JP4759165B2 - 有機・無機複合ヒドロゲル及びその製造方法 - Google Patents
有機・無機複合ヒドロゲル及びその製造方法 Download PDFInfo
- Publication number
- JP4759165B2 JP4759165B2 JP2001158634A JP2001158634A JP4759165B2 JP 4759165 B2 JP4759165 B2 JP 4759165B2 JP 2001158634 A JP2001158634 A JP 2001158634A JP 2001158634 A JP2001158634 A JP 2001158634A JP 4759165 B2 JP4759165 B2 JP 4759165B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- organic
- inorganic composite
- composite hydrogel
- hydrogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Graft Or Block Polymers (AREA)
Description
【発明の属する技術分野】
本発明は、水溶性有機高分子と、水に均一分散可能な水膨潤性粘土鉱物とが複合化して形成された三次元網目の中に水が包含されている有機・無機複合ヒドロゲル、その乾燥体、及びその製造方法に関する。
【0002】
【従来の技術】
ゲルは液体と固体の中間の性質を有するもので、有機高分子などの三次元網目(ネットワーク)の中に溶媒を安定的に取り込んだものである。特に溶媒として水を用いたゲル(以下、ヒドロゲルもしくは水性ゲルと呼ぶ)は生体において重要な構成素材であり、これまで食品・包装、衛生用品、化粧品などの医薬・医療・食品分野の他、農業、土木、工業分野においても広く利用されている(例えば、長田義仁、梶原莞爾編”ゲルハンドブック”株式会社エヌ・ティー・エス、1997年)。
【0003】
ヒドロゲルは少なくとも2種の構成成分を含んでいる。即ち、種々の方式で橋架けされた三次元網目と水である。三次元網目の構成成分としては、有機化合物又は無機物のいずれもが可能である。例えば、有機化合物のヒドロゲルでは、有機高分子又は有機分子が共有結合、水素結合、イオン結合、疎水結合などにより架橋するか、又は物理的絡み合いや微結晶などを架橋点として三次元網目を形成している。
【0004】
具体的に三次元網目を形成する有機分子としては、疎水結合により架橋が形成される卵白アルブミンや血清アルブミン、ヘリックス形成によるゼラチンやアガロース、アルカリ土類金属イオンとの配位結合により架橋を形成するポリアクリル酸やポリスチレンスルホン酸、イオン結合により架橋する2種の高分子(ポリカチオンとポリアニオン)複合系、水素結合で架橋される完全けん化ポリビニルアルコール等のほか、熱、放射線、光、プラズマを照射したり、有機架橋剤添加により、有機高分子間に共有結合による架橋を形成させたものが多く知られている。
【0005】
一方、無機物で三次元網目を形成するものとしては、金属アルコキシドの加水分解重縮合(いわゆるゾル-ゲル反応)により調製される金属酸化物や層間にカチオンを有する層状粘土鉱物が知られており、イオン相互作用などによる微粒子の凝集により三次元網目を形成し、無機物と水からなるゲルが調製される。
【0006】
無機物のヒドロゲルは強度や伸びが小さく脆い性質を有しているため、単独のヒドロゲル材料として用いられることは少ない。これに対して有機化合物、特に共有結合などによる有機高分子の三次元網目と水からなるヒドロゲルは力学物性が無機物ヒドロゲルより良好であることや、有機高分子の持つ特性をヒドロゲル中で発揮できる可能性を有することから、ソフトマテリアルや機能性ゲル材料として幅広い産業分野で用途開拓が進められている。
【0007】
このような有機架橋ヒドロゲルの有用性を拡大させる為に、ゲルの均一性、透明性、力学物性、及び機械的性質等を更に向上させたり、吸収(吸水)特性を更に向上させたり、ヒドロゲル中で有機高分子の特性をより効果的に発現させる新しいヒドロゲルの開発が望まれている。
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、優れた、均一性、透明性、力学物性、吸水性、及び膨潤・収縮特性を有する新規な有機・無機複合ヒドロゲル、その製造方法及び該ヒドロゲルから水分を除去して得られる有機・無機複合ヒドロゲルの乾燥体を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、水に均一分散可能な水膨潤性粘土鉱物と水との共存下に、水溶性有機高分子を構成する成分モノマーを重合させると、(A)水溶性有機高分子と(B)水に均一分散可能な水膨潤性粘土鉱物とが分子レベルで複合化して形成された三次元網目の中に水が包含されている新規な有機・無機複合ヒドロゲル(以下、有機・無機複合ヒドロゲルと呼ぶ)が得られることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明は、(A)水溶性有機高分子と、(B)水に均一分散可能な水膨潤性粘土鉱物とが複合化して形成された三次元網目の中に(C)水が包含されている有機・無機複合ヒドロゲルであり、(B)水に均一分散可能な水膨潤性粘土鉱物と、(C)水との共存下に、(A)水溶性有機高分子の構成成分モノマー(A’)を重合させて得られる有機・無機複合ヒドロゲルである。また本発明は、有機・無機複合ヒドロゲルから水分を除去して得られる有機・無機複合ヒドロゲルの乾燥体を提供する。
【0011】
更に本発明は、(A)水溶性有機高分子の構成成分であるモノマー(A’)と、(B)水に均一分散可能な水膨潤性粘土鉱物と、(C)水とを含む均一溶液を調製し、(B)水の共存下に水溶性有機高分子の構成成分であるモノマー(A’)を重合させる、有機・無機複合ヒドロゲルの製造方法を提供する。
【0012】
【発明の実施の形態】
本発明でいう(A)水溶性有機高分子とは、水に溶解するもののほか、水に膨潤する性質の有機高分子も含まれる。なお、かかる水溶解性や水膨潤性は特定の高分子濃度、温度、圧力条件や他の添加成分共存下などで達成されるものであっても良い。また水溶性有機高分子は単一モノマーからの重合体でも、複数種のモノマーが重合して得られる共重合体でも良い。
【0013】
本発明に用いられる(A)水溶性有機高分子は(B)水に均一分散可能な水膨潤性粘土鉱物と相互作用を有するものが好ましく、例えば(B)と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。
【0014】
これらの官能基を有する有機高分子としては、具体的には、アミド基、アミノ基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する有機高分子が挙げられる。更に本発明に用いる水溶性有機高分子としては、機能性を有しているものが特に好ましく、例えば、水溶液中でのポリマー物性(例えば親水性と疎水性)がLCST(下限臨界共溶温度、Lower Critical Solution Temperature)前後のわずかな温度変化により大きく変化する特性をもつ有機高分子などが挙げられる。
【0015】
(A)水溶性有機高分子の具体例として、アクリルアミド、N−置換アクリルアミド誘導体、N,N−ジ置換アクリルアミド誘導体、N−置換メタクリルアミド誘導体、N,N−ジ置換メタクリルアミド誘導体の中から選択される一つ又は複数を重合して得られる水溶性有機高分子が挙げられる。また上記モノマーとその他の有機モノマーとをあわせて用いることも均一な有機・無機複合ヒドロゲルを形成する限りにおいて可能である。
【0016】
かかる水溶性有機高分子としては、ポリ(アクリルアミド)、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、
【0017】
ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)等が例示される。
【0018】
本発明に用いられる(A)水溶性有機高分子としては、水に溶解・膨潤するもののほか、水と水と混和する有機溶媒との混合溶媒に溶解したり、膨潤するものであっても良い。水と水と混和する有機溶媒との混合溶媒としては、水及び水と混和する(均一相を形成する)一種又は複数の有機溶媒とを混合したものが用いられる。これらの有機溶媒としては、メタノール、アセトン、メチルエチルケトン、テトラヒドロフランなどの極性溶媒が例示される。水とこれらの有機溶媒との混合割合は水膨潤性粘土(B)が均一分散出来る範囲で任意に選択できる。
【0019】
本発明でいう(B)水に均一分散可能な水膨潤性粘土鉱物とは、粘土鉱物のうち水に膨潤し均一分散可能なものであり、特に好ましくは水中で分子状(単一層)又はそれに近いレベルで均一分散可能な層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。
【0020】
また本発明において、水膨潤性粘土鉱物は水溶性有機高分子のモノマーが重合する前の水溶液中で微細、且つ均一に分散していることが必要であり、特に水溶液中に溶解していることが望ましい。ここで溶解とは、粘土鉱物の沈殿もしくは濁った水溶液となるような大きな粘土鉱物凝集体が無い状態を意味する。より好ましくは1〜10層程度のナノメーターレベルの厚みで分散しているもの、特に好ましくは1又は2層程度の厚みで分散しているものである。
【0021】
本発明の構成成分である(C)水としては、水、もしくは水と混和する有機溶媒と水との混合溶媒であってよく、水膨潤性粘土鉱物及び有機モノマーを均一分散するものが用いられる。混合溶媒を用いた場合は、ゲル中に水に加えて有機溶媒を含むが、ここでは便宜上、これらを含めて全てヒドロゲルと称する。
【0022】
本発明の有機・無機複合ヒドロゲルは、(A)水溶性有機高分子と、(B)水に均一分散可能な水膨潤性粘土鉱物とが複合化して形成された三次元網目の中に(C)水が包含されている有機・無機複合ヒドロゲルである。即ち、(A)と(B)とが水中で分子レベルで複合化することで、(A)が(B)により橋架けされたか、又は(B)が(A)により橋架けされた、(A)と(B)からなる三次元架橋物が水を含んで形成されていることを特徴とする。
【0023】
即ち、本発明における有機・無機複合ヒドロゲルは、有機架橋剤無しで形成可能なヒドロゲルであり、従来から知られている有機モノマーに有機架橋剤を添加し重合して得られる有機高分子架橋物のヒドロゲル(以下有機架橋ヒドロゲルと呼ぶ)とは異なる、優れた特性を有する。
【0024】
また本発明における有機・無機複合ヒドロゲルの乾燥体も、いったんはかかる有機・無機複合ヒドロゲルを形成することが必要であり、それらを乾燥することで、有機・無機複合ヒドロゲルの乾燥体が得られる。
【0025】
例えば、比較例5〜8に示すように、(A)と(B)の各々の水溶液を調製した後に、単純に混合した場合は、たとえ、本発明と同一の成分組成からなる場合でも、本発明の有機・無機複合ヒドロゲルは得られない。
【0026】
本発明の有機・無機複合ヒドロゲルにおける(A)水溶性有機高分子と(B)水に均一分散可能な水膨潤性粘土鉱物との比率は、(A)と(B)とからなる三次元網目を有する有機・無機ヒドロゲルが調製されれば良く、また用いる(A)や(B)の種類によっても異なり必ずしも限定されないが、ヒドロゲル合成の容易さや均一性の点からは、好ましくはB/Aの重量比が0.01〜10、より好ましくは0.03〜2.0、特に好ましくは0.1〜1.0である。
【0027】
B/Aの重量比が0.01未満では、本発明でいうゲル特性が充分でない場合が多く、10を越えては、得られたヒドロゲルが脆くなったり、水を多量に使うなどの製造上の問題が生じる。一方、(A+B)に対する(C)水の比率は、重合過程での水量調整、もしくはその後の膨潤や乾燥により、目的に応じて0から非常に大きい値まで広い範囲で任意に設定できる。
【0028】
本発明で得られる有機・無機複合ヒドロゲルに含まれる水の最大量、即ち、平衡膨潤時の最大吸水量(Cmax)は、AやBの成分の種類及び比率、また温度やpHなどの環境条件などにより異なるが、本発明の有機・無機複合ヒドロゲルはCmaxが従来の有機架橋ヒドロゲルに比べて大きいことが特徴である。
【0029】
一般にはB/Aが大きいほどCmaxは小さくなる。ある条件での(C)の最大量(平衡膨潤吸水量Cmax)は有機・無機複合ヒドロゲルを、その条件下で過剰の水の中に長時間保持することにより測定される。例えば、ある水含有率で合成した有機・無機複合ヒドロゲルを20℃の温度の過剰な水の中に保持すると、ヒドロゲル中に更に水が取り込まれ最終的に20℃での平衡膨潤(最大膨潤)へ達する。
【0030】
従って、過剰水中に浸漬したヒドロゲルを時々取り出して重量測定することにより、ヒドロゲルの膨潤の時間依存性や平衡膨潤時の水含有率を知ることができる。平衡膨潤時の水含有率〔{Cmax/(A+B)}×100]は、上述したようにAとBの成分種や組成により、また温度、pH、又は塩濃度などの環境条件により異なり、例えば100重量%以下の低い値から100000重量%以上の高い値まで変化することが可能である。
【0031】
本発明における有機・無機複合ヒドロゲルはCmaxが従来の有機架橋ヒドロゲルに比べて大きいことが特徴であり、本発明の有機・無機複合ヒドロゲルを、例えば、20℃で平衡膨潤させた場合、{Cmax/(A+B)}×100]としては、通常、2000重量%以上であり、より好ましくは3000重量%以上、特に好ましくは4000重量%以上である。
【0032】
また本発明における有機・無機複合ヒドロゲルは、膨潤(吸水)速度が従来の有機架橋ヒドロゲルに対して大きい特徴も有する。これは(A)と(B)との三次元架橋が(A)の吸水特性を阻害せず、且つ均一に形成されることによると推定される。また(A)が下記に述べるように温度変化によりに膨潤収縮する性質を有する場合は、膨潤だけでなく収縮する速度も大きい特徴を有する。
【0033】
本発明の有機・無機複合ヒドロゲルには、低温側で透明及び/又は膨潤状態にあり、且つ高温側で不透明及び/又は体積収縮状態となる臨界温度(Tc)を有し、Tcを境にした上下の温度変化により透明性や体積を可逆的に変化できる特徴を有するものが含まれる。
【0034】
このような有機・無機複合ヒドロゲルは、有機高分子として水溶液中でLCST(下限臨界共溶温度)を示す有機高分子を用いて調製できる。有機・無機複合ヒドロゲルのTcは有機高分子のLCSTと同じ温度か変化する場合がある。
【0035】
本発明の有機・無機複合ヒドロゲルは、従来の有機架橋ヒドロゲルと比べて、高い吸水率を有する他、高い透明性、Tc前後での膨張時と収縮時での高い体積比や透明性の変化、大きい膨潤及び/又は収縮速度、優れた力学物性や機械的性質などの特徴の一部又は全部をあわせもつものが含まれる。
【0036】
例えば、有機架橋ヒドロゲルでは、架橋剤濃度を上げ架橋密度を大きくすると、架橋が不均一になり、透明性が失われる場合がある(比較例4、及び、T.Tanaka、Scientific American、244巻、110〜123頁、1981年)のに対し、同じ有機高分子を用いた、本発明の有機・無機複合ヒドロゲルでは、均一性は失われず、高い透明性を示す。
【0037】
具体的には、本発明の有機・無機複合ヒドロゲルには、(A)水溶性有機高分子の10倍量(重量比)の(C)水が含まれている厚み25mmの有機・無機複合ヒドロゲルにおいて、可視光の光透過率が80%以上であり、より好ましくは85%以上、特に好ましくは90%以上であるものが含まれる。また有機・無機複合ヒドロゲルを乾燥して得られる乾燥体においても水膨潤性粘土鉱物が微細分散しているため透明性を有することができる。
【0038】
また本発明の有機・無機複合ヒドロゲルはTcでの明確な転移特性を保持するため、図1に示すように、架橋密度の比較的高い有機架橋ヒドロゲル(比較例4)がTc前後で透明性変化が殆ど無いのに対して、それ以上の力学物性を有し、且つTc前後で高い透明性変化を可逆的に示す(実施例1)。
【0039】
更に、Tc前後でのヒドロゲルの膨潤、収縮についても、図2に示すように有機・無機複合ヒドロゲル(実施例1)は有機架橋ヒドロゲル(比較例4)と比べて、膨潤時と収縮時での体積比が高い特徴を有する。本発明の有機・無機複合ヒドロゲルの膨潤時と収縮時での体積比は、目的に応じて設定することができ、一般には同じ水溶性有機高分子を用いた有機架橋ヒドロゲルより膨潤/収縮の体積比は大きく、通常は10以上、好ましくは20以上、より好ましくは30以上である。
【0040】
本発明の有機・無機複合ヒドロゲルには、強度、伸び、タフネスなどの優れた力学物性をもつものが含まれる。特に上記の高い水吸収性、透明性、及び透明性変化や体積変化などの諸特性と共に、優れた機械的性質を併せ持つものが含まれることが特徴である。有機・無機複合ヒドロゲルの力学物性は、ヒドロゲルの水含有率により異なるため、本発明の有機・無機複合ヒドロゲルの力学物性や機械的性質は、一定範囲内の水含有率をもつヒドロゲルを用いて試験した結果で表わされる。
【0041】
具体的には{C/(A+B)}×100が600〜1000、即ち、(C)水を有機+無機成分(A+B)に対して600〜1000重量%含むヒドロゲルを用いるか、もしくは(A)水溶性有機高分子の10倍量(重量比)の(C)水を含んだものを用いて試験した結果で表わされる。
【0042】
更に、本発明における有機・無機複合ヒドロゲルは、破断伸びが大きく、断面積が試験途中で変化するため、試験開始時のヒドロゲルの断面積(初期断面積)を0.237cm2(半径0.275cmの円に相当)にしたものを試験材料として用いて規定した。
【0043】
本発明の有機・無機複合ヒドロゲルには上記の水含有率と初期断面積、即ち、{C/(A+B)}×100で定義される水含有率が600〜1000重量%、初期断面積が0.237cm2であるヒドロゲルを用いて測定した、引っ張り破断荷重が0.1N以上、好ましくは0.5N以上、より好ましくは1N以上、特に好ましくは2N以上であるものが含まれる。
【0044】
また本発明の有機・無機複合ヒドロゲルには上記の水含有率と初期断面積のヒドロゲルを用いて測定した、引っ張り破断伸びが100%以上、より好ましくは200%以上、更に好ましくは300%以上、特に好ましくは500%以上であること、更に引っ張り伸び100%での荷重が0.01N以上、より好ましくは0.05N以上であること、特に好ましくは0.1N以上である特徴を有するものが含まれる。
【0045】
これに対して比較例3や比較例4や比較例9〜12に示した有機架橋ヒドロゲルは、本発明の有機・無機複合ヒドロゲルと比べて極めて弱く、引っ張り試験のチャックへの装着が脆くて出来ない場合が殆どで、たとえ工夫して装着しても試験直後の破壊により、物性値は測定できなかった。
【0046】
また本発明の有機・無機複合ヒドロゲルは、吸水時にも良好な機械的性質を示し、例えば圧縮や引っ張り、又は曲げ変形に対して耐えるタフネスを有する。
具体的には、(A)水溶性有機高分子に対して10倍量(重量比)の(C)水を含んだ直径5.5mm、長さ30mmの有機・無機複合ヒドロゲルを厚み方向で1/3以下の厚みに、好ましくは1/5以下の厚みに圧縮変形されること、及び/又は長さ方向で2倍以上の長さに、好ましくは4倍以上の長さに延伸変形されること、及び/又は長さ中心点で100度以上の角度に、好ましくは150度以上の角度に曲げ変形されること等によっても、形状が破壊されないものが含まれる。
【0047】
これに対して(B)水膨潤性粘土鉱物の代わりに、有機架橋剤を用いた以外は同一組成の有機架橋ゲルは、上述のいずれか又は全ての変形操作によって、クラックが生じて形状が破壊されたり、欠損が生じる。
【0048】
本発明の有機・無機複合ヒドロゲルは、有機高分子と粘土鉱物からなる3次元網目が形成される必要があり、以下の方法で製造できる。(A’)水溶性有機高分子(A)のモノマーと、(B)水に均一分散可能な水膨潤性粘土鉱物と、(C)水とを含む均一溶液を調製後、(B)の共存下に(A’)の重合を行わせる。これにより(A)と(B)との分子レベルでの微細な複合化が達成され、三次元網目形成によりゲル化した有機・無機複合ヒドロゲルが得られる。
【0049】
具体的には、(A’)、(B)、(C)を必須成分として含む組成の溶液を用い、水中に微細分散した(B)共存下に(A’)をラジカル重合させる有機・無機複合ヒドロゲルの製造方法であって、好ましくは1〜10層、より好ましくは1又は2層程度のナノメーターレベルで均一分散した粘土鉱物が、(A’)の架橋剤の働きをして、(A)と(B)が(C)中で複合化して三次元網目を形成する方法である。
【0050】
上記のラジカル重合反応は、分子状酸素の不存在下で過酸化物の存在及び/又は紫外線照射など公知の方法により行わせることができる。更に、この重合反応は加熱又は紫外線照射により加速することもできる。ラジカル重合開始剤及び触媒としては、公知慣用のラジカル重合開始剤及び触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが用いられる。
【0051】
具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤などが例示される。一方、触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンや、β−ジメチルアミノプロピオニトリルなどが好ましく用いられる。
【0052】
重合温度は、重合触媒や開始剤の種類に合わせて0℃〜100℃の範囲で設定できる。重合時間も触媒、開始剤、重合温度、重合溶液量(厚み)など重合条件によって異なり、一般に数十秒〜数時間の間で行える。また系全体で均一に重合を行わせるために、例えば(B)と水を予め均一混合したものに、(A’)と水に溶かした重合開始剤を加え均一溶液を調製後、最後に水に溶かした重合触媒を添加する方法をとるなどの工夫を行うことは有効である。
【0053】
上記のラジカル重合反応において更に公知の界面活性剤を共存させ、得られる有機・無機複合ヒドロゲルを微粒子形態で製造することも可能である。
本発明の有機・無機複合ヒドロゲルの重合では、(A’)の重合収率が高く、且つ重合して得られる水溶性有機高分子はヒドロゲル内部に粘土鉱物と共に取り込まれ、水可溶性成分として溶出する量が少ない。このことは、水洗浄後の重合収率が高いことによって確認される。かかる結果は、(B)共存下での(A’)の重合において、微細分散した粘土層が水溶性有機高分子の効果的な架橋剤として働くことによる効果と推定される。
【0054】
更に本発明においては、有機・無機複合ヒドロゲルの特性を改良する目的で、必要に応じて水溶液中に必須成分である(A’)、(B)と共に有機架橋剤を含ませても良い。含まれる有機架橋剤濃度は特に限定されず、目的に応じて選択できる。
【0055】
必要に応じて含ませることが可能な有機架橋剤としては、従来から公知のN,N’−メチレンビスアクリルアミド、N,N’−プロピレンビスアクリルアミド、ジ(アクリルアミドメチル)エーテル、1,2−ジアクリルアミドエチレングリコール、1,3−ジアクリロイルエチレンウレア、エチレンジアクリレート、N,N’−ジアリルタータルジアミド、N,N’−ビスアクリリルシスタミンなどの二官能性化合物や、トリアリルシアヌレート、トリアリルイソシアヌレートなどの三官能性化合物が例示される。
【0056】
本発明の有機・無機複合ヒドロゲルの製造においては、容器の形状を変化させることで種々の形状をもったヒドロゲルを調製できる。例えば、繊維状、棒状、平板状、円柱状、らせん状、球状など任意の形状を有する有機・無機複合ヒドロゲルが調製可能である。
【0057】
また本発明における有機・無機複合ヒドロゲル及びその乾燥体には(A)、(B)、(C)以外に必要に応じて、例えば陰イオン活性剤や有機染料や有機顔料のような有機分子、水溶性ポリマーや水に溶解しない繊維状物質のような有機高分子、炭素、シリカやチタニアのような無機微粒子成分などを製造の任意の段階で含ませることが可能である。更に目的に応じて他素材と複合化(分散、積層など)することも可能である。
【0058】
本発明には、本発明の有機・無機複合ヒドロゲルから水分を除去して得られる有機・無機複合ヒドロゲルの乾燥体が含まれる。水分を除去する方法は特に限定されないが、温度、気流、減圧等の条件を適宜、変化させて行える。具体的には、熱風循環乾燥機や減圧乾燥機などが用いられる。ヒドロゲルからの水分の除去量も特に限定されず、完全に水分を除去したものから、必要に応じて水分を残存させたものまで任意に調製することができる。
【0059】
本発明の有機・無機複合ヒドロゲルの乾燥体は粘土鉱物を含んでいるが、粘土鉱物が微細に分散した状態のため、透明であることが可能である。従って、ヒドロゲル又はその乾燥物に色のついた水溶液などを吸収させる場合は、吸収の様子を光透過や光反射により検知することが可能である特徴を有する。また予め、他の有機成分や無機成分をヒドロゲル中に分散させておく場合も、分散状態を明確に把握できる利点がある。
【0060】
有機・無機複合ヒドロゲルはヒドロゲル又は乾燥途中又はゲル乾燥体としてから、粉砕、分級、成形などを行うことができ、搬送、加工及び使用目的に適した形態をとることができる。具体的には、球状、鱗片状、粉末状、フィルム状、繊維状、ペレット状などである。また大きさについても、例えば粉末状の場合、平均粒径が通常10〜1000μmのものが用いられるが、特に限定されない。
【0061】
有機・無機複合ヒドロゲル乾燥体は、水、水溶液、湿気など水分と接触させることで再びヒドロゲルに可逆的に戻すことができる。本発明の新規な有機・無機複合ヒドロゲル及びその乾燥体は、生活用品、医薬・医療、農業、土木、工業分野等の広い分野で有用である。
【0062】
【実施例】
次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
【0063】
(実施例1)
粘土鉱物として、[Mg5.34Li0.66Si8O20(OH)4]Na+ 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)を100℃で2時間真空乾燥して用いた。有機モノマーは、N−イソプロピルアクリルアミド(IPAA:興人株式会社製)をトルエンとヘキサンの混合溶媒(1/10重量比)を用いて再結晶し無色針状結晶に精製してから用いた。
【0064】
重合開始剤は、ペルオキソ二硫酸カリウム(PPS:関東化学株式会社製)をPPS/水=0.384/20(g/g)の割合で純水で希釈し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA:関東化学株式会社製)をTMEDA/水=160μl/20gの割合で薄めて使用した。水はイオン交換水を蒸留した純水を用いた。水は全て高純度窒素を予め3時間以上バブリングさせ含有酸素を除去してから使用した。
【0065】
20℃の恒温室において、内部を窒素置換した内径25mm、長さ80mmの平底ガラス容器に、純水16.96gとテフロン製攪拌子を入れ、攪拌しながら0.662gのラポナイトXLGを気泡が入らないように注意しながら少量ずつ加え、無色透明の溶液を調製した。
【0066】
これにIPAA2.0gを加え5分間攪拌して無色透明溶液を得た。次いで、PPS水溶液1.06gとTMEDA水溶液2.0gを攪拌して加え、15秒ほど更に攪拌して(D)無色透明溶液を得た。(D)の一部(3ml×3)を底の閉じた内径5.5mm、長さ150mmのガラス管容器3本に酸素にふれないようにして移した後、上部に密栓をし、20℃で15時間静置して重合を行った。
【0067】
残りの溶液(D)も平底ガラス容器内で20℃、15時間静置し重合を行った。なお、これらの溶液調製から重合までの操作は全て酸素を遮断した窒素雰囲気下で行った。15時間後に平底ガラス容器内、及びガラス管容器内に弾力性、タフネスのある無色透明・均一な円柱状、及び棒状のゲルが生成しており、両容器から注意深く取り出した。
【0068】
ゲル中に粘土鉱物などによる不均一又は不透明な凝集は何ら観測されなかった。ゲルを100℃の真空乾燥機で重量一定になるまで乾燥させることにより、{C/(A+B)}×100=750重量%の水を含むヒドロゲルであることがわかった。取り出したヒドロゲルに以下の精製操作を3回繰り返して、精製ヒドロゲルを得た。
【0069】
精製は(2Lの水に2日浸漬して取り出し、次いで70℃の水1Lに2時間浸漬して取り出し)を繰り返した。精製ヒドロゲルを100℃、減圧下にて乾燥して水分を除いたヒドロゲル乾燥体を得た。ゲル乾燥体を20℃に水に浸漬することにより、乾燥前と同じ形状の弾性のあるヒドロゲルに戻ることが確認された。
【0070】
ゲル乾燥体のKBr法によるフーリエ変換赤外線吸収スペクトル(FT−IR)測定を行い(日本分光株式会社製フーリエ変換赤外分光光度計FT/IR−550を使用)、ポリ(N−イソプロピルアクリルアミド)に固有な赤外線吸収(例えば1460cm-1、1550cm-1、1650cm-1、2920cm-1、2970cm-1)及びラポナイトXLGに固有な赤外線吸収(例えば460cm-1、650cm-1、1005cm-1)が観測された。
【0071】
またゲル乾燥体の熱重量分析(セイコー電子工業株式会社社製TG−DTA220:空気流通下、10℃/分で600℃まで昇温)を行い、B/A=0.333(重量比)を得た。
【0072】
以上から、本実施例で得られたゲルは、仕込み組成に沿った成分比を有する、有機高分子(ポリ(N−イソプロピルアクリルアミド))と粘土鉱物と水からなるヒドロゲルであること、有機高分子の合成において架橋剤を添加していないにもかかわらず、無色、透明、均一なヒドロゲルとなること、ヒドロゲルから水分を除いて得られるゲル乾燥体(固体)を水に浸漬することにより再びもとの形状のヒドロゲルに戻ること等から、有機高分子と粘土鉱物が分子レベルで複合化した三次元網目が水中で形成されていると結論された。なお、粘土鉱物を共存させない以外は同様な条件で合成した有機高分子は高分子水溶液となりヒドロゲルとはならなかった。
【0073】
未精製の棒状の有機・無機複合ヒドロゲル(断面積=0.237cm2)をチャック部での滑りの無いようにして引っ張り試験装置(株式会社島津製作所製、卓上型万能試験機AGS−H)に装着し、評点間距離=20mm、引っ張り速度=100mm/分にて引っ張り試験を行った結果、破断荷重が1.1N、破断伸びが550%、引っ張り伸び100%での荷重が0.09Nであった。
【0074】
長さ10mmに切り出した棒状の有機/無機複合ヒドロゲルを精製した後、20℃から50℃の範囲の6点の温度の水に浸漬し、1日間静置して体積を測定し、温度による膨潤、収縮の変化を測定した。結果を、比較例4(有機架橋ヒドロゲル)の結果と合わせて図1に示す。
【0075】
本実施例で得られた有機・無機複合ヒドロゲルは上記のようなタフネスを持つと共に臨界温度(Tc)を有し、Tc以下の温度では膨潤し、Tc以下の温度では収縮した。20℃と50℃での膨潤時と収縮時の体積比は24の高い値を示した。
【0076】
平底ガラス容器から取り出した円柱状の有機・無機複合ヒドロゲルを精製した後、20℃〜50℃の5点の温度での水に浸漬したものを厚み2mmで切り出し、日本電色工業株式会社製NDH−300Aを用いて光透過率測定を行った。結果を比較例4の結果と併せて図2に示す。本実施例で得られた有機・無機複合ヒドロゲルはTcを境にして明確な透明性の変化を示し、Tc以下の温度で高い透明性を、Tc以下の温度で不透明(白濁)となった。
【0077】
(実施例2〜4)
粘土鉱物(ラポナイトXLG)の量を0.132g(実施例2)、0.264g(実施例3)、1.322g(実施例4)に変えた以外は、実施例1と同様にして重合を行い、有機・無機複合ヒドロゲルを調製した。実施例2〜4では、いずれも室温で無色透明な均一ヒドロゲルが得られた。
【0078】
実施例1と同様にして測定したヒドロゲル評価結果を以下に示す。{C/(A+B)}×100は940重量%(実施例2)、880重量%(実施例3)、600重量%(実施例4)、またB/A比は0.065(実施例2)、0.135(実施例3)、0.66(実施例4)であった。
【0079】
得られたヒドロゲルの温度を上昇させると、いずれも35℃付近に臨界温度(Tc)を有し、Tc以下では無色透明で、Tc以上では白濁不透明になり収縮した。20℃と50℃の水中での膨潤時と収縮時の体積比は31(実施例2)と13(実施例4)であった。また、収縮は温度変化により1分以内の短い時間で起こり、膨潤も比較例3より短時間で生じた。
【0080】
また引っ張り試験測定の結果は、破断荷重が0.65N(実施例3)、7.0N(実施例4)、破断伸びが430%(実施例3)、650%(実施例4)、伸び100%での荷重が0.033N(実施例3)、0.40N(実施例4)であった。また得られたヒドロゲルを5mm角に切断後、20℃の水中で平衡膨潤させたヒドロゲルに含まれる水含有率{Cmax/(A+B)}×100は、11300重量%(実施例2)、7200重量%(実施例3)、5000重量%(実施例4)であった。
【0081】
(実施例5〜7)
有機モノマーとして、実施例5では前記のIPAAを、実施例6ではN,N−ジメチルアクリルアミド(DMAA:和光純薬工業株式会社)を、実施例7ではN,N−ジエチルアクリルアミド(DEAA:和光純薬工業株式会社)を用いた。なお、DMAA及びDEAAはシリカゲルカラム(メルク社製)を有機モノマー100mlに対して80mlの容積で用いて重合禁止剤を取り除いてから使用した。
【0082】
20℃の恒温室において、内部を窒素置換した内径25mm、長さ80mmの平底ガラス容器に、純水18.96gとテフロン製攪拌子を入れ、攪拌しながら0.662gのラポナイトXLGを気泡が入らないように注意しながら少量ずつ加え、無色透明の溶液を調製した。これにIPAA2.0g(実施例5)、又はDMAA2.0g(実施例6)、又はDEAA2.0g(実施例7)を加え無色透明溶液になるまで攪拌した。
【0083】
これにTMEDA160μlを加え、次いで、PPS水溶液1.06gを攪拌して加え、5分間攪拌して無色透明溶液(D’)を得た。(D’)溶液から攪拌子を取り除き、密栓状態にして20℃で静置し、系全体をゲル化(容器を横にしても内容物が動かない状態)させた。以上の操作は全て酸素を遮断した窒素雰囲気下で行った。その後、N2雰囲気を保ちながら70℃の水槽中で2時間静置し重合した。2時間後、平底ガラス容器に生成した円柱状のゲルを容器から注意深く取り出した。
【0084】
実施例5と実施例7は弾力性、タフネスのある均一白濁ゲルが、実施例6では同じく弾力性、タフネスのある透明ゲルが得られた。白濁ゲル中に粘土鉱物などによる不均一又は不透明な凝集はいずれも観測されなかった。
【0085】
実施例1と同様にして測定した{C/(A+B)}×100はいずれも750重量%、B/Aはいずれも0.33であり、有機高分子、粘土鉱物、水からなる均一な有機/無機複合ヒドロゲルであることがわかった。実施例5と実施例7の白濁ヒドロゲルは温度を下げても透明に変化することはなかった。また実施例6の透明ヒドロゲルは温度を0〜70℃で変化させても白濁することなく、透明のままであった。
【0086】
(実施例8〜12)
有機モノマーとして、実施例8では前記のN−イソプロピルアクリルアミド(IPAA)を、実施例9では前記のN,N−ジメチルアクリルアミド(DMAA)を、実施例10では前記のN,N−ジエチルアクリルアミド(DEAA)を、実施例11ではアクリロイルモルフォリン(ACMO;興人株式会社製)を、実施例12ではN,N−ジメチルアミノプロピルアクリルアミド(DMAPA;興人株式会社製)を用いた。
【0087】
なお、IPAA(実施例8)は、IPAAの0.75倍量(重量比)のトルエンを加え、40℃で溶解後室温に戻してから7.5倍量(重量比)のヘキサンを加え良く攪拌し、針状の無色結晶を得た。最後に溶媒を濾過と室温真空乾燥により取り除いて得たIPAAを使用した。DMAA(実施例9)、DEAA(実施例10)及びACMO(実施例11)は実施例6及び実施例7と同様にして重合禁止剤を取り除いて使用した。
【0088】
またDMAPA(実施例12)はアセトンをDMAPAの20体積%加え、粘性を低くしてから活性アルミナカラム(80cc/100mlモノマー)で重合禁止剤を取り除き、その後、ロータリーエバポレーターでアセトンを取り除いて使用した。
【0089】
使用する水は全てイオン交換水を蒸留した純水に、予め高純度窒素ガスを3時間以上バブリングさせ、含有酸素を除去してから使用した。なお、本実施例においては重合前の全ての操作(溶液準備からヒドロゲルを取り出すまでの全操作)を酸素を除去した窒素雰囲気又は窒素気流下で行った。また触媒及び開始剤水溶液の準備においても上記操作と同様に酸素を遮断した窒素雰囲気で行った。
【0090】
20℃の水浴中に設置した内部を窒素置換した二口フラスコに、上記の溶存酸素を除去した純水85.3gとテフロン攪拌子を入れ、攪拌しながら2.98gのラポナイトXLGを気泡が入らないように注意しながら少量ずつ加え、無色透明の溶液を調製した。これにIPAA9.0g(実施例8)、又はDMAA9.0g(実施例9)、又はDEAA9.0g(実施例10)、又はACMO9.0g(実施例11)、又はDMAPA9.0g(実施例12)を加え、均一透明溶液になるまで攪拌した。
【0091】
XLG/モノマーの重量比はいずれも0.331である。ついで、フラスコを氷浴中にて冷却した状態にして、別途、氷浴冷却していたTMEDA72μlを加え30秒間攪拌させた後、次いで、同様に別途、氷浴中で冷却していた実施例1と同じPPS水溶液4.77gを攪拌して加え、30秒間攪拌させ均一透明溶液を得た。該溶液を15℃の水浴で20時間静置し重合を完了させた。
【0092】
実施例8から実施例12のいずれにおいてもフラスコ内に、系全体がゲル化(容器を横にしても内容物が動かない状態)した弾力性のあるヒドロゲルが得られた。ヒドロゲル中に不均一又は不透明な粘土鉱物やポリマーによる凝集はいずれも観測されなかった。重合して得られたヒドロゲルの透明性を氷浴温度(約1℃)にて調べた結果、実施例8、9、11及び12が均一透明で、実施例10が均一な半透明であった。
【0093】
厚み25mmにカットしたヒドロゲルの可視光での光透過率を日本電色工業株式会社製NDH−300Aを用いて測定した結果、全透過率が95%(実施例8)、81%(実施例9)、40%(実施例10)、85%(実施例11)、90%(実施例12)であった。
【0094】
次いで、氷浴を50℃の温水浴に変えて透明性変化を調べた。実施例9、11及び12では透明性は殆ど変化しなかったが、実施例8と実施例10では共に全透過率が10%以下の不透明に変化した。
【0095】
一方、重合して得られたヒドロゲルを直径5.5mm、長さ30mmの棒状に切り出し、厚み方向に1/3及び1/5にまで圧縮する試験と、長さ方向に2倍及び4倍にまで延伸する試験と、長さ中心点で100度、150度及びそれ以上の角度に曲げ変形する試験を行った。その結果、実施例9〜12のいずれのサンプルも上記の試験において、形状が破壊されたり、クラックが生じたり、欠損が生じることはなく、元の状態に戻った。
【0096】
また曲げ変形試験では180度以上の変形でもいずれも破壊、クラックなどが生じることなく、試験後もとの状態に戻った。さらに得られたヒドロゲルを直径5.5mm(断面積0.237cm2)、長さ50mmに切り出し、上下10mmを傷つけず、且つ滑らぬように丸形のサンドペーパーで挟み、実施例1と同じ引っ張り試験装置を用いて、標点間距離=30mm、引っ張り速度=100mm/分にて引っ張り試験を行った。
【0097】
その結果、実施例8では破断荷重が2.9N、破断伸びが1001%、引っ張り伸び100%での荷重が0.103Nであり、実施例9では破断荷重が2.4N、破断伸びが1112%、引っ張り伸び100%での荷重が0.089Nであり、実施例10では破断荷重が4.8N、破断伸びが892%、引っ張り伸び100%での荷重が0.173Nであった。
【0098】
また、得られたヒドロゲルを5mm角に切断後、20℃水中で平衡膨潤させたヒドロゲルに含まれる水含有率{Cmax/(A+B)}×100は、6200重量%(実施例8)、5000重量%(実施例9)、3700重量%(実施例10)、4700重量%(実施例11)であった。また、実施例1と同様に精製して得られた乾燥体の重量測定により、モノマーの重合収率は実施例8〜11のいずれもが99%以上であり、高い収率であることが示された。
【0099】
(実施例13)有機モノマーとしてエタノールとトルエンを用いて精製したアクリルアミド(AAM:関東化学株式会社製)3.15gを用いること、水膨潤性層状粘土鉱物XLGを2.8g用いること(XLG/モノマー=0.89重量比)、水として計50gを用いること、開始剤としてペルオキソ二硫酸カリウムを0.05g用いること、及び重合温度を23℃にしたこと以外は、実施例8と同様にして重合実験及び評価試験を行った。
【0100】
その結果、測定温度1℃での透明性(全透過率)が25mm厚において85%であり、且つタフネスのある均一透明な有機・無機複合ヒドロゲルが得られた。また透明性の測定温度を50℃にしても全透過率は殆ど変化しなかった。
【0101】
(実施例14)
粘土鉱物としてXLGを1.788g用いること、またそれと共に有機架橋剤(N、N’−メチレンビスアクリルアミド:BIS:関東化学株式会社製)を有機モノマーの0.5モル%用いること、重合温度を30℃とすること以外は実施例9と同様にして重合溶液の調製及び重合実験と評価試験を行った。
【0102】
その結果、透明で且つタフネスのある有機・無機複合ヒドロゲルゲルが得られた。厚さ25mmでの全透過率(測定温度1℃)は90%であり、測定温度を50℃にしても殆ど透明性は変化しなかった。直径5.5mm、長さ30mmに切り出した棒状ヒドロゲルは厚み方向1/5までの圧縮変形試験、また長さ方向4倍の延伸変形試験、また長さ中心での180度までの曲げ変形試験のいずれにおいても、形状が破壊されることはなく、試験後もとの形状に戻った。
【0103】
(実施例15〜17)
水の代わりに水とメタノールの混合溶媒を用いること、水:メタノールの混合溶媒比率(重量比)が80:20(実施例15)、60:40(実施例16)、40:60(実施例17)であること、及び重合温度を15℃とすること以外は、実施例2と同様にして、重合実験を行った。
【0104】
その結果、実施例15〜17のいずれにおいてもポリ(N−イソプロピルアクリルアミド)とXLGと水とメタノールとからなる均一でタフネスのある有機・無機複合ヒドロゲルが得られた。重合後のヒドロゲルの透明性(氷浴温度:約1℃で測定)は、実施例15が透明、実施例16と17が不透明であった。特に実施例17は完全な白色であった。
【0105】
その後、実施例1と同様な方法により純水を用いて精製を行った。精製後、20℃の水中で膨潤させた有機・無機複合ヒドロゲルを用いて、水温を変化させてTcを測定した。その結果、実施例15〜17で得られた有機・無機複合ヒドロゲルはいずれも33℃に臨界温度(Tc)を示し、それより以下の温度では無色透明で膨潤しており、Tc以上では白色不透明へ変化し、体積収縮を生じた。
【0106】
以上の結果より、水と水と混和する有機溶媒との混合溶媒を用いても、本発明における有機・無機複合ヒドロゲルが得られることが示された。なお、乾燥体の熱重量分析の結果、B/A(重量比)はいずれも0.066であった。
【0107】
(実施例18〜21)
重合温度が50℃であること以外は実施例18では実施例8と、実施例19では実施例9と、実施例20では実施例10と、実施例21では実施例11と同様にして重合を行い、いずれもタフネスのある均一な有機・無機複合ヒドロゲルを得た。
【0108】
重合直後の重合温度における透明性は実施例19及び実施例21では透明、実施例18と実施例20では白色不透明であった。その後、1℃まで冷却した場合、実施例18、実施例19、実施例21では透明、実施例20では不透明〜半透明であった。得られたヒドロゲルを厚み25mmにカットして1℃にて測定した可視光の全透過率は84%(実施例18)、93%(実施例19)、30%(実施例20)、88%(実施例21)であった。
【0109】
(実施例22)
有機モノマーとして、N−イソプロピルアクリルアミド(IPAA)を4.5g、N,N−ジメチルアクリルアミド(DMAA)を3.94g用いる以外は実施例8と同様にして、水(85.3g)、XLG(2.98g)、TMEDA(72μl)、PPS(水溶液で4.77g)を含む均一溶液を調製し、15℃で重合させた。弾力性のある均一な半透明のヒドロゲルが得られた。
【0110】
ヒドロゲル中に不均一又は不透明な粘土鉱物やポリマーによる凝集はいずれも観測されなかった。重合して得られたヒドロゲルを25mm幅にカットし、その透明性を温度を変化させながら測定した結果、半透明(全透過率40〜35%程度)から不透明(全透過率5%以下)への変化(LCST)が約40℃〜50℃にて生じた。IPAA単独を用いた実施例8では32℃〜34℃で透明(全透過率90%)から、不透明(全透過率6%)まで急速に変化したのに比べると、変化は高温側にずれるとともに、幅広くなった。
【0111】
一方、重合して得られたヒドロゲルを直径5.5mm、長さ30mmの棒状に切り出し、厚み方向に1/3及び1/5にまで圧縮する試験と、長さ方向に2倍及び4倍まで延伸する試験と、長さ中心点で100度、150度及びそれ以上の角度に曲げ変形する試験を行った。その結果、いずれの試験においても、形状が破壊されたり、クラックが生じたり、欠損が生じることはなく、元の状態に戻った。また曲げ変形試験では180度以上の変形でもいずれも破壊、クラックなどが生じることなく、試験後、元の状態に戻った。
【0112】
(実施例23及び24)
水膨潤性粘土鉱物XLGと有機モノマーIPAAの量を、実施例23ではXLG=2.98g、IPAA=0.45g、XLG/IPAA=6.62重量比であること、実施例24ではXLG=0.0596g、IPAA=4.5g、XLG/IPAA=0.013としたこと以外は、いずれも実施例8と同様にして実験を行った。その結果、実施例23も実施例24も、均一溶液を調製でき、また重合の結果、均一な透明ゲルが得られた。厚み25mmにカットしたゲルの全透過率は95.1%(実施例23)と98.2%(実施例24)であった。
【0113】
(実施例25及び26)
水膨潤性粘土鉱物としてXLGの代わりに実施例25ではXLS(XLSに6重量%のピロリン酸ナトリウムを解膠剤を含ませたもの:日本シリカ工業株式会社製)、実施例26では合成スメクタイトSWN(コープケミカル株式会社製)を用いる以外は、いずれも実施例8と同様にして実験を行った。その結果、実施例25も実施例26も、均一溶液を調製でき、また重合の結果、均一な透明ゲルが得られた。厚み25mmにカットしたゲルの全透過率は90.4%(実施例25)と83.8%(実施例26)であった。
【0114】
(比較例1)
粘土鉱物を添加しないこと以外は実施例1と同様にして、20℃で15時間重合を行った。平底ガラス容器及びガラス管容器のいずれでも、ポリ(N−イソプロピルアクリルアミド)が水に溶解した無色透明溶液が得られたのみで、ゲルは生じなかった。また、溶液の温度を上昇させると約32℃以上で白濁したポリマーゲルが水と分離した状態で得られ、次いで温度を20℃に下げると再び水溶液に戻った。
【0115】
尚、得られた溶液中のポリマーの確認は5Lの水に薄め、50℃の水槽中に保持して、溶解物を白濁凝集させ、遠心分離(20℃、10,000rpm、60分)にて分離し、更に、水、アセトン、ヘキサンを用いて再沈精製を行った後のサンプルの分析(赤外線吸収スペクトル測定、核磁気共鳴スペクトル測定)により行った。
【0116】
(比較例2)
NaOHを添加してpH11にした以外は比較例1と同様にして、重合を行った結果、比較例1と同様にポリ(N−イソプロピルアクリルアミド)の無色透明溶液が得られゲルは一切生じなかった。このことより、実施例1の粘土鉱物添加に伴うpH増加の影響が無いことが確認された。
【0117】
(比較例3及び4)
粘土鉱物を用いないで、IPAAモノマーを添加した後、有機架橋剤をIPAAの1モル%(比較例3)、5モル%(比較例4)添加して用いること以外は実施例1と同様にして、20℃で15時間重合を行った。有機架橋剤としては、N,N’−メチレンビスアクリルアミド(BIS)(関東化学株式会社製)をそのまま使用した。比較例3では無色透明ゲルが、比較例4では白濁したゲルが得られた。実施例1と同様にして測定した結果、{C/(A)}×100は990重量%(比較例3)と935重量%(比較例4)であり、有機架橋ヒドロゲルであることが確認された。
【0118】
比較例3では、Tcが33℃付近であり、Tcより低温側で透明、膨潤状態にあり、Tcより高温側で白濁、収縮状態を示した。20℃と50℃での膨潤時と収縮時の体積比は約8であった。一方、比較例4では温度を変化させても全て白濁状態のままであった。約33℃を境に低温側で膨潤、高温側で収縮状態となったが、20℃と50℃での膨潤時と収縮時の体積比は約5であった。比較例4での温度変化による体積及び全透過率の変化の様子を図1及び図2に実施例1の結果と合わせて示す。
【0119】
(比較例5及び6)
比較例1で得られたポリ(N−イソプロピルアクリルアミド)1gを水10gに溶かした水溶液に、粘土鉱物(ラポナイトXLG)0.331g(比較例5)又は0.066g(比較例6)を攪拌しながら添加して、実施例1及び実施例2と同一組成の有機高分子と粘土鉱物と水からなる複合体を調製しようとしたが、いずれの場合も、均一なタフネスのあるヒドロゲルは得られなかった。
【0120】
(比較例7)
DEAAモノマーを用いる以外は、比較例1と同様にして得られたポリ(N,N−ジエチルアクリルアミド)0.15gを水14.85gに溶かした透明水溶液に、粘土鉱物(ラポナイトXLG)0.2gを水9.8gに溶かした透明溶液を徐々に攪拌しながら添加し、混合物を調製した。XLG水溶液を0.88g(B/A=0.117)まで添加した場合、XLG添加量に応じて溶液中に白色浮遊物が析出し、白濁溶液に変化していった。更に添加を続けて、例えば添加量=3.88g(B/A=0.517)でも混合物は白濁溶液のままであった。
【0121】
これらの白濁混合溶液は水中に白色凝集物が浮遊した不均一溶液であり、これを加熱すると約28℃を境にそれ以上の温度で更に白濁度が増すことが観測された。しかしいずれの場合も均一なヒドロゲルは得られなかった。更に粘土添加量を増したり、初期ポリマー溶液濃度を増したものを用いた場合も、実施例で得られるような均一でタフネスのあるヒドロゲルは得られなかった。
【0122】
(比較例8)
XLG水溶液10gにポリ(N,N−ジエチルアクリルアミド)水溶液を徐々に添加すること以外は比較例7と同様にして、有機高分子と粘土鉱物と水を含む混合物を調製した。添加混合により白濁溶液となり、Tc以上への加温で更に白濁度の増した不均一溶液となるだけで、いずれの場合も均一なタフネスのあるヒドロゲルは得られなかった。
【0123】
(比較例9〜12)
粘土鉱物を用いないで、DEAA(比較例9と10)又はACMO(比較例11と12)を添加した後、有機架橋剤N,N’−メチレンビスアクリルアミド(BIS)をDEAA又はACMOの1モル%(比較例9と11)、5モル%(比較例10と12)添加して用いること以外は実施例10又は実施例11と同様にして、15℃の水浴で20時間静置し重合を完了させた。
【0124】
比較例9から比較例12のいずれにおいてもフラスコ内に、系全体がゲル化(容器を横にしても内容物が動かない状態)したヒドロゲルが得られた。ヒドロゲル中に不均一な凝集はいずれも観測されなかった。重合して得られたヒドロゲルの透明性を氷浴温度(約1℃)にて調べた結果、比較例例9と11は均一透明で、比較例10と12が不透明であった。厚み25mmにカットしたヒドロゲルの可視光での光透過率を日本電色工業株式会社製NDH−300Aを用いて測定した結果、全透過率が98%(比較例9)、24%(比較例10)、98%(比較例11)、22%(比較例12)であった。
【0125】
一方、比較例9〜12で重合容器として内径5.5mm、長さ150mmのガラスチューブを用いて上記の条件で重合して、棒状の有機架橋ヒドロゲルを得た。得られたヒドロゲルを長さ30mmの棒状に切り出し、厚み方向に1/3にまで圧縮する試験と、長さ方向に2倍まで延伸する試験と、長さ中心点で100度の角度に曲げ変形する試験を行った。
【0126】
その結果、比較例9〜12のいずれのサンプルも上記の試験において、クラックが生じ、形状が壊れたり、欠損が生じた。更に比較例9〜12で得られたヒドロゲルを直径5.5mm(断面積0.237cm2)、長さ50mmに注意深く切り出し、上下10mmを傷つけず、且つ滑らぬように丸形のサンドペーパーで挟み、実施例1と同じ引っ張り試験装置を用いて、標点間距離=30mm、引っ張り速度=100mm/分にて引っ張り試験を行おうとしたが、サンプルが脆くチャックに装着前に殆どのサンプルが壊れた。また、チャックに軽く装着したものでも試験直後に破断し、物性値は得られなかった。
【0127】
(比較例13及び14)
内径5.5mm、長さ150mmのガラスチューブ容器を用いる以外は、比較例13では比較例3と、また比較例14では比較例4と同様の方法により、外径5.5mmの棒状の有機架橋ヒドロゲルを重合して得た。得られたヒドロゲルを長さ30mmに切り出し、厚み方向に1/3まで圧縮する試験と、長さ方向に2倍まで延伸する試験と、長さ中心点で100度の角度に曲げ変形する試験を行った。
【0128】
その結果、比較例13と14のいずれのサンプルも上記の試験において、クラックが生じ、形状が壊れたり、欠損が生じた。さらに長さ50mmに切り出し、上下10mmを傷つけず、且つ滑らぬように丸形のサンドペーパーで挟み、実施例1と同じ引っ張り試験装置を用いて、標点間距離=30mm、引っ張り速度=100mm/分にて引っ張り試験を行おうとしたが、サンプルが脆くチャックに装着前にいずれのサンプルが壊れ、物性値は得られなかった。
【0129】
更に、得られた有機架橋ヒドロゲルを約5mm角に切断後、20℃の水中で平衡膨潤させた有機架橋ヒドロゲルに含まれる水含有率{Cmax/(A)}×100は1500重量%(比較例13)、800重量%(比較例14)であった。
【0130】
【発明の効果】
本発明は、均一性、透明性、力学物性、機械的性質や吸水性、膨潤・収縮特性等の優れた機能性を有する新規な有機・無機複合ヒドロゲル、その製造方法及び該ヒドロゲルから水分を除去して得られる有機・無機複合ヒドロゲルの乾燥体を提供することができる。
【0131】
本発明で得られる有機・無機複合ヒドロゲルには、強靱でタフネスのあるヒドロゲルや、透明又は均一白色のヒドロゲルや、低温側で透明及び/又は体積膨潤状態にあり、高温側で不透明及び/又は体積収縮状態に可逆的に変化する臨界温度(Tc)を有するものが含まれ、該有機・無機複合ヒドロゲルのゲル乾燥体は、水に浸漬することにより可逆的にヒドロゲルに戻すことができるものであり、生活用品、医薬・医療、農業、土木、工業分野等の広い分野で有用である。
【図面の簡単な説明】
【図1】 実施例1で得られた有機・無機複合ヒドロゲル及び比較例4で得られた有機架橋ヒドロゲルの水中での温度による膨潤時と収縮時の体積変化を示す図である。縦軸はヒドロゲルの体積(mm3)を横軸は温度(℃)を示す。
【図2】 実施例1で得られた有機・無機複合ヒドロゲル及び比較例4で得られた有機架橋ヒドロゲルの温度による透明性の変化を示す図である。縦軸が全透過率(%)を横軸が温度(℃)を示す。
Claims (17)
- (A)水溶性有機高分子と、(B)水に均一分散可能な水膨潤性層状粘土鉱物とが複合化して形成された三次元網目の中に(C)水が包含されている有機・無機複合ヒドロゲルであって、
前記(A)水溶性有機高分子の構成成分モノマー(A’)が、アクリルアミド誘導体及び/又はメタクリルアミド誘導体であり、
前記(B)水に均一分散可能な水膨潤性層状粘土鉱物が、水膨潤性スメクタイト又は水膨潤性雲母である有機・無機複合ヒドロゲル。 - 前記(B)水に均一分散可能な水膨潤性層状粘土鉱物が、1〜10層の厚みで均一分散して、前記(A)水溶性有機高分子の架橋剤の働きをして複合化している、請求項1記載の有機・無機複合ヒドロゲル。
- 前記(A)水溶性有機高分子と、前記(B)水に均一分散可能な水膨潤性層状粘土鉱物とが分子レベルで複合化している、請求項1又は2記載の有機・無機複合ヒドロゲル。
- 前記三次元網目が、有機架橋剤を用いずに形成されたものである、請求項1〜3のいずれかに記載の有機・無機複合ヒドロゲル。
- (A)水溶性有機高分子と、(B)水に均一分散可能な水膨潤性層状粘土鉱物とが複合化して形成された三次元網目の中に(C)水が包含されている有機・無機複合ヒドロゲルであって、
前記(A)水溶性有機高分子の構成成分モノマー(A’)が、アクリルアミド誘導体及び/又はメタクリルアミド誘導体であり、
前記(B)水に均一分散可能な水膨潤性層状粘土鉱物が、水膨潤性スメクタイト又は水膨潤性雲母であり、
更に、前記(B)水に均一分散可能な水膨潤性層状粘土鉱物が、主たる架橋剤として三次元網目を形成している有機・無機複合ヒドロゲル。 - (B)水に均一分散可能な水膨潤性層状粘土鉱物を水に溶解し、前記(B)水に均一分散可能な水膨潤性層状粘土鉱物と、(C)水との共存下に、(A)水溶性有機高分子の構成成分モノマー(A’)を重合させて得られる、請求項1〜5のいずれか一つに記載の有機・無機複合ヒドロゲル。
- 前記(B)水膨潤性層状粘土鉱物が、水膨潤性ヘクトライトである、請求項1〜6のいずれか一つに記載の有機・無機複合ヒドロゲル。
- (B)水膨潤性層状粘土鉱物/(A)水溶性有機高分子の重量比が0.01〜10である、請求項1〜7のいずれか一つに記載の有機・無機複合ヒドロゲル。
- 低温側で透明及び/又は体積膨潤状態にあり、高温側で不透明及び/又は体積収縮状態に可逆的に変化する臨界温度(Tc)を有する、請求項1〜8のいずれか一つに記載の有機・無機複合ヒドロゲル。
- {C/(A+B)}×100で定義される水含有率が、600〜1000重量%、初期断面積が0.237cm2であるヒドロゲルを用いて測定した、引っ張り破断荷重が0.1N以上、引っ張り破断伸びが100%以上、且つ引っ張り伸び100%での荷重が0.01N以上である請求項1〜9のいずれか一つに記載の有機・無機複合ヒドロゲル。
- 20℃の水中における平衡膨潤時の水含有率{Cmax/(A+B)}×100が2000重量%以上である、請求項1〜10のいずれか一つに記載の有機・無機複合ゲル。
- 請求項1〜11のいずれか一つに記載の有機・無機複合ヒドロゲルから水分を除去して得られる有機・無機複合ヒドロゲルの乾燥体。
- 請求項1又は5に記載の有機・無機複合ヒドロゲルの製造方法であって、
(A)水溶性有機高分子の構成成分であるモノマー(A’)と、(B)水に均一分散可能な水膨潤性層状粘土鉱物とを(C)水中に溶解し、前記(B)水に均一分散可能な水膨潤性層状粘土鉱物及び(C)水の共存下に水溶性有機高分子の構成成分であるモノマー(A’)を分子状酸素の不存在下で過酸化物の存在及び/又は紫外線照射により重合させる、有機・無機複合ヒドロゲルの製造方法。 - 1〜10層の厚みで均一分散させた(B)水に均一分散可能な水膨潤性層状粘土鉱物を架橋剤として存在させて、前記モノマー(A’)の重合を行なう、請求項13記載の有機・無機複合ヒドロゲルの製造方法。
- (B)水に均一分散可能な水膨潤性層状粘土鉱物/(A’)水溶性有機高分子(A)のモノマーの重量比が0.01〜10である、請求項13又は14に記載の有機・無機複合ヒドロゲルの製造方法。
- 得られる有機・無機複合ヒドロゲルの、{C/(A+B)}×100で定義される水含有率が600〜1000重量%、初期断面積が0.237cm2であるヒドロゲルを用いて測定した、引っ張り破断荷重が0.1N以上で、引っ張り破断伸びが100%以上、且つ引っ張り伸び100%での荷重が0.01N以上である、請求項13〜15のいずれか一つに記載の有機・無機複合ヒドロゲルの製造方法。
- 得られる有機・無機複合ヒドロゲルの、20℃の水中における平衡膨潤時の水含有率{Cmax/(A+B)}×100が2000重量%以上である、請求項13〜16のいずれか一つに記載の有機・無機複合ゲルの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001158634A JP4759165B2 (ja) | 2000-05-29 | 2001-05-28 | 有機・無機複合ヒドロゲル及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000158276 | 2000-05-29 | ||
JP2000-158276 | 2000-05-29 | ||
JP2000158276 | 2000-05-29 | ||
JP2001158634A JP4759165B2 (ja) | 2000-05-29 | 2001-05-28 | 有機・無機複合ヒドロゲル及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002053629A JP2002053629A (ja) | 2002-02-19 |
JP4759165B2 true JP4759165B2 (ja) | 2011-08-31 |
Family
ID=26592805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001158634A Expired - Lifetime JP4759165B2 (ja) | 2000-05-29 | 2001-05-28 | 有機・無機複合ヒドロゲル及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4759165B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007062A1 (ja) | 2012-07-05 | 2014-01-09 | Dic株式会社 | 非乾燥性高分子ヒドロゲル |
US10066082B2 (en) | 2014-10-16 | 2018-09-04 | Ricoh Company, Ltd. | Three-dimensional object producing method |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1595899B1 (en) * | 2003-02-17 | 2009-11-25 | Kawamura Institute Of Chemical Research | Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel |
JP4615445B2 (ja) | 2003-09-02 | 2011-01-19 | 大塚製薬株式会社 | 吐出容器および点眼容器 |
JP5349728B2 (ja) * | 2003-10-09 | 2013-11-20 | 一般財団法人川村理化学研究所 | 細胞培養基材及び細胞培養方法 |
JP4776187B2 (ja) * | 2004-07-21 | 2011-09-21 | Dic株式会社 | 有機・無機複合高分子ゲル及びその製造方法 |
US7993892B2 (en) | 2004-12-14 | 2011-08-09 | Kawamura Institute Of Chemical Research | Production of organic/inorganic composite hydrogel |
JP4530351B2 (ja) * | 2004-12-14 | 2010-08-25 | 財団法人川村理化学研究所 | 防曇性積層体及びその製造方法 |
JP2006271252A (ja) * | 2005-03-29 | 2006-10-12 | Kawamura Inst Of Chem Res | 細胞培養基材及び細胞培養方法 |
JP2006288217A (ja) * | 2005-04-06 | 2006-10-26 | Kawamura Inst Of Chem Res | 細胞培養基材及び細胞培養方法 |
JP5500754B2 (ja) * | 2005-05-25 | 2014-05-21 | 一般財団法人川村理化学研究所 | クレイヒドロゲルからなる細胞培養基材 |
JP4914028B2 (ja) * | 2005-06-10 | 2012-04-11 | 一般財団法人川村理化学研究所 | 高分子ゲルの溶解法 |
JP2007117275A (ja) * | 2005-10-26 | 2007-05-17 | Kawamura Inst Of Chem Res | 創傷被覆材 |
JP4861681B2 (ja) * | 2005-11-04 | 2012-01-25 | 一般財団法人川村理化学研究所 | 高分子ゲル積層体及びその製造方法 |
JP5285839B2 (ja) * | 2006-01-31 | 2013-09-11 | 一般財団法人川村理化学研究所 | 高分子複合ゲルの製造方法 |
JP5052818B2 (ja) * | 2006-04-28 | 2012-10-17 | 電気化学工業株式会社 | 組成物およびそれを用いた注入材ならびに補修工法 |
JP4712660B2 (ja) * | 2006-09-22 | 2011-06-29 | 株式会社竹中工務店 | コンクリート硬化体 |
JP5102484B2 (ja) * | 2006-12-21 | 2012-12-19 | 一般財団法人川村理化学研究所 | 熱伝導材 |
JP2008208962A (ja) * | 2007-02-28 | 2008-09-11 | Furukawa Electric Co Ltd:The | 筒状管継手及び管の接続方法 |
JP2008247961A (ja) * | 2007-03-29 | 2008-10-16 | Kawamura Inst Of Chem Res | 高分子ゲル複合体及びその製造法 |
EP2112196A1 (en) * | 2008-04-25 | 2009-10-28 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | A liquid composition comprising polymer chains and particles of an inorganic material in a liquid |
JP5246855B2 (ja) * | 2008-05-09 | 2013-07-24 | 一般財団法人川村理化学研究所 | カルボン酸塩構造又はカルボキシアニオン構造の基を有する有機無機複合ヒドロゲルの製造方法 |
JP5598833B2 (ja) * | 2008-07-09 | 2014-10-01 | Dic株式会社 | 有機・無機複合ヒドロゲルの製造方法 |
JP5654208B2 (ja) * | 2009-04-01 | 2015-01-14 | Dic株式会社 | 有機無機複合ゲル |
JP2011001482A (ja) * | 2009-06-19 | 2011-01-06 | Kawamura Inst Of Chem Res | 高分子ゲル、高分子ゲル分散液、高分子ゲル複合体及びそれらの製造方法 |
JP5398383B2 (ja) * | 2009-06-30 | 2014-01-29 | 一般財団法人川村理化学研究所 | 有機無機複合体粒子、その製造方法および有機無機複合体ヒドロゲル粒子の製造方法 |
WO2011001657A1 (ja) | 2009-07-01 | 2011-01-06 | 独立行政法人科学技術振興機構 | ポリイオンデンドリマー、及びそれよりなるハイドロゲル |
JP5501012B2 (ja) * | 2010-02-02 | 2014-05-21 | 一般財団法人川村理化学研究所 | 表面に繰り返し凹凸構造を有する有機無機複合ゲルおよびその製造方法 |
JP4840746B2 (ja) * | 2010-04-23 | 2011-12-21 | 一般財団法人川村理化学研究所 | 有機無機複合ゲル及びそれらの製造方法 |
JP5682447B2 (ja) * | 2011-05-18 | 2015-03-11 | Dic株式会社 | スラリー状有機無機複合ゲルおよび有機無機複合ゲル塗膜の製造方法 |
JP5880181B2 (ja) * | 2012-03-16 | 2016-03-08 | Dic株式会社 | 有機無機複合ヒドロゲル |
US8957145B2 (en) | 2012-09-18 | 2015-02-17 | National University Corporation Gunma University | Hydrogel-forming composition and hydrogel produced from the same |
US8962742B2 (en) | 2012-09-18 | 2015-02-24 | National University Corporation Gunma University | Hydrogel-forming composition and hydrogel produced from the same |
JPWO2014046124A1 (ja) * | 2012-09-18 | 2016-08-18 | 国立研究開発法人理化学研究所 | ヒドロゲルの接着方法 |
KR102172057B1 (ko) | 2012-09-18 | 2020-11-02 | 고쿠리츠다이가쿠호진 군마다이가쿠 | 하이드로겔 형성성 조성물 및 이로부터 제조되는 하이드로겔 |
US9243115B2 (en) | 2012-09-18 | 2016-01-26 | Nissan Chemical Industries, Ltd. | Hydrogel forming composition and hydrogel produced therefrom |
US9238718B2 (en) | 2012-09-18 | 2016-01-19 | Nissan Chemical Industries, Ltd. | Hydrogel forming composition and hydrogel produced therefrom |
JP6107417B2 (ja) * | 2013-05-23 | 2017-04-05 | Dic株式会社 | 双性イオン含有高分子ゲル |
CN105705584B (zh) | 2013-11-11 | 2020-05-12 | 日产化学工业株式会社 | 水凝胶形成性组合物及由其制作的水凝胶 |
JP6458953B2 (ja) * | 2013-11-20 | 2019-01-30 | 日産化学株式会社 | ヒドロゲルの接着方法 |
JP2015138192A (ja) * | 2014-01-23 | 2015-07-30 | 株式会社リコー | 手技練習用臓器モデル |
JP5930015B2 (ja) * | 2014-12-17 | 2016-06-08 | Dic株式会社 | 温度応答性多孔質体及びその製造方法 |
JP6520266B2 (ja) | 2015-03-20 | 2019-05-29 | 株式会社リコー | ハイドロゲル前駆体液及び立体造形用液体セット、並びに、それらを用いたハイドロゲル造形体及び立体造形物の製造方法 |
JP6792203B2 (ja) | 2015-03-27 | 2020-11-25 | 日産化学株式会社 | ヒドロゲル形成性組成物及びそれより作られる高強度ヒドロゲル |
US10882245B2 (en) | 2015-07-06 | 2021-01-05 | Ricoh Company, Ltd. | Method of manufacturing three-dimensional object, liquid set for manufacturing three-dimensional object, device for manufacturing three-dimensional object, and gel object |
JP6945272B2 (ja) * | 2015-07-22 | 2021-10-06 | 株式会社リコー | 立体造形物及びその製造方法 |
US10442181B2 (en) | 2015-07-22 | 2019-10-15 | Ricoh Company, Ltd. | Hydrogel object and method of manufacturing hydrogel object |
EP3431139A4 (en) | 2016-03-14 | 2019-03-13 | Ricoh Company, Ltd. | BOLUS AND METHOD FOR PRODUCING THE SAME |
WO2017164003A1 (ja) * | 2016-03-22 | 2017-09-28 | Dic株式会社 | 有機無機複合ヒドロゲルの製造方法 |
WO2018164003A1 (ja) * | 2017-03-09 | 2018-09-13 | 日産化学株式会社 | 温度応答性ヒドロゲル及びその製造方法 |
WO2018221749A1 (ja) * | 2017-06-02 | 2018-12-06 | 国立大学法人東北大学 | 生体組織の模型の乾燥体及び生体組織の模型の乾燥体に対する溶媒含有方法 |
JPWO2019088289A1 (ja) | 2017-11-06 | 2021-01-14 | 国立大学法人群馬大学 | 自己支持性を有するハイドロゲル及びその製造方法 |
JP7106850B2 (ja) * | 2017-12-07 | 2022-07-27 | 株式会社リコー | 超音波検査用ファントム及びその製造方法 |
US11752482B2 (en) * | 2020-02-21 | 2023-09-12 | Research & Business Foundation Sungkyunkwan University | Restructured hydrogel and preparing method of the same |
KR102401238B1 (ko) * | 2020-11-19 | 2022-05-25 | 한국지질자원연구원 | 벤토나이트-하이드로겔 복합체 및 이의 제조방법 |
CN116217974B (zh) * | 2023-02-23 | 2024-06-04 | 厦门大学 | 一种多功能抗冻有机水凝胶、其制备方法及柔性电子器件 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000073596A1 (en) * | 1999-05-26 | 2000-12-07 | Alberta Research Council Inc. | Reinforced networked polymer/clay alloy composite |
JP2002053762A (ja) * | 2000-05-29 | 2002-02-19 | Kawamura Inst Of Chem Res | 有機・無機複合ヒドロゲル及びその製造方法 |
-
2001
- 2001-05-28 JP JP2001158634A patent/JP4759165B2/ja not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007062A1 (ja) | 2012-07-05 | 2014-01-09 | Dic株式会社 | 非乾燥性高分子ヒドロゲル |
US9382401B2 (en) | 2012-07-05 | 2016-07-05 | Dic Corporation | Nondrying polymer hydrogel |
US10066082B2 (en) | 2014-10-16 | 2018-09-04 | Ricoh Company, Ltd. | Three-dimensional object producing method |
US10557018B2 (en) | 2014-10-16 | 2020-02-11 | Ricoh Company, Ltd. | Three-dimensional object forming liquid, three-dimensional object forming liquid set, three-dimensional object producing method, and three-dimensional object |
Also Published As
Publication number | Publication date |
---|---|
JP2002053629A (ja) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759165B2 (ja) | 有機・無機複合ヒドロゲル及びその製造方法 | |
US6710104B2 (en) | Organic/inorganic hybrid hydrogel and manufacturing method therefor | |
JP2002053762A (ja) | 有機・無機複合ヒドロゲル及びその製造方法 | |
Dai et al. | Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels | |
Zhao et al. | Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels | |
Peng et al. | Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems | |
Li et al. | Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior | |
Xia et al. | Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core–shell inorganic–organic hybrid latex particles | |
Puig et al. | Microstructured polyacrylamide hydrogels prepared via inverse microemulsion polymerization | |
Song et al. | Temperature‐and pH‐Sensitive Nanocomposite Gels with Semi‐Interpenetrating Organic/Inorganic Networks | |
Hu et al. | pH responsive strong polyion complex shape memory hydrogel with spontaneous shape changing and information encryption | |
Khan et al. | Preparation, physicochemical and stability studies of chitosan-PNIPAM based responsive microgels under various pH and temperature conditions | |
JP5398383B2 (ja) | 有機無機複合体粒子、その製造方法および有機無機複合体ヒドロゲル粒子の製造方法 | |
Qin et al. | High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents | |
Li et al. | Silica-based Janus nanosheets for self-healing nanocomposite hydrogels | |
Takafuji et al. | Microspherical hydrogel particles based on silica nanoparticle-webbed polymer networks | |
JP2007204527A (ja) | 高分子複合ゲル及びその製造方法 | |
Du et al. | Synthesis of amphoteric nanocomposite hydrogels with ultrahigh tensibility | |
JP5598833B2 (ja) | 有機・無機複合ヒドロゲルの製造方法 | |
Chen et al. | A novel fast responsive thermo-sensitive poly (N-isopropylacrylamide)-clay nanocomposites hydrogels modified by nanosized octavinyl polyhedral oligomeric silsesquioxane | |
Xu et al. | High strength nanocomposite hydrogels with outstanding UV‐shielding property | |
Li et al. | Self-assembly and the hemolysis effect of monodisperse N, N-diethylacrylamide/acrylic acid nanogels with high contents of acrylic acid | |
JP2004091724A (ja) | 有機・無機複合体及びその製造方法 | |
JP5202903B2 (ja) | カルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルの製造方法 | |
JP5654208B2 (ja) | 有機無機複合ゲル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070824 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4759165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |