JP4758963B2 - Coated silica sand - Google Patents
Coated silica sand Download PDFInfo
- Publication number
- JP4758963B2 JP4758963B2 JP2007211460A JP2007211460A JP4758963B2 JP 4758963 B2 JP4758963 B2 JP 4758963B2 JP 2007211460 A JP2007211460 A JP 2007211460A JP 2007211460 A JP2007211460 A JP 2007211460A JP 4758963 B2 JP4758963 B2 JP 4758963B2
- Authority
- JP
- Japan
- Prior art keywords
- silica sand
- parts
- resin
- rubber
- sand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0016—Granular materials, e.g. microballoons
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Road Paving Structures (AREA)
- Carpets (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
本発明は、衝撃吸収性に優れ、快適な弾力感ある人工芝構造体が得られる、弾性皮膜を有する樹脂またはゴム被覆珪砂の構造に関する。 The present invention relates to a structure of resin or rubber-coated silica sand having an elastic film, which can provide an artificial turf structure having excellent impact absorbability and a comfortable elasticity.
テニスコート、フットサルコート等の球技場、学校、幼稚園グランド等に、人工芝のパイル内部に珪砂を充填した砂入り人工芝が使用されている。 Artificial turf with sand filled with silica sand is used in tennis stadiums, futsal courts, ballparks, schools and kindergarten grounds.
砂入り人工芝は、クッション性が良いとされている。砂入り人工芝のクッション性は、砂のずれ、移動によるものであるが、充填物が珪砂であるため、クッション性には限界がある。即ち、運動時の荷重、衝撃による砂同士の摩擦により、粒子が粉砕されて雨等の水分により固化するセメント化現象を起こして層全体が硬くなり、衝撃吸収性が極端に低くなって危険である。また粉砕された小さな砂が周囲に飛散して公害源となる。 Artificial grass with sand is said to have good cushioning properties. The cushioning property of the artificial turf with sand is due to the displacement and movement of the sand, but since the filler is quartz sand, the cushioning property is limited. That is, the friction during sanding due to the load during motion and impact causes a cementation phenomenon in which particles are crushed and solidified by moisture such as rain, and the entire layer becomes hard and the shock absorption becomes extremely low, which is dangerous. is there. Small crushed sand is scattered around and becomes a source of pollution.
また、長いパイルの人工芝内部に、安価な硬質充填材(珪砂)と弾性充填材(ゴムチップ)を充填したロングパイル人工芝は、天然芝に似た外観、優れた衝撃吸収性を有し、維持管理費が安価であるという利点を有し、維持管理に多大な費用のかかる天然芝に代わり、サッカー場、野球場等で急速に普及している。 In addition, long pile artificial turf filled with inexpensive hard filler (silica sand) and elastic filler (rubber chips) inside a long pile artificial turf has an appearance similar to natural turf and excellent shock absorption, It has the advantage of low maintenance costs, and is rapidly spreading in soccer fields, baseball fields, etc., instead of natural grass, which requires a lot of maintenance costs.
しかし、ロングパイル人工芝のゴムチップの空隙が大きいため下層に珪砂分が落下集中し、ゴムチップを介してとはいえ、全体重をぶつけるようなダイナミックな運動の衝撃により、やはり砂が微粉化して砂入り人工芝と同様の現象が懸念され、まだ歴史が浅いにもかかわらず一部そのような指摘がなされている。 However, because of the large gap between the rubber chips of the long pile artificial turf, silica sand falls and concentrates in the lower layer, and even though the rubber chips are passed, the dynamic movement impacts the entire weight, and the sand is still pulverized. The phenomenon similar to the artificial turf is concerned, and some have been pointed out even though the history is still short.
かかる問題を解決する手段として、人工芝内部に充填する珪砂の表面をゴム・プラスチックで被覆する方法が種々提案されている。 As means for solving such a problem, various methods for covering the surface of silica sand filled in the artificial turf with rubber / plastic have been proposed.
特許文献1〜4には、例えばブタジェン系合成ゴム、ポリオレフィン系、ポリウレタン系等の弾性体の溶液・エマルジョンの吹付け、ディッピングによる珪砂表面への被覆について述べられているが、珪砂表面に被覆できるゴム、樹脂だけでは安価に効率よく衝撃吸収性、快適な弾力感を長期に維持することは困難である。 Patent Documents 1 to 4 describe, for example, spraying a solution / emulsion of an elastic body such as butadiene synthetic rubber, polyolefin, polyurethane, etc., and coating the silica sand surface by dipping, but the silica sand surface can be coated. It is difficult to maintain impact absorption and comfortable elasticity for a long period of time with rubber and resin alone at low cost.
また、特許文献5による方法では実際に安価で良好な被覆珪砂が製造可能であり、砂の微粉化を防ぐことは十分可能であるが、衝撃吸収性、快適な弾力感においてもう一段上のレベルを要求されている。 In addition, the method according to Patent Document 5 can actually produce inexpensive and good coated silica sand, and can sufficiently prevent the pulverization of the sand, but it is a further level in terms of shock absorption and comfortable elasticity. Is requested.
本発明は、上記従来の問題に鑑み、持続可能な衝撃吸収性、快適な弾力感の得られる人工芝構造体が得られる、弾性を付与した樹脂またはゴムの皮膜を被覆した珪砂を提供することを目的とする。 In view of the above-mentioned conventional problems, the present invention provides a silica sand coated with a resin or rubber film imparted with elasticity to obtain an artificial turf structure capable of obtaining a sustainable impact absorption and comfortable elasticity. With the goal.
本発明者は、マイクロバルーンを被覆層中に含有させることで、材料コストを飛躍的に増大させる樹脂またはゴムの被覆層を厚くすることなく、衝撃吸収性、弾力性の向上を計ることができることを見出し、本発明を完成するに至った。 The present inventor can improve the impact absorption and elasticity without increasing the thickness of the resin or rubber coating layer, which dramatically increases the material cost, by including the microballoon in the coating layer. As a result, the present invention has been completed.
即ち、本発明の被覆珪砂は、樹脂またはゴムからなる被覆層を有し、該被覆層中にマイクロバルーンを含有することを特徴とする人工芝充填用被覆珪砂である。
また、本発明の被覆珪砂の製造方法は、硅砂100重量部に、樹脂またはゴム8〜40重量部と、該樹脂またはゴム100重量部に対して、20〜100重量部の無機系マイクロバルーンまたは1〜6重量部のプラスチック系マイクロバルーンを添加して攪拌混合し、珪砂が凝集し始めた時点で無機粉体を添加し、撹拌混合を続けて硅砂の凝集を解除することを特徴とする人工芝充填用被覆珪砂の製造方法である。
That is, the coated silica sand of the present invention is a coated silica sand for artificial turf filling having a coating layer made of a resin or rubber and containing a microballoon in the coating layer.
