JP4774943B2 - Fuel gas flow rate correction method - Google Patents
Fuel gas flow rate correction method Download PDFInfo
- Publication number
- JP4774943B2 JP4774943B2 JP2005331154A JP2005331154A JP4774943B2 JP 4774943 B2 JP4774943 B2 JP 4774943B2 JP 2005331154 A JP2005331154 A JP 2005331154A JP 2005331154 A JP2005331154 A JP 2005331154A JP 4774943 B2 JP4774943 B2 JP 4774943B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel gas
- flow rate
- temperature
- water vapor
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002737 fuel gas Substances 0.000 title claims description 63
- 238000012937 correction Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 238000002485 combustion reaction Methods 0.000 claims description 23
- 239000007789 gas Substances 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
Images
Landscapes
- Feeding And Controlling Fuel (AREA)
Description
本発明は、鋼板を焼鈍する焼鈍炉等に代表される燃焼炉に導入される燃料ガスが水蒸気を含有している場合に、その水蒸気分に基づき燃料ガスの流量を補正する方法に関するものである。 The present invention relates to a method of correcting the flow rate of a fuel gas based on the water vapor content when the fuel gas introduced into a combustion furnace represented by an annealing furnace or the like for annealing a steel sheet contains water vapor. .
製鉄所で発生するガスは、主として製鉄所内での加熱炉や焼鈍炉等の燃焼炉の燃料として用いられている。このような発生ガス、なかでも高炉ガスや転炉ガス等では、発生時にかなり高温となるので、これを搬送するために冷却する必要がある。その際、ガスに対して放水することにより冷却するため、前記ガス中には必ず水蒸気分が含有され、高露点のガスとなっている(通常、露点は40〜50℃程度になっている)。 The gas generated in the steelworks is mainly used as fuel for combustion furnaces such as heating furnaces and annealing furnaces in the steelworks. Such a generated gas, especially blast furnace gas, converter gas, etc., becomes very hot when it is generated, and therefore needs to be cooled in order to transport it. In that case, since it cools by discharging water with respect to gas, in the said gas, water vapor | steam content is always contained and it is a gas with a high dew point (usually dew point is about 40-50 degreeC). .
一方、このような発生ガスを用いた焼鈍炉を操業する際に、年間のうち夏場になると加熱能力不足になるという問題があった。この原因が炉体放散によるエネルギーロスと考えると、むしろ気温の低い冬場において放散する熱量は多くなるので、現状とは矛盾する。そこで、詳細に調査したところ、前述のとおり発生ガス中に含まれる水蒸気分によって、見かけの熱量が低下していることに思い至ったのである。 On the other hand, when operating an annealing furnace using such generated gas, there was a problem that the heating capacity was insufficient in the summer in the year. If this cause is considered to be energy loss due to the dissipation of the furnace body, the amount of heat dissipated in winter when the temperature is rather low increases, which contradicts the current situation. Therefore, as a result of detailed investigation, it was thought that the apparent amount of heat was reduced by the water vapor contained in the generated gas as described above.
ガス中の湿分を補正する方法として、特許文献1には、配管内に湿分計を設置して、その湿分計により測定された湿度に基づいて、ガス流量における水蒸気分を補正する方法が記載されている。
しかしながら、特許文献1に記載の方法では、既設の配管内に新たに湿分計を設置する必要があるため、設置のコストが多大となるとともに、配管内への設置のためメンテナンスが困難という問題があった。 However, in the method described in Patent Document 1, since it is necessary to newly install a moisture meter in an existing pipe, the cost of the installation becomes great and the problem that maintenance is difficult due to installation in the pipe. was there.
本発明は、製鉄所で発生し製鉄所内で利用されるガスのような特定の燃料ガスの状況に鑑みて、燃料ガス中の水蒸気分に基づく燃料ガスの流量補正を安価に行うことができる燃料ガスの流量補正方法を提供することを目的とする。 In view of the situation of a specific fuel gas such as a gas generated in a steel plant and used in the steel plant, the present invention is a fuel capable of correcting the flow rate of the fuel gas based on the water vapor content in the fuel gas at a low cost. An object of the present invention is to provide a gas flow rate correction method.
上記課題を解決するために、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.
[1]水蒸気を含有する燃料ガスを燃焼炉まで導くまでに、前記燃料ガスの露点より低い所定の温度まで燃料ガスを冷却し、
前記燃焼炉における燃料ガスの流量を調整するときに、前記所定の温度における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。
[1] Before the fuel gas containing water vapor is led to the combustion furnace, the fuel gas is cooled to a predetermined temperature lower than the dew point of the fuel gas,
A fuel gas flow rate correction method, wherein when adjusting the flow rate of fuel gas in the combustion furnace, the flow rate of the fuel gas is corrected based on a saturated water vapor pressure at the predetermined temperature.
[2]外気温より高い露点を有する燃料ガスを、屋外の配管を経由して燃焼炉まで導く場合において、
前記燃焼炉における燃料ガスの流量を調整するときに、
外気温における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。
[2] In the case where fuel gas having a dew point higher than the outside temperature is led to a combustion furnace via an outdoor pipe,
When adjusting the flow rate of the fuel gas in the combustion furnace,
A fuel gas flow rate correction method, wherein the flow rate of the fuel gas is corrected based on a saturated water vapor pressure at an outside temperature.
[3]外気温より高い露点を有する燃料ガスを、屋外の配管を経由して燃焼炉まで導く場合において、
年間を複数の時期に分割し、その各時期における外気温の代表値を定め、
前記燃焼炉における燃料ガスの流量を調整するときに、前記外気温の代表値における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。
[3] In the case where fuel gas having a dew point higher than the outside temperature is led to a combustion furnace via an outdoor pipe,
Divide the year into multiple periods, set representative values of outside temperature at each period,
A fuel gas flow rate correction method, wherein when adjusting the fuel gas flow rate in the combustion furnace, the fuel gas flow rate is corrected based on a saturated water vapor pressure at a representative value of the outside air temperature.
[4]前記[1]〜[3]のいずれかにおいて、前記燃焼炉における燃料ガスの流量を調整するときの燃料ガスの温度が変化する場合、その温度変化による体積変化分について、前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。 [4] In any one of the above [1] to [3], when the temperature of the fuel gas when adjusting the flow rate of the fuel gas in the combustion furnace changes, the fuel gas with respect to the volume change due to the temperature change A flow rate correction method for fuel gas, wherein the flow rate of the fuel gas is corrected.
本発明においては、用いる燃料ガスが発生時に高露点となっていることを利用して、燃料ガス中の水蒸気量に基づく流量補正を、外気温等における飽和水蒸気圧を用いて行うようにしているので、配管内に露点計等のセンサーを有する必要がなく、設置は勿論のこと、露点計の較正等の日常におけるメンテナンスについても低コストとすることができる。 In the present invention, using the fact that the fuel gas to be used has a high dew point when it is generated, the flow rate correction based on the amount of water vapor in the fuel gas is performed using the saturated water vapor pressure at the outside temperature or the like. Therefore, it is not necessary to have a sensor such as a dew point meter in the pipe, and it is possible to reduce the cost of daily maintenance such as calibration of the dew point meter as well as installation.
さて、発明者らは、同流量の燃料ガスについて、夏場と冬場で加熱能力に差が生じ、夏場で加熱能力が不足していることについて、前記した炉体からの熱放散という燃焼炉自体ではなく、燃焼炉までガスを搬送する供給過程に原因があると考えた。ここで、発生時に高温であったガスは屋外の配管を通って燃焼炉まで供給されるが、その配管におけるドレン発生量を調査したところ、夏場と冬場でその発生量の差が大きいことがわかった。すなわち、ガス中の水蒸気量も同様に夏場の方が多くなるので、このガス中の水蒸気量の差を原因と考えれば、夏場の加熱能力不足を矛盾無く説明することができる。 Now, the inventors have found that the same amount of fuel gas has a difference in heating capacity between summer and winter, and that the heating capacity is insufficient in summer. It was thought that there was a cause in the supply process of transporting gas to the combustion furnace. Here, the gas that was hot at the time of generation is supplied to the combustion furnace through an outdoor pipe, but when the amount of drain generation in the pipe was investigated, it was found that there was a large difference in the amount generated in summer and winter. It was. That is, since the amount of water vapor in the gas is also higher in summer, considering the difference in the amount of water vapor in the gas as a cause, the lack of heating capacity in summer can be explained consistently.
ここで、さらに考慮すると、製鉄所で発生する燃料ガスは、発生時に高温であって多量の水分を含有し、それゆえ高露点であるが、屋外の配管まで搬送されると冷却されて結露しドレンを生じ、燃料ガスは屋外の配管内での温度における飽和水蒸気量を含んでいる。それゆえ、ガスの全量に対して屋外の配管内での温度対応する飽和水蒸気量の分だけ、見かけの熱量が下がっていることになる。ここで、燃料ガスが定常的に配管内を流れている場合には、燃料ガスと配管の温度(内外壁)の温度は等しくなっている。そこで、燃焼炉で燃料ガスの流量を制御する際に、外気温(つまり配管外壁の温度)に対応する飽和水蒸気圧により前記燃料ガスの流量を補正する、すなわち、ガスの全量より、外気温に対応する飽和水蒸気量の分を差し引いた流量を用いればよいのである。 Further consideration here is that the fuel gas generated at the steelworks is hot at the time of generation and contains a large amount of moisture, and therefore has a high dew point.However, when it is transported to an outdoor pipe, it is cooled and condensed. Drain is generated, and the fuel gas contains a saturated water vapor amount at a temperature in an outdoor pipe. Therefore, the apparent amount of heat is reduced by the amount of saturated water vapor corresponding to the temperature in the outdoor pipe with respect to the total amount of gas. Here, when the fuel gas is constantly flowing in the pipe, the temperatures of the fuel gas and the pipe (inner and outer walls) are equal. Therefore, when controlling the flow rate of the fuel gas in the combustion furnace, the flow rate of the fuel gas is corrected by the saturated water vapor pressure corresponding to the outside air temperature (that is, the temperature of the pipe outer wall), that is, from the total amount of gas to the outside air temperature. A flow rate obtained by subtracting the corresponding saturated water vapor amount may be used.
また、上記の例であれば、燃焼ガスの発生から燃焼炉まで供給される過程のなかで、屋外における配管において、燃焼ガス温度が最も低くなるので、水蒸気分を補正するために、屋外における燃料ガス温度、すなわち外気温(配管の温度)に対応する飽和水蒸気量(飽和水蒸気圧)を用いたが、要するに、供給中に燃焼ガスが最も低くなる所定の温度における飽和水蒸気量で燃焼ガスの流量を補正すればよい。 In the above example, since the combustion gas temperature is the lowest in the piping outside in the process from the generation of the combustion gas to the combustion furnace, the outdoor fuel is used to correct the water vapor content. Although the saturated water vapor amount (saturated water vapor pressure) corresponding to the gas temperature, that is, the outside air temperature (pipe temperature) was used, in short, the flow rate of the combustion gas with the saturated water vapor amount at a predetermined temperature at which the combustion gas is lowest during supply May be corrected.
具体的には、流量計での流量をQとし、一方、燃焼炉の温度調整等の制御をするのに実際に用いる流量をQ’とすれば、
Q’=Q×(1−H)
という補正式を燃焼炉の制御手段等に持たせて制御を行えばよい。ここで、Hは外気温(屋外における配管の温度)、もしくは燃料ガス供給中に最も温度が低くなる所定の温度における飽和水蒸気圧に基づく水蒸気濃度である。
Specifically, if the flow rate at the flow meter is Q, while the flow rate actually used for controlling the temperature adjustment of the combustion furnace is Q ′,
Q ′ = Q × (1-H)
The control may be performed by giving the correction equation to the control means of the combustion furnace. Here, H is the outside air temperature (the temperature of the piping outside) or the water vapor concentration based on the saturated water vapor pressure at a predetermined temperature at which the temperature is lowest during the fuel gas supply.
具体的には、流量計でのガス流量Qと、制御に用いるガス流量Q’との比Q/Q’を表したのが図1である。 Specifically, FIG. 1 shows a ratio Q / Q ′ between the gas flow rate Q in the flow meter and the gas flow rate Q ′ used for control.
まず、燃料ガス中での水蒸気量に関する補正に関しては、0℃において燃料ガス中に含まれる水蒸気量を補正した流量を基準(0℃における流量を1)とすると、各温度での水蒸気量を補正した流量は図1の破線の通りに変化する(水蒸気補正)。すなわち、全体積濃度(全分圧:1atm)から0℃における飽和水蒸気濃度(飽和水蒸気圧)を引いた値と、全体積濃度(全分圧:1atm)から各温度(気温)における飽和水蒸気濃度(飽和水蒸気圧)を引いた値との比で表したものである。また、燃料ガスの温度により膨張・収縮するので、ガス温度に関する補正を行うことが好ましく、20℃の体積を基準とする(1とする)と、これは理想気体の状態方程式(PV=nRT)から図1の一点鎖線の通りに変化する(温度補正)。よって、これらを勘案したガス量の補正(温度・水蒸気補正)は、実線の通りとなり、これに基づきガス流量を補正することで加熱に必要となる熱量を精度よく制御することが可能となる。そして、この図より、冬場(気温10℃前後)に比べて、夏場(気温30℃前後)の方が、ガス流量を温度のみで補正した場合(破線)と温度および水蒸気量で補正した場合(実線)の差が大きくなり、夏場において加熱能力不足が顕著になることを矛盾なく説明することができる。 First, regarding the correction regarding the amount of water vapor in the fuel gas, if the flow rate obtained by correcting the amount of water vapor contained in the fuel gas at 0 ° C. is used as a reference (the flow rate at 0 ° C. is 1), the amount of water vapor at each temperature is corrected. The flow rate thus changed as shown by the broken line in FIG. 1 (water vapor correction). That is, the value obtained by subtracting the saturated water vapor concentration (saturated water vapor pressure) at 0 ° C. from the total volume concentration (total partial pressure: 1 atm) and the saturated water vapor concentration at each temperature (air temperature) from the total volume concentration (total partial pressure: 1 atm). It is expressed as a ratio to the value obtained by subtracting (saturated water vapor pressure). In addition, since the fuel gas expands and contracts depending on the temperature of the fuel gas, it is preferable to perform correction related to the gas temperature. When the volume of 20 ° C. is used as a reference (assuming 1), To change as indicated by the one-dot chain line in FIG. 1 (temperature correction). Therefore, the correction of the gas amount (temperature / water vapor correction) taking these into consideration is as shown by the solid line, and the amount of heat required for heating can be accurately controlled by correcting the gas flow rate based on this. From this figure, compared to the winter season (temperature around 10 ° C), the summer season (temperature around 30 ° C) corrects the gas flow rate only with temperature (broken line) and the case where it corrects with temperature and water vapor ( It can be explained without contradiction that the difference in the solid line) increases and the lack of heating capacity becomes significant in summer.
なお、以上は流量測定時の温度と外気温が等しい場合であるが、流量測定は燃焼炉付近で行われることが多く、そのような場合において、流量測定時の温度と外気温が異なるのであれば、前記の水蒸気補正は外気温に基づいて行い、温度補正は流量測定時の温度に基づいて行うことになる。 Note that the above is the case where the temperature at the time of flow rate measurement and the outside air temperature are equal, but the flow rate measurement is often performed near the combustion furnace, and in such a case, the temperature at the time of flow rate measurement and the outside air temperature may be different. For example, the water vapor correction is performed based on the outside air temperature, and the temperature correction is performed based on the temperature during flow rate measurement.
以上から、本発明は、用いる燃料ガスが発生時に高露点となっていることを利用し、燃料ガス中の水蒸気量の補正を、外気温を用いることにより可能としたもので、配管内に露点計等のセンサーを有する必要がないので、設置は勿論のこと、露点計の較正等の日常におけるメンテナンスについても低コストとすることがあり、有利である。 From the above, the present invention makes use of the fact that the fuel gas used has a high dew point when it is generated, and enables the correction of the amount of water vapor in the fuel gas by using the outside air temperature. Since it is not necessary to have a sensor such as a meter, not only installation but also daily maintenance such as calibration of the dew point meter can be made inexpensive, which is advantageous.
また、炉温の制御にさほど精度を必要としない場合においては、年間を複数の次期に分割し、その各時期における外気温の代表値を定め、その外気温の代表値における飽和水蒸気圧により前記燃料ガスの流量を補正して制御してもよい。例えば、年間を春夏秋冬の4分割や月毎の12分割してその各分割に応じて代表値や、さらに前記のような各分割部分のそれぞれの昼夜について代表値を持たせてもよい。 In addition, in the case where the accuracy of the furnace temperature control is not so required, the year is divided into a plurality of next periods, a representative value of the outside temperature in each period is determined, and the saturated water vapor pressure at the representative value of the outside temperature is Control may be performed by correcting the flow rate of the fuel gas. For example, the year may be divided into 4 divisions of spring, summer, autumn and winter or 12 divisions every month, and representative values may be given according to the divisions, and further representative values may be given for each day and night of each of the divided portions.
以上の説明では、水蒸気量を補正する際に用いる温度として、外気温を用いたが、要は水蒸気を含有する燃料ガスの露点より低い温度まで、燃料ガス温度を下げればよいのであって、燃料ガス温度が最も低くなる温度を以って、含有水蒸気量を補正する温度とすればよい。 In the above description, the outside air temperature is used as the temperature used when correcting the amount of water vapor. In short, the fuel gas temperature may be lowered to a temperature lower than the dew point of the fuel gas containing water vapor. What is necessary is just to set it as the temperature which correct | amends the amount of water vapor | steam content with the temperature which gas temperature becomes lowest.
連続焼鈍炉にて、板厚0.30mm、幅1200mmの冷延鋼板を、通板速度130m/分で通板した。焼鈍炉の目標温度を800℃として、前記図1において破線で示されるように、温度補正のみによりガス流量を補正し、温度制御したところ、冬場(12月)では平均800℃と目標に達していたのに対し、夏場(8月)では平均775℃と加熱不足を生じていた。一方、本発明の方法により、前記図1において実線で示されるように、温度および水蒸気の両方を勘案してガス流量を補正し、温度制御したところ、冬場(12月)では平均800℃と目標に達したのは勿論のこと、夏場(8月)においても平均800℃と目標炉温通りに加熱することができ、炉温を年間における較差なく、制御することが可能となった。 In a continuous annealing furnace, a cold-rolled steel sheet having a thickness of 0.30 mm and a width of 1200 mm was passed at a passing speed of 130 m / min. When the target temperature of the annealing furnace is set to 800 ° C. and the gas flow rate is corrected only by temperature correction and the temperature is controlled as shown by the broken line in FIG. 1, the temperature reaches an average of 800 ° C. in winter (December). On the other hand, in summer (August), the average temperature was 775 ° C, resulting in insufficient heating. On the other hand, as shown by the solid line in FIG. 1, when the gas flow rate was corrected and the temperature was controlled by taking into account both the temperature and the water vapor as shown by the solid line in FIG. As a matter of course, even in summer (August), it was possible to heat at an average of 800 ° C. according to the target furnace temperature, and it became possible to control the furnace temperature without any yearly difference.
Claims (4)
前記燃焼炉における燃料ガスの流量を調整するときに、前記所定の温度における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。 Before the fuel gas containing water vapor is led to the combustion furnace, the fuel gas is cooled to a predetermined temperature lower than the dew point of the fuel gas,
A fuel gas flow rate correction method, wherein when adjusting the flow rate of fuel gas in the combustion furnace, the flow rate of the fuel gas is corrected based on a saturated water vapor pressure at the predetermined temperature.
前記燃焼炉における燃料ガスの流量を調整するときに、
外気温における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。 In the case where fuel gas having a dew point higher than the outside temperature is led to the combustion furnace via an outdoor pipe,
When adjusting the flow rate of the fuel gas in the combustion furnace,
A fuel gas flow rate correction method, wherein the flow rate of the fuel gas is corrected based on a saturated water vapor pressure at an outside temperature.
年間を複数の時期に分割し、その各時期における外気温の代表値を定め、
前記燃焼炉における燃料ガスの流量を調整するときに、前記外気温の代表値における飽和水蒸気圧に基づいて前記燃料ガスの流量を補正することを特徴とする燃料ガスの流量補正方法。 In the case where fuel gas having a dew point higher than the outside temperature is led to the combustion furnace via an outdoor pipe,
Divide the year into multiple periods, set representative values of outside temperature at each period,
A fuel gas flow rate correction method, wherein when adjusting the fuel gas flow rate in the combustion furnace, the fuel gas flow rate is corrected based on a saturated water vapor pressure at a representative value of the outside air temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331154A JP4774943B2 (en) | 2005-11-16 | 2005-11-16 | Fuel gas flow rate correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331154A JP4774943B2 (en) | 2005-11-16 | 2005-11-16 | Fuel gas flow rate correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007139260A JP2007139260A (en) | 2007-06-07 |
JP4774943B2 true JP4774943B2 (en) | 2011-09-21 |
Family
ID=38202349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005331154A Active JP4774943B2 (en) | 2005-11-16 | 2005-11-16 | Fuel gas flow rate correction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4774943B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068774A (en) * | 2007-09-13 | 2009-04-02 | Jfe Steel Kk | Method for controlling combustion of fuel gas |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6059541B2 (en) * | 1977-07-30 | 1985-12-25 | 新日本製鐵株式会社 | Equipment for measuring the amount of water vapor in high-temperature gas |
JPS5565308A (en) * | 1978-11-07 | 1980-05-16 | Ishikawajima Harima Heavy Ind Co Ltd | Recovering method for waste heat of hot blast stove |
JPS62132117A (en) * | 1985-12-04 | 1987-06-15 | Ishikawajima Harima Heavy Ind Co Ltd | Gaseous fluid flow rate measuring device |
JP4441776B2 (en) * | 2000-10-05 | 2010-03-31 | 株式会社日立プラントテクノロジー | Air conditioning equipment cost calculation method and apparatus |
-
2005
- 2005-11-16 JP JP2005331154A patent/JP4774943B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007139260A (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8677947B2 (en) | Boiler system | |
US20110011315A1 (en) | Oxyfuel Boiler and Control Method for Oxyfuel Boiler | |
CN103154842B (en) | For being regulated the method for the volumetric flow rate of heating and/or heat eliminating medium by the space heat exchanger of heating or cooling device | |
JP7057172B2 (en) | Combustion air flow rate control method and continuous multi-band heating furnace | |
CN101270880A (en) | Air-fuel ratio control system of combustion heating furnace | |
US20080057451A1 (en) | Boiler and combustion control method | |
RU2008136018A (en) | METHOD AND DEVICE FOR REGULATING THE COOLING TUNNEL FURNACE FOR TUNNEL FURNACE | |
ES2399756T3 (en) | Method for operating a continuous steam generator | |
JP4774943B2 (en) | Fuel gas flow rate correction method | |
JP6013458B2 (en) | Organic waste processing apparatus, processing method and control apparatus | |
CN113195756A (en) | Steel strip annealing furnace with humidity control device | |
JP2008001816A (en) | Combustion-controlling method in coke oven | |
KR100342657B1 (en) | Method of and apparatus for controlling burners of industrial furnace by temperature tracking | |
JPH07180904A (en) | Hot water-supplying apparatus | |
US20110123939A1 (en) | Method of Controlling a Combustion Facility Using a Combination of Coefficient of Resistance and Flame Front Estimation | |
JP2009068774A (en) | Method for controlling combustion of fuel gas | |
JP5495378B2 (en) | Method and apparatus for purging exhaust gas piping | |
JP5264301B2 (en) | Sludge incineration method using fluidized bed incinerator | |
JP2004333016A (en) | Combustion controller of water heater | |
KR101123901B1 (en) | Apparatus for controlling vibration of hot blast stove | |
JP2006029173A (en) | Circulating pump control system | |
KR100647245B1 (en) | Calorie analyzer adopted in fuel gas management system of steel mill | |
SU1126775A1 (en) | Method of controlling masout feed to burning | |
RU2496070C1 (en) | Method to control gas tightness of working area in energy technology units | |
JPS59147077A (en) | Coke oven temperature control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110613 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4774943 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |