Nothing Special   »   [go: up one dir, main page]

JP4765843B2 - Seawater desalination method - Google Patents

Seawater desalination method Download PDF

Info

Publication number
JP4765843B2
JP4765843B2 JP2006235301A JP2006235301A JP4765843B2 JP 4765843 B2 JP4765843 B2 JP 4765843B2 JP 2006235301 A JP2006235301 A JP 2006235301A JP 2006235301 A JP2006235301 A JP 2006235301A JP 4765843 B2 JP4765843 B2 JP 4765843B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
membrane module
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235301A
Other languages
Japanese (ja)
Other versions
JP2008055317A (en
Inventor
利孝 田中
淳夫 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006235301A priority Critical patent/JP4765843B2/en
Publication of JP2008055317A publication Critical patent/JP2008055317A/en
Application granted granted Critical
Publication of JP4765843B2 publication Critical patent/JP4765843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、海水の逆浸透膜での淡水化処理に関する発明である。特に本発明は、逆浸透膜では他の無機塩と比較して除去しにくいホウ素の除去率を向上させる場合に有効である。   The present invention relates to a desalination treatment using a reverse osmosis membrane of seawater. In particular, the present invention is effective in improving the removal rate of boron that is difficult to remove in a reverse osmosis membrane as compared with other inorganic salts.

逆浸透法は、海水及びかん水の淡水化、半導体工業及び医薬品工業用の純水、超純水の製造、都市排水処理等の幅広い分野で利用されている。蒸発法、電気透析法と比較して省エネルギーの点で有利であり、広く普及が進んでいる。特に、中空糸型逆浸透膜は、単位容積当たりの膜面積を大きくできるため、膜分離操作に適した形状であり、例えば、逆浸透膜による海水淡水化分野では広く用いられている。   The reverse osmosis method is used in a wide range of fields such as desalination of seawater and brine, production of pure water for the semiconductor industry and pharmaceutical industry, ultrapure water, and municipal wastewater treatment. Compared to the evaporation method and electrodialysis method, it is advantageous in terms of energy saving and is widely spread. In particular, since the hollow fiber type reverse osmosis membrane can increase the membrane area per unit volume, the hollow fiber type reverse osmosis membrane has a shape suitable for membrane separation operation, and is widely used, for example, in the field of seawater desalination using a reverse osmosis membrane.

逆浸透法で処理された水は飲料水にも使用されているが、安全意識の高まりともに、水質基準の遵守が求められている。そのため、逆浸透膜の透過水を一旦集めて、再度逆浸透膜で処理する2段法が検討されている。例えば、逆浸透膜による海水淡水化においては、透過水のホウ素濃度が水質基準を満たさず、2段法が適用される場合がある。   Water treated by the reverse osmosis method is also used for drinking water, but with increasing safety awareness, compliance with water quality standards is required. Therefore, a two-stage method in which the permeated water of the reverse osmosis membrane is once collected and treated again with the reverse osmosis membrane has been studied. For example, in seawater desalination using a reverse osmosis membrane, the boron concentration of the permeated water may not meet the water quality standard, and a two-stage method may be applied.

従来、1段目の逆浸透膜処理された透過水の全量または一部が2段目の逆浸透膜で処理され、2段目の逆浸透膜の濃縮水が1段目の供給水に戻される処理方法が開示されている。(特許文献1参照)。2段法により透過水の水質を向上させることと、2段システム全体の回収率を高くするためである。しかしながら、この方法では、2段目の逆浸透膜の濃縮水の濃度が高い場合は1段目の供給水の濃度が高くなり、結果として2段目の逆浸透膜の透過水の濃度が高くなる場合があり好ましくない。特に、海水淡水化の場合に、ホウ素の除去性能を向上させるために、2段目の逆浸透膜モジュールの供給水にアルカリを添加することで、例えばpHを8.5以上に設定し、2段目の逆浸透膜モジュールのホウ素除去性能を向上させた場合などは、2段目の逆浸透膜モジュールの濃縮水中のホウ素は濃縮され、回収率によっても異なるが、原水のホウ素濃度より高くなる場合がある。
米国特許第4574049号明細書(第3欄34行〜第4欄4行、図1)
Conventionally, all or part of the permeated water treated with the first-stage reverse osmosis membrane is treated with the second-stage reverse osmosis membrane, and the concentrated water of the second-stage reverse osmosis membrane is returned to the first-stage feed water. A processing method is disclosed. (See Patent Document 1). This is because the quality of the permeated water is improved by the two-stage method and the recovery rate of the entire two-stage system is increased. However, in this method, when the concentration of the concentrated water in the second-stage reverse osmosis membrane is high, the concentration of the first-stage feed water is high, and as a result, the concentration of the permeated water in the second-stage reverse osmosis membrane is high. This is not preferable. In particular, in the case of seawater desalination, in order to improve the removal performance of boron, by adding alkali to the supply water of the second-stage reverse osmosis membrane module, for example, the pH is set to 8.5 or more, and 2 When the boron removal performance of the reverse osmosis membrane module of the second stage is improved, the boron in the concentrated water of the reverse osmosis membrane module of the second stage is concentrated and differs depending on the recovery rate, but becomes higher than the boron concentration of the raw water. There is a case.
U.S. Pat. No. 4,574,049 (column 3, line 34 to column 4, line 4, FIG. 1)

また、海水淡水化でのホウ素除去を目的として、1段目の逆浸透膜モジュールの濃縮側の逆浸透膜エレメントの透過水のみを2段目の逆浸透膜モジュールへ供給する2段法が開示されている。(非特許文献1参照)。しかしながら、1段目の逆浸透膜モジュールからの透過水で供給側透過水と濃縮側透過水の取り出し部は区分されているものの、逆浸透膜モジュール内部での区分が明確ではなく、供給側透過水と濃縮側透過水の濃度は制御ができず、2段目への供給水を制御するのが困難であるという問題がある。
ニューメンブレンテクノロジーシンポジウム2002予稿集(第6−1−1頁〜第6−1−10頁)
Also disclosed is a two-stage method in which only the permeate of the reverse osmosis membrane element on the concentration side of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module for the purpose of removing boron in seawater desalination. Has been. (Refer nonpatent literature 1). However, the permeated water from the first-stage reverse osmosis membrane module separates the supply side permeated water and the concentrated side permeated water outlet, but the division within the reverse osmosis membrane module is not clear, and the supply side permeate is not clear. There is a problem that the concentration of the water and the concentrated permeate cannot be controlled, and it is difficult to control the water supplied to the second stage.
New Membrane Technology Symposium 2002 Proceedings (Pages 6-1-1 to 6-1-10)

一方、1段目の逆浸透膜処理された透過水の全量または一部が2段目の逆浸透膜で処理され、2段目の逆浸透膜の濃縮水が1段目の供給水に戻される処理方法において、さらに、2段目の逆浸透膜モジュールの透過水について選択的にイオンを吸着するキレート樹脂等の吸着樹脂で処理する方法では、例えば、海水淡水化において吸着樹脂でホウ素を除去する場合があるが、ホウ素の濃度自体が低いため、吸着樹脂量当たりのホウ素吸着量が小さく、効率が低い。また、処理水に吸着樹脂から溶出した不純物が混入し、飲料水用には適さない場合があり、その除去用に活性炭の設置が必要になるなどの問題がある。   On the other hand, all or part of the permeated water treated with the first-stage reverse osmosis membrane is treated with the second-stage reverse osmosis membrane, and the concentrated water of the second-stage reverse osmosis membrane is returned to the first-stage feed water. Furthermore, in the method of treating the permeated water of the second-stage reverse osmosis membrane module with an adsorption resin such as a chelate resin that selectively adsorbs ions, for example, boron is removed with an adsorption resin in seawater desalination. However, since the boron concentration itself is low, the boron adsorption amount per adsorbed resin amount is small and the efficiency is low. Further, impurities eluted from the adsorbent resin are mixed in the treated water, which may not be suitable for drinking water, and there is a problem that it is necessary to install activated carbon for the removal.

本発明は、このような点に鑑みてなされたもので、逆浸透膜での2段処理であって、2段目の逆浸透膜モジュールの濃縮水を1段目の供給水に返送するシステムにおいて、2段目の逆浸透膜モジュールの濃縮水を吸着樹脂で処理することにより、1段目の逆浸透膜モジュールの供給水の溶質濃度の上昇を抑制、結果として、2段目の逆浸透膜モジュールの透過水の濃度を低減し、かつ、吸着樹脂による透過水の汚染を防止する、効率的な処理が可能な処理方法を提供することを目的とする。   The present invention has been made in view of such a point, and is a two-stage treatment with a reverse osmosis membrane, and a system for returning the concentrated water of the second-stage reverse osmosis membrane module to the first-stage supply water. In the second stage reverse osmosis membrane module is treated with an adsorption resin to suppress an increase in the solute concentration of the feed water of the first stage reverse osmosis membrane module, resulting in the second stage reverse osmosis. It is an object of the present invention to provide a treatment method capable of efficient treatment that reduces the concentration of permeated water of a membrane module and prevents contamination of permeated water by an adsorbent resin.

本発明者らは、上記課題を克服すべく鋭意検討を重ねた結果、本発明に到達した。すなわち、本願発明は下記の構成を有するものである。
(1)2段の逆浸透膜モジュールを有する海水淡水化設備において、2段目の逆浸透膜モジュールより得られた少なくとも一部の濃縮水を1段目の逆浸透膜モジュールへ返送する経路に吸着樹脂塔を備えることを特徴とする海水淡水化設備。
(2)該吸着樹脂が水溶液中の除去対象物を選択的に吸着捕集する作用を有するものである(1)に記載の海水淡水化設備。
(3)除去対象物がホウ素である(1)または(2)に記載の海水淡水化設備。
(4)1段目の逆浸透膜モジュールが酢酸セルロース系高分子からなる中空糸膜からなることを特徴とする(1)〜(3)いずれか記載の海水淡水化設備。
(5)2段目の逆浸透膜モジュールがポリアミド系高分子からなる膜からなることを特徴とする(1)〜(4)いずれか記載の海水淡水化設備。
(6)2段目の逆浸透膜モジュールの供給水にアルカリを添加する手段を有することを特徴とする(1)〜(5)いずれか記載の海水淡水化設備。
(7)(1)〜(6)いずれか記載の海水淡水化設備を用いた海水の淡水化方法であって、吸着樹脂塔に流入する濃縮水中の除去対象物の濃度が5mg/L以上であることを特徴とする海水淡水化方法。
(8)除去対象物がホウ素である(7)に記載の海水淡水化方法。
(9)該吸着樹脂塔内の濃縮水の流量を吸着樹脂容積で除した値を空間速度SVとしたとき、SVが2〜20H−1であることを特徴とする(7)または(8)に記載の海水淡水化方法。
(10)該吸着樹脂塔に流入する濃縮水のpHが7〜10である(7)〜(9)いずれか記載の海水淡水化方法。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to overcome the above problems. That is, the present invention has the following configuration.
(1) In a seawater desalination facility having a two-stage reverse osmosis membrane module, a route for returning at least a part of the concentrated water obtained from the second-stage reverse osmosis membrane module to the first-stage reverse osmosis membrane module A seawater desalination facility comprising an adsorption resin tower.
(2) The seawater desalination facility according to (1), wherein the adsorption resin has an action of selectively adsorbing and collecting an object to be removed in an aqueous solution.
(3) The seawater desalination facility according to (1) or (2), wherein the removal target is boron.
(4) The seawater desalination facility according to any one of (1) to (3), wherein the first-stage reverse osmosis membrane module is made of a hollow fiber membrane made of a cellulose acetate polymer.
(5) The seawater desalination facility according to any one of (1) to (4), wherein the second-stage reverse osmosis membrane module is made of a membrane made of polyamide polymer.
(6) The seawater desalination facility according to any one of (1) to (5), further comprising means for adding alkali to the supply water of the second-stage reverse osmosis membrane module.
(7) A seawater desalination method using the seawater desalination facility according to any one of (1) to (6), wherein the concentration of the removal target in the concentrated water flowing into the adsorption resin tower is 5 mg / L or more. A seawater desalination method characterized in that:
(8) The seawater desalination method according to (7), wherein the removal target is boron.
(9) When the space velocity SV is a value obtained by dividing the flow rate of concentrated water in the adsorption resin tower by the adsorption resin volume, SV is 2 to 20H −1 (7) or (8) The seawater desalination method according to 1.
(10) The seawater desalination method according to any one of (7) to (9), wherein the concentrated water flowing into the adsorption resin tower has a pH of 7 to 10.

逆浸透膜で処理した透過水を再度、逆浸透膜で処理する2段での膜処理方法において、2段目の逆浸透膜モジュールの濃縮水を吸着樹脂塔で処理し、1段目の逆浸透膜モジュールの供給水に返送するシステムとすることにより、吸着樹脂の吸着に阻害要因となる共存イオン成分の濃度が低く、かつ、除去対象物の濃度が高い条件で吸着樹脂の高効率での処理が可能であり、全体として高効率の分離操作が可能となる。また、吸着樹脂からの溶出物は逆浸透膜で除去可能であるため、安全性が必要とされる飲料水等への適用も好適である。   In the two-stage membrane treatment method in which the permeate treated with the reverse osmosis membrane is treated again with the reverse osmosis membrane, the concentrated water of the second-stage reverse osmosis membrane module is treated with the adsorption resin tower, and the reverse of the first stage. By adopting a system that returns to the supply water of the osmosis membrane module, the adsorption resin is highly efficient under the conditions that the concentration of the coexisting ion components that inhibit the adsorption of the adsorption resin is low and the concentration of the object to be removed is high. The processing is possible, and the separation operation with high efficiency becomes possible as a whole. In addition, since the eluate from the adsorbent resin can be removed with a reverse osmosis membrane, application to drinking water or the like that requires safety is also suitable.

本発明における海水とは、その濃度は地域により異なり、例えば、日本近海の標準的な海水であれば、塩濃度が約35g/L、ホウ素濃度は4mg/Lから5mg/L、中東等の高濃度海水では、塩濃度は約50g/L、ホウ素濃度は6mg/Lから7mg/Lの場合がある。   The concentration of seawater in the present invention varies depending on the region. For example, in the case of standard seawater near Japan, the salt concentration is about 35 g / L, the boron concentration is 4 mg / L to 5 mg / L, and high concentrations such as the Middle East. Concentrated seawater may have a salt concentration of about 50 g / L and a boron concentration of 6 mg / L to 7 mg / L.

本発明における逆浸透膜とは、数十ダルトンの分子量の分離特性を有する領域の分離膜であり、具体的には、0.5MPa以上の操作圧力で、食塩を90%以上、除去可能であるものである。海水淡水化に使用される中空糸型逆浸透膜は、操作圧力が大きく、また、食塩の除去率は99%以上が一般的である。   The reverse osmosis membrane in the present invention is a separation membrane in a region having a molecular weight separation characteristic of several tens of daltons, and specifically, 90% or more of salt can be removed at an operating pressure of 0.5 MPa or more. Is. The hollow fiber type reverse osmosis membrane used for seawater desalination has a large operating pressure, and the removal rate of salt is generally 99% or more.

本発明における2段の逆浸透処理とは、原水を一度、逆浸透処理した透過水を再度、逆浸透処理する処理方法において、2段目の逆浸透膜モジュールの濃縮水の少なくとも一部を1段目の逆浸透膜モジュールの供給水に返送する処理方法であり、1段目の逆浸透膜モジュールと2段目の逆浸透膜モジュールの間には昇圧操作が必要となる。   The two-stage reverse osmosis treatment in the present invention is a treatment method in which the raw water is once subjected to the reverse osmosis treatment and the permeated water is again subjected to the reverse osmosis treatment. This is a treatment method for returning to the supply water of the reverse osmosis membrane module in the stage, and a pressure increasing operation is required between the reverse osmosis membrane module in the first stage and the reverse osmosis membrane module in the second stage.

本発明において、1段目の逆浸透膜モジュールと2段目の逆浸透膜モジュールは同一の特性でも異なる特性でもかまわない。2段目の逆浸透膜モジュールの除去率が1段目の逆浸透膜モジュールの除去率より高いほうが好ましい。また、2段目での除去性能を向上させるため、1段目と2段目の間で2段目の逆浸透膜モジュールの供給水に添加剤を注入してもかまわない。例えば、海水淡水化の場合は、ホウ素の除去率は中性領域では一般的には塩の除去率ほど高くない。しかし、アルカリを添加してpHを8.5以上に高くすると、水中のホウ素が乖離し、イオン化してホウ素の除去率は大幅に増加するため、アルカリを添加する場合がある。また、1段目の逆浸透膜モジュールが耐塩素性を有し、供給水、透過水に残留塩素が存在する場合、還元剤を注入する場合がある。アルカリの例としては、水酸化ナトリウム、水酸化カルシウムなどがあげられ、水酸化ナトリウムが最も好ましい。また、還元剤の例としては、亜硫酸水素ナトリウム、チオ硫酸ナトリウムなどがあげられ、亜硫酸水素ナトリウムが最も好ましい。   In the present invention, the first-stage reverse osmosis membrane module and the second-stage reverse osmosis membrane module may have the same characteristics or different characteristics. The removal rate of the second-stage reverse osmosis membrane module is preferably higher than the removal rate of the first-stage reverse osmosis membrane module. Moreover, in order to improve the removal performance in the second stage, an additive may be injected between the first stage and the second stage into the feed water of the second stage reverse osmosis membrane module. For example, in the case of seawater desalination, the boron removal rate is generally not as high as the salt removal rate in the neutral region. However, when alkali is added and the pH is raised to 8.5 or more, boron in water is dissociated and ionized to significantly increase the boron removal rate, so that alkali may be added. In addition, when the first-stage reverse osmosis membrane module has chlorine resistance and residual chlorine exists in the supply water and permeate, a reducing agent may be injected. Examples of the alkali include sodium hydroxide and calcium hydroxide, and sodium hydroxide is most preferable. Examples of the reducing agent include sodium bisulfite and sodium thiosulfate, and sodium bisulfite is most preferable.

本発明において、吸着樹脂とは水溶液中のイオンをイオン交換機能で吸着除去するイオン交換樹脂や、水溶液中の遷移金属・アルカリ土類金属などの金属イオンやある種の陰イオンが特定の化学種(配位子)と配位結合による相互作用を起こし、錯体を形成する作用を利用して特定のイオン種を選択的に吸着捕集できるキレート樹脂などである。これらの官能基や基材の樹脂の材質は対象イオンにより異なるため、特に限定されない。たとえば、ホウ素を除去対象とする場合、キレート機構によるホウ素吸着樹脂である官能基にN-メチルグルカミン基を有するイオン交換樹脂、イオン交換機構によるホウ素吸着樹脂である含水酸化セリウムを高分子物質で担持したもの、などがあるが、特に限定されない。また、基材の樹脂の材質としては、エチレンビニルアルコール共重合体、スチレン−ジビニルベンゼン共重合体、ポリスチレン、ポリフェノール、セルロース等が例として挙げられるが特に限定されない。吸着時、脱着時(再生時)でアルカリや酸に繰り返し接触するため酸、アルカリに耐久性のあるものが好ましい。たとえば、ホウ素の場合は、pHは7から10程度のアルカリ条件で吸着量が多くなる。より好ましくは7.5から9.5の範囲である。また、処理中に不純物の溶出が多いと、処理水を飲用等に使用する場合に問題となるため、一般的には、不純物が発生した場合の安全処置として吸着樹脂塔の下流に活性炭等を設置しなればならないが、本発明においては、吸着樹脂による処理水は1段目の逆浸透膜モジュールの供給水へ返送され、不純物は逆浸透膜モジュールで除去できるため、上記活性炭は不要である。また、吸着樹脂塔内の微生物汚染を防止するために、定期的に酸化剤である塩素で殺菌処理する場合があるが、吸着樹脂の素材によっては、基材が酸化剤により劣化して、不純物が流出する場合がある。例えば、ポリスチレン系材料をジビニルベンゼンで架橋処理した基材を用いている場合、この架橋剤のジビニルベンゼンが酸化分解し、吸着樹脂の処理水中に不純物が流出する場合がある。また、吸着樹脂塔内に微生物が増殖し、処理水中に微生物が流出する場合がある。しかし、本発明のように、吸着樹脂の処理水を逆浸透膜の供給水へ返送する方法では、逆浸透膜で処理されるため、このような不純物や微生物がそのまま生産水として流出することを防止可能である。   In the present invention, the adsorption resin is an ion exchange resin that adsorbs and removes ions in an aqueous solution by an ion exchange function, a metal ion such as a transition metal or alkaline earth metal in an aqueous solution, or a certain anion. It is a chelate resin that can selectively adsorb and collect specific ionic species by utilizing the action of forming a complex by causing an interaction with a (ligand) and a coordinate bond. Since these functional groups and the material of the base resin are different depending on the target ions, they are not particularly limited. For example, when boron is to be removed, an ion exchange resin having an N-methylglucamine group as a functional group that is a boron adsorbing resin based on a chelate mechanism and a hydrous cerium oxide that is a boron adsorbing resin based on an ion exchange mechanism are used as a polymer substance. Although there is what was carried, etc., it is not particularly limited. Examples of the material of the base resin include, but are not limited to, ethylene vinyl alcohol copolymer, styrene-divinylbenzene copolymer, polystyrene, polyphenol, and cellulose. Those that are durable to acids and alkalis are preferred because they repeatedly come into contact with alkalis and acids during adsorption and desorption (regeneration). For example, in the case of boron, the amount of adsorption increases under alkaline conditions where the pH is about 7 to 10. More preferably, it is in the range of 7.5 to 9.5. In addition, since many impurities are eluted during the treatment, it becomes a problem when the treated water is used for drinking, and in general, activated carbon or the like is placed downstream of the adsorption resin tower as a safety measure when impurities are generated. In the present invention, the treated water by the adsorption resin is returned to the supply water of the first-stage reverse osmosis membrane module, and impurities can be removed by the reverse osmosis membrane module, so that the activated carbon is not necessary. . In addition, in order to prevent microbial contamination in the adsorption resin tower, it may be periodically sterilized with chlorine, which is an oxidizer, but depending on the material of the adsorption resin, the base material may be deteriorated by the oxidizer and impurities. May leak. For example, when a base material obtained by crosslinking a polystyrene material with divinylbenzene is used, the crosslinking agent divinylbenzene may be oxidatively decomposed and impurities may flow out into the treated water of the adsorption resin. In addition, microorganisms may grow in the adsorption resin tower and the microorganisms may flow out into the treated water. However, in the method of returning the treated water of the adsorption resin to the supply water of the reverse osmosis membrane as in the present invention, since it is processed by the reverse osmosis membrane, such impurities and microorganisms can flow out as production water as they are. It can be prevented.

本発明における吸着樹脂の形状は、粒状、繊維状、その他の形状などあるが、特に限定されない。また、樹脂の大きさも吸着樹脂の性能が効率的に発現されるものであれば特に限定されない。   The shape of the adsorption resin in the present invention is not particularly limited, although there are granular, fibrous, and other shapes. Further, the size of the resin is not particularly limited as long as the performance of the adsorption resin is efficiently expressed.

本発明における、樹脂塔とは、吸着樹脂により効率的に処理ができるものであれば、その大きさ、形状、数量は限定されない。   In the present invention, the resin tower is not limited in its size, shape, and quantity as long as it can be efficiently treated with an adsorption resin.

本発明における吸着樹脂の吸着能力は高いほうが好ましい。吸着樹脂の単位量あたりの吸着量は、例えば、ホウ素の場合では、被処理液中のホウ素濃度が高いほど、吸着樹脂の単位量あたりのホウ素の吸着量が大きくなり、本発明においては、その傾向が大きいほうが本発明の効果が大きくなり好ましい。2段目の逆浸透膜モジュールの濃縮水のホウ素濃度は透過水より高いため、透過水を処理する場合より効果が大きい。また、1段目の逆浸透膜モジュールで99%以上脱塩され、塩濃度が下がった1段目の逆浸透膜モジュール透過水を2段目で処理するため、2段目の逆浸透膜モジュールの濃縮水の塩濃度はそれほど高くない。そのため、吸着樹脂がホウ素を吸着する場合の障害となる場合がある物質、例えば、フッ素イオン、リン酸イオン、シリカなどが少ない。さらに、2段目の逆浸透膜モジュールでホウ素を除去する場合、ホウ素をホウ酸イオンにイオン化するために、一般には2段目の逆浸透膜モジュールの供給水にアルカリを添加してpHを8.5以上にする場合があるが、2段目の逆浸透膜モジュールの濃縮水は高いpHであるため、アルカリ側で吸着処理する吸着樹脂で処理するには好都合である。   It is preferable that the adsorption capacity of the adsorption resin in the present invention is high. The amount of adsorption per unit amount of the adsorption resin is, for example, in the case of boron, the higher the boron concentration in the liquid to be treated, the larger the amount of adsorption of boron per unit amount of the adsorption resin. A larger tendency is preferable because the effect of the present invention is increased. Since the concentration of boron in the concentrated water in the second-stage reverse osmosis membrane module is higher than that in the permeated water, the effect is greater than when the permeated water is treated. Also, since the first-stage reverse osmosis membrane module permeated water that has been desalted by 99% or more in the first-stage reverse osmosis membrane module and the salt concentration has decreased is treated in the second stage, the second-stage reverse osmosis membrane module The concentration of concentrated water is not so high. Therefore, there are few substances, such as a fluorine ion, a phosphate ion, and a silica which may become an obstacle when adsorption resin adsorbs boron. Further, when removing boron with the second-stage reverse osmosis membrane module, in order to ionize boron into borate ions, generally, alkali is added to the supply water of the second-stage reverse osmosis membrane module to adjust the pH to 8. However, since the concentrated water of the reverse osmosis membrane module in the second stage has a high pH, it is convenient for treatment with an adsorption resin that is adsorbed on the alkali side.

本発明において、吸着樹脂塔で吸着、除去される対象物の濃度は5mg/L以上であることが好ましく、より好ましくは8mg/L以上である。濃度が低いと、吸着樹脂量あたりの吸着量が小さく、吸着樹脂を有効に活用できない場合がる。pH8.5、水温20℃におけるホウ素の吸着等温線の例を図7に示す。被処理水のホウ素の濃度が高いほど、吸着樹脂量あたりのホウ素吸着量が増加する傾向にあり、同じ樹脂量でもホウ素の吸着量を増加させることが可能である。特に除去対象物がホウ素の場合はセリウム系の吸着樹脂ではその傾向が大きく、好ましい一例である。ただし、ホウ素濃度が高くなるほど吸着量の濃度依存性は小さくなる。海水中のホウ素濃度は、高くても10mg/Lであり、1段目の逆浸透膜でのホウ素の除去率が50%の場合は透過水のホウ素濃度は5mg/Lである。これを、2段目の逆浸透膜で処理する場合の回収率が95%であれば2段目の逆浸透膜の濃縮水は最大20倍の濃縮となり、ホウ素濃度は最大100mg/Lまで濃縮される可能性がある。ここで、2段目の逆浸透膜の回収率は95%以上では、膜モジュール内の流速、膜表面流速が小さくなり実用的な運転ではない。よって、本発明においては吸着樹脂塔での除去対象物の濃度が100mg/L以下が適当である。   In the present invention, the concentration of the object to be adsorbed and removed by the adsorption resin tower is preferably 5 mg / L or more, and more preferably 8 mg / L or more. If the concentration is low, the amount of adsorption per adsorbent resin amount is small, and the adsorbent resin may not be used effectively. An example of an adsorption isotherm of boron at pH 8.5 and a water temperature of 20 ° C. is shown in FIG. The higher the concentration of boron in the water to be treated, the more the amount of boron adsorbed per adsorbed resin tends to increase, and the amount of adsorbed boron can be increased even with the same amount of resin. In particular, when the object to be removed is boron, the tendency is large with a cerium-based adsorption resin, which is a preferable example. However, the concentration dependence of the adsorption amount decreases as the boron concentration increases. The boron concentration in sea water is 10 mg / L at the highest, and when the boron removal rate in the first-stage reverse osmosis membrane is 50%, the boron concentration in the permeated water is 5 mg / L. If the recovery rate is 95% when this is treated with the second-stage reverse osmosis membrane, the concentrated water of the second-stage reverse osmosis membrane is concentrated up to 20 times, and the boron concentration is concentrated to a maximum of 100 mg / L. There is a possibility that. Here, when the recovery rate of the reverse osmosis membrane in the second stage is 95% or more, the flow rate in the membrane module and the membrane surface flow rate become small, which is not practical operation. Therefore, in the present invention, it is appropriate that the concentration of the object to be removed in the adsorption resin tower is 100 mg / L or less.

本発明において、吸着樹脂塔で除去対象物を処理する場合、空間速度(SV)が重要な操作条件である。この空間速度(SV)は吸着樹脂塔の被処理液の流量(L/H)を吸着樹脂塔の吸着樹脂容積(L)で除した値でありH−1の単位を有する。ここでの、樹脂容積とは見かけの樹脂容積である。この値が小さいと、吸着樹脂での吸着の効率が高いが、非処理液の流量が小さくなるか、または、被処理液の流量が同じであれば吸着樹脂量が多く必要となり好ましくない。逆に大きいと被処理液の流量が大きく処理量が大きくなるが、吸着樹脂塔内で樹脂間を流れる被処理液が偏流し、吸着効率が低くなる場合がある。よって、吸着樹脂塔の構成、仕様にも依存するが、この空間速度(SV)は2から20が好ましく、より好ましくは5から15である。 In the present invention, space velocity (SV) is an important operating condition when a removal target is processed in an adsorption resin tower. This space velocity (SV) is a value obtained by dividing the flow rate (L / H) of the liquid to be treated in the adsorption resin tower by the adsorption resin volume (L) of the adsorption resin tower, and has a unit of H- 1 . Here, the resin volume is an apparent resin volume. If this value is small, the adsorption efficiency with the adsorption resin is high, but if the flow rate of the non-treatment liquid is small or the flow rate of the liquid to be treated is the same, a large amount of the adsorption resin is required, which is not preferable. On the contrary, if the flow rate is large, the flow rate of the liquid to be treated is large and the amount of treatment is large, but the liquid to be treated that flows between the resins in the adsorption resin tower drifts, and the adsorption efficiency may be lowered. Therefore, although depending on the configuration and specifications of the adsorption resin tower, the space velocity (SV) is preferably 2 to 20, and more preferably 5 to 15.

本発明における酢酸セルロース系高分子とは、酢酸セルロース、三酢酸セルロース、両者の混合物が例としてあげられる。性能面、性能の安定性等から三酢酸セルロースが好ましい。また、これらの素材は耐塩素性に優れるため、供給水に殺菌剤として塩素を添加することが可能である。間欠的に注入するほうが、消毒副生成物の発生量や薬品使用量が小さくなり好ましい。   Examples of the cellulose acetate polymer in the present invention include cellulose acetate, cellulose triacetate, and a mixture of both. From the viewpoint of performance and stability of performance, cellulose triacetate is preferable. Moreover, since these materials are excellent in chlorine resistance, it is possible to add chlorine as a disinfectant to the supply water. Injecting intermittently is preferable because the amount of disinfection by-products and the amount of chemicals used are reduced.

本発明におけるポリアミド系高分子とは、線状ポリアミド系高分子、架橋ポリアミド系高分子等が例としてあげられ、除去性能が優れているものであれば、いずれでもかまわない。なお、2段目の逆浸透膜モジュールとしてホウ素を除去する場合は、pHが8.5以上で用いられる場合があるため、耐アルカリ性に優れるものが好ましく、ホウ素の除去性能に優れるものが好ましい。   Examples of the polyamide polymer in the present invention include a linear polyamide polymer, a crosslinked polyamide polymer, and the like, and any may be used as long as the removal performance is excellent. In addition, when removing boron as a 2nd-stage reverse osmosis membrane module, since pH may be used at 8.5 or more, a thing excellent in alkali resistance is preferable and a thing excellent in the removal performance of boron is preferable.

本発明の実施の形態1を図1に基づいて説明する。図1は1段目の逆浸透膜モジュールの透過水の全量を2段目の逆浸透膜モジュールへ供給し、2段目逆浸透膜モジュールの濃縮水の全量を吸着樹脂塔で処理して1段目の逆浸透膜モジュールの供給水に戻す方式で分離操作を行う場合を示している。原水6に吸着樹脂塔の処理水13が合流して得られる1段目の逆浸透膜モジュールの供給水7は高圧ポンプ4により昇圧され、1段目の逆浸透膜モジュール1に供給される。1段目の逆浸透膜モジュールの濃縮水9は流量調整バルブ18で流量調整され系外に排出され、透過水8はアルカリ注入装置14からのアルカリの注入によりpHが調整されて2段目の逆浸透膜モジュール2の供給水10となり、低圧ポンプ5により昇圧され2段目の逆浸透膜モジュール2に供給される。透過水11は生産水として取り出され、流量調整バルブ20で流量調整された濃縮水12は吸着樹脂塔3へ供給され、その処理水13は1段目の浸透膜モジュール1の供給水7に返送される。   A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, the total amount of permeated water from the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the total amount of concentrated water from the second-stage reverse osmosis membrane module is treated with an adsorption resin tower. The case where the separation operation is performed by returning to the feed water of the reverse osmosis membrane module at the stage is shown. The feed water 7 of the first-stage reverse osmosis membrane module obtained by combining the raw water 6 with the treated water 13 of the adsorption resin tower is boosted by the high-pressure pump 4 and supplied to the first-stage reverse osmosis membrane module 1. The concentrated water 9 of the first-stage reverse osmosis membrane module is flow-regulated by a flow-regulating valve 18 and discharged out of the system, and the permeated water 8 is pH-adjusted by injecting alkali from the alkali-injecting device 14 and second-stage. The water 10 is supplied to the reverse osmosis membrane module 2, and is pressurized by the low-pressure pump 5 and supplied to the second-stage reverse osmosis membrane module 2. The permeated water 11 is taken out as production water, the concentrated water 12 whose flow rate is adjusted by the flow rate adjusting valve 20 is supplied to the adsorption resin tower 3, and the treated water 13 is returned to the supply water 7 of the first osmosis membrane module 1. Is done.

図2は図1と類似しており、1段目の逆浸透膜モジュール1の透過水8が流量調整バルブ19,21により、2段目の逆浸透膜モジュール2への供給水10と2段目の逆浸透膜モジュール2で処理されない一部15に分離されている。1段目の逆浸透膜モジュール1の透過水の水質によってはその全量を2段目の逆浸透膜モジュール2で処理する必要がない場合、流量調整バルブ19を絞り、流量調整バルブ20を開けることにより、2段目の逆浸透膜モジュール2で処理する水量の調整が可能であり、2段目の逆浸透膜モジュール2の数量の減少が可能である。   FIG. 2 is similar to FIG. 1, and the permeated water 8 of the first-stage reverse osmosis membrane module 1 is supplied to the second-stage reverse osmosis membrane module 2 by the flow rate adjusting valves 19, 21. It is separated into a part 15 that is not treated by the reverse osmosis membrane module 2 of the eye. Depending on the quality of the permeated water of the first-stage reverse osmosis membrane module 1, if it is not necessary to treat the entire amount with the second-stage reverse osmosis membrane module 2, the flow rate adjustment valve 19 is throttled and the flow rate adjustment valve 20 is opened. Thus, it is possible to adjust the amount of water to be treated by the second-stage reverse osmosis membrane module 2, and it is possible to reduce the quantity of the second-stage reverse osmosis membrane module 2.

図3は図1と類似しており、2段目の逆浸透膜モジュール1の濃縮水12が流量調整バルブ20、22、23により、吸着樹脂塔3の供給水17と、吸着樹脂により処理されない濃縮水16に分離されている。流量調整バルブ22、23を調整して高濃度の2段目の逆浸透膜モジュール2の濃縮水を排出することで、1段目の逆浸透膜モジュール1の供給水7の濃度の低減と吸着樹脂量の減少が可能となる。   FIG. 3 is similar to FIG. 1, and the concentrated water 12 of the second-stage reverse osmosis membrane module 1 is not treated with the feed water 17 of the adsorption resin tower 3 and the adsorption resin by the flow rate adjusting valves 20, 22, 23. Separated into concentrated water 16. By adjusting the flow rate adjusting valves 22 and 23 and discharging the concentrated water of the high-concentration second-stage reverse osmosis membrane module 2, the concentration and the adsorption of the supply water 7 of the first-stage reverse osmosis membrane module 1 are reduced. The amount of resin can be reduced.

図4は図2、図3と類似しており、2段目の逆浸透膜モジュール2の濃縮水12が流量調整バルブ20、22、23により、吸着樹脂塔3の供給水17と、吸着樹脂により処理されない濃縮水16に分離されている。図2の場合と同様、1段目の逆浸透膜モジュール1の透過水の水質によってはその全量を2段目の逆浸透膜モジュール2で処理する必要がない場合、流量調整バルブ19を絞り、流量調整バルブ20を開けることにより、2段目の逆浸透膜モジュール2で処理する水量の調整が可能であり、2段目の逆浸透膜モジュール2の数量の減少が可能である。また、図3の場合と同様に、流量調整バルブ22、23を調整して高濃度の2段目の逆浸透膜モジュール2の濃縮水を排出することで、1段目の逆浸透膜モジュール1の供給水7の濃度の低減と吸着樹脂量の減少が可能となる。   FIG. 4 is similar to FIGS. 2 and 3, and the concentrated water 12 of the reverse osmosis membrane module 2 in the second stage is supplied with the supply water 17 of the adsorption resin tower 3 and the adsorption resin by the flow rate adjusting valves 20, 22 and 23. It is separated into concentrated water 16 which is not treated by the above. As in the case of FIG. 2, depending on the quality of the permeated water of the first-stage reverse osmosis membrane module 1, when it is not necessary to treat the entire amount with the second-stage reverse osmosis membrane module 2, the flow rate adjustment valve 19 is throttled, By opening the flow rate adjusting valve 20, the amount of water to be treated by the second-stage reverse osmosis membrane module 2 can be adjusted, and the number of second-stage reverse osmosis membrane modules 2 can be reduced. Similarly to the case of FIG. 3, by adjusting the flow rate adjusting valves 22, 23 to discharge the concentrated water of the high-concentration second-stage reverse osmosis membrane module 2, the first-stage reverse osmosis membrane module 1 The concentration of the feed water 7 can be reduced and the amount of adsorbed resin can be reduced.

以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例は、海水淡水化用の逆浸透膜の場合を示す。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, an Example shows the case of the reverse osmosis membrane for seawater desalination.

(実施例1)
図1に示すような2段逆浸透膜システムにおいて、1段目の逆浸透膜モジュールとして三酢酸セルロース製の高圧仕様の中空糸型逆浸透膜エレメントが圧力容器内に2本装着された中空糸型逆浸透膜モジュール、東洋紡績(株)製HB10255FIを1本用い、2段目の逆浸透膜モジュールとして外径が8インチの芳香族系ポリアミド製のスパイラル型逆浸透膜エレメントが圧力容器に2本装着されたスパイラル型逆浸透膜モジュールを1本用い、吸着樹脂塔の吸着樹脂は、ホウ素の濃度が50から300mg/Lの範囲でのホウ素の吸着性能、すなわち、吸着樹脂容積当たりのホウ素の吸着容量が9g/L(湿潤樹脂)である含水酸化セリウムを主成分とする吸着樹脂を42L用いた。ここで、スパイラル型逆浸透膜エレメントは操作圧力、0.7MPa、温度25℃、食塩濃度500mg/L、回収率15%での食塩除去率が99.7%、透過水量30m/日の性能を有するものである。海水を限外ろ過膜モジュールで除濁された前処理海水は硫酸注入によりpHが6.5に調整された後、1段目の逆浸透膜モジュールに供給され、その透過水にNaOHを添加し、pHを9に設定し2段目の逆浸透膜モジュールに供給され処理された。なお、pHはガラス電極法で測定した。2段目逆浸透膜モジュールの濃縮水は吸着樹脂塔で処理された後、1段目の逆浸透膜モジュールの供給水へ返送した。吸着樹脂塔での吸着はpHが9で、空間速度SVは14H−1で、3塔に分けられた吸着樹脂塔のうち2塔で吸着処理、1塔で酸による再生処理を実施した。但し、この場合の運転条件は以下の通りであった。原水の海水の温度25℃、全溶解性物質濃度、TDS濃度34500mg/L、ホウ素濃度4.7mg/L、1段目の操作圧力7.5MPa、2段目の操作圧力1.5MPa、1段目の逆浸透膜モジュールの回収率61.5%、2段目の逆浸透膜モジュールの回収率85%である。得られた2段処理としての生産水すなわち2段目の逆浸透膜モジュールの透過水の水質はTDS4mg/L、ホウ素0.8mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであった。吸着樹脂容積当たりのホウ素の吸着容量は3g/L−R(湿潤樹脂)であった。生産水を分析したところ、吸着樹脂からの溶出が懸念されるセリウムは検出されず、一般細菌数は100個/mL以下であった。なお、1、2段目の水質等は表1にまとめて示した。ここでは海水のTDS濃度は電気伝導度からの塩分の換算値とした。(海洋観測指針(第1部)気象庁、1999年、第38項) 透過水のTDS濃度は溶解性蒸発残留物として重量法(水道公定法)に従って求めた。ホウ素濃度は、吸光光度法(水道公定法)で測定した。回収率は逆浸透膜モジュールの供給水流量に対する透過水流量の割合を示している。また、吸着樹脂量あたりのホウ素の吸着量は吸着樹脂塔の樹脂量と、被処理水中のホウ素濃度と処理水中のホウ素濃度の差異、流量から算出した。また、セリウムの定量は誘導結合プラズマ発光分光分析法(ICP法)で測定し、0.02%以下であれば不検出と判定した。一般細菌数は標準寒天培地法、すなわち、36±1℃で24±2時間培養したとき、培地に集落を形成する細菌の集落数を測定する方法を用いて測定した。
Example 1
In the two-stage reverse osmosis membrane system as shown in FIG. 1, a hollow fiber in which two high-pressure hollow fiber type reverse osmosis membrane elements made of cellulose triacetate are mounted in a pressure vessel as a first-stage reverse osmosis membrane module. Type reverse osmosis membrane module, one HB10255FI manufactured by Toyobo Co., Ltd. As a second-stage reverse osmosis membrane module, an aromatic polyamide spiral reverse osmosis membrane element having an outer diameter of 8 inches is used as a pressure vessel. Using one installed spiral-type reverse osmosis membrane module, the adsorption resin of the adsorption resin tower has boron adsorption performance in the range of boron concentration of 50 to 300 mg / L, that is, boron adsorption per adsorption resin volume. 42 L of an adsorption resin mainly composed of hydrous cerium oxide having an adsorption capacity of 9 g / L (wet resin) was used. Here, the spiral reverse osmosis membrane element has an operating pressure of 0.7 MPa, a temperature of 25 ° C., a salt concentration of 500 mg / L, a recovery rate of 15%, a salt removal rate of 99.7%, and a permeate flow rate of 30 m 3 / day. It is what has. The pretreated seawater from which the seawater has been turbidized by the ultrafiltration membrane module is adjusted to pH 6.5 by sulfuric acid injection, then supplied to the first-stage reverse osmosis membrane module, and NaOH is added to the permeated water. Then, the pH was set to 9 and supplied to the second-stage reverse osmosis membrane module for processing. The pH was measured by the glass electrode method. The concentrated water of the second-stage reverse osmosis membrane module was treated in the adsorption resin tower, and then returned to the supply water of the first-stage reverse osmosis membrane module. Adsorption in the adsorption resin tower had a pH of 9 and a space velocity SV of 14H- 1 , and two adsorption resin towers divided into three towers were subjected to adsorption treatment and one tower was regenerated with acid. However, the operating conditions in this case were as follows. Raw water seawater temperature 25 ° C., total dissolved substance concentration, TDS concentration 34500 mg / L, boron concentration 4.7 mg / L, first stage operating pressure 7.5 MPa, second stage operating pressure 1.5 MPa, first stage The recovery rate of the reverse osmosis membrane module of the eye is 61.5%, and the recovery rate of the reverse osmosis membrane module of the second stage is 85%. The quality of the produced water obtained as the two-stage treatment, that is, the permeated water of the reverse osmosis membrane module of the second stage is TDS 4 mg / L, boron 0.8 mg / L, which sufficiently satisfies the standard of tap water quality of boron of 1 mg / L or less. It was something to do. The adsorption capacity of boron per adsorption resin volume was 3 g / LR (wet resin). As a result of analyzing the produced water, cerium that was likely to be eluted from the adsorption resin was not detected, and the number of general bacteria was 100 or less. The water quality in the first and second stages is shown in Table 1. Here, the TDS concentration of seawater is a converted value of salinity from electrical conductivity. (Ocean Observation Guidelines (Part 1) Japan Meteorological Agency, 1999, Item 38) The TDS concentration of the permeated water was determined as a soluble evaporation residue according to the weight method (official water method). The boron concentration was measured by an absorptiometric method (water supply official method). The recovery rate indicates the ratio of the permeate flow rate to the feed water flow rate of the reverse osmosis membrane module. Further, the amount of boron adsorbed per adsorbed resin amount was calculated from the resin amount of the adsorbing resin tower, the difference between the boron concentration in the treated water and the boron concentration in the treated water, and the flow rate. Further, cerium was quantified by inductively coupled plasma optical emission spectrometry (ICP method), and when it was 0.02% or less, it was determined as not detected. The number of general bacteria was measured using a standard agar medium method, that is, a method of measuring the number of colonies of bacteria that formed colonies in the medium when cultured at 36 ± 1 ° C. for 24 ± 2 hours.

(実施例2)
逆浸透膜モジュールの配置が図3であること以外、実施例1と同様に海水を処理した。但し、2段目の逆浸透膜モジュールへの濃縮水の20%を吸着樹脂塔で処理せずに系外に排出した。吸着樹脂容積当たりの処理水量が実施例1と同じ程度となるように、樹脂量を80%にした。得られた2段処理としての生産水、すなわち、2段目の逆浸透膜モジュールの透過水11の水質はTDS4mg/L、ホウ素0.8mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであった。吸着樹脂容積当たりのホウ素の吸着容量は3g/L−R(湿潤樹脂)であった。生産水質は、セリウムは不検出、一般細菌数は100個/mL以下であった。また、1、2段目の水質等は表1にまとめて示した。
(Example 2)
Seawater was treated in the same manner as in Example 1 except that the reverse osmosis membrane module was placed in FIG. However, 20% of the concentrated water to the second-stage reverse osmosis membrane module was discharged out of the system without being treated in the adsorption resin tower. The amount of resin was set to 80% so that the amount of treated water per adsorbed resin volume was the same as in Example 1. The quality of the produced water as the two-stage treatment obtained, that is, the water quality of the permeated water 11 of the second-stage reverse osmosis membrane module is TDS 4 mg / L, boron 0.8 mg / L, and the tap water quality standard of boron is 1 mg / L or less Was sufficiently satisfied. The adsorption capacity of boron per adsorption resin volume was 3 g / LR (wet resin). As for the quality of the produced water, cerium was not detected, and the number of general bacteria was 100 / mL or less. In addition, the water quality of the first and second stages are shown in Table 1.

(実施例3)
吸着樹脂として、多孔性の架橋ポリスチレン基体にN−メチルグルカミン基を導入した、総交換容量が0.6meq/mL−R(湿潤樹脂)以上のホウ素吸着用のキレート樹脂を用いた以外は実施例1と同様に海水を処理した。但し、吸着樹脂量は44L使用した。得られた2段処理としての生産水、すなわち、2段目の逆浸透膜モジュールの透過水11の水質はTDS4mg/L、ホウ素0.8mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであった。吸着樹脂容積当たりのホウ素の吸着容量は2.9g/L−R(湿潤樹脂)であった。生産水を分析したところ、吸着樹脂からの溶出が懸念されるスチレンは不検出、一般細菌数は100個/mL以下であった。また、1、2段目の水質等は表1にまとめて示した。ここで、スチレンはヘッドスペースGC−MS法で定量し、0.002mg/L以下であれば不検出とした。
(Example 3)
Implemented except that N-methylglucamine group introduced into porous cross-linked polystyrene substrate, and chelating resin for boron adsorption with a total exchange capacity of 0.6 meq / mL-R (wet resin) or more was used as the adsorption resin Seawater was treated as in Example 1. However, 44 L of adsorbed resin was used. The quality of the produced water as the two-stage treatment obtained, that is, the water quality of the permeated water 11 of the second-stage reverse osmosis membrane module is TDS 4 mg / L, boron 0.8 mg / L, and the tap water quality standard of boron is 1 mg / L or less Was sufficiently satisfied. The adsorption capacity of boron per adsorption resin volume was 2.9 g / LR (wet resin). As a result of analyzing the produced water, no styrene, which is likely to be eluted from the adsorption resin, was detected, and the number of general bacteria was 100 / mL or less. In addition, the water quality of the first and second stages are shown in Table 1. Here, styrene was quantified by the headspace GC-MS method, and was not detected if it was 0.002 mg / L or less.

(実施例4)
吸着樹脂として、容積あたりの総交換容量が0.6meq/mL−R(湿潤樹脂)以上のホウ素吸着用の、N−メチルグルカミン基を有するMR型スチレン系陰イオン交換樹脂を用いた以外は実施例1と同様に海水を処理した。但し、吸着樹脂量は44L使用した。得られた2段処理としての生産水、すなわち、2段目の逆浸透膜モジュールの透過水11の水質はTDS4mg/L、ホウ素0.8mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであった。吸着樹脂容積当たりのホウ素の吸着容量は2.9g/L−R(湿潤樹脂)であった。生産水を分析したところ、吸着樹脂からの溶出が懸念されるスチレンは不検出、一般細菌数は100個/mL以下であった。また、1、2段目の水質等は表1にまとめて示した。
Example 4
Except for using an MR type styrene-based anion exchange resin having an N-methylglucamine group for adsorption of boron with a total exchange capacity per volume of 0.6 meq / mL-R (wet resin) or more as the adsorption resin. Seawater was treated in the same manner as in Example 1. However, 44 L of adsorbed resin was used. The quality of the produced water as the two-stage treatment obtained, that is, the water quality of the permeated water 11 of the second-stage reverse osmosis membrane module is TDS 4 mg / L, boron 0.8 mg / L, and the tap water quality standard of boron is 1 mg / L or less Was sufficiently satisfied. The adsorption capacity of boron per adsorption resin volume was 2.9 g / LR (wet resin). As a result of analyzing the produced water, no styrene, which is likely to be eluted from the adsorption resin, was detected, and the number of general bacteria was 100 / mL or less. In addition, the water quality of the first and second stages are shown in Table 1.

(実施例5)
吸着樹脂として繊維状のセルロースを基体としN−メチルグルカミン基を有するキレート樹脂を用いた以外は実施例1と同様に海水を処理した。ただし、かさ密度が小さいためSVは6H−1で実施した。また、このキレート剤のpH8における乾燥重量1gあたりのホウ素の吸着容量は0.73mmol/g−dry fiberであり、吸着樹脂量は44kg使用した。得られた2段処理としての生産水、すなわち、2段目の逆浸透膜モジュールの透過水11の水質はTDS4mg/L、ホウ素0.8mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであった。吸着樹脂重量当たりのホウ素の吸着容量は2.9g/kg−R(湿潤樹脂)であった。生産水を分析したところ、吸着樹脂からの溶出が懸念される有機物は不検出であった。また、1、2段目の水質等は表1にまとめて示した。ここで、有機物はTOC計(自動測定:湿式酸化法)で測定し、5mg/L以下であれば不検出とした。
(Example 5)
Seawater was treated in the same manner as in Example 1 except that a chelating resin having an N-methylglucamine group as a base was used as the adsorption resin. However, since the bulk density was small, SV was carried out at 6H- 1 . Further, the adsorption capacity of boron per 1 g of dry weight at pH 8 of this chelating agent was 0.73 mmol / g-dry fiber, and the amount of adsorbed resin was 44 kg. The quality of the produced water as the two-stage treatment obtained, that is, the water quality of the permeated water 11 of the second-stage reverse osmosis membrane module is TDS 4 mg / L, boron 0.8 mg / L, and the tap water quality standard of boron is 1 mg / L or less Was sufficiently satisfied. The adsorption capacity of boron per adsorption resin weight was 2.9 g / kg-R (wet resin). Analysis of the produced water revealed no organic matter that could be eluted from the adsorption resin. In addition, the water quality of the first and second stages are shown in Table 1. Here, the organic substance was measured with a TOC meter (automatic measurement: wet oxidation method), and was not detected if it was 5 mg / L or less.

(実施例6)
図1のモジュール配置で、原水を別の吸着樹脂で処理し、事前にホウ素濃度のみを3.7mg/Lに低減したこと以外は実施例1と同様に2段逆浸透膜処理を実施した。得られた2段処理としての生産水の水質はTDS4mg/L、ホウ素0.6mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであったが、吸着樹脂量当たりのホウ素吸着容量は2.8g/L−R(湿潤樹脂)であり、吸着効率は実施例1、2と比較するとやや低いものであった。生産水質は、セリウムは不検出、一般細菌数は100個/mL以下であった。なお、1、2段目の水質等は表1にまとめて示した。
(Example 6)
In the module arrangement of FIG. 1, the two-stage reverse osmosis membrane treatment was performed in the same manner as in Example 1 except that raw water was treated with another adsorption resin and only the boron concentration was reduced to 3.7 mg / L in advance. The quality of the produced water as the two-stage treatment obtained was TDS 4 mg / L, boron 0.6 mg / L, and sufficiently satisfied the standard of tap water quality of boron of 1 mg / L or less. The boron adsorption capacity was 2.8 g / LR (wet resin), and the adsorption efficiency was slightly lower than those of Examples 1 and 2. As for the quality of the produced water, cerium was not detected, and the number of general bacteria was 100 / mL or less. The water quality in the first and second stages is shown in Table 1.

(比較例1)
図5のモジュール配置で、2段目の逆浸透膜モジュールの濃縮水を吸着樹脂塔で処理せずに、1段目の逆浸透膜モジュールの供給水に返送した以外は実施例1と同様に2段逆浸透膜処理を実施した。得られた2段処理としての生産水の水質はTDS4mg/L、ホウ素1mg/Lであり、ホウ素の水道水質基準1mg/L以下を満足するものの余裕のない値であった。生産水質は、セリウムは不検出、一般細菌数は100個/mL以下であった。なお、1、2段目の水質等は表1にまとめて示した。
(Comparative Example 1)
5 except that the concentrated water of the second-stage reverse osmosis membrane module was returned to the feed water of the first-stage reverse osmosis membrane module without being treated in the adsorption resin tower. A two-stage reverse osmosis membrane treatment was performed. The quality of the produced water as the obtained two-stage treatment was TDS 4 mg / L and boron 1 mg / L, which satisfied boron tap water quality standards of 1 mg / L or less, but had no margin. As for the quality of the produced water, cerium was not detected, and the number of general bacteria was 100 / mL or less. The water quality in the first and second stages is shown in Table 1.

(比較例2)
図6のモジュール配置で、2段目の逆浸透膜モジュールの濃縮水を吸着樹脂塔で処理せずに、1段目の逆浸透膜モジュールの供給水に返送し、2段目の逆浸透膜モジュールの透過水を吸着樹脂塔で処理した以外は実施例1と同様に2段逆浸透膜処理を実施した。得られた2段処理としての生産水の水質はTDS4mg/L、ホウ素0.5mg/Lであった。ただし、吸着樹脂容積当たりのホウ素の吸着容量は2g/Lであり、実施例1、2の場合と比較すると吸着の効率が大幅に低かった。生産水質は、吸着樹脂からの溶出に起因すると考えられるセリウムが約0.03%検出され、一般細菌数は100個/mL以上であった。飲料水等への直接使用するためには、活性炭処理などの追加処理が必要であった。なお、1、2段目の水質等は表1にまとめて示した。
(Comparative Example 2)
In the module arrangement of FIG. 6, the concentrated water of the second-stage reverse osmosis membrane module is returned to the supply water of the first-stage reverse osmosis membrane module without being treated in the adsorption resin tower, and the second-stage reverse osmosis membrane is A two-stage reverse osmosis membrane treatment was performed in the same manner as in Example 1 except that the permeated water of the module was treated in the adsorption resin tower. The quality of the produced water as the obtained two-stage treatment was TDS 4 mg / L and boron 0.5 mg / L. However, the adsorption capacity of boron per adsorbent resin volume was 2 g / L, and the efficiency of adsorption was significantly lower than in Examples 1 and 2. About 0.03% of cerium, which is considered to be caused by elution from the adsorption resin, was detected in the produced water quality, and the number of general bacteria was 100 / mL or more. For direct use in drinking water, additional treatment such as activated carbon treatment was required. The water quality in the first and second stages is shown in Table 1.

(比較例3)
図1のモジュール配置で、原水を別の吸着樹脂処理し、事前にホウ素濃度のみを1.6mg/Lに低減したこと以外は実施例1と同様に2段逆浸透膜処理を実施した。得られた2段処理としての生産水の水質はTDS4mg/L、ホウ素0.5mg/Lであり、ホウ素の水道水質基準1mg/L以下を十分満足するものであったが、吸着樹脂容積当たりのホウ素吸着容量は2.2g/L−R(湿潤樹脂)であり、実施例1、2の場合と比較すると吸着の効率が大幅に低かった。生産水質は、セリウムは不検出、一般細菌数は100個/mL以下であった。なお、1、2段目の水質等は表1にまとめて示した。
(Comparative Example 3)
In the module arrangement of FIG. 1, the two-stage reverse osmosis membrane treatment was performed in the same manner as in Example 1 except that the raw water was treated with another adsorption resin and only the boron concentration was reduced to 1.6 mg / L in advance. The quality of the produced water as the two-stage treatment thus obtained was TDS 4 mg / L, boron 0.5 mg / L, which sufficiently satisfied the tap water quality standard of 1 mg / L or less of boron. The boron adsorption capacity was 2.2 g / LR (wet resin), and the efficiency of adsorption was significantly lower than in Examples 1 and 2. As for the quality of the produced water, cerium was not detected, and the number of general bacteria was 100 / mL or less. The water quality in the first and second stages is shown in Table 1.

(比較例4)
吸着樹脂として実施例5で使用したものと同様のセルロースを母体とするファイバー状のキレート樹脂を用い、樹脂を44kgとした以外は比較例2と同様に2段逆浸透膜処理を実施した。ただし、SVは6H−1で実施した。得られた2段処理としての生産水の水質はTDS4mg/L、ホウ素0.5mg/Lであった。ただし、吸着樹脂重量当たりのホウ素の吸着容量は2g/kg−R(湿潤樹脂)であり、実施例5の場合に比べて小さく、吸着の効率が低かった。また、生産水質は、吸着樹脂からの溶出に起因すると考えられる有機物が6mg/L検出され、飲料水等への直接使用するためには、活性炭処理などの追加処理が必要であった。なお、1、2段目の水質等は表1にまとめて示した。
(Comparative Example 4)
A two-stage reverse osmosis membrane treatment was carried out in the same manner as in Comparative Example 2 except that a fiber-like chelate resin based on cellulose similar to that used in Example 5 was used as the adsorbent resin, and the amount of resin was 44 kg. However, SV was carried out at 6H- 1 . The quality of the produced water as the obtained two-stage treatment was TDS 4 mg / L and boron 0.5 mg / L. However, the adsorption capacity of boron per adsorbent resin weight was 2 g / kg-R (wet resin), which was smaller than that in Example 5, and the efficiency of adsorption was low. In addition, the production water quality was detected at 6 mg / L of organic matter that is considered to be due to elution from the adsorbent resin, and additional treatment such as activated carbon treatment was required for direct use in drinking water and the like. The water quality in the first and second stages is shown in Table 1.

Figure 0004765843
Figure 0004765843

本発明の海水淡水化方法では、効率的かつ不純物が少ない安全な生産水が得られるため、工業用水はもとより、飲料水への利用が可能である。 In the seawater desalination method of the present invention, safe and efficient production water with few impurities can be obtained, so that it can be used for drinking water as well as industrial water.

本発明の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の全量が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの濃縮水の全量が吸着樹脂塔で処理され、1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In one example of the treatment method of the present invention, the total amount of permeated water of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the total amount of concentrated water of the second-stage reverse osmosis membrane module is adsorbed. The simple block diagram in the case of processing in the resin tower and returning to the feed water of the first-stage reverse osmosis membrane module is shown. 本発明の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の一部が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの濃縮水の全量が吸着樹脂塔で処理され、1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In an example of the treatment method of the present invention, a part of the permeated water of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the total amount of concentrated water of the second-stage reverse osmosis membrane module is The simple block diagram in the case of processing in the adsorption resin tower and returning to the feed water of the first-stage reverse osmosis membrane module is shown. 本発明の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の全量が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの濃縮水の一部が吸着樹脂塔で処理され、1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In an example of the treatment method of the present invention, the entire amount of permeated water of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and a part of the concentrated water of the second-stage reverse osmosis membrane module is The simple block diagram in the case of processing in the adsorption resin tower and returning to the feed water of the first-stage reverse osmosis membrane module is shown. 本発明の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の一部が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの濃縮水の一部が吸着樹脂塔で処理され、1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In one example of the treatment method of the present invention, a part of the permeated water of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and a part of the concentrated water of the second-stage reverse osmosis membrane module. Is a simple configuration diagram in the case where is treated in the adsorption resin tower and returned to the feed water of the first-stage reverse osmosis membrane module. 従来の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の全量が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの濃縮水の全量が1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In an example of a conventional treatment method, the total amount of permeated water of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the total amount of concentrated water of the second-stage reverse osmosis membrane module is one-stage. The simple block diagram in the case of returning to the supply water of the reverse osmosis membrane module of eyes is shown. 従来の処理方法の一例で、1段目の逆浸透膜モジュールの透過水の全量が2段目の逆浸透膜モジュールに供給され、2段目の逆浸透膜モジュールの透過水の全量が吸着樹脂塔で処理され、2段目の逆浸透膜モジュールの濃縮水の全量が1段目の逆浸透膜モジュールの供給水に返送される場合の簡単な構成図を示す。In an example of a conventional treatment method, the total amount of permeated water in the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the total amount of permeated water in the second-stage reverse osmosis membrane module is adsorbed resin. A simple configuration diagram in the case where the entire amount of concentrated water of the second-stage reverse osmosis membrane module is returned to the supply water of the first-stage reverse osmosis membrane module after being processed in the tower is shown. 吸着樹脂のホウ素吸着量の濃度依存性の一例を表す図を示す。The figure showing an example of the concentration dependence of the boron adsorption amount of adsorption resin is shown.

符号の説明Explanation of symbols

1:1段目の逆浸透膜モジュール
2:2段目の逆浸透膜モジュール
3:吸着樹脂塔
4:高圧ポンプ
5:低圧ポンプ
6:原水
7:1段目の逆浸透膜モジュールの供給水
8:1段目の逆浸透膜モジュールの透過水
9:1段目の逆浸透膜モジュールの濃縮水
10:2段目の逆浸透膜モジュールの供給水
11:2段目の逆浸透膜モジュールの透過水
12:2段目の逆浸透膜モジュールの濃縮水
13:吸着樹脂塔の処理水
14:アルカリ注入装置
15:1段目の逆浸透膜モジュールの透過水の一部
16:2段目の逆浸透膜モジュールの濃縮水の一部
17:吸着樹脂塔の供給水
18、19、20、21、22、23:流量調整バルブ
1: 1st stage reverse osmosis membrane module 2: 2nd stage reverse osmosis membrane module 3: Adsorption resin tower 4: High pressure pump 5: Low pressure pump 6: Raw water 7: Feed water of 1st stage reverse osmosis membrane module 8 1st stage reverse osmosis membrane module permeated water 9: 1st stage reverse osmosis membrane module concentrated water 10: 2nd stage reverse osmosis membrane module feed water 11: 2nd stage reverse osmosis membrane module permeate Water 12: Concentrated water of the reverse osmosis membrane module of the second stage 13: Treated water of the adsorption resin tower 14: Alkaline injection device 15: Part of the permeated water of the reverse osmosis membrane module of the first stage 16: Reverse of the second stage Part of concentrated water of osmosis membrane module 17: Supply water of adsorption resin tower 18, 19, 20, 21, 22, 23: Flow control valve

Claims (3)

ホウ素濃度が3.7〜7mg/Lである海水を1段目の逆浸透膜モジュールで処理し、得られる透過水の少なくとも一部を2段目の逆浸透膜モジュールで処理する海水淡水化方法において、2段目の逆浸透膜モジュールより得られた少なくとも一部の濃縮水を、1段目の逆浸透膜モジュールに返送する経路に備えられた含水酸化セリウム担持吸着樹脂塔で、前記濃縮水のpHが7〜10、ホウ素濃度が5〜100mg/L、前記含水酸化セリウム担持吸着樹脂塔内の濃縮水の流量を吸着樹脂容積で除した値である空間速度SVが2〜20H −1 の条件で処理することにより、ホウ素濃度が1mg/L以下の生産水を得ることを特徴とする海水淡水化方法。 Seawater desalination method in which seawater having a boron concentration of 3.7 to 7 mg / L is treated with a first-stage reverse osmosis membrane module, and at least a part of the permeate obtained is treated with a second-stage reverse osmosis membrane module. The hydrated cerium-containing adsorbent resin tower provided in the path for returning at least a portion of the concentrated water obtained from the second-stage reverse osmosis membrane module to the first-stage reverse osmosis membrane module. PH of 7-10, boron concentration 5-100 mg / L, and the space velocity SV, which is a value obtained by dividing the flow rate of concentrated water in the hydrated cerium hydroxide-containing adsorption resin tower by the adsorption resin volume, is 2-20H- 1 . A seawater desalination method characterized in that, by treating under conditions, product water having a boron concentration of 1 mg / L or less is obtained . 1段目の逆浸透膜モジュールが酢酸セルロース系高分子からなる中空糸膜からなることを特徴とする請求項1記載の海水淡水化方法The seawater desalination method according to claim 1 , wherein the first-stage reverse osmosis membrane module comprises a hollow fiber membrane made of a cellulose acetate polymer. 2段目の逆浸透膜モジュールがポリアミド系高分子からなる膜からなることを特徴とする請求項1または2に記載の海水淡水化方法The seawater desalination method according to claim 1 or 2, wherein the second-stage reverse osmosis membrane module comprises a membrane made of a polyamide polymer.
JP2006235301A 2006-08-31 2006-08-31 Seawater desalination method Expired - Fee Related JP4765843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235301A JP4765843B2 (en) 2006-08-31 2006-08-31 Seawater desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235301A JP4765843B2 (en) 2006-08-31 2006-08-31 Seawater desalination method

Publications (2)

Publication Number Publication Date
JP2008055317A JP2008055317A (en) 2008-03-13
JP4765843B2 true JP4765843B2 (en) 2011-09-07

Family

ID=39238702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235301A Expired - Fee Related JP4765843B2 (en) 2006-08-31 2006-08-31 Seawater desalination method

Country Status (1)

Country Link
JP (1) JP4765843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089139A (en) * 2012-10-31 2014-05-15 Hitachi-Ge Nuclear Energy Ltd Nuclear fuel cooling method and nuclear fuel cooling device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383163B2 (en) * 2008-11-27 2014-01-08 三菱重工業株式会社 Multistage seawater desalination apparatus and operation control method for multistage seawater desalination apparatus
SG170106A1 (en) 2008-11-28 2011-04-29 Kobelco Eco Solutions Co Ltd Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP5812563B2 (en) * 2009-12-09 2015-11-17 三菱重工業株式会社 Desalination apparatus and desalination method
JP2012016695A (en) 2010-06-09 2012-01-26 Kobelco Eco-Solutions Co Ltd Fresh water generating apparatus and method
JP2012016696A (en) 2010-06-09 2012-01-26 Kobelco Eco-Solutions Co Ltd Fresh water generating apparatus and method
JP5786376B2 (en) * 2011-03-04 2015-09-30 三浦工業株式会社 Water treatment method and water treatment system
JP2013022521A (en) * 2011-07-21 2013-02-04 Jfe Steel Corp Pure water producing facility and method of elongating service life of ion-exchange resin
JP5712107B2 (en) * 2011-10-27 2015-05-07 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
KR101881388B1 (en) * 2012-07-25 2018-07-24 코오롱인더스트리 주식회사 Pressurized-Type Hollow Fiber Membrane Module and Filtration System Comprising The Same
JP5995747B2 (en) * 2013-02-25 2016-09-21 三菱重工業株式会社 Water treatment system and method for producing valuable materials from seawater
JP6231806B2 (en) * 2013-07-31 2017-11-15 三菱重工業株式会社 Desalination apparatus and desalination method, and method of co-production of fresh water, salt and valuables
CN105016501B (en) * 2014-04-29 2017-09-12 中国石油化工集团公司 A kind of processing method of high boric geothermal tail water
EP3408011A1 (en) * 2016-01-25 2018-12-05 Kurion, Inc. System and method for manipulation of ion concentration to maximize efficiency of ion exchange
JP6778591B2 (en) * 2016-11-25 2020-11-04 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638953B2 (en) * 1985-11-06 1994-05-25 栗田工業株式会社 High-purity water manufacturing equipment
JP2003117552A (en) * 2001-10-15 2003-04-22 Mitsubishi Heavy Ind Ltd Desalination apparatus
JP4599803B2 (en) * 2002-04-05 2010-12-15 栗田工業株式会社 Demineralized water production equipment
JP2005342587A (en) * 2004-06-01 2005-12-15 Toray Ind Inc Water production method and water production device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089139A (en) * 2012-10-31 2014-05-15 Hitachi-Ge Nuclear Energy Ltd Nuclear fuel cooling method and nuclear fuel cooling device

Also Published As

Publication number Publication date
JP2008055317A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4765843B2 (en) Seawater desalination method
Güler et al. Boron removal from seawater: state-of-the-art review
JP4648307B2 (en) Continuous electrodeionization apparatus and method
US6858145B2 (en) Method of removing organic impurities from water
US7186344B2 (en) Membrane based fluid treatment systems
Katsou et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
WO1999050184A1 (en) Water treatment system and process comprising ph-adjustment
US20100193436A1 (en) Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
WO2015012054A1 (en) Method and device for treating boron-containing water
CN203419806U (en) Water treatment device for providing high-purity water for laboratory
US20160229711A1 (en) Resin regeneration method for reducing organic contaminants
CN100355667C (en) Pure water production system
JPS6336890A (en) Apparatus for producing high-purity water
JPH0638953B2 (en) High-purity water manufacturing equipment
CN107074599B (en) Water treatment device comprising ultrafiltration module and cation exchange resin
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JP7313262B2 (en) Reverse osmosis membrane device
CN209835819U (en) Multifunctional laboratory water purification equipment
GB2197860A (en) Apparatus for and the method of water purification
WO2021140374A1 (en) Apparatus for filtration and purification of water
CN216472645U (en) Soaking type full-automatic regeneration soft water preparation system
Wang et al. Coagulation and nano-filtration: A hybrid system for the removal of lower molecular weight organic compounds (LMWOC)
KR101959103B1 (en) Ultrapure water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees