Nothing Special   »   [go: up one dir, main page]

JP4746276B2 - Method for analyzing membrane function of biological structure having membrane structure - Google Patents

Method for analyzing membrane function of biological structure having membrane structure Download PDF

Info

Publication number
JP4746276B2
JP4746276B2 JP2004050214A JP2004050214A JP4746276B2 JP 4746276 B2 JP4746276 B2 JP 4746276B2 JP 2004050214 A JP2004050214 A JP 2004050214A JP 2004050214 A JP2004050214 A JP 2004050214A JP 4746276 B2 JP4746276 B2 JP 4746276B2
Authority
JP
Japan
Prior art keywords
membrane
fluorescent marker
cell
marker molecule
fluorescence intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050214A
Other languages
Japanese (ja)
Other versions
JP2005241378A (en
Inventor
保夫 高橋
政孝 金城
守 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004050214A priority Critical patent/JP4746276B2/en
Publication of JP2005241378A publication Critical patent/JP2005241378A/en
Application granted granted Critical
Publication of JP4746276B2 publication Critical patent/JP4746276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、生体構造物(例えば細胞または細胞小器官)の膜構造におけるマーカー分子の揺らぎ強度を測定することにより、生体構造物の膜機能を解析する方法に関する。また本発明は、生体構造物の膜機能を解析することにより生体構造物の性状を評価する方法、並びに被検物質の存在下と非存在下で生体構造物の膜機能を解析することにより被検物質が生体に及ぼす影響を評価する方法に関する。特に本発明は、被検物質の生体構造物に与える毒性を評価する際に有用である。   The present invention relates to a method for analyzing the membrane function of a biological structure by measuring the fluctuation strength of a marker molecule in the membrane structure of the biological structure (for example, a cell or an organelle). The present invention also provides a method for evaluating the properties of a biological structure by analyzing the membrane function of the biological structure, and analyzing the membrane function of the biological structure in the presence and absence of the test substance. The present invention relates to a method for evaluating the influence of a test substance on a living body. Especially this invention is useful when evaluating the toxicity which the test substance gives to the anatomy.

化合物が生体に及ぼす影響を評価する場合、近年、動物を使った投与実験から培養細胞を用いる方法へと移行しつつある。化合物が細胞に作用するときは、まずその細胞膜への関与が第一ステップとして起こり、そこでは膜構造を形成する物質、つまり(糖)脂質や蛋白との相互作用が生じる。次にこれによって変化した膜構造のために膜内外の環境が変化し、細胞シグナル系に影響を与えることが予想される。悪影響が及ぼされる場合、最終的には細胞自身の機能が損なわれて細胞死に至る。このように化合物が及ぼす影響が現れるまで(細胞死に至るまで)に要する時間は、細胞や化合物の種類によって様々である。しかし、第一ステップである、化合物と膜との関与についてはごく短期間の現象であり、これらを的確にモニターすることによって、最終的に化合物が細胞に及ぼす影響(細胞死)を早期に予測できると考えられる。   In order to evaluate the effect of a compound on a living body, in recent years, a shift is being made from administration experiments using animals to methods using cultured cells. When a compound acts on a cell, first, its involvement in the cell membrane occurs as the first step, where an interaction with a substance that forms a membrane structure, that is, (sugar) lipid or protein occurs. Next, it is expected that the environment inside and outside the membrane will change due to the changed membrane structure, thereby affecting the cell signal system. When an adverse effect is exerted, the function of the cell itself is eventually lost, leading to cell death. Thus, the time required for the influence of the compound to appear (until cell death) varies depending on the type of cell or compound. However, the first step, the relationship between the compound and the membrane, is a very short-term phenomenon. By accurately monitoring these, the effects of the compound on the cells (cell death) can be predicted early. It is considered possible.

膜に対する化合物の毒性を測定する方法としては、従来、リポソームを用いた方法が一般的である。例えば、pH感受性の色素(アクリジンオレンジ)をリポソームに封入し、外部化合物がリポソーム膜を破壊した場合に流出する色素の蛍光を測定する方法などがある(特許文献1(特表2002−517726、20頁))。また、リポソームを用いた方法としては、リポソーム膜表面での抗原抗体複合体形成とそれに作用する補体の働きにより、リポソーム内から放出された色素の蛍光を測定する免疫測定法も報告されている(特許文献2(特開平7−191033、5頁))。   As a method for measuring the toxicity of a compound to a membrane, a method using liposome has been conventionally used. For example, there is a method in which a pH-sensitive dye (acridine orange) is encapsulated in a liposome, and the fluorescence of the dye that flows out when an external compound breaks the liposome membrane is measured (Patent Document 1 (Special Tables 2002-517726, 20). page)). In addition, as a method using liposomes, an immunoassay method has been reported in which the fluorescence of dye released from liposomes is measured by the formation of an antigen-antibody complex on the surface of the liposome membrane and the action of complement acting on it. (Patent Document 2 (Japanese Patent Laid-Open No. 7-199103, page 5)).

一方、蛍光相関分光法は、微小なレーザー焦点領域内における蛍光分子のゆらぎを測定することによって1分子レベルでの分子の拡散速度、分子数、さらにこれらの情報より分子間相互作用などが求められる。この方法により、リポソーム封入ローダミンが化合物(Melittin)によって膜外に流出する現象が測定されている(非特許文献1(Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy., Pramanik A, Thyberg P, Rigler R., Chem Phys Lipids 2000 Jan; 104(1): 35-47))。また、蛍光相関分光法を用いた、細胞等の生体構造物上での受容体、リガンドの相互作用評価については、リグラーらの発明が先行技術として報告されている(特許文献3(特表平11-502608、115頁))。   On the other hand, in fluorescence correlation spectroscopy, the molecular diffusion rate, the number of molecules at one molecule level, and intermolecular interactions are required from these information by measuring fluctuations of fluorescent molecules in a minute laser focal region. . According to this method, a phenomenon in which liposome-encapsulated rhodamine flows out of the membrane by a compound (Melittin) has been measured (Non-patent Document 1 (Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy., Pramanik A, Thyberg). P, Rigler R., Chem Phys Lipids 2000 Jan; 104 (1): 35-47)). In addition, regarding the interaction evaluation of receptors and ligands on biological structures such as cells using fluorescence correlation spectroscopy, the invention of Rigler et al. Has been reported as a prior art (Patent Document 3 (Patent Document 3). 11-502608, p. 115).

上記リポソームを用いた従来の方法では実験系が単純になる利点はあるものの、実際の生体構造物(細胞等)がその複雑な構造により生理機能が維持されている点で、リポソ−ム系は生体構造物のモデルとしてはかなり特殊なものとされる。さらに均一なリポソ−ムを作成するにはある程度のノウハウと工数が必要とされる。そのため、実際の生体構造物をそのまま実験にもちいた評価系が求められ、しかもその生理機能を正常に維持した条件で測定が行われる系が求められる。   Although the conventional method using liposomes has the advantage of simplifying the experimental system, the liposome system is based on the fact that the physiological functions of actual biological structures (cells, etc.) are maintained by their complex structures. It is considered to be a very special model for anatomy. Furthermore, a certain amount of know-how and man-hours are required to create a uniform liposome. Therefore, an evaluation system using an actual biological structure as it is for an experiment is required, and a system in which measurement is performed under the condition that the physiological function is maintained normally is required.

また、従来の生体構造物を用いる細胞毒性検査の場合、使用する細胞の数が十分量必要であり、しかも細胞に対する被検物質の影響を評価するのに時間がかかるなどの欠点がある。   Further, in the case of a cytotoxicity test using a conventional biological structure, there is a drawback that a sufficient amount of cells are required and it takes time to evaluate the influence of the test substance on the cells.

特表2002−517726公報、20頁Special Table 2002-517726, page 20

特開平7−191033号公報、5頁JP 7-1991033 A, page 5

Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy., Pramanik A, Thyberg P, Rigler R., Chem Phys Lipids 2000 Jan; 104(1): 35-47Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy., Pramanik A, Thyberg P, Rigler R., Chem Phys Lipids 2000 Jan; 104 (1): 35-47

特表平11-502608号公報、115頁No. 11-502608, page 115

上記事情に鑑み、本発明の目的は、生理機能を維持した微量の生体構造物(細胞等)を用い、短時間で、生体構造物の膜機能を解析する方法を提供することである。とりわけ、本発明の目的は、生理機能を維持した微量の生体構造物(細胞等)を用い、短時間で、被検物質が生体に及ぼす影響(例えば毒性)を評価する方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide a method for analyzing a membrane function of a living body structure in a short time using a minute amount of living body structure (cell or the like) that maintains a physiological function. In particular, an object of the present invention is to provide a method for evaluating the influence (for example, toxicity) of a test substance on a living body in a short time using a very small amount of biological structure (cells, etc.) that maintains physiological functions. is there.

発明者らは上記課題を解決する方法、つまり生理機能を維持した生体構造物の膜上でのマーカー分子の揺らぎ強度を測定することにより、生体構造物の膜機能を短時間で解析する方法を開発した。   The inventors have solved the above-mentioned problem, that is, a method for analyzing the membrane function of a biological structure in a short time by measuring the fluctuation strength of the marker molecule on the membrane of the biological structure maintaining physiological functions. developed.

すなわち、本発明は以下に記載の手段を提供する。
(1)膜構造を有する生体構造物の膜機能を解析する方法であって、
膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
前記生体構造物の膜構造にマーカー分子を結合させる工程と、
前記膜構造に結合させた前記マーカー分子の強度ゆらぎを測定する工程と
を含む方法。
(2)膜構造を有する生体構造物の膜機能を解析することにより前記生体構造物の性状を評価する方法であって、
膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
前記生体構造物の膜構造にマーカー分子を結合させる工程と、
前記膜構造に結合させた前記マーカー分子の強度ゆらぎを測定する工程と、
前記工程により得られる測定結果を、予め決定された強度ゆらぎの基準値に基づいて前記生体構造物の性状と関連づける工程と
を含む方法。
(3)膜構造を有する生体構造物の膜機能を解析することにより被検物質が生体に及ぼす影響を評価する方法であって、
膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
前記生体構造物の膜構造にマーカー分子を結合させる工程と、
前記マーカー分子を有する生体構造物と被検物質とを反応させる工程と、
前記膜構造に結合させた前記マーカー分子の強度ゆらぎを測定する工程と、
前記工程により得られる測定結果と、被検物質の非存在下における測定結果とを比較する工程と
を含む方法。
That is, the present invention provides the following means.
(1) A method for analyzing a membrane function of a biological structure having a membrane structure,
Fixing a biological structure having a membrane structure to a measurement container under conditions in which the biological structure can maintain physiological functions;
Binding marker molecules to the membrane structure of the biological structure;
Measuring the intensity fluctuation of the marker molecule bound to the membrane structure.
(2) A method for evaluating the properties of the biological structure by analyzing the membrane function of the biological structure having a membrane structure,
Fixing a biological structure having a membrane structure to a measurement container under conditions in which the biological structure can maintain physiological functions;
Binding marker molecules to the membrane structure of the biological structure;
Measuring intensity fluctuations of the marker molecules bound to the membrane structure;
Associating the measurement result obtained by the step with the property of the anatomy based on a predetermined reference value of intensity fluctuation.
(3) A method for evaluating the influence of a test substance on a living body by analyzing the membrane function of a biological structure having a membrane structure,
Fixing a biological structure having a membrane structure to a measurement container under conditions in which the biological structure can maintain physiological functions;
Binding marker molecules to the membrane structure of the biological structure;
Reacting a biological structure having the marker molecule with a test substance;
Measuring intensity fluctuations of the marker molecules bound to the membrane structure;
A method comprising a step of comparing a measurement result obtained by the above step with a measurement result in the absence of a test substance.

(4)(3)に記載の評価方法であって、前記被検物質と前記マーカー分子が、前記生体構造物に対して競合反応する関係にあることが疑われる場合に、前記強度ゆらぎの測定結果から、(i)前記マーカー分子の拡散速度および(ii)膜構造に結合した状態にあるマーカー分子と膜構造から遊離した状態にあるマーカー分子との比率を計算することを特徴とする方法。
(5)(1)〜(4)の何れか1に記載の方法であって、前記生体構造物が、動物または植物由来の細胞または細胞小器官であることを特徴とする方法。
(6)(1)〜(4)の何れか1に記載の方法であって、前記生体構造物が、血液細胞または神経細胞であることを特徴とする方法。
(7)(1)〜(6)の何れか1に記載の方法であって、前記マーカー分子が蛍光マーカー分子であり、当該蛍光マーカー分子の蛍光強度ゆらぎの検出を、蛍光相関分光法または蛍光偏光法により行うことを特徴とする方法。
(8)膜構造を有し、当該膜構造にマーカー分子を結合させた生体構造物を、当該生体構造物が生理機能を維持し得る条件下に保持した評価用物品であって、生体構造物近傍にて自由運動するマーカー分子の強度揺らぎ[x]と、生体構造物の膜構造に結合して自由運動が抑制されたマーカー分子の強度揺らぎ[y]との比[x/y]が、0.2以下であることを特徴とする評価用物品。
(4) The evaluation method according to (3), wherein the intensity fluctuation is measured when the test substance and the marker molecule are suspected to have a competitive reaction with the biological structure. From the result, (i) the diffusion rate of the marker molecule and (ii) the ratio of the marker molecule in a state bound to the membrane structure and the marker molecule in a state released from the membrane structure are calculated.
(5) The method according to any one of (1) to (4), wherein the anatomical structure is an animal or plant-derived cell or organelle.
(6) The method according to any one of (1) to (4), wherein the biological structure is a blood cell or a nerve cell.
(7) The method according to any one of (1) to (6), wherein the marker molecule is a fluorescent marker molecule, and fluorescence intensity fluctuation of the fluorescent marker molecule is detected by fluorescence correlation spectroscopy or fluorescence. A method characterized by being performed by a polarization method.
(8) An evaluation article in which a biological structure having a membrane structure and having a marker molecule bound to the membrane structure is held under conditions that allow the biological structure to maintain physiological functions, The ratio [x / y] between the intensity fluctuation [x] of the marker molecule that freely moves in the vicinity and the intensity fluctuation [y] of the marker molecule that is bound to the membrane structure of the living body structure and the free movement is suppressed, An evaluation article characterized by being 0.2 or less.

本発明の方法は、生理機能を維持した生体構造物を用いるため、生体に近い条件下での解析、評価が可能である。また、本発明の方法は、膜構造に結合させたマーカー分子の強度ゆらぎを測定するため、微量の生体構造物の使用で測定が可能であるとともに、短時間(数十秒)での測定が可能である。   Since the method of the present invention uses a biological structure that maintains its physiological function, it can be analyzed and evaluated under conditions close to those of a living body. In addition, since the method of the present invention measures the intensity fluctuation of the marker molecule bound to the membrane structure, it can be measured by using a very small amount of biological structure and can be measured in a short time (several tens of seconds). Is possible.

以下、本発明を詳細に説明するが、以下の記載は本発明を説明するためのものであって、本発明を限定するためのものではない。   Hereinafter, the present invention will be described in detail, but the following description is for explaining the present invention and is not intended to limit the present invention.

[1]膜構造を有する生体構造物の膜機能を解析する方法
膜構造を有する生体構造物の膜機能を解析する本発明の方法は、一つの態様に従えば、
(1)膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
(2)前記生体構造物の膜構造に蛍光マーカー分子を結合させる工程と、
(3)前記膜構造に結合させた前記蛍光マーカー分子の蛍光強度ゆらぎを測定する工程と
を含む。
[1] Method for Analyzing Membrane Function of Biological Structure Having Membrane Structure According to one aspect, the method of the present invention for analyzing the membrane function of a biological structure having a membrane structure,
(1) fixing a biological structure having a membrane structure to a measurement container under a condition in which the biological structure can maintain a physiological function;
(2) binding a fluorescent marker molecule to the membrane structure of the biological structure;
(3) measuring a fluorescence intensity fluctuation of the fluorescent marker molecule bound to the membrane structure.

本発明において生体構造物は、膜構造を有する生体内に存在する任意の構造物を指し、より具体的には、細胞、細胞小器官、核、ミトコンドリアを指す。以下、生体構造物として細胞を用いた場合を例に説明する。なお、生体構造物は、生体内から抽出または切除して得られる天然の物質に限らず、生体内での機能を同等に有するように合成ないし培養された物質でもよい。また、天然由来の生体構造物であっても、解析の目的に沿うように化学的ないし物理的処理を施してもよい。   In the present invention, the biological structure refers to any structure existing in a living body having a membrane structure, and more specifically refers to a cell, an organelle, a nucleus, and a mitochondria. Hereinafter, the case where a cell is used as a living body structure will be described as an example. The biological structure is not limited to a natural substance obtained by extraction or excision from the living body, but may be a substance synthesized or cultured so as to have the same function in the living body. Further, even a naturally derived biological structure may be subjected to chemical or physical treatment so as to meet the purpose of analysis.

工程(1)では、細胞を、測定容器中の細胞培養液中で、測定容器底に接着させて室温で培養することにより、細胞を測定容器に固定する。血液細胞などの浮遊細胞については、レクチン等の接着因子を介して細胞をグラス底面に固定する(図1参照)。細胞培養液は、細胞が生育可能な生理的条件の整った溶液〔例えばPBS〕などとし、pHは7.4付近に調整したものを用いることができる。特にFCS測定時、通常用いられる細胞培養用培地に含まれる赤いフェノール色素は測定を妨害する可能性があるため、これを用いず、その代わりに色素を除去した培地を好ましくは用いる。このような色素を含まない培地としては、Opti-MEM(商標)と呼ばれる市販の培地を使用してもよい。   In the step (1), the cells are fixed to the measurement container by adhering to the bottom of the measurement container and culturing the cells at room temperature in the cell culture solution in the measurement container. For floating cells such as blood cells, the cells are fixed to the bottom of the glass via an adhesion factor such as lectin (see FIG. 1). As the cell culture solution, a solution having a physiological condition in which cells can grow (eg, PBS) can be used, and a pH adjusted to around 7.4 can be used. In particular, during the FCS measurement, the red phenol dye contained in the cell culture medium that is usually used may interfere with the measurement. Therefore, a medium from which the dye is removed is preferably used instead. As a medium not containing such a dye, a commercially available medium called Opti-MEM (trademark) may be used.

工程(2)において、細胞の膜構造に蛍光マーカー分子を結合させる。本発明において蛍光マーカー分子とは、一般に疎水性部位をもつマーカー分子がこれに適するが、特に疎水性部分が長いマーカー分子が好ましく、例えばOctadecyl Rhodamine B Chrolide(以下R18という)を用いることができる。また、疎水性部位をもたない一般の色素であっても、疎水性部位をもつ結合性のプローブに対して色素標識したものでもよく、このような結合性プローブとしては例えばPhosphatidylcholinまたはDPH(diphenylhexatoriene)が挙げられる。このような蛍光マーカー分子を数nM、細胞含有溶液(細胞濃度30〜50重量%)に添加し10〜60分間培養することによりR18を生体膜に結合させる。R18の分子構造を図2に示す。工程(1)および(2)は、何れの工程を先に行ってもよい。   In step (2), a fluorescent marker molecule is bound to the membrane structure of the cell. In the present invention, a fluorescent marker molecule is generally a marker molecule having a hydrophobic site, but a marker molecule having a long hydrophobic portion is particularly preferable. For example, Octadecyl Rhodamine B Chrolide (hereinafter referred to as R18) can be used. In addition, it may be a general dye having no hydrophobic site, or a dye labeled with a binding probe having a hydrophobic site. Examples of such binding probes include Phosphatidylcholin or DPH (diphenylhexatoriene). ). By adding such a fluorescent marker molecule to several nM of a cell-containing solution (cell concentration 30 to 50% by weight) and culturing for 10 to 60 minutes, R18 is bound to the biological membrane. The molecular structure of R18 is shown in FIG. Steps (1) and (2) may be performed first.

工程(3)において、膜構造に結合させた蛍光マーカー分子の蛍光強度ゆらぎを測定する。例えば、蛍光相関分光機のレーザー焦点を、蛍光マーカー分子(R18)が結合した生体膜近傍にちかづけて約10秒間FCSの測定を行う。十分な蛍光強度とそれにともなう自己相関関数が得られたならばこれにより「拡散速度」が計算される。さらに、膜近傍にて結合していないR18が自由拡散しているため、膜結合R18と膜に結合していないR18との「比率」がこの自己相関関数によって計算される。   In step (3), the fluorescence intensity fluctuation of the fluorescent marker molecule bonded to the film structure is measured. For example, FCS measurement is performed for about 10 seconds by placing the laser focus of the fluorescence correlation spectrometer near the biological membrane to which the fluorescent marker molecule (R18) is bound. If sufficient fluorescence intensity and the associated autocorrelation function are obtained, the “diffusion rate” is calculated. Further, since R18 that is not bonded in the vicinity of the film is freely diffusing, the “ratio” between the film-bound R18 and R18 that is not bonded to the film is calculated by this autocorrelation function.

[2]膜構造を有する生体構造物の性状を評価する方法
膜構造を有する生体構造物の性状を評価する本発明の方法は、一つの態様に従えば、
(1)膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
(2)前記生体構造物の膜構造に蛍光マーカー分子を結合させる工程と、
(3)前記膜構造に結合させた前記蛍光マーカー分子の蛍光強度ゆらぎを測定する工程と、
(4)前記工程により得られる測定結果を、予め決定された蛍光強度ゆらぎの基準値に基づいて前記生体構造物の性状と関連づける工程と
を含む。
[2] Method for evaluating properties of biological structure having membrane structure The method of the present invention for evaluating the properties of biological structure having a membrane structure, according to one embodiment,
(1) fixing a biological structure having a membrane structure to a measurement container under a condition in which the biological structure can maintain a physiological function;
(2) binding a fluorescent marker molecule to the membrane structure of the biological structure;
(3) measuring the fluorescence intensity fluctuation of the fluorescent marker molecule bound to the membrane structure;
(4) including a step of associating the measurement result obtained by the step with the property of the biological structure based on a predetermined reference value of the fluorescence intensity fluctuation.

上記工程(1)〜(3)は、「膜構造を有する生体構造物の膜機能を解析する方法」の工程(1)〜(3)の説明を参照されたい。工程(4)では、工程(3)で得られた測定結果を、予め決定された蛍光強度ゆらぎの基準値に基づいて生体構造物の性状と関連づける。例えば、細胞構造物(被検対象物)の蛍光マーカー分子の蛍光強度ゆらぎの測定結果を、正常な細胞構造物(基準サンプル)の蛍光マーカー分子の蛍光強度ゆらぎの測定結果(基準値)に基づいて、生体構造物の性状(老化もしくは疾病の有無)と関連づける。あるいは、正常な細胞構造物に加えて種々の老化(もしくは疾病)の程度を有する細胞構造物を基準サンプルとして用いて、これらの蛍光マーカー分子の蛍光強度ゆらぎを測定し、複数の基準値を設定しておくことにより、細胞構造物(被検対象物)の蛍光マーカー分子の蛍光強度ゆらぎの測定結果を、老化もしくは疾病の程度と関連づけることができる(後述の実施例2参照)。   For the above steps (1) to (3), refer to the description of steps (1) to (3) in “Method for analyzing membrane function of biological structure having membrane structure”. In step (4), the measurement result obtained in step (3) is associated with the properties of the living body structure based on a predetermined reference value of the fluorescence intensity fluctuation. For example, based on the measurement result (reference value) of the fluorescence intensity fluctuation of the fluorescent marker molecule of the normal cell structure (reference sample), the measurement result of the fluorescence intensity fluctuation of the fluorescent marker molecule of the cell structure (test object) And associated with the properties of the anatomy (presence of aging or disease). Alternatively, using a cell structure having various aging (or disease) levels in addition to a normal cell structure as a reference sample, the fluorescence intensity fluctuations of these fluorescent marker molecules are measured, and a plurality of reference values are set. Thus, the measurement result of the fluorescence intensity fluctuation of the fluorescent marker molecule of the cell structure (subject to be examined) can be associated with the degree of aging or disease (see Example 2 described later).

このように本発明の評価方法を用いて、生体膜における蛍光分子の動的解析を行うことにより、生体構造物の性状を評価することができる。また、本発明は、疾病により膜変性した状態にあると評価された生体構造物を用いて、これに治療薬を投与し、本発明の評価方法を用いてその蛍光強度ゆらぎを測定することにより、治療薬の効果をモニターすることも可能である。   Thus, the property of a biological structure can be evaluated by performing the dynamic analysis of the fluorescent molecule in the biological membrane using the evaluation method of the present invention. In addition, the present invention uses a biological structure evaluated as being in a state of membrane modification due to a disease, administers a therapeutic agent thereto, and measures the fluorescence intensity fluctuation using the evaluation method of the present invention. It is also possible to monitor the effects of therapeutic agents.

[3]被検物質が生体に及ぼす影響を評価する方法
被検物質が生体に及ぼす影響を評価する本発明の方法は、一つの態様に従えば、
(1)膜構造を有する生体構造物を、該生体構造物が生理機能を維持し得る条件下で測定容器に固定する工程と、
(2)前記生体構造物の膜構造に蛍光マーカー分子を結合させる工程と、
(3)前記蛍光マーカー分子を有する生体構造物と被検物質とを反応させる工程と、
(4)前記膜構造に結合させた前記蛍光マーカー分子の蛍光強度ゆらぎを測定する工程と、
(5)前記工程により得られる測定結果と、被検物質の非存在下における測定結果とを比較する工程と
を含む。
[3] Method for evaluating the influence of a test substance on a living body The method of the present invention for evaluating the influence of a test substance on a living body, according to one embodiment,
(1) fixing a biological structure having a membrane structure to a measurement container under a condition in which the biological structure can maintain a physiological function;
(2) binding a fluorescent marker molecule to the membrane structure of the biological structure;
(3) reacting the biological structure having the fluorescent marker molecule with a test substance;
(4) measuring the fluorescence intensity fluctuation of the fluorescent marker molecule bound to the membrane structure;
(5) including a step of comparing the measurement result obtained by the above step with the measurement result in the absence of the test substance.

この方法も、上記方法と同様に実施され得る。そのため、上記方法と異なる工程のみ以下で説明する。
工程(3)において、蛍光マーカー分子を有する生体構造物と被検物質とを反応させる。ここでの反応は、例えば、上記工程(1)と同じ条件下において、生体構造物である細胞(細胞濃度30〜50重量%)と10〜80nMの被検物質とを10〜60分間培養することにより行うことができる。
This method can be carried out in the same manner as the above method. Therefore, only steps different from the above method will be described below.
In the step (3), the biological structure having the fluorescent marker molecule is reacted with the test substance. The reaction here is, for example, culturing cells (cell concentration 30 to 50% by weight) as a biological structure and a test substance of 10 to 80 nM for 10 to 60 minutes under the same conditions as in the above step (1). Can be done.

工程(5)において、被検物質の存在下で測定される蛍光強度ゆらぎの測定結果と、被検物質の非存在下で測定される蛍光強度ゆらぎの測定結果とを比較する。この比較により、被検物質が、膜構造に影響を及ぼし、膜の粘性を増大もしくは減少させる場合を検出することができる。   In step (5), the measurement result of the fluorescence intensity fluctuation measured in the presence of the test substance is compared with the measurement result of the fluorescence intensity fluctuation measured in the absence of the test substance. By this comparison, it is possible to detect a case where the test substance affects the film structure and increases or decreases the viscosity of the film.

例えば、被検物質と膜上の蛍光マーカー分子が、生体構造物に対して競合反応する関係にあることが疑われる場合は、蛍光強度ゆらぎの測定結果から、蛍光マーカー分子の「拡散速度」を計算することに加えて、蛍光強度ゆらぎの測定結果から、膜構造に結合した状態にある蛍光マーカー分子と膜構造から遊離した状態にある蛍光マーカー分子との「比率」を計算してもよい。すなわち、「拡散速度」および「比率」を、それぞれ被検物質の非存在下で得られる「拡散速度」および「比率」のデータと比較してもよい(後述の実施例3、表2参照)。実施例3に示されるとおり、被検物質が、蛍光マーカー分子と競合する物質である場合、被検物質の添加により、蛍光マーカー分子の「拡散速度」は遅くなり、膜構造に結合した蛍光マーカー分子の「比率」が減少し、膜構造から遊離した蛍光マーカー分子の「比率」が増大することが観察される。   For example, if it is suspected that the analyte and the fluorescent marker molecule on the membrane have a competitive reaction with the biological structure, the “diffusion rate” of the fluorescent marker molecule can be determined from the measurement result of the fluorescence intensity fluctuation. In addition to the calculation, the “ratio” between the fluorescent marker molecule bound to the membrane structure and the fluorescent marker molecule released from the membrane structure may be calculated from the measurement result of the fluorescence intensity fluctuation. That is, “diffusion rate” and “ratio” may be compared with “diffusion rate” and “ratio” data obtained in the absence of the test substance, respectively (see Example 3 and Table 2 below). . As shown in Example 3, when the test substance is a substance that competes with the fluorescent marker molecule, the “diffusion rate” of the fluorescent marker molecule is slowed by the addition of the test substance, and the fluorescent marker bound to the membrane structure It is observed that the “ratio” of molecules decreases and the “ratio” of fluorescent marker molecules released from the membrane structure increases.

また、本発明の評価方法を用いて、被検物質を細胞に与えてから経時的に蛍光強度ゆらぎを測定することにより、被検物質が生体構造物に与える影響の変化を時間を追って評価することができる。   Also, by using the evaluation method of the present invention, the change in the influence of the test substance on the living body structure is evaluated over time by measuring the fluorescence intensity fluctuation over time after the test substance is given to the cell. be able to.

[4]蛍光強度ゆらぎの測定方法について
本発明において蛍光マーカー分子が発する蛍光強度のゆらぎは、蛍光相関分光法(FCS)または蛍光偏光法を用いて測定することができる。
[4] Method for Measuring Fluorescence Intensity Fluctuation In the present invention, the fluctuation in fluorescence intensity emitted by the fluorescent marker molecule can be measured using fluorescence correlation spectroscopy (FCS) or fluorescence polarization.

蛍光相関分光法は、励起レーザー光をN.A.(1.2)の高い対物レンズにより絞り、ステージ上サンプル内での極微小領域(サブフェムトリットル)にて蛍光マーカー分子の出入り、つまり蛍光強度の揺らぎを高感度検出器により検出する方法である。得られたデータから自己相関関数を得、これにより微小領域を通過した平均分子数、分子の平均拡散速度などが求められる(図3)。自己相関関数は次式で表される。   In fluorescence correlation spectroscopy, the excitation laser beam is narrowed down by an objective lens with a high NA (1.2), and the fluorescence marker molecules enter and exit in a very small area (sub-femtoliter) in the sample on the stage, that is, the fluctuation of fluorescence intensity is high. This is a method of detecting by a sensitivity detector. An autocorrelation function is obtained from the obtained data, and the average number of molecules passing through the minute region, the average diffusion rate of the molecules, etc. are obtained (FIG. 3). The autocorrelation function is expressed by the following equation.

Figure 0004746276
Figure 0004746276

このように、蛍光相関分光法はその感度の高さから一分子レベルでの測定が可能であり、現在までin vitro あるいは in vivo における測定例が多数報告されている。さらに、FCSと顕微鏡を組み合わせることによってFCSの非侵襲性と顕微鏡による高い空間分解能が得られ、特に細胞(in vivo)測定では細胞内における蛋白やDNAなどの動きを捉えることが可能となっている。その装置の一例を図4に示す。図4において、Digital Correlator内に示されるグラフは、上から順に、測定される蛍光揺らぎおよび自己相関関数を示す。   Thus, fluorescence correlation spectroscopy can be measured at the single molecule level due to its high sensitivity, and many examples of in vitro or in vivo measurement have been reported so far. Furthermore, the combination of FCS and a microscope provides non-invasiveness of FCS and high spatial resolution using a microscope. In particular, cell (in vivo) measurements can capture the movement of proteins, DNA, etc. in cells. . An example of the apparatus is shown in FIG. In FIG. 4, the graph shown in the Digital Correlator shows the fluorescence fluctuation and autocorrelation function measured in order from the top.

一方、蛍光偏光法は、各分子に固有の回転ブラウン運動による蛍光強度ゆらぎの測定法の一種で、偏光解消の現象に基づいて、蛍光シグナルを発生する分子の回転運動の速度が速い(蛍光強度ゆらぎが大きい)ときには偏光が解消され、回転運動の速度が減少したときには偏光が解消されずに保存されるような条件で偏光状態の変化を検出する方法である。   Fluorescence polarization, on the other hand, is a method of measuring fluorescence intensity fluctuations due to the rotational Brownian motion inherent to each molecule. Based on the phenomenon of depolarization, the speed of rotational motion of molecules that generate fluorescence signals is fast (fluorescence intensity This is a method of detecting a change in the polarization state under such a condition that the polarized light is canceled when the fluctuation is large) and the polarized light is stored without being canceled when the rotational speed is reduced.

[5]評価用物品
また本発明は、一つの態様に従えば、以下の特徴を有する評価用物品を提供する。本発明の評価用物品は、膜構造を有し、当該膜構造に蛍光マーカー分子を結合させた生体構造物を、当該生体構造物が生理機能を維持し得る条件下(溶液中)に保持した評価用物品であって、生体構造物近傍にて自由運動する蛍光マーカー分子の強度揺らぎ[x]と、生体構造物の膜構造に結合して自由運動が抑制された蛍光マーカー分子の強度揺らぎ[y]との比[x/y]が、0.2以下であることを特徴とする。ここで「強度ゆらぎ[x]」および「強度ゆらぎ[y]」は、それぞれ蛍光マーカー分子の総数を反映する値である。本発明の評価用物品は、膜構造を有する生体構造物の性状を評価するため、または被検物質が生体に及ぼす影響を評価するために使用され得る。
[5] Evaluation article According to one aspect, the present invention provides an evaluation article having the following characteristics. The evaluation article of the present invention has a membrane structure having a membrane structure in which a fluorescent marker molecule is bound to the membrane structure under conditions (in solution) under which the organism structure can maintain physiological functions. Intensity fluctuation [x] of a fluorescent marker molecule that freely moves in the vicinity of a living body structure and an intensity fluctuation of a fluorescent marker molecule that is bound to the membrane structure of the living body structure and has free movement suppressed [ The ratio [x / y] to y] is 0.2 or less. Here, “intensity fluctuation [x]” and “intensity fluctuation [y]” are values that reflect the total number of fluorescent marker molecules, respectively. The evaluation article of the present invention can be used for evaluating the properties of a biological structure having a membrane structure, or for evaluating the influence of a test substance on a living body.

以上の本発明の各方法および物品において、膜構造を有する生体構造物とマーカー分子は、液体中の分子運動の特性において次のような関係になるように選ぶのが好ましい。すなわち、評価用物品[5]で述べたように、比[x/y]が0.2以下となるようにするのが好ましい。評価用物品を、該物品を懸濁している緩衝液等で洗浄することにより、「生体構造物近傍にて自由運動する未結合のマーカー分子」の数を、低減することができる。   In each of the methods and articles of the present invention described above, it is preferable that the biological structure having a membrane structure and the marker molecule are selected so as to have the following relationship in the characteristics of molecular motion in the liquid. That is, as described in the evaluation article [5], the ratio [x / y] is preferably 0.2 or less. By washing the evaluation article with a buffer solution or the like in which the article is suspended, the number of “unbound marker molecules that freely move in the vicinity of the biological structure” can be reduced.

一般に、生体構造物に結合したマーカー分子が、測定時間中に離脱する割合は、およそ5〜30%(赤血球では約20%、神経細胞では約5%)と考えられ、リポソームのような合成された生体構造物であれば、20〜50%の離脱もあり得る。本発明ではこのように蛍光分子が経時的に離脱する割合に着目し、この割合を考慮して[x/y]の比を0.2以下とし、測定ノイズとなり得る膜構造に未結合のマーカー分子の量を予め低減しておく。言い換えれば、生体構造物に初めから結合していないマーカー分子が存在していたとしても、[x/y]の比が0.2以下であれば、上述の想定される割合のマーカー分子が離脱しても測定は可能である。   In general, the rate at which marker molecules bound to biological structures are detached during the measurement time is considered to be about 5 to 30% (about 20% for erythrocytes and about 5% for nerve cells), and is synthesized like a liposome. If it is a living body structure, there may be 20 to 50% detachment. In the present invention, focusing on the rate at which the fluorescent molecules are detached with time, the ratio of [x / y] is set to 0.2 or less in consideration of this rate, and the marker is not bound to the film structure that may cause measurement noise. The amount of molecules is reduced in advance. In other words, even if there is a marker molecule that is not bound to the biological structure from the beginning, if the ratio of [x / y] is 0.2 or less, the above-mentioned ratio of the marker molecule is detached. Even measurement is possible.

生体構造物におけるマーカー分子の結合部分(例えば膜構造)のみを測定する場合には、未結合のマーカー分子は測定ノイズにならないが、この場合についても未結合のマーカー分子による励起光の余分な光吸収を低減するために[x/y]の比を0.2以下にしておくことが好ましい。   When measuring only the binding part (for example, membrane structure) of a marker molecule in a biological structure, the unbound marker molecule does not cause measurement noise, but in this case too, excess light of excitation light from the unbound marker molecule In order to reduce absorption, the ratio [x / y] is preferably 0.2 or less.

他方、未結合の状態のマーカー分子が検出可能な量で存在する場合、膜構造に結合したマーカー分子が離脱したり、未結合の状態のマーカー分子が膜構造に結合したりするマーカー分子の挙動を継続的にモニターすることもできる。このように未結合のマーカー分子を積極的に利用する場合、[x/y]の比は0.05〜0.2であるのが好ましい。いずれにしても、[x/y]の比が0.2以下であることにより、生体構造物に結合したマーカー分子の強度ゆらぎの測定値と未結合のマーカー分子の強度ゆらぎの測定値を有効に区別することが可能となる。   On the other hand, when unbound marker molecules are present in detectable amounts, the marker molecules behave in such a way that the marker molecules bound to the membrane structure leave or the unbound marker molecules bind to the membrane structure. Can also be monitored continuously. When the unbound marker molecule is positively used in this way, the [x / y] ratio is preferably 0.05 to 0.2. In any case, when the ratio of [x / y] is 0.2 or less, the measurement value of the intensity fluctuation of the marker molecule bound to the biological structure and the measurement value of the intensity fluctuation of the unbound marker molecule are effective. Can be distinguished.

FCS測定:全ての測定は市販機器であるConfoCor2(Carl Zeiss社)で行った。励起はヘリウム・ネオンレーザー(543nm)とし、蛍光はバンドパスフィルターBP560-615 nmを通して検出器(APD)によって検出した。   FCS measurement: All measurements were performed on a commercial instrument, ConfoCor2 (Carl Zeiss). Excitation was performed with a helium-neon laser (543 nm), and fluorescence was detected with a detector (APD) through a band-pass filter BP560-615 nm.

[実施例1]物理化学的変化によって変性を受けたヒト赤血球膜の測定
(1)バッファーの塩濃度を変化させて低張液とした場合の赤血球膜変化
通常、正常な赤血球は等張液バッファー(NaCl濃度:140mM)において中央が凹状にくぼんだ形状を示し、細い血管内でも通過できるようにその形状はフレキシブルに変形可能である。しかし、細胞外バッファーを低張液(NaCl濃度:70mM)に代えると浸透圧の働きで細胞外から水が細胞内に入り込むために細胞の形状は球状を呈するようになる。しかもこの場合、正常に比べてその変形能は大きく減少する。
[Example 1] Measurement of human erythrocyte membrane denatured by physicochemical change (1) Erythrocyte membrane change when changing buffer salt concentration to make hypotonic solution Normally, normal erythrocytes are isotonic solution buffer In (NaCl concentration: 140 mM), the center shows a concave shape, and the shape can be flexibly deformed so that it can pass through even a thin blood vessel. However, when the extracellular buffer is replaced with a hypotonic solution (NaCl concentration: 70 mM), water enters the cell from the outside due to the osmotic pressure, and the cell shape becomes spherical. Moreover, in this case, the deformability is greatly reduced as compared with the normal case.

このような環境変化によって細胞膜はその粘性が変わることが予想されるため、細胞膜に結合させた蛍光マーカー(R18)の膜上揺らぎ強度をFCSにて測定した。
方法:
ヒト赤血球はEDTA/Tris バッファーにて採血、遠心/洗浄後、10mM Tris/HCl バッファー(10mM Glucose, 0.1% BSA, 140mM、70mMあるいは50mM NaCl, pH=7.4)内にて適当量に希釈、レクチンでコーティングしたFCS測定用チェンバーに赤血球を静置した。その後、10 nMのR18を赤血球に添加して30分インキュベーションした後、FCS測定を行った。
Since the cell membrane is expected to change its viscosity due to such environmental changes, the fluctuation strength on the membrane of the fluorescent marker (R18) bound to the cell membrane was measured by FCS.
Method:
Human erythrocytes are collected in EDTA / Tris buffer, centrifuged / washed, diluted to an appropriate amount in 10 mM Tris / HCl buffer (10 mM Glucose, 0.1% BSA, 140 mM, 70 mM or 50 mM NaCl, pH = 7.4), and lectin. Red blood cells were allowed to stand in the coated FCS measurement chamber. Thereafter, 10 nM R18 was added to erythrocytes and incubated for 30 minutes, and then FCS measurement was performed.

結果:
低張液あるいは等張液における赤血球膜上のR18の拡散を比較すると、やや低張液(70mM)において遅い拡散速度を示したが、その差は顕著とはいえなかった。しかし、塩濃度50mM において赤血球内ヘモグロビンが流出したゴースト細胞では、拡散速度の顕著な遅延が認められた。このことから、細胞外塩濃度の変化によって赤血球の形状は大きく変化しているが、ミクロレベルでの膜粘性などの変化はあまり起こっていないと思われる。しかし、細胞内ヘモグロビンが流出するなどの大きな変化が生じた膜ではそのダメージが大きいことが示唆された(図5−1および図5−2)。
result:
When the diffusion of R18 on the erythrocyte membrane in hypotonic or isotonic solutions was compared, it showed a slow diffusion rate in a slightly hypotonic solution (70 mM), but the difference was not significant. However, in ghost cells from which hemoglobin in erythrocytes flowed out at a salt concentration of 50 mM, a significant delay in the diffusion rate was observed. From this, it seems that the shape of erythrocytes greatly changes due to the change in extracellular salt concentration, but changes such as membrane viscosity at the micro level do not occur much. However, it was suggested that the membrane with a large change such as intracellular hemoglobin efflux is greatly damaged (FIGS. 5-1 and 5-2).

(2)コレステロール除去薬剤によって変化を受けた赤血球膜の測定
細胞膜の構成物質として最も重要な一つとしてコレステロールが挙げられる。このコレステロールを特異的に膜から除去する働きのある薬物、メチルβサイクロデキストリン(MβC)を用いて細胞(赤血球)のコレステロールを10〜20%程度除去した膜でのFCS測定を行った。
(2) Measurement of erythrocyte membranes that have been altered by cholesterol-removing drugs Cholesterol is one of the most important constituents of cell membranes. FCS measurement was performed on a membrane from which cholesterol of cells (erythrocytes) was removed by about 10 to 20% using methyl β cyclodextrin (MβC), a drug that specifically removes cholesterol from the membrane.

方法:
例1(1)同様に赤血球を調製した後、測定チェンバー内にてMβC1〜5mM処理し、37℃にて30分間インキュベーションしてからバッファーにて細胞を洗浄し、R18を添加してFCS測定を行った。
Method:
Example 1 (1) After preparing red blood cells in the same manner, treat with MβC1-5mM in the measurement chamber, incubate for 30 minutes at 37 ° C, wash the cells with buffer, add R18, and measure FCS. went.

結果:
MβC処理によって赤血球の状態が変化するにつれ、拡散速度が遅くなる傾向が見られた。特にゴースト化した赤血球上での拡散は正常に比べて4倍ほどの遅さとなった。これはコレステロールが細胞膜脂質のスムーズな拡散をする上で重要なファクターとなっていることを示唆している。
result:
As the state of red blood cells changed with MβC treatment, the diffusion rate tended to decrease. In particular, diffusion on ghosted erythrocytes was about 4 times slower than normal. This suggests that cholesterol is an important factor in the smooth diffusion of cell membrane lipids.

Figure 0004746276
Figure 0004746276

[実施例2]細胞の老化または疾病による膜変化の測定
(1)赤血球及び培養細胞の老化に伴う膜機能変化の測定
赤血球の場合、生体から採血した後、試験管内でバッファーの塩濃度を高低交互に変化させることによって浸透圧ストレスを加えて擬似的な老化赤血球を調製する。
正常培養細胞(癌化していない)の場合、継代を繰り返すことによって最後には増殖が止まる。増殖が遅くなっていく過程を細胞老化とし、この段階での細胞膜変化を追う。このような実験的に操作した老化細胞に対して、正常の生体内において老化していく細胞の機能低下を評価するのに本発明の方法が有効である。
[Example 2] Measurement of membrane changes due to aging of cells or diseases (1) Measurement of changes in membrane function due to aging of erythrocytes and cultured cells In the case of erythrocytes, after collecting blood from a living body, the buffer salt concentration is increased or decreased in a test tube. Pseudo-senescent erythrocytes are prepared by applying osmotic stress by alternation.
In the case of normal cultured cells (not cancerous), proliferation is finally stopped by repeated passage. Cell aging is the process of slowing growth, and cell membrane changes at this stage are followed. The method of the present invention is effective for evaluating the functional deterioration of cells aging in normal living bodies against such experimentally manipulated senescent cells.

推測:細胞の老化によってその膜機能に変化がもたらされ、特に膜粘性が増して硬くなり、その結果細胞がダメージを受けやすくなって細胞死に至る。FCS測定ではこの初期段階として細胞膜におけるミクロ変化を見出すことが可能と考えられる。   Guess: Cell aging causes changes in its membrane function, especially when the membrane viscosity increases and becomes harder, resulting in cell damage and cell death. In FCS measurement, it is considered possible to find micro changes in the cell membrane as this initial stage.

(2)疾病、特に糖尿病患者赤血球膜の粘性変化の測定
糖尿病患者の赤血球は粘性が高く、血管内移動に悪影響を与えていることが知られていることから、患者赤血球膜が疾病によってどのように変性しているのかを測定する。これにより、疾病の型及び病歴による赤血球膜の粘性の違いを知ることが出来る可能性と、治療効果をモニターする方法を提供できる可能性がある。
(2) Measurement of changes in the viscosity of erythrocyte membranes in diseases, especially diabetic patients Since erythrocytes in diabetics are known to be highly viscous and adversely affect intravascular movements Measure whether it is denatured. Thereby, there is a possibility that the difference in the viscosity of the erythrocyte membrane depending on the disease type and medical history can be known, and a method for monitoring the therapeutic effect may be provided.

方法:
正常ヒト赤血球及び糖尿病患者赤血球を採血し、実施例1に示した調製法にて各々の赤血球を測定チャンバーに入れ、R18マーカーを細胞膜に結合させてFCS測定を行った。
結果:
患者赤血球におけるR18の拡散速度は正常赤血球に比べて有意に(1.2倍)遅くなっていることが分かった。これは患者赤血球膜の柔軟性が低下していることを示唆する。このFCSによる評価法は、新しい糖尿病治療薬の効果を細胞レベルで検討する目的に適している。
Method:
Normal human erythrocytes and diabetic patient erythrocytes were collected, and each erythrocyte was placed in a measurement chamber by the preparation method shown in Example 1, and the R18 marker was bound to the cell membrane to perform FCS measurement.
result:
It was found that the diffusion rate of R18 in patient erythrocytes was significantly (1.2 times) slower than normal erythrocytes. This suggests that the patient erythrocyte membrane is less flexible. This FCS evaluation method is suitable for the purpose of examining the effects of new antidiabetic drugs at the cellular level.

[実施例3]赤血球及び神経培養細胞へのアミロイドβペプチドの毒性測定
アルツハイマー病の原因因子といわれるアミロイドβペプチドは細胞外から細胞膜を通して細胞内に影響を及ぼし、遂には神経細胞を死に至らしめる。アミロイドβペプチドの膜に対する毒性を測定することによって、疾病機序を知ることが出来るのと、各種治療薬のモニターとしてもこの方法が有効である。
[Example 3] Toxicity measurement of amyloid β peptide on erythrocytes and nerve cultured cells Amyloid β peptide, which is said to be a causative factor of Alzheimer's disease, affects the cell from the outside through the cell membrane, and finally causes nerve cells to die. By measuring the toxicity of amyloid β peptide to the membrane, it is possible to know the disease mechanism, and this method is also effective as a monitor for various therapeutic agents.

方法:
実験に用いた細胞は(1)赤血球、(2)培養神経細胞とした。赤血球の調製は実施例1に従い、培養神経細胞はマウス脳神経細胞(Neuro2a)を培地(D-MEM)・10%FBSにて培養したものを用いた。R18を分子マーカーとして細胞膜に結合させた後、アミロイドβペプチド(アミノ酸数1-28 あるいは1-40)各種濃度を細胞に添加し、未添加をコントロールとしてR18の膜上拡散速度及び膜結合比率の変化をFCSにより測定した。
Method:
The cells used in the experiment were (1) erythrocytes and (2) cultured neurons. The erythrocytes were prepared according to Example 1, and the cultured neurons were mouse brain neurons (Neuro2a) cultured in medium (D-MEM) and 10% FBS. After binding R18 to the cell membrane as a molecular marker, various concentrations of amyloid β peptide (number of amino acids 1-28 or 1-40) were added to the cells, and the addition rate of R18 on the membrane and the membrane binding ratio were not added as controls. Changes were measured by FCS.

添加したアミロイドβペプチドはN末端にローダミン色素(Rh)がついており、以下にアミノ酸配列を示す。28アミノ酸ペプチドは細胞膜貫通部位である29-40アミノ酸部位が欠けていることから、細胞膜への結合は弱いと予想される。
Rh-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV (1-40)(Ab40;配列番号1)
Rh-DAEFRHDSGYEVHHQKLVFFAEDVGSNK (1-28)(Ab28;配列番号2)
The added amyloid β peptide has a rhodamine dye (Rh) at the N-terminus, and the amino acid sequence is shown below. Since the 28-amino acid peptide lacks the 29-40 amino acid site, which is the transmembrane site, the binding to the cell membrane is expected to be weak.
Rh-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV (1-40) (Ab40; SEQ ID NO: 1)
Rh-DAEFRHDSGYEVHHQKLVFFAEDVGSNK (1-28) (Ab28; SEQ ID NO: 2)

結果:
赤血球においてアミロイドβペプチド(1‐40)を添加した場合、R18の膜上拡散速度の遅延(約1.3倍)、およびそれに伴って膜結合R18の成分比率の減少(20%)がペプチドの濃度依存的に見られた。
一方、培養神経細胞上においては、アミノ酸数40のアミロイドβペプチド添加によって有意にR18拡散速度が遅延(1.6倍)したが、アミノ酸28のペプチドの影響は見られなかった。
result:
When amyloid β peptide (1-40) was added to erythrocytes, the diffusion rate of R18 on the membrane was delayed (approximately 1.3 times), and the decrease in the component ratio of membrane-bound R18 (20%) was dependent on the peptide concentration. Was seen.
On the other hand, on cultured neurons, the addition of amyloid β peptide with 40 amino acids significantly delayed the R18 diffusion rate (1.6 times), but the effect of amino acid 28 peptide was not observed.

さらに膜結合R18の比率も減少(5%)したがその度合いは赤血球での減少(20%)よりも少なかった。R18の膜結合比率が低下したのと相反して膜から遊離したR18分子がフリーとして存在する比率が増加した。これは、ペプチドの膜結合によって細胞膜環境が著しく異なった結果、遊離して膜近傍でフリー分子として観察されたものであると考えられる。
このことから、ペプチドなどの被検物質を膜に添加することによって、結合していたR18が遊離する現象を定量化することが出来る。しかもその度合いは被検物質の膜に対する毒性の度合いと相関するものと思われる。
Furthermore, the ratio of membrane-bound R18 also decreased (5%), but to a lesser extent than the decrease in red blood cells (20%). Contrary to the decrease in the membrane binding ratio of R18, the proportion of free R18 molecules released from the membrane increased. This is considered to be observed as a free molecule in the vicinity of the membrane as a result of the markedly different cell membrane environment due to peptide membrane binding.
From this, it is possible to quantify the phenomenon in which bound R18 is released by adding a test substance such as a peptide to the membrane. Moreover, the degree seems to correlate with the degree of toxicity of the test substance to the membrane.

Figure 0004746276
Figure 0004746276

ステージ上の測定カバーグラスに接着した培養細胞と赤血球を模式的に示す図。The figure which shows typically the cultured cell and red blood cell which were adhere | attached on the measurement cover glass on a stage. R18の分子構造式を示す図。The figure which shows the molecular structural formula of R18. FCS測定原理を示す図。(a)はレーザー光による測定領域を示し、(b)は自己相関関数式を示し、(c)はそれから求められる分子情報を示す。The figure which shows the FCS measurement principle. (A) shows a measurement region by laser light, (b) shows an autocorrelation function equation, and (c) shows molecular information obtained therefrom. 蛍光相関分光装置を示す図。The figure which shows a fluorescence correlation spectroscopy apparatus. R18結合赤血球膜におけるFCS測定結果を示す図。(a)は等張液(50 mM NaCl)におけるz軸での蛍光強度プロファイル、(b)は等張液における蛍光揺らぎと自己相関関数を示す。The figure which shows the FCS measurement result in a R18 binding erythrocyte membrane. (A) shows the fluorescence intensity profile on the z axis in an isotonic solution (50 mM NaCl), and (b) shows the fluorescence fluctuation and autocorrelation function in the isotonic solution. R18結合赤血球膜におけるFCS測定結果を示す図。(c)は低張液(50 mM NaCl)におけるz軸での蛍光強度プロファイル、(d)は低張液における蛍光揺らぎと自己相関関数を示す。The figure which shows the FCS measurement result in a R18 binding erythrocyte membrane. (C) shows the fluorescence intensity profile on the z axis in a hypotonic solution (50 mM NaCl), and (d) shows the fluorescence fluctuation and autocorrelation function in the hypotonic solution.

Claims (4)

被検体の細胞老化を検査するために、膜構造を有する生体構造物である被検体由来の細胞に結合させた蛍光マーカーのゆらぎを測定する方法であって、
細胞を、該細胞が生理機能を維持し得る条件下で測定容器に固定する工程と、
前記細胞の膜構造に蛍光マーカー分子を結合させる工程と、
前記膜構造に結合させた前記蛍光マーカー分子の蛍光強度ゆらぎを測定する工程と、
前記工程により得られる測定結果を、正常な被検体由来の細胞を用いて予め決定された蛍光強度ゆらぎの基準値と比較する工程と
を含む方法。
In order to examine cell aging of a subject, a method of measuring fluctuations of a fluorescent marker bound to a subject-derived cell that is a biological structure having a membrane structure,
Fixing the cell to the measurement container under conditions that allow the cell to maintain physiological function;
Binding a fluorescent marker molecule to the membrane structure of the cell;
Measuring fluorescence intensity fluctuations of the fluorescent marker molecules bound to the membrane structure;
Comparing the measurement result obtained by the above step with a reference value of fluorescence intensity fluctuation determined in advance using cells derived from a normal subject .
被検体の老化または糖尿病を検査するために、膜構造を有する生体構造物である被検体由来の赤血球膜に結合させた蛍光マーカーのゆらぎを測定する方法であって、
赤血球を、該赤血球が生理機能を維持し得る条件下で測定容器に固定する工程と、
前記赤血球の膜構造に蛍光マーカー分子を結合させる工程と、
前記膜構造に結合させた前記蛍光マーカー分子の蛍光強度ゆらぎを測定する工程と、
前記工程により得られる測定結果を、正常な被検体由来の赤血球を用いて予め決定された蛍光強度ゆらぎの基準値と比較する工程と
を含む方法。
A method for measuring fluctuations of a fluorescent marker bound to a red blood cell membrane derived from a subject that is a biological structure having a membrane structure in order to examine aging or diabetes of the subject ,
Fixing red blood cells to a measurement container under conditions that allow the red blood cells to maintain physiological function;
Binding a fluorescent marker molecule to the membrane structure of the red blood cells;
Measuring fluorescence intensity fluctuations of the fluorescent marker molecules bound to the membrane structure;
And a step of comparing the measurement result obtained by the above step with a reference value of fluorescence intensity fluctuation determined in advance using red blood cells derived from normal subjects .
前記蛍光マーカー分子の蛍光強度ゆらぎの検出を、蛍光相関分光法または蛍光偏光法により行うことを特徴とする、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the fluorescence intensity fluctuation of the fluorescent marker molecule is detected by fluorescence correlation spectroscopy or fluorescence polarization. 細胞または赤血球の膜構造に蛍光マーカー分子を結合させる前記工程により得られた、蛍光マーカー分子結合生体構造物が、生体構造物近傍にて自由運動する蛍光マーカー分子の蛍光強度揺らぎ[x]と、生体構造物の膜構造に結合して自由運動が抑制された蛍光マーカー分子の蛍光強度揺らぎ[y]との比[x/y]が、0.2以下であることを特徴とする、請求項1または2に記載の方法。   The fluorescent marker molecule-binding biological structure obtained by the above-described step of binding the fluorescent marker molecule to the membrane structure of cells or erythrocytes is a fluorescence intensity fluctuation [x] of the fluorescent marker molecule that freely moves in the vicinity of the biological structure; The ratio [x / y] to the fluorescence intensity fluctuation [y] of the fluorescent marker molecule, which is bound to the membrane structure of the biological structure and whose free movement is suppressed, is 0.2 or less, The method according to 1 or 2.
JP2004050214A 2004-02-25 2004-02-25 Method for analyzing membrane function of biological structure having membrane structure Expired - Fee Related JP4746276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050214A JP4746276B2 (en) 2004-02-25 2004-02-25 Method for analyzing membrane function of biological structure having membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050214A JP4746276B2 (en) 2004-02-25 2004-02-25 Method for analyzing membrane function of biological structure having membrane structure

Publications (2)

Publication Number Publication Date
JP2005241378A JP2005241378A (en) 2005-09-08
JP4746276B2 true JP4746276B2 (en) 2011-08-10

Family

ID=35023265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050214A Expired - Fee Related JP4746276B2 (en) 2004-02-25 2004-02-25 Method for analyzing membrane function of biological structure having membrane structure

Country Status (1)

Country Link
JP (1) JP4746276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087829A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Substance on bioactivity, biodegradable particle, kit, and system for evaluating effect of candidate substance on bioactivity
EP3812764B1 (en) * 2018-06-15 2023-10-18 Institute Of Rheological Functions Of Food Method for evaluating degree of aging in red blood cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007540B2 (en) * 1994-10-17 2000-02-07 浜松ホトニクス株式会社 Image display device
JP4406183B2 (en) * 1999-07-23 2010-01-27 オリンパス株式会社 Method for testing substances interacting with hormone receptors
JP4749622B2 (en) * 2001-08-10 2011-08-17 オリンパス株式会社 Method for detecting DNA endonuclease activity
WO2004001402A1 (en) * 2002-06-21 2003-12-31 Olympus Corporation Biomolecule analyzer
WO2004013620A1 (en) * 2002-08-01 2004-02-12 Sensor Technologies Llc Fluorescence correlation spectroscopy instrument

Also Published As

Publication number Publication date
JP2005241378A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
Verkman Water permeability measurement in living cells and complex tissues
KR100298682B1 (en) For in vivo cell tracing of cyanine dye-labeled cells or for measuring lifetime of in vivo cells
FI3014279T3 (en) Method for determining protein aggregates using surface-fida
US20110045993A1 (en) Microfluidic device for assessing object/test material interactions
Kaestner et al. Lysophospatidic acid induced red blood cell aggregation in vitro
Badugu et al. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears
CN105164537A (en) In vitro method for the early detection of a potential inflammation, in particular associated with rejection of a transplant, a neurodegenerative disorder or a depression
CN107438767A (en) The method for detecting active tuberculosis mark
Badugu et al. Sodium-sensitive contact lens for diagnostics of ocular pathologies
JP2013529926A (en) Method for measuring metabolic rate or glucose consumption rate of cells or tissues with high spatiotemporal resolution using glucose nanosensor
JP4746276B2 (en) Method for analyzing membrane function of biological structure having membrane structure
WO2023185871A1 (en) USE OF α-SYNUCLEIN IN AUXILIARY DIAGNOSIS OF NEURODEGENERATIVE DISEASES
WO2009124135A2 (en) Annexin-based apoptosis markers
US20230025694A1 (en) Silicone Hydrogel Based Fluorescent Assay and Contact Lens
Saldanha Instrumental analysis applied to erythrocyte properties
Martins et al. Human septins in cells organize as octamer-based filaments mediating actin-membrane anchoring
JP5307426B2 (en) Complement activity test method
US20110086363A1 (en) Method and apparatus to conduct kinetic analysis of platelet function in whole blood samples
Stringari et al. Metabolic imaging of colon cancer tumors in vivo by phasor fluorescence lifetime microscopy of NADH
JPH1183785A (en) Cell probe, measurement system and probe for examination
Zheng Label-Free Functional Imaging Of Platelets At Nanoscale
Satake et al. Interfacial pH Behavior at a Cell/Gate Insulator Nanogap Induced by Allergic Responses
Del Prete et al. Case Report: Tear liquid for diagnosis of Alzheimer disease.
De Graaf et al. Opto-Chemical pH Detection of Myocardial Ischaemia Using Fluorescent Hydrogels
US9499601B2 (en) Molecular probe for sphingolipids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4746276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees