Nothing Special   »   [go: up one dir, main page]

JP4747587B2 - Method for producing calcium fluoride sintered body - Google Patents

Method for producing calcium fluoride sintered body Download PDF

Info

Publication number
JP4747587B2
JP4747587B2 JP2005019145A JP2005019145A JP4747587B2 JP 4747587 B2 JP4747587 B2 JP 4747587B2 JP 2005019145 A JP2005019145 A JP 2005019145A JP 2005019145 A JP2005019145 A JP 2005019145A JP 4747587 B2 JP4747587 B2 JP 4747587B2
Authority
JP
Japan
Prior art keywords
calcium fluoride
sintered body
solution
calcium
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005019145A
Other languages
Japanese (ja)
Other versions
JP2006206359A (en
Inventor
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005019145A priority Critical patent/JP4747587B2/en
Publication of JP2006206359A publication Critical patent/JP2006206359A/en
Application granted granted Critical
Publication of JP4747587B2 publication Critical patent/JP4747587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、焼結性に優れたフッ化カルシウム焼結体の製造方法に関するものである。 The present invention relates to a method for producing a calcium fluoride sintered body excellent in sinterability .

フッ化カルシウムの単結晶は、紫外域から赤外域に渡って高い透過率を示すため、従来からカメラや顕微鏡用の光学レンズとして用いられ、さらに、ArFエキシマレーザーを光源とする半導体露光装置の光学部材としても用いられている。また、レーザー発光や蛍光発光材料の媒質としても知られている。フッ化カルシウムの高密度焼結体としての用途は、耐フッ素プラズマ性を求められる部材などである。   Calcium fluoride single crystals exhibit high transmittance from the ultraviolet to the infrared region, so they have been conventionally used as optical lenses for cameras and microscopes, and are also used in semiconductor exposure equipment using ArF excimer lasers as light sources. It is also used as a member. It is also known as a medium for laser light emission and fluorescent light emitting materials. The use of calcium fluoride as a high-density sintered body is a member that requires fluorine plasma resistance.

フッ化物を合成するためのフッ素源として代表的なものはフッ酸(フッ化水素酸)であり、フッ化カルシウムは炭酸カルシウムとフッ酸を反応させて製造する。また、フッ化ナトリウムなどのフッ化アルカリとCa2+イオンを反応させて合成することもできる。フッ化マグネシウム、フッ化バリウム、フッ化ストロンチウムなども同様にして合成することができる。 A typical fluorine source for synthesizing fluoride is hydrofluoric acid (hydrofluoric acid), and calcium fluoride is produced by reacting calcium carbonate and hydrofluoric acid. It can also be synthesized by reacting an alkali fluoride such as sodium fluoride with Ca 2+ ions. Magnesium fluoride, barium fluoride, strontium fluoride, and the like can be synthesized in the same manner.

なお、この種のものとして、特許文献1に記載されたようなものがある。
特許2964786号公報。
In addition, there exists a thing as described in patent document 1 as this kind of thing.
Japanese Patent No. 2964786.

しかしながら、フッ化アルカリを用いると、製造されたフッ化物にアルカリ金属が不純物として残りやすい問題がある。それ以上に問題なのは、溶液中でフッ化物微粒子が合成されると、それを乾燥させて粉末にする際に必ず粒子同士が集まって凝集粒子を形成することである。このように強く凝集した粒子を使って焼結体を作ろうとすると、粉末をプレスして成形体にしても凝集粒子が壊れず、成形体の中に微細なボイド(空隙)が残ってしまう。また、充填密度が高くならない成形体を焼結してもボイドが除去されずに残ってしまい、焼結体の密度を高くすることができない。そして、焼結温度をさらに高くすれば気孔を除去できる可能性はあるが、結晶粒子が粒成長して光の散乱が大きくなったり、フッ素が揮発して光損失が大きくなる問題がある。   However, when alkali fluoride is used, there is a problem that alkali metal tends to remain as impurities in the produced fluoride. What is more problematic is that when fine fluoride particles are synthesized in a solution, the particles always gather to form agglomerated particles when dried to form a powder. If an attempt is made to make a sintered body using such strongly agglomerated particles, the agglomerated particles are not broken even if the powder is pressed to form a compact, and fine voids (voids) remain in the compact. Moreover, even if the molded body whose packing density does not increase is sintered, voids remain without being removed, and the density of the sintered body cannot be increased. Further, there is a possibility that pores can be removed if the sintering temperature is further increased, but there are problems that crystal grains grow and light scattering increases, or fluorine volatilizes and light loss increases.

そこで、この発明は、焼結性に優れたフッ化カルシウム焼結体の製造方法を提供することを課題としている。 Then, this invention makes it the subject to provide the manufacturing method of the calcium fluoride sintered compact excellent in sinterability .

上記問題を解決するために、請求項1に記載の発明は、酢酸カルシウム水溶液とmol比で2を超えるフッ化水素酸とを溶液中で反応させてフッ化カルシウム微粒子を合成し、次いで該微粒子が懸濁した溶液をオートクレーブ中で100℃以上300℃以下に加熱した後、得られたスラリーを乾燥させて得られた乾燥体を原料とし、前記原料又は前記原料の粉砕物の成形体を、700℃以上1300℃以下に加熱することにより、相対密度を95%以上とするフッ化カルシウム焼結体の製造方法としたことを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 synthesizes calcium fluoride fine particles by reacting a calcium acetate aqueous solution with hydrofluoric acid having a molar ratio exceeding 2 in a solution, and then synthesizing the fine particles. Is heated to 100 ° C. or more and 300 ° C. or less in an autoclave, and then the dried product obtained by drying the obtained slurry is used as a raw material, and the raw material or a molded product of the pulverized product of the raw material is used. By heating to 700 ° C. or more and 1300 ° C. or less, a method for producing a calcium fluoride sintered body having a relative density of 95% or more is provided.

請求項2に記載の発明は、請求項1に記載の製造方法により製造されたフッ化カルシウム焼結体を不活性雰囲気中で、500kg/cm 以上10000kg/cm 以下の圧力をかけながら800℃以上1300℃以下に加熱することにより、前記フッ化カルシウム焼結体の相対密度を99%以上とするフッ化カルシウム焼結体の製造方法としたことを特徴とする。 Invention according to claim 2, the calcium fluoride sintered body produced by the method of claim 1 in an inert atmosphere, while applying a pressure of 500 kg / cm 2 or more 10000 kg / cm 2 or less 800 A method for producing a calcium fluoride sintered body in which the relative density of the calcium fluoride sintered body is 99% or more by heating to at least 1300 ° C.

請求項3に記載の発明は、請求項1又は2に記載の構成に加え、前記スラリーにユウロピウム又はテルビウムを添加することを特徴とする。 The invention according to claim 3 is characterized in that europium or terbium is added to the slurry in addition to the structure according to claim 1 or 2.

請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記酢酸カルシウム水溶液と前記フッ化水素酸の溶液とを反応させてフッ化カルシウム微粒子を合成する際、互いの溶液の中に直接注入することを特徴とする。 According to a fourth aspect of the present invention, in addition to the constitution according to any one of the first to third aspects , the calcium fluoride aqueous solution and the hydrofluoric acid solution are reacted to synthesize calcium fluoride fine particles. In this case, it is characterized by being directly injected into each other's solution .

請求項5に記載の発明は、請求項1乃至4の何れか一つに記載の構成に加え、前記酢酸カルシウム水溶液と前記フッ化水素酸の溶液とを反応させてフッ化カルシウム微粒子を合成する際、前記酢酸カルシウム水溶液又は、前記フッ化水素酸の溶液を攪拌しながら互いの溶液を注入し、注入が終了してから少なくとも10分以上攪拌を続けることを特徴とする。 The invention according to claim 5 synthesizes calcium fluoride fine particles by reacting the calcium acetate aqueous solution with the hydrofluoric acid solution in addition to the structure according to any one of claims 1 to 4. At this time, the aqueous solution of calcium acetate or the solution of hydrofluoric acid is poured into each other while stirring, and the stirring is continued for at least 10 minutes after the injection is completed.

請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、前記オートクレーブ中で加熱処理したフッ化カルシウム微粒子の懸濁溶液を、少なくとも1分以上大気圧以下に減圧し、懸濁溶液を脱気することを特徴とする。 In addition to the structure according to any one of claims 1 to 5, the invention according to claim 6 is characterized in that a suspension of calcium fluoride fine particles heated in the autoclave is at least 1 minute or less in atmospheric pressure. vacuum to, characterized by degassing the suspension.

請求項7に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、前記オートクレーブ中で加熱処理したフッ化カルシウム微粒子の懸濁溶液を、室温以上70℃以下で乾燥させることを特徴とする。 In addition to the constitution described in any one of claims 1 to 5, the invention described in claim 7 is a dried solution of calcium fluoride fine particles heat-treated in the autoclave at a temperature of room temperature to 70 ° C. It is characterized by making it .

上記請求項1に記載の発明によれば、カルシウム化合物とフッ素化合物を溶液中で反応させてフッ化カルシウム微粒子を合成し、次いで該微粒子が懸濁した溶液をオートクレーブ中で100℃以上300℃以下に加熱することにより、焼結性に優れたフッ化カルシウム微粒子を得ることができる。化学量論比を2にするために、カルシウム化合物とフッ素化合物を室温で反応させるだけでは不十分で、比較的高温で反応させることにより、フッ化カルシウムのCa/F化学量論比が略2となる。更に、微粒子間の凝集力が弱く分散性が確保されることにより、焼結性に優れたフッ化カルシウム微粒子を得ることができる。
また、請求項1に記載の発明によれば、カルシウム化合物として酢酸カルシウムを用いることにより、水への溶解度が高く、硫酸塩や塩化物のように不純物イオンが残り難くため好適であり、フッ素化合物としてフッ化水素酸(フッ酸)を用いることにより、同様に不純物イオンが残り難く好適である。
また、請求項1に記載の発明によれば、カルシウム化合物に対し、mol比で2を超えるフッ素化合物を加えることにより、化学量論比が2に近いフッ化カルシウム微粒子を得ることができる。
また、請求項1に記載の発明によれば、フッ化カルシウム微粒子からなる乾燥体またはその粉砕物の成形体を700℃以上1300℃以下に加熱して常圧焼結することにより、焼結体の相対密度が95%以上の高密度フッ化カルシウム焼結体を得ることができる。
According to the first aspect of the present invention, calcium fluoride fine particles are synthesized by reacting a calcium compound and a fluorine compound in a solution, and then the solution in which the fine particles are suspended is 100 ° C. or higher and 300 ° C. or lower in an autoclave. By heating to, calcium fluoride fine particles having excellent sinterability can be obtained. In order to achieve a stoichiometric ratio of 2, it is not sufficient to react a calcium compound and a fluorine compound at room temperature. By reacting at a relatively high temperature, the Ca / F stoichiometric ratio of calcium fluoride is approximately 2. It becomes. In addition, since the cohesive force between the fine particles is weak and the dispersibility is ensured, calcium fluoride fine particles having excellent sinterability can be obtained.
In addition, according to the invention described in claim 1, it is preferable to use calcium acetate as the calcium compound, since the solubility in water is high and impurity ions such as sulfates and chlorides hardly remain, which is preferable. Similarly, it is preferable to use hydrofluoric acid (hydrofluoric acid) as it is difficult for impurity ions to remain.
According to the invention described in claim 1, calcium fluoride fine particles having a stoichiometric ratio close to 2 can be obtained by adding a fluorine compound having a molar ratio of more than 2 to the calcium compound.
According to the invention described in claim 1, a sintered body is obtained by heating a dry body made of calcium fluoride fine particles or a compact of the pulverized product to 700 ° C. or higher and 1300 ° C. or lower and performing normal pressure sintering. A high-density calcium fluoride sintered body having a relative density of 95% or more can be obtained.

請求項2に記載の発明によれば、前記焼結体を不活性雰囲気中、500kg/cm 以上10000kg/cm 以下の圧力をかけながら800℃以上1300℃以下に加熱して、焼結体の相対密度を99%以上にして透明にすることにより、より透明性に優れたフッ化カルシウム焼結体を得ることができる。 According to the invention described in claim 2, and heating the sintered body in an inert atmosphere, below 1300 ° C. 800 ° C. or higher under pressure of 500 kg / cm 2 or more 10000 kg / cm 2 or less, the sintered body By making the relative density of 99% or more transparent, a calcium fluoride sintered body having more excellent transparency can be obtained.

請求項3に記載の発明によれば、スラリーにユウロピウム又はテルビウムを添加することで蛍光発光するフッ化カルシウム焼結体を作製することがき、エキシマレーザなどの強力な紫外光に対しても長期間安定な透明蛍光体を提供できると共に、プラズマディスプレイや電界放射型ディスプレイなど、励起光が真空紫外光の場合にも発光効率が高く耐久性も高い蛍光体を提供できる。 According to the third aspect of the present invention, it is possible to produce a calcium fluoride sintered body that emits fluorescence by adding europium or terbium to the slurry, and for a long time against strong ultraviolet light such as an excimer laser. In addition to providing a stable transparent phosphor, it is possible to provide a phosphor having high luminous efficiency and high durability even when excitation light is vacuum ultraviolet light, such as a plasma display or a field emission display.

請求項4に記載の発明によれば、酢酸カルシウム水溶液とフッ化水素酸の溶液とを反応させる際、互いの溶液の中に直接注入することにより、生産性を高くするために原料濃度を高くすることができる。なお、溶液を滴下して混合する場合には、生産性を高くするため原料濃度を高くすることは好ましくない。 According to the invention described in claim 4, when the calcium acetate aqueous solution and the hydrofluoric acid solution are reacted, the raw material concentration is increased in order to increase the productivity by directly injecting the solution into each other solution. it can be. When the solution is dropped and mixed, it is not preferable to increase the raw material concentration in order to increase productivity.

請求項5に記載の発明によれば、酢酸カルシウム水溶液またはフッ化水素酸の溶液を攪拌しながら互いの溶液を注入し、注入が終了してから少なくとも10分以上攪拌を続けることにより、より粒径が小さく分散性の高いフッ化カルシウム微粒子を作製することができる。 According to the invention described in claim 5, by injecting each other solution while stirring the calcium acetate aqueous solution or hydrofluoric acid solution, and continuing the stirring for at least 10 minutes after the injection is completed, Calcium fluoride fine particles having a small diameter and high dispersibility can be produced.

請求項6に記載の発明によれば、オートクレーブ中で加熱処理したフッ化カルシウム微粒子懸濁溶液を少なくとも1分以上大気圧以下に減圧し、懸濁溶液を脱気することにより、ひび、割れ、穴などが発生しないきれいなフッ化カルシウムの乾燥体を作製することができる。 According to the invention described in claim 6, the calcium fluoride fine particle suspension solution heat-treated in the autoclave is depressurized to at least 1 minute and below the atmospheric pressure, and the suspension solution is deaerated, thereby cracking, cracking, A clean dry body of calcium fluoride that does not generate holes can be produced.

請求項7に記載の発明によれば、オートクレーブ中で加熱処理したフッ化カルシウム微粒子懸濁溶液を、室温以上70℃以下で乾燥させることにより、ひび、割れ、穴などが発生しないきれいなフッ化カルシウムの乾燥体を作製することができる。 According to the seventh aspect of the present invention, a calcium fluoride fine particle suspension solution heat-treated in an autoclave is dried at room temperature or higher and 70 ° C. or lower, thereby generating clean calcium fluoride that does not generate cracks, cracks, holes, or the like. The dried body can be produced.

以下、この発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1には、この発明の実施の形態を示す。   FIG. 1 shows an embodiment of the present invention.

この発明の実施の形態にかかる製造方法について説明すると、まず、図1に示すように、カルシウム化合物である酢酸カルシウムの水溶液と、フッ素化合物であるフッ化水素酸(フッ酸)の水溶液とを反応させる。   The manufacturing method according to the embodiment of the present invention will be described. First, as shown in FIG. 1, an aqueous solution of calcium acetate as a calcium compound is reacted with an aqueous solution of hydrofluoric acid (hydrofluoric acid) as a fluorine compound. Let

この反応には、酢酸カルシウムに対し、mol比で2を超えるフッ化水素酸を加えると共に、互いの溶液の中に直接注入し、しかも、カルシウム化合物の溶液又は、フッ素化合物の溶液を攪拌しながら互いの溶液を注入し、注入が終了してからも少なくとも10分以上攪拌を続ける。   In this reaction, hydrofluoric acid with a molar ratio of more than 2 is added to calcium acetate and injected directly into each other's solution while stirring the calcium compound solution or the fluorine compound solution. Inject each other's solution and continue stirring for at least 10 minutes after the end of the injection.

そして、そのようにして得られたフッ化カルシウム微粒子(CaFスラリー)が懸濁した溶液を密閉容器に入れて100℃以上300℃以下に加熱する。 Then, a solution in which the calcium fluoride fine particles (CaF 2 slurry) thus obtained are suspended is placed in a sealed container and heated to 100 ° C. or higher and 300 ° C. or lower.

次に、そのように密閉容器内で加熱処理したフッ化カルシウム微粒子の懸濁溶液を、少なくとも1分以上大気圧以下に減圧し、懸濁溶液を室温以上70℃以下で乾燥させ、フッ化カルシウム乾燥体を製造する。   Next, the calcium fluoride fine particle suspension solution heat-treated in such a closed container is depressurized to at least 1 minute to atmospheric pressure, and the suspension solution is dried at room temperature to 70 ° C. to obtain calcium fluoride. A dry body is produced.

その後、そのフッ化カルシウム乾燥体を、700℃以上1300℃以下に加熱することにより、相対密度を95%以上とするフッ化カルシウム焼結体を製造する。   Thereafter, the calcium fluoride dried body is heated to 700 ° C. or higher and 1300 ° C. or lower to produce a calcium fluoride sintered body having a relative density of 95% or higher.

なお、そのフッ化カルシウム粉体を金型プレス成形した成形体を、700℃以上1300℃以下に加熱することにより、相対密度を95%以上とするフッ化カルシウム焼結体を製造することもできる。   It is also possible to produce a calcium fluoride sintered body having a relative density of 95% or more by heating a compact obtained by press molding the calcium fluoride powder to 700 ° C. or higher and 1300 ° C. or lower. .

次いで、そのフッ化カルシウム焼結体をアルゴン又は、窒素などの不活性雰囲気中で、500kg/cm2以上10000kg/cm2以下の圧力をかけながら800℃以上1300℃以下に加熱することにより、フッ化カルシウム焼結体の相対密度を99%以上として、フッ化カルシウム透明焼結体を製造する。 Then the calcium fluoride sintered body argon or in an inert atmosphere such as nitrogen, by heating below 500 kg / cm 2 or more 10000 kg / cm 2 or less of 1300 ° C. 800 ° C. or higher under pressure, fluoride A calcium fluoride transparent sintered body is manufactured by setting the relative density of the calcium fluoride sintered body to 99% or more.

かかるフッ化カルシウム透明焼結体は、光透過率を50%以上とすることができる。   Such a calcium fluoride transparent sintered body can have a light transmittance of 50% or more.

また、フッ化カルシウム透明焼結体の製造中に、ユウロピウム又はテルビウムを微量添加することで蛍光発光するフッ化カルシウム透明焼結体を得ることができる。   In addition, a calcium fluoride transparent sintered body that emits fluorescence can be obtained by adding a small amount of europium or terbium during the production of the calcium fluoride transparent sintered body.

さらに、フッ化カルシウム焼結体の製造中に、ユウロピウム又はテルビウムを微量添加することで蛍光発光するフッ化カルシウム焼結体を得ることができる。。   Furthermore, a calcium fluoride sintered body that emits fluorescence can be obtained by adding a small amount of europium or terbium during the production of the calcium fluoride sintered body. .

さらにまた、フッ化カルシウム乾燥体の製造中に、ユウロピウム又はテルビウムを微量添加することで蛍光発光するフッ化カルシウム乾燥体を得ることができる。   Furthermore, a calcium fluoride dried product that emits fluorescence can be obtained by adding a small amount of europium or terbium during the production of the calcium fluoride dried product.

また、フッ化カルシウム微粒子の製造中に、ユウロピウム又はテルビウムを微量添加することで蛍光発光するフッ化カルシウム微粒子を得ることができる。   In addition, calcium fluoride fine particles that emit fluorescence can be obtained by adding a small amount of europium or terbium during the production of calcium fluoride fine particles.

ところで、焼結性に優れた粉末を製造するには、プレスして成形体にした段階で凝集粒子が破壊されるように凝集力を弱くすることが必要である。成形体の中に大きなボイドを残さず、成形体密度を高くしてから焼結すると微細な気孔が除去され焼結体密度を高くすることができる。   By the way, in order to produce a powder excellent in sinterability, it is necessary to weaken the agglomeration force so that the agglomerated particles are destroyed at the stage of pressing to form a compact. If the sintered compact is made after increasing the density of the compact without leaving large voids in the compact, fine pores can be removed and the density of the sintered compact can be increased.

しかし、溶液中で合成された微粒子は、乾燥粉末を得るための乾燥の過程で微粒子同士が強く凝集してしまう。この傾向は、粒径が数nm程度の超微粒子であったり、微粒子の結晶性が低いため、表面の活性が高い場合に顕著である。   However, the fine particles synthesized in the solution are strongly aggregated in the course of drying to obtain a dry powder. This tendency is remarkable when the surface activity is high because the particle size is ultrafine particles of several nanometers or the crystallinity of the fine particles is low.

この発明では、室温で合成され、粒径が比較的小さく、化学量論比も2に達してないフッ化カルシウム微粒子を加熱・加圧処理すると、粒成長および結晶性の向上が起こり、微粒子表面の活性が低下して凝集し難くなることを見出した。   In this invention, when calcium fluoride fine particles synthesized at room temperature and having a relatively small particle size and a stoichiometric ratio of less than 2 are heated and pressurized, grain growth and crystallinity are improved, resulting in fine particle surfaces. It has been found that the activity of is reduced and it becomes difficult to aggregate.

そして、フッ化カルシウム微粒子が懸濁した溶液を密閉容器に入れて100℃以上300℃以下に加熱することにより、焼結性に優れたフッ化カルシウム微粒子を得ることができる。化学量論比を2にするために、カルシウム化合物とフッ素化合物を室温で反応させるだけでは不十分で、比較的高温で反応させることにより、フッ化カルシウムのCa/F化学量論比が略2となる。更に、微粒子間の凝集力が弱く分散性が確保されることにより、焼結性に優れたフッ化カルシウム微粒子を得ることができる。   And the calcium fluoride microparticles | fine-particles excellent in sinterability can be obtained by putting the solution which calcium fluoride microparticles | fine-particles suspended in the airtight container, and heating to 100 to 300 degreeC. In order to achieve a stoichiometric ratio of 2, it is not sufficient to react a calcium compound and a fluorine compound at room temperature. By reacting at a relatively high temperature, the Ca / F stoichiometric ratio of calcium fluoride is approximately 2. It becomes. In addition, since the cohesive force between the fine particles is weak and the dispersibility is ensured, calcium fluoride fine particles having excellent sinterability can be obtained.

また、カルシウム化合物として酢酸カルシウムを用いることにより、水への溶解度が高く、硫酸塩や塩化物のように不純物イオンが残り難くため好適であり、フッ素化合物としてフッ化水素酸(フッ酸)を用いることにより、同様に不純物イオンが残り難く好適である。   Further, it is preferable to use calcium acetate as the calcium compound, since it has high solubility in water, and impurity ions such as sulfates and chlorides hardly remain, and hydrofluoric acid (hydrofluoric acid) is used as the fluorine compound. Accordingly, it is preferable that the impurity ions remain in the same manner.

さらに、フッ素化合物溶液とカルシウム化合物溶液を反応させる際、互いの溶液の中に直接注入することにより、生産性を高くするために原料濃度を高くすることができる。なお、溶液を滴下して混合する場合には、生産性を高くするために原料濃度を高くすることは好ましくない。   Further, when the fluorine compound solution and the calcium compound solution are reacted, the raw material concentration can be increased in order to increase the productivity by directly injecting the solution into the solution. When the solution is dropped and mixed, it is not preferable to increase the raw material concentration in order to increase productivity.

さらにまた、カルシウム化合物に対し、mol比で2を超えるフッ素化合物を加えることにより、化学量論比が2に近いフッ化カルシウム微粒子を得ることができる。   Furthermore, calcium fluoride fine particles having a stoichiometric ratio close to 2 can be obtained by adding a fluorine compound having a molar ratio exceeding 2 to the calcium compound.

また、カルシウム化合物溶液またはフッ素化合物溶液を攪拌しながら互いの溶液を注入し、注入が終了してから少なくとも10分以上攪拌を続けることにより、より粒径が小さく分散性の高いフッ化カルシウム微粒子を作製することができる。   Further, by injecting each other solution while stirring the calcium compound solution or the fluorine compound solution, and continuing the stirring for at least 10 minutes after the injection is finished, the calcium fluoride fine particles having a smaller particle size and high dispersibility are obtained. Can be produced.

さらに、密閉容器内で加熱処理したフッ化カルシウム微粒子懸濁溶液を少なくとも1分以上大気圧以下に減圧し、懸濁溶液を脱気することにより、ひび、割れ、穴などが発生しないきれいなフッ化カルシウムの乾燥体を作製することができる。   Furthermore, the calcium fluoride fine particle suspension solution that has been heat-treated in a sealed container is depressurized to at least 1 minute and below atmospheric pressure, and the suspension solution is degassed so that no cracks, cracks, holes, etc. occur. A dried body of calcium can be produced.

さらにまた、密閉容器内で加熱処理したフッ化カルシウム微粒子懸濁溶液を、室温以上70℃以下で乾燥させることにより、ひび、割れ、穴などが発生しないきれいなフッ化カルシウムの乾燥体を作製することができる。   Furthermore, by drying the calcium fluoride fine particle suspension that has been heat-treated in a sealed container at room temperature or higher and 70 ° C or lower, a clean dry body of calcium fluoride that does not generate cracks, cracks, or holes is produced. Can do.

そして、フッ化カルシウム微粒子からなる乾燥体または金型プレス成形した成形体を700℃以上1300℃以下に加熱し、焼結体の相対密度を95%以上にすることにより、常圧焼結するだけで焼結性に優れたフッ化カルシウム焼結体を得ることができる。   Then, a dry body made of calcium fluoride fine particles or a press-molded molded body is heated to 700 ° C. or higher and 1300 ° C. or lower, and the relative density of the sintered body is set to 95% or higher, so that only normal pressure sintering is performed. Thus, a calcium fluoride sintered body having excellent sinterability can be obtained.

また、焼結体をアルゴンまたは窒素などの不活性雰囲気中、500kg/cm2以上10000kg/cm2以下の圧力をかけながら800℃以上1300℃以下に加熱して、常圧焼結することにより焼結体の相対密度が99%以上のより透明性に優れたフッ化カルシウム透明焼結体を得ることができる。 Moreover, baked by an inert atmosphere of a sintered body such as argon or nitrogen, and heated to 800 ° C. or higher 1300 ° C. or less while applying a pressure of 500 kg / cm 2 or more 10000 kg / cm 2 or less, to pressureless sintering A calcium fluoride transparent sintered body having a relative density of 99% or more and excellent transparency can be obtained.

さらに、フッ化カルシウム透明焼結体の光透過率を50%以上にすることにより、フッ化カルシウム透明焼結体を光学部品として利用することができ、DVDピックアップレンズなどで用いられる青色レーザに対する安定性に優れたレンズ硝材を提供できる。また、この透明焼結体は、レーザ発光物質などの発光物質を含有させる母材として提供できる。   Furthermore, by setting the light transmittance of the calcium fluoride transparent sintered body to 50% or more, the calcium fluoride transparent sintered body can be used as an optical component, and is stable against a blue laser used in a DVD pickup lens or the like. A lens glass material with excellent properties can be provided. The transparent sintered body can be provided as a base material containing a light emitting material such as a laser light emitting material.

しかも、ユウロピウム又はテルビウムを微量添加することで蛍光発光するフッ化カルシウム微粒子、乾燥体、焼結体および透明焼結体を作製することができ、エキシマレーザなどの強力な紫外光に対しても長期間安定な透明蛍光体を提供できると共に、プラズマディスプレイや電界放射型ディスプレイなど、励起光が真空紫外光の場合にも発光効率が高く耐久性も高い蛍光体を提供できる。   Moreover, by adding a small amount of europium or terbium, it is possible to produce calcium fluoride fine particles, dried bodies, sintered bodies, and transparent sintered bodies that emit fluorescence, and can be used with strong ultraviolet light such as excimer lasers. In addition to providing a period-stable transparent phosphor, it is possible to provide a phosphor having high luminous efficiency and high durability even when the excitation light is vacuum ultraviolet light, such as a plasma display or a field emission display.

[実施例1]
図2乃至図4には、この発明の実施例1を示す。
[Example 1]
2 to 4 show a first embodiment of the present invention.

この実施例1は、まず、酢酸カルシウム水和物180.4g(1mol)に蒸留水を640g加えて完全に溶かし、酢酸カルシウム水溶液を調製した。濃度50%のフッ化水素酸(フッ酸)163.8g(4mol)に蒸留水を160g加えてフッ酸水溶液を調製した。   In Example 1, first, 640 g of distilled water was added to 180.4 g (1 mol) of calcium acetate hydrate and completely dissolved to prepare a calcium acetate aqueous solution. A hydrofluoric acid aqueous solution was prepared by adding 160 g of distilled water to 163.8 g (4 mol) of hydrofluoric acid (hydrofluoric acid) having a concentration of 50%.

そして、図2に示す羽根付き攪拌棒2(羽根径10cm)を300rpmで回転させ、酢酸カルシウム水溶液を攪拌しながらフッ酸水溶液をゆっくり注入した。プラスチックビーカー1(直径13cm)の側面にフッ酸水溶液の注入口を2ヶ所取り付け、ローラーチューブポンプで吸い出したフッ酸水溶液を酢酸カルシウム水溶液の中に約1時間かけて注入した。   And the stirring rod 2 with a blade | wing shown in FIG. 2 (blade diameter 10cm) was rotated at 300 rpm, and hydrofluoric acid aqueous solution was inject | poured slowly, stirring calcium acetate aqueous solution. Two injection ports for the hydrofluoric acid aqueous solution were attached to the side of the plastic beaker 1 (diameter 13 cm), and the hydrofluoric acid aqueous solution sucked out by the roller tube pump was injected into the calcium acetate aqueous solution over about 1 hour.

この場合、フッ酸/酢酸カルシウムmol比は4である。フッ酸水溶液の注入が終了したらそのまま攪拌を6時間続け、凝集したフッ化カルシウム粒子を破壊して粒径を小さくした。フッ酸水溶液注入後の攪拌は、室温またはウォーターバスを用いて80℃に加熱して行った。攪拌が終了したフッ化カルシウムスラリーは、テフロン(登録商標)製オートクレーブに入れて145℃で24時間加熱・加圧処理した。オートクレーブが室温まで冷却したら透明な上澄み液を吸い取り、スラリー全体をよくかき混ぜてから別の容器に移し替えた。   In this case, the hydrofluoric acid / calcium acetate mol ratio is 4. When the injection of the hydrofluoric acid aqueous solution was completed, stirring was continued for 6 hours, and the aggregated calcium fluoride particles were broken to reduce the particle size. Stirring after the injection of the hydrofluoric acid aqueous solution was performed by heating to 80 ° C. using room temperature or a water bath. The calcium fluoride slurry after stirring was placed in a Teflon (registered trademark) autoclave and heated and pressurized at 145 ° C. for 24 hours. When the autoclave was cooled to room temperature, the clear supernatant liquid was sucked off, and the whole slurry was thoroughly agitated and then transferred to another container.

そして、容器ごと真空ベルジャーに入れ、ダイアフラムポンプを用いてスラリーを1時間脱気した。完成したフッ化カルシウムスラリーは白色で、約650gであった。次に、このスラリーを約160gづつ小型のテフロン(登録商標)容器(直径5.5cm)に入れ、40℃で1週間かけて乾燥させると、直径約5cm、厚さ約6mmの乾燥体が得られた。乾燥体にひび、割れ、穴などは発生せず、スラリーをきれいに乾燥させることができた。   And the whole container was put into the vacuum bell jar, and the slurry was deaerated for 1 hour using the diaphragm pump. The completed calcium fluoride slurry was white and weighed about 650 g. Next, when this slurry is put into a small Teflon (registered trademark) container (diameter 5.5 cm) about 160 g and dried at 40 ° C. for one week, a dried body having a diameter of about 5 cm and a thickness of about 6 mm is obtained. It was. No cracks, cracks or holes were generated on the dried body, and the slurry could be dried neatly.

この乾燥体または乳鉢で粉砕した粉末4gを直径30mmの金型を用い、100kg/cm2の圧力でプレス成形した成形体を900℃で1時間焼結すると、相対密度が約98%の白色の焼結体が得られた。焼結体は割れたり反ったりせず、乾燥体および成形体の最初の形状を保ったまま収縮した。次に、熱間等方圧加圧装置(HIP)により白色の焼結体を透明化した。焼結体をアルゴン雰囲気中で1500kg/cm2の圧力をかけながら1100℃に加熱すると、焼結体内部に残留していた気孔が外部に押し出されて透明になった。HIP処理を行うと、全くプレス成形していない乾燥体でもプレス成形した成形体と同様透明化した。図3及び図4に、両面研磨したフッ化カルシウム透明焼結体の透過率測定の結果を示す。
[比較例1]
When a molded body obtained by press-molding 4 g of this dried body or 4 g of powder pulverized in a mortar using a 30 mm diameter mold at a pressure of 100 kg / cm 2 is sintered at 900 ° C. for 1 hour, a white density having a relative density of about 98% A sintered body was obtained. The sintered body did not crack or warp and contracted while maintaining the initial shapes of the dried body and the molded body. Next, the white sintered body was clarified by a hot isostatic press (HIP). When the sintered body was heated to 1100 ° C. while applying a pressure of 1500 kg / cm 2 in an argon atmosphere, pores remaining inside the sintered body were pushed out and became transparent. When the HIP treatment was performed, a dry body that was not press-molded at all was transparent as in the case of the press-molded body. 3 and 4 show the results of transmittance measurement of the calcium fluoride transparent sintered body polished on both sides.
[Comparative Example 1]

次に、比較例1について説明する。   Next, Comparative Example 1 will be described.

オートクレープ処理した以外、実施例1と同じ条件でフッ化カルシウムスラリーを調製した。得られた乾燥体および成形体を900℃で焼結すると、焼結体は灰色になり、割れや反りも生じた。HIP処理すると焼結体は黒色に近い灰色になった。
[実施例2]
A calcium fluoride slurry was prepared under the same conditions as in Example 1 except that the autoclave treatment was performed. When the obtained dried body and molded body were sintered at 900 ° C., the sintered body turned gray and cracks and warpage occurred. When the HIP treatment was performed, the sintered body turned gray near black.
[Example 2]

以下、この発明の実施例2について説明する。   Embodiment 2 of the present invention will be described below.

上記実施例1で得られた、145℃で加熱・加圧処理したフッ化カルシウムスラリーに、mol比でEu/Ca=0.03の酢酸ユウロピウム水溶液を加え1時間攪拌した。その後、実施例1と同様にスラリーの脱気、乾燥および乾燥体の焼結、HIP処理を行った。得られた透明焼結体に波長254nmまたは365nmの紫外光を照射すると赤色または青色に発光した。   To the calcium fluoride slurry obtained by heating and pressurizing at 145 ° C. obtained in Example 1 above, an aqueous europium acetate solution with a molar ratio of Eu / Ca = 0.03 was added and stirred for 1 hour. Thereafter, in the same manner as in Example 1, the slurry was deaerated, dried and dried, and the HIP treatment was performed. When the obtained transparent sintered body was irradiated with ultraviolet light having a wavelength of 254 nm or 365 nm, light was emitted in red or blue.

従って、この透明焼結体は、発光材料の媒質として用いることができた。
[実施例3]
Therefore, this transparent sintered body could be used as a medium for the luminescent material.
[Example 3]

以下、この発明の実施例3について説明する。   Embodiment 3 of the present invention will be described below.

上記実施例1で得られた、145℃で加熱・加圧処理したフッ化カルシウムスラリーに、mol比でTb/Ca=0.03の酢酸テルビウム水溶液を加え1時間攪拌した。その後、実施例1と同様にスラリーの脱気、乾燥および乾燥体の焼結、HIP処理を行った。得られた透明焼結体に波長254nmまたは365nmの紫外光を照射すると緑色に発光した。   An aqueous terbium acetate solution having a molar ratio of Tb / Ca = 0.03 was added to the calcium fluoride slurry obtained in Example 1 and heated and pressurized at 145 ° C., and stirred for 1 hour. Thereafter, in the same manner as in Example 1, the slurry was deaerated, dried and dried, and the HIP treatment was performed. When the obtained transparent sintered body was irradiated with ultraviolet light having a wavelength of 254 nm or 365 nm, it emitted green light.

この発明の実施の形態の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of embodiment of this invention. この発明の実施例1を示す図である。It is a figure which shows Example 1 of this invention. 同実施例1により得られたフッ化カルシウム透明焼結体の波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of the calcium fluoride transparent sintered compact obtained by the Example 1, and the transmittance | permeability. 同実施例1により得られたフッ化カルシウム透明焼結体の波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of the calcium fluoride transparent sintered compact obtained by the Example 1, and the transmittance | permeability.

符号の説明Explanation of symbols

1 プラスチックビーカー
2 羽根付き攪拌棒
1 Plastic beaker 2 Stirring stick with blade

Claims (7)

酢酸カルシウム水溶液とmol比で2を超えるフッ化水素酸とを溶液中で反応させてフッ化カルシウム微粒子を合成し、次いで該微粒子が懸濁した溶液をオートクレーブ中で100℃以上300℃以下に加熱した後、得られたスラリーを乾燥させて得られた乾燥体を原料とし、
前記原料又は前記原料の粉砕物の成形体を、700℃以上1300℃以下に加熱することにより、相対密度を95%以上とすることを特徴とするフッ化カルシウム焼結体の製造方法。
An aqueous calcium acetate solution and hydrofluoric acid with a molar ratio exceeding 2 are reacted in a solution to synthesize calcium fluoride fine particles, and then the solution in which the fine particles are suspended is heated to 100 ° C. or higher and 300 ° C. or lower in an autoclave. Then, the dried product obtained by drying the obtained slurry is used as a raw material,
A method for producing a calcium fluoride sintered body , wherein a relative density is set to 95% or higher by heating a molded body of the raw material or a pulverized product of the raw material to 700 ° C or higher and 1300 ° C or lower .
請求項1に記載の製造方法により製造されたフッ化カルシウム焼結体を不活性雰囲気中で、500kg/cmThe calcium fluoride sintered body produced by the production method according to claim 1 is 500 kg / cm in an inert atmosphere. 2 以上10000kg/cm10000kg / cm 2 以下の圧力をかけながら800℃以上1300℃以下に加熱することにより、前記フッ化カルシウム焼結体の相対密度を99%以上とすることを特徴とするフッ化カルシウム焼結体の製造方法。A method for producing a calcium fluoride sintered body, wherein the relative density of the calcium fluoride sintered body is set to 99% or higher by heating to 800 ° C or higher and 1300 ° C or lower while applying the following pressure. 前記スラリーにユウロピウム又はテルビウムを添加することを特徴とする請求項1又は2に記載のフッ化カルシウム焼結体の製造方法。Europium or terbium is added to the slurry, The method for producing a calcium fluoride sintered body according to claim 1 or 2. 前記酢酸カルシウム水溶液と前記フッ化水素酸の溶液とを反応させてフッ化カルシウム微粒子を合成する際、互いの溶液の中に直接注入することを特徴とする請求項1乃至3の何れか一つに記載のフッ化カルシウム焼結体の製造方法。4. When the calcium acetate aqueous solution and the hydrofluoric acid solution are reacted to synthesize calcium fluoride fine particles, they are directly injected into each other's solution. 5. The manufacturing method of the calcium fluoride sintered compact described in 2. 前記酢酸カルシウム水溶液と前記フッ化水素酸の溶液とを反応させてフッ化カルシウム微粒子を合成する際、前記酢酸カルシウム水溶液又は、前記フッ化水素酸の溶液を攪拌しながら互いの溶液を注入し、注入が終了してから少なくとも10分以上攪拌を続けることを特徴とする請求項1乃至4の何れか一つに記載のフッ化カルシウム焼結体の製造方法。 When synthesizing calcium fluoride fine particles by reacting the calcium acetate aqueous solution with the hydrofluoric acid solution, the solution is injected while stirring the calcium acetate aqueous solution or the hydrofluoric acid solution, The method for producing a calcium fluoride sintered body according to any one of claims 1 to 4, wherein stirring is continued for at least 10 minutes after the injection is completed. 前記オートクレーブ中で加熱処理したフッ化カルシウム微粒子の懸濁溶液を、少なくとも1分以上大気圧以下に減圧し、懸濁溶液を脱気することを特徴とする請求項1乃至5の何れか一つに記載のフッ化カルシウム焼結体の製造方法。 Any one of claims 1 to 5 wherein the suspension Cooked calcium fluoride fine particles in an autoclave, the pressure was reduced below at least one minute or more atmospheric pressure, characterized by degassing the suspension method for producing calcium fluoride sintered body according to. 前記オートクレーブ中で加熱処理したフッ化カルシウム微粒子の懸濁溶液を、室温以上70℃以下で乾燥させることを特徴とする請求項1乃至5の何れか一つに記載のフッ化カルシウム焼結体の製造方法。 6. The calcium fluoride sintered body according to claim 1, wherein the calcium fluoride fine particle suspension solution heat-treated in the autoclave is dried at room temperature to 70 ° C. 6. Production method.
JP2005019145A 2005-01-27 2005-01-27 Method for producing calcium fluoride sintered body Active JP4747587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019145A JP4747587B2 (en) 2005-01-27 2005-01-27 Method for producing calcium fluoride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019145A JP4747587B2 (en) 2005-01-27 2005-01-27 Method for producing calcium fluoride sintered body

Publications (2)

Publication Number Publication Date
JP2006206359A JP2006206359A (en) 2006-08-10
JP4747587B2 true JP4747587B2 (en) 2011-08-17

Family

ID=36963610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019145A Active JP4747587B2 (en) 2005-01-27 2005-01-27 Method for producing calcium fluoride sintered body

Country Status (1)

Country Link
JP (1) JP4747587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586867B2 (en) 2011-11-17 2017-03-07 Nikon Corporation CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521551B2 (en) 2007-12-13 2014-06-18 株式会社ニコン Method for producing Ca-La-F translucent ceramics, Ca-La-F translucent ceramics, optical member, optical device, and composition for forming Ca-La-F translucent ceramics
WO2009142238A1 (en) * 2008-05-23 2009-11-26 住友電気工業株式会社 Sintered compact, process for production thereof, and optical element
JP5185213B2 (en) * 2009-06-16 2013-04-17 株式会社大興製作所 Method for producing plasma-resistant fluoride sintered body
JP5682132B2 (en) * 2009-06-17 2015-03-11 株式会社ニコン Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition
JP5653169B2 (en) * 2010-10-27 2015-01-14 株式会社フジクラ Fluoride single crystal and optical isolator having the same
CN102126857B (en) * 2011-01-31 2013-03-20 武汉理工大学 Method for preparing transparent calcium fluoride ceramic
TWI535660B (en) 2011-05-27 2016-06-01 尼康股份有限公司 CaF 2 Polycrystalline, focusing ring, plasma processing device and CaF 2 Polymorphic manufacturing method
JP5946036B2 (en) * 2012-05-01 2016-07-05 国立研究開発法人物質・材料研究機構 Light emitting device
RU2515642C2 (en) * 2012-08-09 2014-05-20 Закрытое акционерное общество "ИНКРОМ" (ЗАО "ИНКРОМ") Method of obtaining optic ceramics
CN106116581A (en) * 2016-06-22 2016-11-16 武汉理工大学 A kind of preparation method of transparent calcium fluoride ceramic
WO2022145019A1 (en) * 2020-12-28 2022-07-07 株式会社ニコン Calcium fluoride sintered body, method for manufacturing calcium fluoride particles, method for manufacturing calcium fluoride sintered body, optical element, optical system, interchangeable lens, and optical instrument
CN112794707B (en) * 2021-04-14 2021-07-20 佛山市东鹏陶瓷有限公司 High-whiteness and high-strength light-transmitting ceramic tile and preparation method thereof
CN113124047A (en) * 2021-05-24 2021-07-16 浙江大学 Insulated rolling bearing with nano calcium fluoride coating and preparation method
KR102584101B1 (en) * 2021-08-13 2023-10-05 한국광기술원 Fluoride-Based Press-Molded Article, Apparatus for Producing the Same
CN116332216B (en) * 2023-02-28 2024-05-10 武汉理工大学 Synthesis method of high-purity calcium fluoride raw material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147695A (en) * 1983-02-15 1984-08-24 Mitsubishi Heavy Ind Ltd Manufacture of dephosphorizing material
JP2972437B2 (en) * 1992-03-13 1999-11-08 ステラケミファ株式会社 Calcium fluoride recovery device
JP2964786B2 (en) * 1992-07-01 1999-10-18 住友電気工業株式会社 Method for producing translucent barium fluoride sintered body
JP2001329260A (en) * 2000-05-25 2001-11-27 Fuji Photo Film Co Ltd Apparatus and method for producing phosphor precursor crystal
JP2003095648A (en) * 2001-09-26 2003-04-03 Showa Denko Kk Method for producing high purity calcium fluoride and intermediate thereof
JP2003300777A (en) * 2002-04-03 2003-10-21 Toshiba Ceramics Co Ltd High purity calcium fluoride sintered compact and production method therefor
JP2004074041A (en) * 2002-08-20 2004-03-11 Cabot Supermetal Kk Recovering method of fluorine
JP4294354B2 (en) * 2003-03-31 2009-07-08 パナソニック環境エンジニアリング株式会社 Calcium fluoride production method and use
JP2005296888A (en) * 2004-04-15 2005-10-27 Morita Kagaku Kogyo Kk Immobilization method for fluorine, recycling method for calcium fluoride recovered by this method, and concentration regulation method for residual fluorine
JP2006036618A (en) * 2004-07-27 2006-02-09 Soratesu Lab:Kk Calcium fluoride crystal and its producing method as well as its using method
JP2006131836A (en) * 2004-11-09 2006-05-25 Fuji Photo Film Co Ltd Device and method for producing primary particle of inorganic phosphor
JP2006175364A (en) * 2004-12-22 2006-07-06 National Institute Of Advanced Industrial & Technology Recovery method and apparatus of fluorine from fluorine-containing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586867B2 (en) 2011-11-17 2017-03-07 Nikon Corporation CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics

Also Published As

Publication number Publication date
JP2006206359A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4747587B2 (en) Method for producing calcium fluoride sintered body
JP5862677B2 (en) CaF2-based translucent ceramics and method for producing the same
EP2314659B1 (en) Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device
US7691765B2 (en) Translucent material and manufacturing method of the same
JP5508817B2 (en) Method for producing β-sialon phosphor
JP7303822B2 (en) Phosphor and light emitting device
KR20180083884A (en) Method for producing beta-sialon phosphors
US9862648B2 (en) Transparent metal fluoride ceramic
JP7515353B2 (en) Manufacturing method of europium-activated β-type sialon phosphor
JP5521551B2 (en) Method for producing Ca-La-F translucent ceramics, Ca-La-F translucent ceramics, optical member, optical device, and composition for forming Ca-La-F translucent ceramics
WO2019187287A1 (en) Polycrystalline yag sintered body and production method therefor
US20070182037A1 (en) Preparation of transparent ceramics of yag dope by lanthanides
JP6121282B2 (en) Transparent polycrystalline sintered body of lutetium aluminum garnet and method for producing the same
US7597866B2 (en) Translucent lutetium oxide sinter, and method for manufacturing same
JP7515352B2 (en) Manufacturing method of europium-activated β-type sialon phosphor
Yi et al. Microstructural and optical properties of Pr3+:(Ca0. 97Gd0. 03) F2. 03 transparent ceramics sintered by vacuum hot-pressing method
JP2009051966A (en) Method for producing translucent calcium fluoride phosphor and calcium fluoride phosphor
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JPH05286761A (en) Manufacture of polycrystalline transparent yag ceramic for solid laser
JP5484397B2 (en) Silicate phosphor and method for producing the same
JP7539811B2 (en) Method for producing β-type Sialon phosphor
JP2012144689A5 (en)
JP6502595B1 (en) Polycrystalline YAG sintered body and method for manufacturing the same
JP4025874B2 (en) Transparent scandium oxide ceramics and method for producing the same
JP5490083B2 (en) Method for producing alkaline earth metal silicate phosphor and alkaline earth metal silicate phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250