In addition, the method for producing the coated silica sand of the present invention comprises 8 to 40 parts by weight of resin or rubber, 100 parts by weight of silica sand, and 20 to 100 parts by weight of an inorganic microballoon or 100 parts by weight of the resin or rubber. 1-6 parts by weight of plastic-based microballoon is added and stirred and mixed, and when silica sand begins to aggregate, inorganic powder is added, and stirring and mixing are continued to release the aggregation of dredged sand. It is a manufacturing method of the covering silica sand for turf filling.
本発明の被覆珪砂は、材料コストを飛躍的に増大させる樹脂またはゴムの被覆層を厚くすることなく、衝撃吸収性、弾力性の向上を計ることができ、経済性に優れる。 The coated silica sand of the present invention can improve impact absorption and elasticity without increasing the thickness of the resin or rubber coating layer that dramatically increases the material cost, and is excellent in economic efficiency.
従って、本発明の被覆珪砂を使用すれば、衝撃吸収性に優れ、快適な弾力感を有し、長期にわたり快適なプレー性を維持できる砂入り人工芝構造体、ロングパイル人工芝構造体等の各種人工芝構造体を、低コストで提供できる。 Therefore, if the coated silica sand of the present invention is used, such as an artificial turf structure with sand, a long pile artificial turf structure, etc. that has excellent shock absorption, has a comfortable elasticity, and can maintain a comfortable playability for a long period of time. Various artificial turf structures can be provided at low cost.
珪砂としては、山砂、川砂、海砂等の天然砂の他に、岩石の粉砕時に発生する砂、ガラス、セラミックス、フライアッシュ等の硬質の粒状体が挙げられ、乾燥、粒度調整された粒径2.5mm以下の珪砂が好ましい。 Silica sand includes natural sand such as mountain sand, river sand, sea sand, and hard granular materials such as sand, glass, ceramics and fly ash generated during rock crushing. Silica sand having a diameter of 2.5 mm or less is preferred.
珪砂を被覆する被覆層は、樹脂またはゴムからなる層であり、マイクロバルーンを含有する。被覆層の厚みは特に限定されず、珪砂の粒径にもよるが、マイクロバルーンを含有する弾力性のある被覆層であることを考慮すると30〜100μm程度あることが望ましい。 The coating layer covering the silica sand is a layer made of resin or rubber and contains microballoons. The thickness of the coating layer is not particularly limited and depends on the particle size of the silica sand, but is preferably about 30 to 100 μm in consideration of the elastic coating layer containing microballoons.
樹脂またはゴムとしては、特に限定されないが、被覆前は液状であり、硬化後は可撓性があり、珪砂への接着性に優れ、プレーヤーのシューズでの激しい動きに耐え得る強度と、屋外での直射日光その他の気候に老化しにくい耐久性を備えたものが好ましい。また、水分散系樹脂、溶剤溶液樹脂でも良いが、経済性を考慮すると100%固形分液状樹脂が好ましい。具体的には、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリブタジエンゴム等の熱硬化性樹脂または熱可塑性樹脂が挙げられ、ポリウレタン樹脂が好適である。 The resin or rubber is not particularly limited, but it is liquid before coating, flexible after curing, excellent adhesion to silica sand, strength enough to withstand intense movements in player shoes, and outdoors. It is preferable to have durability that is resistant to aging in direct sunlight and other climates. A water-dispersed resin or a solvent solution resin may be used, but a 100% solid content liquid resin is preferable in consideration of economy. Specifically, a thermosetting resin or a thermoplastic resin such as an epoxy resin, an acrylic resin, a polyester resin, a polyurethane resin, or a polybutadiene rubber can be given, and a polyurethane resin is preferable.
樹脂またはゴムは、硬化後の20%引張り応力が0.1〜1.2MPaであるものが好ましく、0.3〜0.8MPaであるものがより好ましい。0.1MPa未満の場合、被覆層が柔らかすぎて衝撃、磨耗等に問題が生じる懸念がある。また1.2MPaを超える場合は被覆層が硬すぎて、マイクロバルーン添加の効果が発揮できず、衝撃吸収性が低下し、弾性に乏しい被覆層となる懸念がある。 The resin or rubber preferably has a 20% tensile stress after curing of 0.1 to 1.2 MPa, and more preferably 0.3 to 0.8 MPa. When the pressure is less than 0.1 MPa, the coating layer is too soft, and there is a concern that problems such as impact and wear may occur. On the other hand, if it exceeds 1.2 MPa, the coating layer is too hard, and the effect of adding microballoons cannot be exhibited, impact absorption is reduced, and there is a concern that the coating layer has poor elasticity.
マイクロバルーンとしては、シリカ系バルーン、セラミックス系バルーン、アルミノシリケート系バルーン等の無機系マイクロバルーン、塩化ビニリデン樹脂系バルーン、アクリロニトリル樹脂系バルーン、フェノール樹脂系バルーン等のプラスチック系マイクロバルーンが挙げられる。 Examples of the microballoons include inorganic microballoons such as silica balloons, ceramic balloons, and aluminosilicate balloons, plastic microballoons such as vinylidene chloride resin balloons, acrylonitrile resin balloons, and phenol resin balloons.
無機系マイクロバルーンと、プラスチック系マイクロバルーンは、それぞれを単独で用いても良いが、無機系マイクロバルーンは添加量が増えると、被覆層の見かけ上の硬さが硬くなり(硬くなって衝撃吸収性が落ちるとは限らない)弾力性とのバランスを考慮する必要がある。一方、プラスチック系マイクロバルーンはその点有利ではあるが、非常に高価である。従って、これらの特性を考慮して、両者を併用しても良い。 Inorganic microballoons and plastic microballoons may be used alone, but as the amount of inorganic microballoons increases, the apparent hardness of the coating layer becomes harder (it becomes harder and absorbs shocks). It is necessary to consider the balance with elasticity. On the other hand, plastic microballoons are advantageous in that respect, but are very expensive. Therefore, both of these characteristics may be used in combination.
マイクロバルーンは、製造方法によっては工程中に破壊される率が大きくなる(バルーンの生存率が低下する)懸念があるので、なるべく圧縮強度の大きいものを選択することが好ましい。バルーンの材質、形状にもよるが、概して粒径の大きいものは強度が弱くなるので、粒径が小さめのほうが好ましい。また、マイクロバルーンの粒径は被覆層の厚み以内であることが好ましい。具体的には、平均粒径が20〜70μmであることが好ましく、30〜50μmであることがより好ましい。平均粒径が20μm未満の場合は、被覆層が硬くなり、衝撃吸収性、弾力性が乏しくなる懸念がある。平均粒径70μmを超える場合は、マイクロバルーンが被覆層の外側に飛び出す可能性が大きく、また前述の通り圧縮強度が低くなるので、バルーンの生存率が低下して、やはり衝撃吸収性、弾力性が乏しくなる懸念がある。 Depending on the manufacturing method, there is a concern that the microballoon has a high rate of destruction during the process (decreases the survival rate of the balloon). Therefore, it is preferable to select a microballoon having as large a compressive strength as possible. Although it depends on the material and shape of the balloon, the larger the particle size, the weaker the strength, so the smaller the particle size is preferable. The particle size of the microballoon is preferably within the thickness of the coating layer. Specifically, the average particle size is preferably 20 to 70 μm, and more preferably 30 to 50 μm. When the average particle size is less than 20 μm, the coating layer becomes hard, and there is a concern that the impact absorption and elasticity will be poor. When the average particle size exceeds 70 μm, there is a high possibility that the microballoon will jump out of the coating layer, and the compressive strength becomes low as described above. There is a concern that will become scarce.
被覆層は、隠蔽性を持たせて耐候性を向上させ、かつ着色のため、顔料を含有することが好ましい。顔料は色により異なるが、例えばレンガ色、茶色、黄色の場合には鉄の酸化物、緑色の場合には酸化クロム、フタロシアニン系有機顔料、白の場合には酸化チタンが使用され、その他の顔料を組み合わせて種々の色が調合できる。また、遮熱効果を付与する場合には、熱反射性の大きい遮熱顔料を使用しても良い。顔料として太陽熱の反射能力の大きい酸化チタンのほか、茶色系であればAR300ブラウン(川村化学(株)製)、黄色系であればAY−610イエロー(川村化学(株)製)、緑色系ではFastogen Green2YK(大日本インキ化学工業(株))等があり調色の上、所望の色にすれば良い。 It is preferable that the coating layer contains a pigment for providing concealability to improve weather resistance and for coloring. The pigment varies depending on the color.For example, iron oxide is used for brick, brown and yellow, chromium oxide is used for green, phthalocyanine organic pigment is used, and titanium oxide is used for white. Various colors can be prepared by combining. Moreover, when providing a heat-shielding effect, you may use a heat-shielding pigment with large heat reflectivity. In addition to titanium oxide, which has high solar heat reflecting ability as a pigment, AR300 brown (manufactured by Kawamura Chemical Co., Ltd.) is used for brown, AY-610 yellow (manufactured by Kawamura Chemical) is used for yellow, and green There is Fastogen Green 2YK (Dainippon Ink Chemical Co., Ltd.) and the like.
被覆層は、必要に応じて、その他の配合剤を含有しても良い。 The coating layer may contain other compounding agents as necessary.
例えば、被覆層の耐候性、耐オゾン性、その他耐久性を向上させるために、イルガノックス1010(チバガイギー社製)、チヌビンP−327等のベンゾトリアゾール系、トミソーブ800等のベンゾフェノン系紫外線吸収剤、老化防止剤を添加することが出来る。 For example, in order to improve the weather resistance, ozone resistance, and other durability of the coating layer, Irganox 1010 (manufactured by Ciba Geigy), benzotriazole type such as Tinuvin P-327, benzophenone type ultraviolet absorber such as Tomissorb 800, An anti-aging agent can be added.
また、用途によっては、予め適当な可塑剤に分散させて、ジンクピリチオン、ジンク2−ピリジンチオール−1オキサイド等の抗菌、防カビ剤を添加し、細菌、カビの発生を抑制することが出来る。 Depending on the application, it can be dispersed in an appropriate plasticizer in advance, and antibacterial and antifungal agents such as zinc pyrithione and zinc 2-pyridinethiol-1 oxide can be added to suppress the generation of bacteria and mold.
その他必要に応じて、物性補強、増量剤その他の目的で、無機粉体、例えば炭酸カルシウム、タルク、シリカ、クレー等を加えても良い。 In addition, inorganic powders such as calcium carbonate, talc, silica, clay and the like may be added as necessary for the purpose of reinforcing physical properties, extenders and the like.
また、接着性がよく、安定供給できるゴム微粉末、例えば安価なリサイクル品等を含有させれば、安価に皮膜を厚く出来、マイクロバルーン添加に近い効果を出すことが出来る。この際は、マイクロバルーン添加量を減少することが出来る。 Moreover, if rubber fine powder that has good adhesiveness and can be stably supplied, such as an inexpensive recycled product, is contained, the film can be made thick at low cost, and an effect close to that of adding a microballoon can be obtained. At this time, the amount of microballoon added can be reduced.
本発明の被覆珪砂の製造方法は、特に限定されず、例えば、珪砂と、樹脂またはゴムと、マイクロバルーンを攪拌して混合することにより製造することができる。この際、マイクロバルーンが製造工程中に破壊されることを防止するため、最初に樹脂を添加混合し、その後にマイクロバルーンを添加混合する方が好ましい。 The method for producing the coated quartz sand of the present invention is not particularly limited, and can be produced, for example, by stirring and mixing quartz sand, resin or rubber, and microballoons. At this time, in order to prevent the microballoon from being broken during the manufacturing process, it is preferable to first add and mix the resin, and then add and mix the microballoon.
また、被覆層と珪砂表面の接着性を向上させるために、KBE−9007(信越化学工業(株)製)等のシランカプリング剤等を使用して、珪砂の前処理を行っても良い。 Moreover, in order to improve the adhesiveness between the coating layer and the surface of the silica sand, pretreatment of the silica sand may be performed using a silane coupling agent such as KBE-9007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
樹脂またはゴムの添加量は特に限定されないが、例えば平均粒径1.5mmの珪砂の場合、珪砂100重量部に対して、8〜40重量部であることが好ましく、12〜30重量部であることがより好ましい。 The amount of resin or rubber added is not particularly limited. For example, in the case of silica sand having an average particle diameter of 1.5 mm, it is preferably 8 to 40 parts by weight, and 12 to 30 parts by weight with respect to 100 parts by weight of silica sand. It is more preferable.
マイクロバルーンの添加量は特に限定されないが、無機系マイクロバルーンの真比重は、材質により若干異なるが、上記好ましい粒径の範囲では概ね0.6〜0.9の範囲にあるため、無機系マイクロバルーン単独で使用する場合の添加量は、樹脂またはゴム100重量部に対して、20〜100重量部であることが好ましく、40〜60重量部であることがより好ましい。 The addition amount of the microballoon is not particularly limited, but the true specific gravity of the inorganic microballoon is slightly different depending on the material, but is within the range of 0.6 to 0.9 in the above preferred particle size range. When the balloon is used alone, the addition amount is preferably 20 to 100 parts by weight, more preferably 40 to 60 parts by weight with respect to 100 parts by weight of the resin or rubber.
また、プラスチック系マイクロバルーンを単独で使用する場合、樹脂またはゴム100重量部に対して、1〜6重量部であることが好ましく、2〜4重量部であることがより好ましい。尚、プラスチック系マイクロバルーンは非常に飛散しやすい概ね真比重0.08以下の非常に軽量の粉体であるため、飛散防止のためにバルーンの球体表面に無機粉体を付着させたり、含水させたものが取り扱易いが、上記添加量は、このような処理をする前の、純プラスチック系マイクロバルーン量で表現したものである。従って、処理後のバルーンを用いる場合は、処理分の重量を加算して考慮する必要がある。 Moreover, when using a plastic microballoon independently, it is preferable that it is 1-6 weight part with respect to 100 weight part of resin or rubber | gum, and it is more preferable that it is 2-4 weight part. In addition, plastic microballoons are very lightweight powders with a true specific gravity of 0.08 or less that are very easy to scatter. Therefore, in order to prevent scattering, inorganic powder can be adhered to the sphere surface of the balloon, or it can be hydrated. The amount added is expressed as the amount of pure plastic microballoons before such treatment. Therefore, when using the balloon after processing, it is necessary to consider by adding the weight of the processing.
無機系マイクロバルーンとプラスチック系マイクロバルーンを併用する場合は、上記単独で用いる場合の添加量を案分すれば良い。即ち、無機系マイクロバルーン60重量%、プラスチック系マイクロバルーン40重量%使用する場合、無機系マイクロバルーンは上記添加量の60%、プラスチック系マイクロバルーンは上記添加量の40%使用する。 In the case where an inorganic microballoon and a plastic microballoon are used in combination, the addition amount in the case of using the above alone may be appropriately selected. That is, when 60% by weight of inorganic microballoon and 40% by weight of plastic microballoon are used, 60% of the addition amount is used for inorganic microballoon and 40% of the addition amount is used for plastic microballoon.
マイクロバルーン添加量が上記範囲より少ないと、衝撃吸収性、弾力性が乏しくなる可能性があり、多すぎると被覆層の強度不足を招いたり、被覆層内部に充填出来ない状態が発生する懸念が生ずる。 If the amount of microballoon added is less than the above range, impact absorption and elasticity may be poor, and if it is too much, there is a concern that the coating layer may be insufficient in strength or that the inside of the coating layer cannot be filled. Arise.
マイクロバルーンの添加量が少なく、添加後も凝集して分解しにくいときは、例えば特許文献5に記載の方法、即ち、硅砂に、樹脂またはゴムと、マイクロバルーンを含有する皮膜形成材料を添加して攪拌混合し、凝集し始めた時点で無機粉体を添加し、撹拌混合を続けて硅砂の凝集を解除する方法で製造できる。無機紛体としては、上述したものが使用できる。 When the amount of microballoon added is small and it is difficult to agglomerate and decompose even after addition, for example, the method described in Patent Document 5, that is, a resin or rubber and a film forming material containing microballoon are added to cinnabar. Then, the mixture is stirred and mixed, and when it starts to aggregate, inorganic powder is added, and stirring and mixing are continued to release the agglomeration of dredged sand. As the inorganic powder, those described above can be used.
具体的には、マイクロバルーンの被覆樹脂による濡れを損なわない程度に、添加タイミングをやや遅めにして、混合物が凝集してもマイクロバルーンが凝集物の分解を促進する方向に働くので少量の無機粉体を添加し少しの時間攪拌を継続するだけで、短時間に比較的容易分解できる。 Specifically, the addition timing is slightly delayed so as not to impair the wetness of the microballoon with the coating resin, and even if the mixture is agglomerated, the microballoon works in the direction of promoting the decomposition of the agglomerate, so a small amount of inorganic By simply adding the powder and continuing stirring for a short time, it can be decomposed relatively easily in a short time.
また、1工程のみで製造するよりも、複数回に分けて被覆したほうが、一回あたりの珪砂に対する樹脂量が少ないので、凝集の程度が少なく、より容易に分解できて、マイクロバルーンの生存率も高く被覆作業ができる。 In addition, the amount of resin per silica sand is less when coated in multiple steps than when it is manufactured in only one step, so the degree of aggregation is less and it can be decomposed more easily, and the microballoon survival rate Highly covering work can be done.
また、マイクロバルーンが被覆層の最も外側の部分にも密度濃く存在するため、被覆層の強度に懸念がある場合、更に樹脂のみの被覆層を設けことで、なお一層衝撃強度に強い被覆層とすることが出来る。 In addition, since the microballoons are also densely present in the outermost part of the coating layer, when there is a concern about the strength of the coating layer, by further providing a coating layer made only of a resin, I can do it.
本発明の被覆珪砂は、テニスコート、フットサル、学校グラウンド等に使用される砂入り人工芝(パイル長20mm程度)構造体の珪砂として、単独で、或いは無処理の珪砂と重量比(被覆珪砂/無処理珪砂)で1/3程度まで混合または積層して使用することができる。これにより、衝撃吸収性に優れ、優れた弾力感が得られる砂入り人工芝構造体が得られる。 The coated silica sand of the present invention is used alone or as a silica sand of an artificial turf-containing turf (pile length of about 20 mm) structure used for tennis courts, futsal, school grounds, etc. Untreated silica sand) can be mixed or laminated up to about 1/3. As a result, an artificial turf structure with sand that has excellent impact absorbability and excellent elasticity can be obtained.
また、サッカー場、野球場等に使用されるロングパイル人工芝(パイル長50〜70mm)構造体は、珪砂等の硬質充填材とゴムチップ等の軟質(弾性)充填材を充填したものであるが、本発明の被覆珪砂は、ロングパイル人工芝構造体の硬質充填材として、ゴムチップと共に、単独で、或いは無処理の珪砂と重量比(被覆珪砂/無処理珪砂)で1/3程度まで混合または積層して使用することができる。これにより、長期にわたり、衝撃吸収性に優れ、快適な弾力感を有するロングパイル人工芝構造体を提供し、快適なプレー性を維持できる。またゴムチップの代わりに本発明の被覆珪砂が充填された人工芝構造体は、廃タイヤ粉砕ゴムチップを使用したときの欠点、例えば臭気の問題等を防止できる。 A long pile artificial turf (pile length: 50 to 70 mm) structure used in a soccer field, a baseball field, etc. is filled with a hard filler such as silica sand and a soft (elastic) filler such as a rubber chip. The coated quartz sand of the present invention is mixed as a hard filler for a long pile artificial turf structure with rubber chips alone or with untreated quartz sand in a weight ratio (coated quartz sand / untreated quartz sand) to about 1/3 or It can be used by laminating. As a result, a long pile artificial turf structure having excellent impact absorbability and a comfortable elasticity can be provided over a long period of time, and comfortable playability can be maintained. Further, the artificial turf structure filled with the coated silica sand of the present invention instead of the rubber chip can prevent defects such as odor problems when the waste tire ground rubber chip is used.
以下、実施例により本発明を更に詳細に説明する。尚、実施例における「部」は「重量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “part” means “part by weight”.
<使用材料>
(1)珪砂
珪砂a:4号珪砂(東海リテック(株)製、岐阜県土岐市産、平均粒径1.5mm)
珪砂b:鹿島3B珪砂(高野商事(株)製、茨城県鹿島産、平均粒径1.8mm)
<Materials used>
(1) Silica sand Silica sand a: No. 4 silica sand (manufactured by Tokai Ritec Co., Ltd., Toki City, Gifu Prefecture, average particle size 1.5 mm)
Silica sand b: Kashima 3B silica sand (manufactured by Takano Shoji Co., Ltd., Kashima, Ibaraki, average particle size 1.8mm)
(2)被覆用樹脂
平均分子量3000、2官能のポリオキシプロピレングリーコール300部とジフェニルメタンジイソシアネート120部を、窒素気流中、80℃で4時間反応させた、イソシアネート基含有量7.4%、粘度4,100mPa・s/25℃のポリウレタン樹脂を用いた。
(2) Coating resin An average molecular weight of 3000, 300 parts of bifunctional polyoxypropylene glycol and 120 parts of diphenylmethane diisocyanate were reacted at 80 ° C. for 4 hours in a nitrogen stream, isocyanate group content 7.4%, viscosity A polyurethane resin of 4,100 mPa · s / 25 ° C. was used.
この樹脂の20%引張り応力は0.41MPaであった。尚、この応力の測定は、真空脱泡した後ドクターブレードで約10μmの無発泡フィルムを作成し、室温で7日硬化養生の後、JIS K 6251(加硫ゴムの引張り試験方法)に準拠して測定した。 The 20% tensile stress of this resin was 0.41 MPa. In addition, this stress is measured in accordance with JIS K 6251 (Tensile test method for vulcanized rubber) after vacuum defoaming, making a non-foamed film of about 10 μm with a doctor blade, curing at room temperature for 7 days, and curing. Measured.
(3)触媒
Dabco 33LV(エアープロダクツ(株)製、3級アミン)
(3) Catalyst Dabco 33LV (manufactured by Air Products Co., Ltd., tertiary amine)
(4)マイクロバルーン
無機バルーン:セノライトFS−150(巴工業(株)、セラミックス系)、平均粒径40μm
プラスチックバルーン:EMC40(B)(日本フィライト(株)、アクリルニトリル樹脂系)、平均粒径45μm、真比重平均値0.05、飛散防止のため表面に2.2倍量の無機粉末が付着したもの(真比重0.16)
(4) Microballoon inorganic balloon: Cenolite FS-150 (Sakai Kogyo Co., Ltd., ceramics), average particle size 40 μm
Plastic balloon: EMC40 (B) (Nippon Philite Co., Ltd., acrylonitrile resin system), average particle size 45 μm, true specific gravity average value 0.05, 2.2 times the amount of inorganic powder adhered to the surface to prevent scattering Things (true specific gravity 0.16)
(5)顔料
F3グリーン(戸田工業(株)製)緑色顔料
(5) Pigment F3 Green (manufactured by Toda Kogyo Co., Ltd.) Green pigment
(6)無機粉体
無機粉体a:スーパーSSS(丸尾カルシウム(株)製、炭酸カルシウム)
無機粉体b:タルクDNB(日本タルク(株)製、タルク)
(6) Inorganic powder Inorganic powder a: Super SSS (manufactured by Maruo Calcium Co., Ltd., calcium carbonate)
Inorganic powder b: Talc DNB (manufactured by Nippon Talc Co., Ltd., talc)
(7)人工芝
テニスコート用砂充填タイプ人工芝:パイル長さ20mm(泉州敷物(株)製)
ロングパイル人工芝:スプリットヤーンパイル、パイル長60mm(大塚家具製造販売(株)製)
(7) Artificial turf Sand-filled artificial turf for tennis courts: Pile length 20 mm (manufactured by Quanzhou Rug Co., Ltd.)
Long pile artificial turf: split yarn pile, pile length 60mm (manufactured by Otsuka Furniture Manufacturing and Sales Co., Ltd.)
<評価方法>
(1)床の硬さ試験
JIS A 6519(体育館用鋼製床下地構成材)8.7項(床の硬さ試験)に準拠した試験機により、重さ3.8kgのヘッドモデルを、20cm高さより下記試験体上の木製合板円盤の中心に、自由落下・衝突させたときの最大加速度(G)を測定した。尚、先端荷重落下時、砂の厚みが薄いので砂の中に先端がめり込むと同時に飛散して正確な値が得られなかったため、少し硬めの材料として、木製合板円盤を置いた。木製合板円盤のみで測定した場合の最大加速度は83Gであった。
<Evaluation method>
(1) Floor hardness test A head model weighing 3.8 kg was tested using a test machine in accordance with JIS A 6519 (steel floor base material for gymnasium) 8.7 (floor hardness test). From the height, the maximum acceleration (G) when free-falling and colliding with the center of a wooden plywood disk on the following specimen was measured. Note that when the tip load dropped, the sand was thin, so the tip sunk into the sand and scattered at the same time, and an accurate value was not obtained. Therefore, a wooden plywood disc was placed as a slightly harder material. The maximum acceleration when measured with only a wooden plywood disk was 83G.
試験体I:内径72mm、高さ50mmの鉄製円筒容器内に評価対象の珪砂を厚さ20mmに充填し、よく平坦に圧密してその上に厚さ13mm、直径70mmの木製合板の円盤を置き、これをコンクリート上に設置して、測定に供した。 Specimen I: Silica sand to be evaluated was filled to a thickness of 20 mm in an iron cylindrical container having an inner diameter of 72 mm and a height of 50 mm, and was flatly consolidated, and a 13 mm thick and 70 mm diameter wooden plywood disk was placed thereon. This was installed on concrete and used for measurement.
試験体II:一片が15cm角、高さ20mmの正方形の硬質塩ビケースの中にパイル長20mmのテニスコート用人工芝を貼り付け、この中に評価対象の珪砂を人工芝の高さ20mmまで充填してよく平坦に圧密し、この上中央部に厚さ13mm、直径70mmの木製合板を置き、これをコンクリート上に設置して、測定に供した。 Specimen II: A tennis court artificial turf with a pile length of 20 mm was pasted in a square rigid vinyl chloride case with a square of 15 cm square and a height of 20 mm, and this was filled with quartz sand to be evaluated up to a height of 20 mm. Then, it was compacted flatly, and a wooden plywood having a thickness of 13 mm and a diameter of 70 mm was placed in the upper central part, and this was placed on concrete and used for measurement.
試験体III:一片が20cm角、高さ60mmの正方形のスチロールケースの中にパイル長60mmのロングパイル人工芝を貼り付け、この中に珪砂aを20mm、その上に評価対象の珪砂またはゴムチップを20mm充填してよく平坦に圧密し、この上中央部に厚さ13mm、直径70mmの木製合板を置き、これをコンクリート上に設置して、測定に供した。 Specimen III: A long pile artificial turf with a pile length of 60 mm is pasted in a square styrene case with a square of 20 cm square and a height of 60 mm, silica sand a is 20 mm in this, and silica sand or rubber chip to be evaluated is placed thereon. Filled with 20 mm and compacted flatly, a 13 mm thick and 70 mm diameter wooden plywood was placed in the upper center, and this was placed on concrete for measurement.
(2)珪砂の衝撃粉砕試験
図1に示す試験機を用いて、珪砂衝撃粉砕試験を行った。
(2) Silica sand impact pulverization test The silica sand impact pulverization test was conducted using the testing machine shown in FIG.
直径110mmの円筒容器1に、厚さ20mmになるように評価対象の珪砂を入れ、この上から、落下荷重1.5kg、落下高さ12cm、落下底面φ=6.5cmの鉄製円盤3に、厚み3mm、硬さ60(JIS K 6253,A型硬度計)のゴム板4を貼り付けたものを、1分間50サイクルで自由落下により6時間衝撃を与え、試験前と試験後の粒径0.5mm以下の微粉量を調べ、衝撃による耐粉砕の程度を調べた。 Into a cylindrical container 1 with a diameter of 110 mm, silica sand to be evaluated is put so as to have a thickness of 20 mm, and from this, a drop load of 1.5 kg, a drop height of 12 cm, a drop bottom surface φ = 6.5 cm, an iron disk 3 having A rubber plate 4 having a thickness of 3 mm and a hardness of 60 (JIS K 6253, A-type hardness meter) was applied with an impact for 6 hours by free fall at 50 cycles per minute, and the particle size before and after the test was 0. The amount of fine powder of 5 mm or less was examined, and the degree of pulverization resistance by impact was examined.
<実施例1>
攪拌容器へ、珪砂a400部と、予め触媒1%を事前に混合した被覆用樹脂60部、顔料8部、無機粉体a24部を加え、攪拌する。次に無機バルーン18部、プラスチックバルーン4.0部(プラスチックバルーン自身は4.0/3.2部)を加え、スピードを落としてゆっくり攪拌する。全体がやや凝集気味なので、無機粉体a15部を加え、珪砂各粒子が単体に分離したら攪拌を停止する。出来上がった被覆珪砂を室温で5日放置硬化させる。
<Example 1>
To a stirring vessel, 400 parts of silica sand a, 60 parts of a coating resin preliminarily mixed with 1% of catalyst, 8 parts of pigment, and 24 parts of inorganic powder a are added and stirred. Next, 18 parts of the inorganic balloon and 4.0 parts of the plastic balloon (4.0 / 3.2 parts of the plastic balloon itself) are added, and the speed is reduced and the mixture is stirred slowly. Since the whole is slightly agglomerated, 15 parts of inorganic powder a is added, and stirring is stopped when each silica sand particle is separated into simple substances. The resulting coated silica sand is allowed to cure at room temperature for 5 days.
この被覆珪砂を用いて評価を行った。結果を表1に示す。 Evaluation was performed using this coated silica sand. The results are shown in Table 1.
<実施例2>
実施例1で作製した被覆珪砂と無処理の珪砂aを重量比1:1でよく混合した混合珪砂を用いて評価した。結果を表1に示す。
<Example 2>
Evaluation was made using mixed silica sand in which the coated silica sand prepared in Example 1 and untreated silica sand a were well mixed at a weight ratio of 1: 1. The results are shown in Table 1.
<実施例3>
攪拌容器へ、珪砂b400部と、予め触媒1%を事前に混合した被覆用樹脂48部、顔料6.7部を加え、攪拌する。次に無機バルーン18部、プラスチックバルーン4.0部(プラスチックバルーン自身は4.0/3.2部)、無機粉体a18部を加え、スピードを落としてゆっくり攪拌する。全体が僅かに凝集気味なので、無機粉体a10部を加え、珪砂各粒子が単体に分離したら一度攪拌を停止する。次に再び予め触媒1%を事前に混合した被覆用樹脂12部、顔料1.3部、無機粉体a6部を加え、ゆっくりと攪拌し、全体が凝集することなく、珪砂各粒子単体になっていることを確認してミキサーの回転を止める。出来上がった被覆珪砂を室温で5日放置硬化させる。
<Example 3>
To the stirring vessel, 400 parts of silica sand b, 48 parts of a coating resin preliminarily mixed with 1% of catalyst and 6.7 parts of pigment are added and stirred. Next, 18 parts of the inorganic balloon, 4.0 parts of the plastic balloon (4.0 / 3.2 parts of the plastic balloon itself) and 18 parts of the inorganic powder a are added, and the mixture is slowly stirred at a reduced speed. Since the whole is slightly agglomerated, 10 parts of inorganic powder a is added, and once the silica sand particles are separated into simple substances, the stirring is stopped once. Next, again add 12 parts of a coating resin preliminarily mixed with 1% of catalyst, 1.3 parts of pigment, and 6 parts of inorganic powder a, and slowly agitate to make each silica sand particle alone without agglomeration. Make sure that the mixer is turned off. The resulting coated silica sand is allowed to cure at room temperature for 5 days.
この被覆珪砂を用いて評価した。結果を表1に示す。 Evaluation was made using this coated silica sand. The results are shown in Table 1.
<実施例4>
攪拌容器へ、珪砂b400部と、予め触媒1%を事前に混合した被覆用樹脂48部、顔料6.7部を加え、攪拌する。次にプラスチックバルーン8.2部(プラスチックバルーン自身は8.2/3.2部)、無機粉体a18部、無機粉体b18部を加え、スピードを落としてゆっくり攪拌する。全体が僅かに凝集気味なので、無機粉体bを15部加え、珪砂各粒子が単体に分離したら一度攪拌を停止する。次に再び予め触媒1%を事前に混合した被覆用樹脂12部、顔料1.3部、無機粉体bを12部加え、ゆっくりと攪拌し、全体が凝集することなく、珪砂各粒子単体になっていることを確認してミキサーの回転を止める。出来上がった被覆珪砂を室温で5日放置硬化させる。
<Example 4>
To the stirring vessel, 400 parts of silica sand b, 48 parts of a coating resin preliminarily mixed with 1% of catalyst and 6.7 parts of pigment are added and stirred. Next, 8.2 parts of plastic balloon (8.2 / 3.2 parts of plastic balloon itself), 18 parts of inorganic powder a, and 18 parts of inorganic powder b are added, and the speed is lowered and stirred slowly. Since the whole is slightly agglomerated, 15 parts of inorganic powder b is added, and once each silica sand particle is separated into simple substances, stirring is stopped once. Next, again add 12 parts of a coating resin premixed with 1% of catalyst, 1.3 parts of pigment, and 12 parts of inorganic powder b, and slowly agitate to separate each particle of silica sand without agglomeration. Make sure that the mixer is turned off. The resulting coated silica sand is allowed to cure at room temperature for 5 days.
この被覆珪砂を用いて評価した。結果を表1に示す。 Evaluation was made using this coated silica sand. The results are shown in Table 1.
<比較例1>
無処理の珪砂aを用いて評価した。結果を表1に示す。
<Comparative Example 1>
Evaluation was made using untreated silica sand a. The results are shown in Table 1.
<比較例2>
攪拌容器へ、珪砂a400部と、予め触媒1%を事前に混合した被覆用樹脂60部、顔料6部を投入して攪拌を開始し、樹脂が徐々に増粘してゲル化が始まり、全体が凝集し始めたら、無機粉体a50部を少しずつ加える。珪砂の各粒子がばらばらになり、珪砂単体に離れていることを確認して、攪拌を中止する。出来上がった被覆珪砂を室温で5日放置硬化させる。
<Comparative example 2>
Into a stirring vessel, 400 parts of silica sand a, 60 parts of a coating resin premixed with 1% of a catalyst in advance and 6 parts of a pigment were added to start stirring, and the resin gradually thickened and gelation started. When agglomeration begins to aggregate, 50 parts of inorganic powder a is added little by little. After confirming that each particle of the silica sand is separated and separated from the silica sand alone, stirring is stopped. The resulting coated silica sand is allowed to cure at room temperature for 5 days.
この被覆珪砂を用いて評価した。結果を表1に示す。 Evaluation was made using this coated silica sand. The results are shown in Table 1.
<比較例3>
添加量を、被覆用樹脂90部、顔料9部、無機粉体a75部とした以外は比較例2と同様にして被覆珪砂を得た。
<Comparative Example 3>
Coated silica sand was obtained in the same manner as in Comparative Example 2 except that the addition amount was 90 parts of coating resin, 9 parts of pigment, and 75 parts of inorganic powder a.
この被覆珪砂を用いて評価した。結果を表1に示す。 Evaluation was made using this coated silica sand. The results are shown in Table 1.
<比較例4>
比較例2で作製した被覆珪砂と無処理の珪砂aを重量比1:1でよく混合した混合珪砂を用いて評価した。結果を表1に示す。
<Comparative example 4>
Evaluation was made using mixed silica sand in which the coated silica sand prepared in Comparative Example 2 and untreated silica sand a were well mixed at a weight ratio of 1: 1. The results are shown in Table 1.
<比較例5>
廃タイヤ粉砕チップRG−814(村岡ゴム工業(株)製、1〜3mmφ)を用いて評価した。結果を表1に示す。
<Comparative Example 5>
Evaluation was made using a waste tire grinding chip RG-814 (Muraoka Rubber Industries, Ltd., 1 to 3 mmφ). The results are shown in Table 1.
<参考例1>
参考のため、標準的硬さのカラー弾性舗装について、床の硬さ試験を行った。
<Reference Example 1>
For reference, a floor hardness test was performed on a color elastic pavement of standard hardness.
EPDMカラーゴムチップ「RG−41レンガ」(USS東洋(株)製)80部と、ウレタンバインダー「SBUイソシアネート0620」(住化バイエルウレタン(株))18部をミキサーで3分混合し、これを厚さ10mmのモールドの上に平坦に左官ゴテで均し、7日間硬化させた。 80 parts of EPDM color rubber chip “RG-41 brick” (manufactured by USS Toyo Co., Ltd.) and 18 parts of urethane binder “SBU Isocyanate 0620” (Sumika Bayer Urethane Co., Ltd.) are mixed for 3 minutes with a mixer. The mold was flattened on a 10 mm thick mold with a plastering iron and cured for 7 days.
このEPDMカラーゴムチップ層を試験体Iの珪砂の代わりに用いた以外は、上記評価方法と同様にして床の硬さ試験を行ったところ、最大加速度は70Gであった。 When the floor hardness test was conducted in the same manner as the above evaluation method except that this EPDM color rubber chip layer was used instead of the silica sand of the test specimen I, the maximum acceleration was 70 G.
(1)床の硬さ試験(試験体I)
表1より、実施例1、実施例3の被覆珪砂は、衝撃吸収性に優れ、柔らかい弾力性が得られている。プラスチックバルーン単独の実施例4では効果がなお一層顕著である。
(1) Floor hardness test (Specimen I)
From Table 1, the coated silica sands of Examples 1 and 3 are excellent in impact absorption and have a soft elasticity. In Example 4 where the plastic balloon is used alone, the effect is even more remarkable.
また、被覆珪砂と無処理珪砂の1/1混合物を用いた実施例2は、マイクロバルーンを含まない被覆珪砂(比較例2、3)と似通った値となっており、無処理珪砂(比較例1)よりは優れた衝撃吸収性を有している。 Further, Example 2 using a 1/1 mixture of coated silica sand and untreated silica sand has a value similar to that of coated silica sand not containing microballoons (Comparative Examples 2 and 3). It has better shock absorption than 1).
尚、被覆樹脂量を比較例2よりも50%増量した比較例3は、実施例1にはなお及ばず、樹脂量を増量しても本発明ほどの飛躍的な改善には至らない。 Note that Comparative Example 3 in which the amount of the coating resin was increased by 50% compared to Comparative Example 2 was not as high as that of Example 1, and even if the amount of resin was increased, it did not lead to a dramatic improvement as in the present invention.
(2)床の硬さ試験(試験体II)
表1より、試験体IIでも、試験体Iと同様の傾向が出ているが、パイル間、パイル/珪砂間、パイル/基布等、人工芝構造体内部に空隙が残っているので衝撃が緩和され、試験体Iよりも値が低く、比較例との差も少なくなっている。しかし、実際にはプレー時間経過によって、更に比較例との差が大きくなると考えられる。
(2) Floor hardness test (Specimen II)
According to Table 1, the same tendency as that of Specimen I is observed in Specimen II, but there is a gap in the artificial turf structure between piles, between pile / silica sand, pile / base cloth, etc. It is relaxed, the value is lower than that of the specimen I, and the difference from the comparative example is also reduced. However, in actuality, it is considered that the difference from the comparative example becomes larger as the playing time elapses.
(3)床の硬さ試験(試験体III)
表1より、実施例4の珪砂を上層に充填したロングパイル人工芝構造体では、比較例5の標準構造のゴムチップ充填タイプには及ばないが、比較例1の珪砂単独充填構造と比較すれば比較例5に近い値に位置して、被覆珪砂を使用したものとしては衝撃吸収性に優れた構造体である。
(3) Floor hardness test (Specimen III)
From Table 1, the long pile artificial turf structure filled with silica sand of Example 4 does not reach the rubber chip filling type of the standard structure of Comparative Example 5, but compared with the silica sand single filling structure of Comparative Example 1. It is a structure excellent in shock absorption as it is located at a value close to Comparative Example 5 and uses coated silica sand.
(4)珪砂の衝撃粉砕試験
表1より、実施例1の被覆珪砂は、マイクロバルーンを含まない被覆珪砂(比較例2)と同様に耐粉砕衝撃性は良好である。
(4) Impact crushing test of silica sand From Table 1, the coated silica sand of Example 1 has good crushing impact resistance as well as the coated silica sand containing no microballoon (Comparative Example 2).
また、無処理珪砂と等量(重量)で混合した場合、実施例1の被覆珪砂を用いた実施例2は、比較例1の被覆珪砂をもちいた比較例4に比べ、少しではあるが優れている。また、微粉増加量は無処理珪砂(比較例1)に比べると約1/5以下で良好である。微粉は大部分が4号珪砂が破壊粉砕されたもので、被覆珪砂と混合すると飛躍的に破壊粉砕量が減少する。しかも更に弾性の大きい被覆珪砂を使用すると、この効果は一層顕著になる事が容易に推定できる。 In addition, when mixed in the same amount (weight) with untreated silica sand, Example 2 using the coated silica sand of Example 1 is slightly better than Comparative Example 4 using the coated silica sand of Comparative Example 1. ing. Further, the amount of increase in fine powder is good at about 1/5 or less compared to untreated silica sand (Comparative Example 1). Most of the fine powder is obtained by breaking and pulverizing No. 4 silica sand, and when mixed with coated silica sand, the amount of breaking and grinding dramatically decreases. Moreover, it can be easily estimated that this effect becomes even more remarkable when coated silica sand having higher elasticity is used.
1 円筒容器
2 硅砂
3 鉄製円盤
4 ゴム板
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Clay sand 3 Iron disk 4 Rubber plate
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007211460A JP4758963B2 (en) | 2006-08-18 | 2007-08-14 | Coated silica sand |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006223379 | 2006-08-18 | ||
JP2006223379 | 2006-08-18 | ||
JP2007211460A JP4758963B2 (en) | 2006-08-18 | 2007-08-14 | Coated silica sand |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008068072A JP2008068072A (en) | 2008-03-27 |
JP2008068072A5 JP2008068072A5 (en) | 2010-09-24 |
JP4758963B2 true JP4758963B2 (en) | 2011-08-31 |
Family
ID=39290176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007211460A Expired - Fee Related JP4758963B2 (en) | 2006-08-18 | 2007-08-14 | Coated silica sand |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4758963B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201700115871A1 (en) * | 2017-10-13 | 2019-04-13 | Promix S R L Con Unico Socio | RUBBER SAND |
JP7217255B2 (en) * | 2020-12-14 | 2023-02-02 | 東レ・アムテックス株式会社 | Insulating artificial turf |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61103417A (en) * | 1984-10-24 | 1986-05-21 | 日本植生株式会社 | Cover material for artificial turf |
JPH0784721B2 (en) * | 1987-11-18 | 1995-09-13 | 東レ株式会社 | Artificial grass ground |
JPH06235206A (en) * | 1992-10-30 | 1994-08-23 | Sanyo Chem Ind Ltd | Cushion type joint soil for artificial lawn |
JP3253204B2 (en) * | 1993-12-02 | 2002-02-04 | 住友ゴム工業株式会社 | Athletic stadium made of artificial grass |
JP4191394B2 (en) * | 2001-07-31 | 2008-12-03 | 壽弥 村山 | Method for producing colored cinnabar |
JP2003328311A (en) * | 2002-05-15 | 2003-11-19 | Yokohama Rubber Co Ltd:The | Artificial lawn |
JP2004218340A (en) * | 2003-01-17 | 2004-08-05 | Toray Ind Inc | Aggregate for solidification material |
JP4417903B2 (en) * | 2005-11-22 | 2010-02-17 | ヨコハマポリマー化成株式会社 | Artificial turf structure and artificial turf stadium |
-
2007
- 2007-08-14 JP JP2007211460A patent/JP4758963B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008068072A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101204490B1 (en) | The pavement of permeability and elasticity using cork | |
CN105793385A (en) | Proppant with composite coating | |
CN106634783A (en) | An adhesive for polyurethane synthetic tracks and application thereof | |
CN108193578B (en) | mixed plastic track and construction method thereof | |
KR102096061B1 (en) | Manufacturing method of cork chip for road pavement with improved permeability having multi-coating film, cork chip for road pavement manufactured by the same manufacturing method and road pavement method using the same | |
KR101449677B1 (en) | Elastic floor coatings for sports utility pavement | |
JP4758963B2 (en) | Coated silica sand | |
CN106700020A (en) | Polyurethane runway material and preparing method thereof, and polyurethane runway cover layer | |
JP4478199B1 (en) | Pavement structure and pavement method | |
KR101144140B1 (en) | Environmental-friendly elastic paving material and method of preparing the paving material | |
KR102039313B1 (en) | The method for manufacturing and composition the same elastic paving material of eco-friendly water-soluble coating composition for surface enhancement of Cork Chips | |
KR101079047B1 (en) | Environmental-friendly core-shell type infill material for artificial turf | |
JP2007138644A (en) | Artificial turf structure and artificial turf sports ground | |
JP2013036202A (en) | Elastic pavement structure | |
JPS5854106B2 (en) | Paving material composition | |
JP4995452B2 (en) | Paving material | |
KR20100010170A (en) | A water-permitable elastic pavement using ore | |
JP2002265551A (en) | Composition for elastic pavement material and elastic pavement material obtained by hardening the same | |
KR20160101237A (en) | Elastic materials for pavement and construction method using the same | |
JP2620833B2 (en) | Rubber crushed granular material structure | |
KR101990127B1 (en) | Mixing device | |
JPH10204811A (en) | Compound elastic paving material | |
JPH05179604A (en) | Elastic block for pavement | |
JP3234654B2 (en) | Surface layer construction method for all-weather pavement such as athletics stadium | |
JP2002356805A (en) | Elastic paving structure and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100809 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100903 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4758963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |