のスラグ塩基度(脱Si脱P処理後塩基度)=1.2とすることができ、本法1と同様に操業上の問題は全くない適正な処理を実現した。さらに、本発明法の実施例の本法3では、目標とするリサイクルスラグ量である炉内残留スラグ量(WRSV)=24Kg/Tであり、そのための目標とする排滓時傾動角α=105°であったことから、目標通りα=105°の傾動角で排滓を完了し、炉内にスラグを24Kg/T残留させた。第二工程では2.5Kg/Tの生石灰を投入した結果、第二工程処理後の炉内スラグの塩基度が適正範囲に制御できたとともに、本法1、2と同様に操業上の問題は全くない適正な処理を実現した。本法1、本法2および本法3例と従来法1および従来法2例を比較してわかるように、第二工程での重要な操業指標である塩基度は本法ではばらつき少なく目標値に制御可能であるのに対し、従来法ではリサイクルスラグ量のバラツキにより結果としての第二工程での塩基度は狙いよりも外れて大きくばらついている。その結果、本法では従来法に比べ、安定して第二工程での脱P処理を実現するとともに排滓率・操業性ともに極めて良好に安定した。結果、第四工程での脱P負荷を軽減することが可能となり、生石灰量削減することができた。
On the other hand, in the
なお、ここに示した実施例は、第三工程でのスラグ排出割合=40%とした場合の例であるが、この値を20〜80%までの間で実施可能であることは、確認できている。 In addition, although the Example shown here is an example at the time of setting the slag discharge | emission ratio in a 3rd process = 40%, it can confirm that this value can be implemented between 20 to 80%. ing.
1 転炉
2 排滓鍋
3 排滓スラグ
4 炉内残留スラグ
5 傾動角α
6 水平線
7 転炉中心水平線
8 スラグ輸送設備
1
6 Horizontal line 7 Converter
Claims (3)
(21×HM[Si]×Z)/(%CaO×(Z−1))≦WRSV≦(30×HM[Si]×Z)/(%CaO×(Z−1.4)) ・・・(1)
ここで、WRSV:目標スラグ量(Kg/T)、HM[Si]:転炉装入溶銑[Si]濃度×0.01(%)、Z:第四工程にて生成しリサイクルするスラグの塩基度(−)、%CaO:第四工程にて生成しリサイクルするスラグ中のCaO濃度(%)
WRSV≦2.29/%P 2 O 5 ×A×HM[P]/(100−A) ・・・(2)
ここでWRSV:目標スラグ量(Kg/T)、%P 2 O 5 :第四工程にて生成しリサイクルするスラグ中のP 2 O 5 濃度(%)、HM[P]:転炉装入溶銑[P]濃度×0.001(%)、A:第二工程終了後の炉内スラグ量のうち第三工程にて炉外に排出されるスラグ量の割合(%) Hot metal in the converter, or hot metal scrap or pig iron in the first step of inserting the scrap and pig iron as main components, a second step of performing de-Si · de P, and slag produced in the second step by tilting the converter After the de-C refining process generated in the third process, the fourth process in which the furnace is kept upright and oxygen is supplied from the top blowing lance to de-C, the fifth process in which the produced molten steel is removed, and the fifth process. In the converter steelmaking method in which the slag is left in the furnace and then returned to the first step, and the fifth step is repeatedly performed from the first step, after the fifth step, the converter is tilted and remains in the furnace. When part of the generated slag is discharged, the amount of slag remaining in the furnace is controlled based on the tilt angle of the converter at the time of discharge, and the amount of remaining slag (WRSV) is expressed by the following formula (1) and (2 ) is calculated so as to satisfy both equations, following tea based on the amount of slag to remain BOF steelmaking method characterized by calculating the amount of flux to be introduced with di second step.
(21 × HM [Si] × Z) / (% CaO × (Z−1)) ≦ WRSV ≦ (30 × HM [Si] × Z) / (% CaO × (Z−1.4)) (1)
Here, WRSV: target slag amount (Kg / T), HM [Si]: converter charge hot metal [Si] concentration x 0.01 (%), Z: base of slag generated and recycled in the fourth step Degree (-),% CaO: CaO concentration (%) in slag generated and recycled in the fourth step
WRSV ≦ 2.29 /% P 2 O 5 × A × HM [P] / (100-A) (2)
WRSV: target slag amount (Kg / T),% P 2 O 5 : P 2 O 5 concentration (%) in slag generated and recycled in the fourth step , HM [P]: converter charging molten iron [P] Concentration × 0.001 (%), A: Ratio of slag amount discharged out of the furnace in the third step among the slag amount in the furnace after the second step (%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006139855A JP4790489B2 (en) | 2006-05-19 | 2006-05-19 | Converter steelmaking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006139855A JP4790489B2 (en) | 2006-05-19 | 2006-05-19 | Converter steelmaking |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007308773A JP2007308773A (en) | 2007-11-29 |
JP4790489B2 true JP4790489B2 (en) | 2011-10-12 |
Family
ID=38841906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006139855A Active JP4790489B2 (en) | 2006-05-19 | 2006-05-19 | Converter steelmaking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4790489B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6485432B2 (en) * | 2015-12-07 | 2019-03-20 | Jfeスチール株式会社 | Blowing method for converter |
CN108779504B (en) * | 2016-07-27 | 2020-05-26 | 日本制铁株式会社 | Slag discharge weight estimation method and slag discharge weight estimation device |
JP6897260B2 (en) * | 2017-04-14 | 2021-06-30 | 日本製鉄株式会社 | Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium |
WO2020129887A1 (en) | 2018-12-17 | 2020-06-25 | 日本製鉄株式会社 | Method and apparatus for estimating amount of residual slag in furnace |
CN109797265B (en) * | 2019-04-04 | 2020-11-17 | 山东钢铁股份有限公司 | Method for accurately controlling slag remaining amount of converter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2896839B2 (en) * | 1993-12-24 | 1999-05-31 | 新日本製鐵株式会社 | Molten steel manufacturing method |
JP2002167616A (en) * | 2000-11-30 | 2002-06-11 | Kawasaki Steel Corp | Steelmaking method with converter |
-
2006
- 2006-05-19 JP JP2006139855A patent/JP4790489B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007308773A (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5954551B2 (en) | Converter steelmaking | |
JP5408369B2 (en) | Hot metal pretreatment method | |
JP4790489B2 (en) | Converter steelmaking | |
KR101152676B1 (en) | Production of stainless steel of aisi 4xx grade ferritic steel in an aod converter | |
US7094271B2 (en) | Method for producing stainless steels, in particular high-grade steels containing chromium and chromium-nickel | |
JP4736466B2 (en) | Method for producing high chromium molten steel | |
JP5408379B2 (en) | Hot metal pretreatment method | |
JP2008063610A (en) | Method for producing molten steel | |
JP2020180322A (en) | Production method of molten steel using converter | |
JP2001115205A (en) | Method for dephosphorizing molten iron | |
KR100977795B1 (en) | Manufacturing method of clean steel | |
JP6844267B2 (en) | Hot metal refining method | |
JP3486886B2 (en) | Steelmaking method using two or more converters | |
CN113957197B (en) | Converter tapping metallurgy process for reducing large-size inclusions in bearing steel | |
KR20190076314A (en) | Method for Refining Low Carbon Steel | |
WO2022154023A1 (en) | Converter-refining method | |
JPH0892618A (en) | Prerefining method | |
WO2022154024A1 (en) | Converter refining method | |
JP3560637B2 (en) | Converter furnace blowing method for stainless steel | |
JP2757761B2 (en) | Method for producing molten stainless steel by smelting reduction | |
JP2005206899A (en) | Hot metal refining method | |
JP3770076B2 (en) | Slag coating method for dedicated dephosphorization furnace | |
JP3684445B2 (en) | Manufacturing method of high purity high Ni steel | |
CN116783312A (en) | Converter steelmaking method | |
JP6627642B2 (en) | How to reduce iron ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4790489 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |