Nothing Special   »   [go: up one dir, main page]

JP4744017B2 - Analysis method of trace impurities in high purity fluorine gas - Google Patents

Analysis method of trace impurities in high purity fluorine gas Download PDF

Info

Publication number
JP4744017B2
JP4744017B2 JP2001199731A JP2001199731A JP4744017B2 JP 4744017 B2 JP4744017 B2 JP 4744017B2 JP 2001199731 A JP2001199731 A JP 2001199731A JP 2001199731 A JP2001199731 A JP 2001199731A JP 4744017 B2 JP4744017 B2 JP 4744017B2
Authority
JP
Japan
Prior art keywords
fluorine gas
gas
metal material
purity
trace impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001199731A
Other languages
Japanese (ja)
Other versions
JP2003014716A (en
Inventor
純一 鳥巣
仁志 跡辺
恭之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001199731A priority Critical patent/JP4744017B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to DE60239740T priority patent/DE60239740D1/en
Priority to KR1020037002972A priority patent/KR100633870B1/en
Priority to CNA028022432A priority patent/CN1639058A/en
Priority to PCT/JP2002/006519 priority patent/WO2003002454A2/en
Priority to AT02738834T priority patent/ATE505434T1/en
Priority to EP02738834A priority patent/EP1399382B1/en
Priority to KR1020057006386A priority patent/KR100633872B1/en
Priority to US10/362,876 priority patent/US6955801B2/en
Priority to TW091114435A priority patent/TW546254B/en
Publication of JP2003014716A publication Critical patent/JP2003014716A/en
Application granted granted Critical
Publication of JP4744017B2 publication Critical patent/JP4744017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフッ素ガス(F2)中に含まれる微量不純物ガスの分析方法に関する。
【0002】
【従来の技術】
商業ベースで供給されているフッ素ガスは一般的に1.5vol%程度の不純物を含んでいる。その不純物としては、N2、O2、CO2、CF4等のフルオロカーボン、SF6、SiF4、HF等のガスがほとんどであり、フッ素化合物の合成を目的としてこれらの不純物を含むフッ素ガスを使用する場合には、これらの不純物の影響はほとんどなく、その純度は98〜99vol%で十分であった。98〜99vol%の純度のフッ素ガスを分析する方法は、KI水溶液にフッ素ガスを吸収し、遊離したI2をNa223溶液を用いて測定する容量滴定法、フッ素ガスをKI溶液に反応吸収させ、未溶解のガス容量から純度を分析するオルザット法が知られている。また、オルザット法は不純物のN2、O2、CO2、CF4等のフルオロカーボン、SF6のKI溶液に対する溶解度が小さいことを利用し、未溶解の捕集ガスをガスクロで分析すれば不純物の組成を分析することも可能である。
【0003】
しかし、これらの分析方法は、半導体産業の発展にとって重要なキーテクノロジーとなっている微量不純物濃度が数百volppm以下の高純度フッ素ガスの分析方法としては最適な方法とはいえない。フッ素ガスは非常に反応性(高酸化性)が高く、それ故に腐食性も著しいので取り扱いが難しく、フッ素ガスを分析計に直接導入することは困難であった。ガス成分の組成分析に威力を発揮するガスクロ法においても、フッ素ガスを直接導入できる適当な分離カラムがない等の理由から、フッ素ガス中の微量不純物を分析する方法はこれまでほとんど知られていない。
【0004】
フッ素ガスは、その反応特性のため、半導体産業ではエッチングガスやクリーニングガスとして利用されつつある。特に、光学用金属フッ化物のアニール化やエキシマレーザ用ではフッ素ガスの光学特性も重要視され、フッ素ガス単独での使用量も増えつつあり、高純度フッ素ガスとその分析方法に対する要望が高まっている。特に、光学用の用途では、N2、O2、CO2、CF4等のフルオロカーボン、SF6、SiF4、HF等の不純物が少なく、純度が99.9〜99.99vol%の高純度フッ素ガスが望まれている。特に、O2ガス濃度が数volppm以下であり、純度が99.99vol%以上の高純度フッ素ガスが望まれている。
【0005】
特開平4−9757号公報には、不純物を含有するフッ素ガスを金属塩化物充填層に通して、フッ素ガスを塩素ガスに変換した後、塩素ガスをアルカリ金属の水溶液および金属等と反応させ固定除去するか、あるいは、ポーラスポリマーで吸着分離除去した後、分離された不純物をガスクロ分析計で分析することが記載されている。また、特開平7−287001号公報には、二フッ化コバルト(CoF2)を200〜300℃に加熱し、フッ素ガスを三フッ化コバルト(CoF3)に固定し、フッ素ガスから分離された微量不純物をガスクロ分析計で分析することが記載されている。
【0006】
金属塩化物(NaCl)も二フッ化コバルト(CoF2)も、フッ素ガスとの反応は室温では反応速度が遅く、完全に反応させるには100〜300℃の温度が必要になる。ところがこの方法では、例えばフッ素ガスが金属塩化物の塩素と置換して金属フッ化物として固定する際、フッ素ガス中の不純物の一成分であるO2が発生する。さらに、サンプリングおよびサンプル計量管、金属塩化物充填容器、流路切換弁等に内面処理が施されてないと、金属内表面に吸着した水分が原因と考えられるO2やHFが発生することも判明した。この現象は、単なるベーキング処理だけでは解決されず、O2のバックグランドが高くなるため、フッ素ガス中の微量酸素ガスの定量分析方法としては正確な方法とは言えない。
【0007】
また、特開平4−9757号公報に記載された方法は、フッ素ガスが変換されて生成した塩素ガスは、アルカリ金属水酸化物の水溶液に吸収反応させて除去分離後、不純物をガスクロ法にて分析する方法である。しかし、微量不純物を分析する場合、その水溶液への不純物の溶解吸収が問題となり、正確に定量分析できない場合がある。塩素ガス中の不純物を分析することが目的であれば、同公報に記載されているポーラスポリマービーズを分離カラムとして、塩素ガスと不純物をプレカットあるいはバックフラッシュ等の方式で分離し、さらに目的に応じて、MS−5A等の分離カラムを採用するガスクロ分析法は一般的でよい方法と言える。しかし、依然として前段でのフッ素ガスと接触する機材の内表面やフッ素ガス除去分離剤から発生する不純物、特に、酸素の問題は解決されていない。
【0008】
また、前記公報に記載された分析方法は、係る問題点が解決されれば、フッ素ガス中の不純物の中でも、H2、O2、N2、CH4、CO、CO2、CF4等のフルオロカーボン、SF6等の分析を行うことができる可能性がある。しかし、フッ素ガス中には前記不純物以外に、HF、SiF4、その他金属フッ化物等の不純物も含有しており、これらの不純物も分析できなければ微量不純物の分析方法として達成されたとは言えない。
【0009】
【発明が解決しようとする課題】
本発明はこのような背景の下になされたものであって、本発明は、フッ素ガスと接触する金属材料やフッ素ガス除去分離剤からのコンタミネーションを抑制した高純度フッ素ガス中の微量不純物の分析方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者らは、前記の課題を解決すべく鋭意検討した結果、金属材料もしくはニッケル皮膜を有する金属材料からなり、金属材料もしくはニッケル皮膜の表面にフッ化層を形成した容器にフルオロニッケル化合物を充填し、フルオロニッケル化合物を250〜600℃に加熱し、かつ該容器内の圧力を0.01MPa(絶対圧)以下に減圧する工程(1)と、工程(1)を経たフルオロニッケル化合物に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを吸蔵する工程(2)とを少なくとも1回以上行い、さらに前記工程(1)を行った後、不純物ガスを含有するフッ素ガスを200〜350℃でフルオロニッケル化合物と接触させ、フッ素ガスを固定化除去した後にガスクロマトグラフにより分析することを特徴とする高純度フッ素ガス中の微量不純物の分析方法を用いれば前記の課題を解決できることを見いだし、本発明を完成するに至った。本発明は以下の〔1〕〜〔10〕に示される高純度フッ素ガス中の微量不純物の分析方法である。
【0011】
〔1〕金属材料もしくはニッケル皮膜を有する金属材料からなり、金属材料もしくはニッケル皮膜の表面にフッ化層を形成した容器にフルオロニッケル化合物を充填し、フルオロニッケル化合物を250〜600℃に加熱し、かつ該容器内の圧力を0.01MPa(絶対圧)以下に減圧する工程(1)と、工程(1)を経たフルオロニッケル化合物に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを吸蔵する工程(2)とを少なくとも1回以上行い、さらに前記工程(1)を行った後、不純物ガスを含有するフッ素ガスを200〜350℃でフルオロニッケル化合物と接触させ、フッ素ガスを固定化除去した後にガスクロマトグラフにより分析することを特徴とする高純度フッ素ガス中の微量不純物の分析方法。
〔2〕金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、不活性ガスの存在下、200〜300℃で加熱処理し、次いでフッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである上記〔1〕に記載の高純度フッ素ガス中の微量不純物の分析方法。
〔3〕金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、金属材料もしくはニッケル皮膜の表面を強制酸化後に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである上記〔1〕に記載の高純度フッ素ガス中の微量不純物の分析方法。
〔4〕容器に充填するフルオロニッケル化合物が、K3NiF5、K3NiF6およびK3NiF7からなる群から選ばれる少なくとも1種または2種以上の混合物である上記〔1〕〜〔3〕のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。
【0012】
〔5〕微量不純物が、H2、O2、N2、CH4、CO、CO2、CF4、SF6、NF3、He、Ne、Ar、KrおよびXeからなる群から選ばれる少なくとも1種または2種以上のガスである上記〔1〕〜〔4〕のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。
〔6〕フッ素ガスと接触する金属材料もしくはニッケル皮膜を有する金属材料の表面にフッ化層が形成された装置を用いる分析方法であって、不純物ガスを含有するフッ素ガスを窓材が金属ハロゲン化物からなるセルに導入し、赤外分光法を用いて分析することを特徴とする高純度フッ素ガス中の微量不純物の分析方法。
〔7〕金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、不活性ガスの存在下、200〜300℃で加熱処理し、次いでフッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである上記〔6〕に記載の高純度フッ素ガス中の微量不純物の分析方法。
【0013】
〔8〕金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、金属材料もしくはニッケル皮膜の表面を強制酸化後に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである上記〔6〕に記載の高純度フッ素ガス中の微量不純物の分析方法。
〔9〕金属ハロゲン化物がフッ化カルシウムである上記〔6〕〜〔8〕のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。
〔10〕微量不純物が、CH4、CO、CO2、CF4、SF6、NF3、HF、H2OおよびF2Oからなる群から選ばれる少なくとも1種または2種以上のガスである上記〔6〕〜〔9〕のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。
【0014】
【発明の実施の形態】
前述のように、フッ素ガスを分析する場合、フッ素ガスが、使用する配管、容器、弁等の内表面の酸化物および金属表面の吸着H2Oと反応し、O2、HFが発生し、そのコンタミネーションの問題が生じる。従って、本発明の高純度フッ素ガス中の微量不純物の分析方法は、この問題を解決するために、先ず、フッ素ガスと接触する金属材料について、前処理を行うことを特徴とする。尚、本明細書において、フッ素ガス吸蔵物質であるフルオロニッケル化合物をフッ素ガス除去分離剤として用いるが、フルオロニッケル化合物をフッ素ガス除去分離剤ということがある。
【0015】
本発明の分析方法は、フッ素ガスを、例えばフッ素ガス除去分離剤と接触させて、フッ素ガスを除去分離剤に固定化し、分離された微量不純物を目的成分に応じてポーラスポリマービーズやモレキュラシーブ5A等の分離カラムでガスクロ分析法を用いて分析する。
【0016】
本発明はエッチング用、クリーニング用、エキシマレーザ用、金属フッ化物アニール化用、材料のフッ素化処理等の用途に有用なフッ素ガス中の微量不純物の分析方法に関する。中でもエッチング用、エキシマレーザ用、金属フッ化物アニール化用の高純度フッ素ガスを必要とする分野での使用を目的とするが、本発明の分析方法は、高純度フッ素ガスに限定されるものではない。
【0017】
以下、本発明の分析方法について詳しく説明する。
本発明の高純度フッ素ガス中の微量不純物の分析方法は、ガスクロを用いる方法(1)と赤外分光法を用いる方法(2)がある。
本発明の分析方法(1)は、金属材料もしくはニッケル皮膜を有する金属材料からなり、金属材料もしくはニッケル皮膜の表面にフッ化層を形成した容器にフルオロニッケル化合物を充填し、フルオロニッケル化合物を250〜600℃に加熱し、かつ該容器内の圧力を0.01MPa(絶対圧)以下に減圧する工程(1)と、工程(1)を経たフルオロニッケル化合物に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを吸蔵する工程(2)とを少なくとも1回以上行い、さらに前記工程(1)を行った後、不純物ガスを含有するフッ素ガスを200〜350℃でフルオロニッケル化合物と接触させ、フッ素ガスを固定化除去した後にガスクロマトグラフにより分析することを特徴とする。
【0018】
また、本発明の分析方法(2)は、フッ素ガスと接触する金属材料もしくはニッケル皮膜を有する金属材料の表面にフッ化層が形成された装置を用いる分析方法であって、不純物ガスを含有するフッ素ガスを窓材が金属ハロゲン化物からなるセルに導入し、赤外分光法を用いて分析することを特徴とする。
【0019】
本発明の分析方法において、フッ素ガスと接触する金属材料もしくはニッケル皮膜を有する金属材料の表面は予めフッ素ガスによりフッ化層を形成する。例えば安価なステンレスにおいても表面にニッケルメッキを施し、ニッケルメッキの表面をフッ素化する。ニッケルメッキを行う方法は、例えば特開平11−92912号公報に記載された方法を用いることができる。金属材料もしくはニッケル皮膜を有する金属材料の表面にフッ化層を形成する方法は、例えば特開平11−92912号公報に記載された方法を用いることができる。
【0020】
金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法は、不活性ガスの存在下、200〜300℃で加熱処理し、次いでフッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化する方法を用いることができる。
また、金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法は、金属材料もしくはニッケル皮膜の表面を強制酸化後に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化する方法を用いることができる。
【0021】
本発明に係る高純度フッ素ガス中の微量不純物の分析方法は予め、フッ素ガスと接触する配管やサンプリングライン等の内表面の酸化物や表面に吸着しているH2Oの処理と同時に内正面の不動態化処理が施されたものを使用し、フッ素ガスをフルオロニッケル化合物に固定し、フッ素ガス中に含まれる、H2、O2、N2、CH4、CO、CO2、CF4、SF6、NF3、He、Ne、Ar、KrおよびXe等の微量不純物をGCガス成分分離カラムに導入し、TCD(Thermal Conductivity Detector)、PID(Photo Ionization Detector)、DID(Discharge Ionization Detector)、PDD(Pulsed Discharge Detector)等の検出器で測定する。また、適当な分離カラムがなく、ガスクロ法では分析が困難な、HF、SiF4、ガス状金属フッ化物等の成分は、フッ素ガスと共にIR用セルに直接導入し、FT−IRで測定する。この方法は、HF、SiF4以外にCO2、CF4、SF6等の成分も同時分析が可能である。
【0022】
本発明を実施するための金属材料の内表面処理方法について具体的に述べる。
フッ素ガスのような反応性の著しいガス中の微量不純物の分析にあっては、そこに使用される容器、弁、配管、機材等の材質(材料)が充分吟味された時に可能となる。すなわち本発明の分析方法は、フッ素ガスと接触する金属材料もしくはニッケル皮膜の表面にフッ化層を形成することにより、分析時におけるフッ素ガスと接触する材料の内表面に吸着しているH2O等が起因して発生するHFやO2のコンタミネーションの問題を解決することができる。
【0023】
フッ素ガスと接触する各部品(弁、フッ素ガス除去分離剤充填容器、配管、圧力計)の材質が、例えばステンレスの場合はニッケルメッキを施した後、またニッケル、モネルの場合は直接200〜300℃で加熱ベーキング後、フッ素ガスで熱処理することにより表面にフッ化膜を形成することができる。フッ素ガスの濃度は5〜20%がよく、好ましくは5〜15%がよい。フッ素ガス濃度が5%以下ではフッ化膜形成に時間を要する場合があり、20%以上では形成された膜が脆くなる場合がある。フッ化膜を形成する際の温度は200〜400℃範囲がよく、200℃以下では膜形成に長時間を要する場合があり、400℃以上では形成された膜にクラックが入り、クラックにH2O等が吸着される等の理由により耐蝕性が低下する傾向が見られる。このようにフッ素ガスと接触する各部品の内表面にフッ化膜を形成することにより高純度フッ素ガスの微量不純物の分析に問題ないレベルまで金属表面からの放出ガスを減少することができる。
【0024】
次に本発明の分析方法(1)において使用するフルオロニッケル化合物(フッ素ガス除去分離剤)について説明する。
本発明は、フルオロニッケル化合物(フッ素ガス除去分離剤)として、K3NiF5(ペンタフルオロニッケル酸カリウム)、K3NiF6(ヘキサフルオロニッケル酸カリウム)を使用する点に特徴がある。この化合物は粉末固体物質で、下記の化学式で示したように温度変化によりフッ素ガスを吸脱着する原理を利用することを特徴とするフッ素ガスの除去分離剤である。
3NiF5 + 1/2F2 → K3NiF6
3NiF6 + 1/2F2 → K3NiF7
3NiF7 → K3NiF6 + 1/2F2
【0025】
本発明で使用することができるフルオロニッケル化合物(フッ素ガス除去分離剤)は、例えば次のような方法を用いて調製することができる。
フッ素ガス除去分離剤は、NiF2およびKFを原料とし、適当な粒径に粉砕する。次いで、100〜500℃で乾燥した混合物を、予めフッ素ガスで内表面を不動態化処理した弁付容器に充填する。フッ素ガス除去分離剤を充填した容器には、フッ素ガス(F2)、不活性ガス(He)の容器と真空ポンプにつながる弁とヒーターが備わっている。得られたK3NiF5は、温度200〜350℃、減圧度10〜100Paの条件下で加熱真空および不活性ガスを用いた蓄圧パージを数回繰り返し、充填物および容器内表面に吸着しているH2O等を排気する。
【0026】
3NiF6は、前記の方法で得られたK3NiF5にフッ素ガスを吸蔵することにより得ることができる。また、高純度のK3NiF6を得るには、フッ素ガスの吸蔵と放出を数回繰り返し、超微量のH2O、HF等の不純物を除去することにより得ることができる。
フルオロニッケル化合物に吸蔵するフッ素ガス中に含まれるHFの濃度は500volppm以下に低減されていることがよい。HFの濃度は、好ましくは100volppm以下であり、さらに好ましくは10volppm以下である。HFの濃度はフッ化ナトリウム(NaF)と接触させることにより低減することができる。
【0027】
フッ素ガスを吸蔵するフルオロニッケル化合物は、フッ素ガスを吸蔵してK3NiF7を生成し、加熱することによりフッ素ガスを放出して簡単に再生することができるK3NiF6が好ましい。この時の加熱再生温度はフッ素ガスと同時に吸着したHFの除去も考慮し350℃以上がよい。
また、本発明の分析方法(1)はフッ素ガス除去分離剤として、超微量のH2OやHF等の不純物が除去された高純度のK3NiF6を用いることが好ましく、K3NiF7を含んでいてもよい。
【0028】
次に、本発明の分析方法(1)を用いてフッ素ガスとその中に含有するN2、O2、CO2、CF4等のフルオロカーボン、SF6等の微量不純物を分離してガスクロで分析する高純度フッ素ガス中の微量不純物の分析方法について述べる。
【0029】
フッ素ガスの除去分離剤として準備されたK3NiF6を、フッ素ガス除去に充分な量を充填した容器に圧力指示で一定量の不純物含有フッ素ガスを封じ込め、200〜350℃まで加熱した後、徐々に室温まで冷却し、フッ素ガスがフッ素ガス除去分離剤に吸蔵固定することによりフッ素ガスとその中に含有していた不純物は分離される。
フッ素ガスと分離した前記不純物は一定量の不活性ガスで希釈し、ガスクロ分析計にフッ素ガスを含まないガスとして導入でき、不純物の含有量が1ppm以下まで測定することができる。
【0030】
次に、本発明の分析方法(2)である、フッ素ガスと接触する金属材料の内表面処理を行った装置を用い、FT−IR分析計でフッ素ガス中に含まれるHF、SiF4等の微量不純物を分析する方法について説明する。
本発明の分析方法(2)において、フッ素ガスと接触する配管やサンプリングラインの金属材料の内表面をフッ素化処理することにより、前記(1)の方法と同様、その内表面へ吸着するH2Oが極力抑えられ、(1)F2とH2Oの反応で生成するHF、(2)不純物の1つであるSiF4の加水分解で生成するHF、の量を減らすことにより、フッ素ガス中に含まれるHF、SiF4の微量不純物が1ppm以下まで測定することができる。
【0031】
【実施例】
以下に実施例を用いて本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0032】
(実施例1)
図1に示す、本発明の分析方法に用いる装置において、配管、弁1〜弁9、圧力計17、容器19(内容積500ml)、FT−IR用セル22、除害筒24(内容積3L)のフッ素ガスが接触するそれぞれの金属部分にニッケルメッキ(膜厚5〜10Å)を施した。これらの機材を減圧可能な電気炉内に入れ、減圧下、350℃の温度でベーキングし、冷却後、再び電気炉内を減圧にし、N2ガスで希釈した10%F2を大気圧力まで充填した。その後350℃まで昇温速度100℃/時の速度で昇温し、350℃で12時間保持してフッ化処理を行った。
【0033】
前記の方法で表面処理した容器19に、乾燥したK3NiF5粉末(別途調製したK3NiF6またはK3NiF7でもよい)500gを充填し、図1に示す装置を組上げた。弁4、6、7、9、12、13および15、16の各種容器の元弁を閉にし、He14を弁11により0.1MPa充填し、ラインのリークがないことを確認した。
【0034】
次に、ライン、弁をテープヒーターで150℃にヒートアップして装置組上げ時に多少吸着したH2Oを高純度He14をHe容器元弁と弁11と真空ポンプ25を使用して、加熱真空パージした。加熱真空パージ完了は弁9に露天計(パナメトリクッス)を接続し、Heの露点が−80℃以下であることを確認して次工程に移った。
次に、弁1、2、4、6、7、9、10、11を閉にし、F2元弁16を開にし圧力計17と弁2を使用して、F2を圧力0.1MPaまで充填し、温度150℃で2時間放置し、図1に示した実線ラインの不動態化処理を施した。その完了はFT−IRでHFが1ppm以下を確認して次工程に移った。
【0035】
次に、弁1、2、4、5、6、7、9を閉にし、系全体を冷却し弁6と真空ポンプ25で減圧後、弁6を閉にしF2元弁16を開にし圧力計17と弁2を使用して、容器19内にF2を0.5MPaまで充填し、元弁および弁2、3、4を閉にし、ヒーター18で容器19の内温を500℃まで昇温速度100℃/時で上げ、直ちに250℃まで冷却した。250℃に冷却後、弁3と元弁を開にし圧力計17と弁2を使用して、再度容器19内にF2を0.5MPaまで充填し、弁3、4を閉にし、ヒーター18で容器19の内温を500℃まで昇温速度100℃/時で上げ、直ちに250℃まで冷却した。この操作を圧力減少がなくなるまで繰り返して次工程に移った。
【0036】
次に、温度250℃の状態で弁1、2、4、5、7、9の閉を再確認し、弁6と真空ポンプ26を使用して系内のF2をソーダライム充填除害筒24で除害しながら排気した。圧力計17で排気完了を確認後、弁6を閉にし、再び弁3と元弁を開にし、圧力計17と弁2を使用して、容器19内にF2を0.5MPaまで充填し、1〜2時間保持後、弁6と真空ポンプ26を使用して系内のF2をソーダライム充填除害筒24で除害しながら排気した。この操作をFT−IRでHFが1ppm以下を確認するまで繰り返し、室温まで冷却後、高純度He14で加圧にすることで容器19内にフッ素ガス除去分離剤(K3NiF6)を得た。
【0037】
(実施例2)
実施例1のフッ化処理を施したラインを使用して、一旦全ての弁が閉であることを確認し、弁5、7、8を開にし高純度He14を弁11でFT−IRセル22(透視窓:CaF2、長さ:150cm)に導入しバックグランドを2350cm-1のCO2の吸収から1ppm以下であることを確認し、標準ガス15(Heベース)と弁10でHF(10ppm;4040cm-1)、SiF4(10ppm;1016cm-1)、CF4(10ppm;1280cm-1)の標準ガスをFT−IRセル22に導入し検量線を作成した。
次に、F2元弁16を開にし、弁2でFT−IRセル22にF2を導入し、高純度F2中のHF、SiF4、CF4を前記検量線より定量分析した。
【0038】
(実施例3)
実施例1のフッ化処理を施したラインと容器19内のフッ素ガス除去分離剤(K3NiF6)を用いて、一旦全ての弁が閉であることを確認し、弁2、3を開にし真空ポンプ25と弁6で系内を減圧にし、弁6を閉、高純度He元弁14と弁11を開にし、弁1で圧力計17にてHeガスを0.1MPaまで充填する操作とHeガスを真空引きする系内パージ操作を3回以上繰り返した。更に弁1と圧力計17にて高純度He14を0.1MPaまで充填し、弁4、12を使用しGC分析計20に系内Heを導入しバックグランドをガス分離カラム(モレキュラーシーブ5A)とPDD(Pulsed Discharge Detector 米国Valco社製)ガス検出器でO2、N2が0.1ppm以下であることを確認して次工程に移った。
【0039】
次に、一旦全ての弁が閉であることを確認し、弁2、3を開にし弁6と真空ポンプ25で系内を減圧にした後、弁2、6を閉にし高純度容器16及び発生装置のF2を弁2と圧力計17にて0.1MPaまで充填し、弁2、3を閉にし、フッ素ガス除去分離剤(K3NiF6)充填容器19をヒーター18にて容器内温300℃まで昇温後300℃で数分保持し室温まで冷却した。一方弁1、2、3、5、6、9に囲まれた系内の残F2は弁6を開にし、弁1より高純度He14パージでF2除害筒24で除害排気した。その後高純度He14を弁1、11を開にし弁3から圧力計17にてF2同様0.1MPaまで充填後、GC分析計20にてH2、O2、N2、CH4、COを分析し、GC分析計21(ガス分離カラム(ポラパックQ:ウォーターズ社製)、PDDガス検出器)にてCO2、CF4、SF6の定量を行った。
【0040】
【発明の効果】
以上説明したように、本発明に従えばフッ素ガスと接触する機材やフッ素ガス除去分離剤からのコンタミネーションを抑制でき、高純度フッ素ガスに含まれる微量不純物の分析が可能となる。
【図面の簡単な説明】
【図1】 本発明の高純度フッ素ガスの分析方法に用いる装置概略図である。
【符号の説明】
1〜13 弁
14 高純度Heガス
15 標準ガス
16 高純度F2ガス
17 圧力計
18 ヒーター
19 フッ素ガス除去分離剤
20 ガスクロマトグラフ分析計1
21 ガスクロマトグラフ分析計2
22 FT−IR用ガスセル
23 FT−IR分析計
24 フッ素ガス除害筒
25 真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
In the present invention, fluorine gas (F2It relates to a method for analyzing a trace amount of impurity gas contained therein.
[0002]
[Prior art]
Fluorine gas supplied on a commercial basis generally contains impurities of about 1.5 vol%. As the impurity, N2, O2, CO2, CFFourFluorocarbon such as SF6, SiFFourGases such as HF are mostly used, and when fluorine gas containing these impurities is used for the purpose of synthesizing fluorine compounds, there is almost no influence of these impurities, and a purity of 98 to 99 vol% is sufficient. there were. A method for analyzing fluorine gas having a purity of 98 to 99 vol% is that the fluorine gas is absorbed in an aqueous KI solution and released.2Na2S2OThreeA volumetric titration method in which measurement is performed using a solution and an Orsat method in which fluorine gas is reacted and absorbed in a KI solution and purity is analyzed from an undissolved gas volume are known. In addition, the Orzat method uses the impurity N2, O2, CO2, CFFourFluorocarbon such as SF6It is also possible to analyze the composition of impurities by analyzing the undissolved collected gas by gas chromatography using the low solubility of KI in KI solution.
[0003]
However, these analysis methods are not optimal methods for analyzing high purity fluorine gas having a trace impurity concentration of several hundred volppm or less, which is an important key technology for the development of the semiconductor industry. Fluorine gas is very reactive (highly oxidizable), and therefore is very corrosive and difficult to handle, and it was difficult to introduce fluorine gas directly into the analyzer. Even in the gas chromatography method, which is very effective in analyzing the composition of gas components, there are few known methods for analyzing trace impurities in fluorine gas because there is no suitable separation column that can directly introduce fluorine gas. .
[0004]
Fluorine gas is being used as an etching gas and a cleaning gas in the semiconductor industry due to its reaction characteristics. In particular, optical characteristics of fluorine gas are important for annealing optical metal fluorides and excimer lasers, and the amount of fluorine gas used alone is increasing, and there is an increasing demand for high-purity fluorine gas and its analysis method. Yes. Especially for optical applications, N2, O2, CO2, CFFourFluorocarbon such as SF6, SiFFourHigh purity fluorine gas with few impurities such as HF and purity of 99.9 to 99.99 vol% is desired. In particular, O2A high purity fluorine gas having a gas concentration of several volppm or less and a purity of 99.99 vol% or more is desired.
[0005]
In JP-A-4-9757, fluorine gas containing impurities is passed through a metal chloride packed bed to convert the fluorine gas into chlorine gas, and then the chlorine gas is reacted with an alkali metal aqueous solution, metal, etc. and fixed. It is described that the impurities are removed or separated by adsorption and removal with a porous polymer, and then the separated impurities are analyzed with a gas chromatography analyzer. JP-A-7-287001 discloses cobalt difluoride (CoF).2) Is heated to 200 to 300 ° C., and the fluorine gas is changed to cobalt trifluoride (CoF).Three) And analyzing the trace impurities separated from the fluorine gas with a gas chromatograph.
[0006]
Metal chloride (NaCl) is also cobalt difluoride (CoF)2However, the reaction with fluorine gas has a slow reaction rate at room temperature, and a temperature of 100 to 300 ° C. is required for complete reaction. However, in this method, for example, when fluorine gas is substituted with metal chloride chlorine and fixed as metal fluoride, O, which is a component of impurities in fluorine gas.2Occurs. Furthermore, if the inner surface treatment is not applied to the sampling and sample measuring tube, the metal chloride filling container, the flow path switching valve, etc., it is considered that the moisture adsorbed on the inner surface of the metal is the cause.2It was also found that HF was generated. This phenomenon cannot be solved by just baking, but O2Therefore, it is not an accurate method for quantitative analysis of trace oxygen gas in fluorine gas.
[0007]
In addition, the method described in JP-A-4-9757 is a method in which chlorine gas generated by conversion of fluorine gas is absorbed and separated into an aqueous solution of an alkali metal hydroxide to remove and separate impurities by gas chromatography. It is a method of analysis. However, when analyzing a trace amount of impurities, there is a case where the dissolution and absorption of impurities in the aqueous solution becomes a problem, and accurate quantitative analysis may not be possible. If the purpose is to analyze impurities in chlorine gas, the porous polymer beads described in the publication are used as separation columns, and chlorine gas and impurities are separated by a method such as pre-cut or backflushing, and further according to the purpose. Thus, it can be said that a gas chromatographic analysis method employing a separation column such as MS-5A is a general and good method. However, the problem of impurities, particularly oxygen, generated from the inner surface of the equipment in contact with the fluorine gas and the fluorine gas removing / separating agent in the previous stage has not been solved.
[0008]
In addition, the analysis method described in the above publication, among the impurities in the fluorine gas, can solve the problem.2, O2, N2, CHFour, CO, CO2, CFFourFluorocarbon such as SF6Etc. may be possible. However, in fluorine gas, in addition to the impurities, HF, SiFFourIn addition, impurities such as metal fluorides are also contained, and if these impurities cannot be analyzed, it cannot be said that the method has been achieved as a trace impurity analysis method.
[0009]
[Problems to be solved by the invention]
The present invention has been made under such a background, and the present invention relates to trace impurities in a high-purity fluorine gas in which contamination from a metal material or fluorine gas removing / separating agent in contact with the fluorine gas is suppressed. It is an object to provide an analysis method.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors have made a fluoronickel compound in a container made of a metal material or a metal material having a nickel film, and having a fluoride layer formed on the surface of the metal material or nickel film. Filling, heating the fluoronickel compound to 250-600 ° C., and reducing the pressure in the container to 0.01 MPa (absolute pressure) or less, and the fluoronickel compound that has undergone step (1), The step (2) of occluding the fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less is performed at least once, and after the step (1) is further performed, the fluorine gas containing the impurity gas is changed to 200. It is characterized by being analyzed by gas chromatograph after contact with a fluoronickel compound at ˜350 ° C. and fixing and removing fluorine gas. That the use of the method for analyzing trace impurities in a high-purity fluorine gas found that can solve the above problems, and have completed the present invention. The present invention is a method for analyzing trace impurities in high-purity fluorine gas shown in the following [1] to [10].
[0011]
[1] A metal material or a metal material having a nickel film, a container having a fluoride layer formed on the surface of the metal material or nickel film is filled with the fluoronickel compound, and the fluoronickel compound is heated to 250 to 600 ° C. The step (1) of reducing the pressure in the container to 0.01 MPa (absolute pressure) or less, and the fluoronickel compound having undergone the step (1), the fluorine gas content of which is reduced to 500 volppm or less. The step (2) of occlusion is performed at least once, and further after performing the step (1), the fluorine gas containing the impurity gas is brought into contact with the fluoronickel compound at 200 to 350 ° C. to fix the fluorine gas. A method for analyzing trace impurities in high-purity fluorine gas, characterized by performing gas chromatographic analysis after decontamination.
[2] A method of forming a fluorinated layer on the surface of a metal material or nickel film was heat-treated at 200 to 300 ° C. in the presence of an inert gas, and then the content of hydrogen fluoride was reduced to 500 volppm or less. The method for analyzing trace impurities in high-purity fluorine gas according to the above [1], wherein the fluorine gas is used for fluorination.
[3] A method in which a fluoride layer is formed on the surface of a metal material or a nickel film is obtained by using fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less after the surface of the metal material or nickel film is forcibly oxidized. [1] The method for analyzing trace impurities in the high-purity fluorine gas according to [1], which is to be fluorinated.
[4] The fluoronickel compound filled in the container is KThreeNiFFive, KThreeNiF6And KThreeNiF7The method for analyzing trace impurities in high-purity fluorine gas according to any one of the above [1] to [3], which is a mixture of at least one or two or more selected from the group consisting of:
[0012]
[5] Trace impurities are H2, O2, N2, CHFour, CO, CO2, CFFour, SF6, NFThreeOf trace impurities in the high-purity fluorine gas according to any one of the above [1] to [4], which is at least one gas selected from the group consisting of He, Ne, Ar, Kr and Xe Analysis method.
[6] An analysis method using an apparatus in which a fluoride layer is formed on the surface of a metal material that contacts a fluorine gas or a metal material having a nickel film, and the window material is a metal halide containing fluorine gas containing an impurity gas. A method for analyzing trace impurities in a high-purity fluorine gas, which is introduced into a cell comprising the above and analyzed using infrared spectroscopy.
[7] A method of forming a fluorinated layer on the surface of a metal material or nickel film was heat-treated at 200 to 300 ° C. in the presence of an inert gas, and then the content of hydrogen fluoride was reduced to 500 volppm or less. [6] The method for analyzing trace impurities in high-purity fluorine gas as described in [6] above, wherein the fluorine gas is used for fluorination.
[0013]
[8] A method of forming a fluoride layer on the surface of a metal material or a nickel film uses a fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less after the surface of the metal material or nickel film is forcibly oxidized. [6] The method for analyzing trace impurities in high-purity fluorine gas as described in [6] above.
[9] The method for analyzing trace impurities in the high-purity fluorine gas according to any one of [6] to [8], wherein the metal halide is calcium fluoride.
[10] Trace impurities are CHFour, CO, CO2, CFFour, SF6, NFThree, HF, H2O and F2The method for analyzing trace impurities in high-purity fluorine gas according to any one of the above [6] to [9], which is at least one gas selected from the group consisting of O or two or more gases.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As described above, when analyzing fluorine gas, the fluorine gas is absorbed on the inner surface of the pipe, container, valve, etc.2Reacts with O, O2, HF occurs, and the problem of contamination occurs. Therefore, in order to solve this problem, the method for analyzing trace impurities in high-purity fluorine gas according to the present invention is characterized in that a metal material that comes into contact with fluorine gas is first pretreated. In the present specification, a fluoronickel compound, which is a fluorine gas storage material, is used as a fluorine gas removing / separating agent, but the fluoronickel compound is sometimes referred to as a fluorine gas removing / separating agent.
[0015]
In the analysis method of the present invention, fluorine gas is brought into contact with, for example, a fluorine gas removing / separating agent, and the fluorine gas is fixed to the removing / separating agent. Analyze using a gas chromatographic analysis method with a separation column.
[0016]
The present invention relates to a method for analyzing trace impurities in fluorine gas useful for applications such as etching, cleaning, excimer laser, metal fluoride annealing, and material fluorination treatment. In particular, it is intended for use in fields that require high-purity fluorine gas for etching, excimer laser, and metal fluoride annealing, but the analysis method of the present invention is not limited to high-purity fluorine gas. Absent.
[0017]
Hereinafter, the analysis method of the present invention will be described in detail.
The method for analyzing trace impurities in high purity fluorine gas of the present invention includes a method (1) using gas chromatography and a method (2) using infrared spectroscopy.
The analysis method (1) of the present invention comprises a metal material or a metal material having a nickel film, a container having a fluoride layer formed on the surface of the metal material or the nickel film is filled with the fluoronickel compound, The step (1) of heating to ˜600 ° C. and reducing the pressure in the vessel to 0.01 MPa (absolute pressure) or less, and the fluoronickel compound that has undergone step (1) have a hydrogen fluoride content of 500 volppm The step (2) of storing the reduced fluorine gas below is performed at least once, and after further performing the step (1), the fluorine gas containing the impurity gas is converted to a fluoronickel compound at 200 to 350 ° C. It is made to contact and to analyze by gas chromatograph after fixing and removing fluorine gas.
[0018]
Moreover, the analysis method (2) of the present invention is an analysis method using an apparatus in which a fluoride layer is formed on the surface of a metal material or a metal material having a nickel film that is in contact with fluorine gas, and contains an impurity gas. Fluorine gas is introduced into a cell whose window material is made of a metal halide and analyzed using infrared spectroscopy.
[0019]
In the analysis method of the present invention, a fluoride layer is formed in advance on the surface of the metal material in contact with the fluorine gas or the metal material having a nickel film. For example, even an inexpensive stainless steel is plated with nickel, and the surface of the nickel plating is fluorinated. As a method for performing nickel plating, for example, a method described in JP-A-11-92912 can be used. As a method of forming a fluoride layer on the surface of a metal material or a metal material having a nickel film, for example, a method described in JP-A-11-92912 can be used.
[0020]
A method for forming a fluoride layer on the surface of a metal material or nickel film is a method in which a fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less is then heat-treated at 200 to 300 ° C. in the presence of an inert gas. The fluorination method can be used.
In addition, the method of forming a fluoride layer on the surface of a metal material or a nickel film is a method that uses fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less after the surface of the metal material or nickel film is forcibly oxidized. Can be used.
[0021]
The method for analyzing trace impurities in high-purity fluorine gas according to the present invention is preliminarily adsorbed on oxides and surfaces on the inner surface of piping and sampling lines that come into contact with fluorine gas.2Using a material which has been subjected to a passivation treatment on the inner front surface at the same time as the treatment of O, the fluorine gas is fixed to the fluoronickel compound, and H contained in the fluorine gas is contained.2, O2, N2, CHFour, CO, CO2, CFFour, SF6, NFThree, He, Ne, Ar, Kr and Xe are introduced into GC gas component separation column, TCD (Thermal Conductivity Detector), PID (Photo Ionization Detector), DID (Discharge Ionization Detector), PDD (Pulsed Discharge Detector) ) And other detectors. Also, there is no appropriate separation column, and it is difficult to analyze by gas chromatography, HF, SiFFourComponents such as gaseous metal fluoride are directly introduced into an IR cell together with fluorine gas and measured by FT-IR. This method uses HF, SiFFourIn addition to CO2, CFFour, SF6Such components can be analyzed simultaneously.
[0022]
A method for treating the inner surface of a metal material for carrying out the present invention will be specifically described.
Analysis of trace impurities in highly reactive gases such as fluorine gas is possible when the materials (materials) such as containers, valves, piping, and equipment used there are thoroughly examined. That is, in the analysis method of the present invention, by forming a fluoride layer on the surface of the metal material or nickel film that comes into contact with the fluorine gas, the H adsorbed on the inner surface of the material in contact with the fluorine gas at the time of analysis.2HF and O generated due to O, etc.2The problem of contamination can be solved.
[0023]
For example, if the material of each component (valve, fluorine gas removal separating agent filling container, piping, pressure gauge) in contact with the fluorine gas is stainless steel, it is plated with nickel, and if it is nickel or monel, it is directly 200 to 300 After baking at a temperature of ° C., a fluoride film can be formed on the surface by heat treatment with fluorine gas. The concentration of fluorine gas is 5 to 20%, preferably 5 to 15%. When the fluorine gas concentration is 5% or less, it may take time to form the fluoride film, and when it is 20% or more, the formed film may be brittle. The temperature at the time of forming the fluoride film is preferably in the range of 200 to 400 ° C., and if it is 200 ° C. or less, it may take a long time to form the film, and if it is 400 ° C. or more, the formed film will crack and H2There is a tendency for the corrosion resistance to decrease due to reasons such as adsorption of O and the like. In this way, by forming a fluoride film on the inner surface of each component in contact with the fluorine gas, it is possible to reduce the gas released from the metal surface to a level that does not cause any problem in analyzing trace impurities of the high purity fluorine gas.
[0024]
Next, the fluoronickel compound (fluorine gas removing / separating agent) used in the analysis method (1) of the present invention will be described.
In the present invention, as a fluoronickel compound (fluorine gas removing and separating agent), KThreeNiFFive(Potassium pentafluoronickelate), KThreeNiF6It is characterized by the use of (potassium hexafluoronickelate). This compound is a powdered solid substance, and is a fluorine gas removing and separating agent characterized by utilizing the principle of adsorbing and desorbing fluorine gas by temperature change as shown by the following chemical formula.
KThreeNiFFive  + 1 / 2F2  → KThreeNiF6
KThreeNiF6  + 1 / 2F2  → KThreeNiF7
KThreeNiF7  → KThreeNiF6  + 1 / 2F2
[0025]
The fluoronickel compound (fluorine gas removing / separating agent) that can be used in the present invention can be prepared, for example, using the following method.
Fluorine gas removal and separation agent is NiF2And KF is used as a raw material and pulverized to an appropriate particle size. Next, the mixture dried at 100 to 500 ° C. is filled into a valve-equipped container whose inner surface has been passivated in advance with fluorine gas. In a container filled with a fluorine gas removal separator, fluorine gas (F2), An inert gas (He) container, a valve connected to a vacuum pump, and a heater. K obtainedThreeNiFFiveH is adsorbed on the packing and the inner surface of the container by repeating a pressure accumulation purge using a heating vacuum and an inert gas several times under conditions of a temperature of 200 to 350 ° C. and a degree of vacuum of 10 to 100 Pa.2Exhaust O and the like.
[0026]
KThreeNiF6Is obtained by the above method.ThreeNiFFiveIt can be obtained by occluding fluorine gas. High purity KThreeNiF6In order to obtain a very small amount of H.2It can be obtained by removing impurities such as O and HF.
The concentration of HF contained in the fluorine gas stored in the fluoronickel compound is preferably reduced to 500 volppm or less. The concentration of HF is preferably 100 volppm or less, more preferably 10 volppm or less. The concentration of HF can be reduced by contacting with sodium fluoride (NaF).
[0027]
Fluoronickel compounds that occlude fluorine gas occlude fluorine gas andThreeNiF7Can be easily regenerated by heating and releasing fluorine gasThreeNiF6Is preferred. The heating regeneration temperature at this time is preferably 350 ° C. or higher in consideration of removal of HF adsorbed simultaneously with fluorine gas.
In addition, the analysis method (1) of the present invention is a very small amount of H as a fluorine gas removing and separating agent.2High purity K from which impurities such as O and HF are removedThreeNiF6Is preferably used, and KThreeNiF7May be included.
[0028]
Next, using the analysis method (1) of the present invention, fluorine gas and N contained therein2, O2, CO2, CFFourFluorocarbon such as SF6A method for analyzing trace impurities in high-purity fluorine gas, in which trace impurities such as these are separated and analyzed by gas chromatography, is described.
[0029]
K prepared as a fluorine gas removal and separation agentThreeNiF6, Contain a certain amount of impurity-containing fluorine gas in a container filled with a sufficient amount for fluorine gas removal, heat to 200-350 ° C, and then gradually cool to room temperature. Fluorine gas and impurities contained therein are separated by occlusion and fixing in the agent.
The impurities separated from the fluorine gas can be diluted with a certain amount of inert gas and introduced into the gas chromatograph as a gas not containing fluorine gas, and the impurity content can be measured to 1 ppm or less.
[0030]
Next, HF and SiF contained in the fluorine gas with an FT-IR analyzer using the apparatus for the inner surface treatment of the metal material in contact with the fluorine gas, which is the analysis method (2) of the present invention.FourA method for analyzing trace impurities such as the above will be described.
In the analysis method (2) of the present invention, H is adsorbed on the inner surface of the piping or sampling line metal material in contact with the fluorine gas by fluorination treatment as in the method (1).2O is suppressed as much as possible, (1) F2And H2HF produced by the reaction of O, (2) SiF which is one of the impuritiesFourHF, SiF contained in fluorine gas by reducing the amount of HF produced by hydrolysis ofFourTrace impurities can be measured to 1 ppm or less.
[0031]
【Example】
Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.
[0032]
(Example 1)
In the apparatus used for the analysis method of the present invention shown in FIG. 1, piping, valve 1 to valve 9, pressure gauge 17, container 19 (internal volume 500 ml), FT-IR cell 22, abatement tube 24 (internal volume 3 L) ) Was subjected to nickel plating (film thickness 5 to 10 mm). These equipments are placed in an electric furnace that can be depressurized, baked at a temperature of 350 ° C. under reduced pressure, and after cooling, the electric furnace is depressurized again, and N210% F diluted with gas2Was charged to atmospheric pressure. Thereafter, the temperature was raised to 350 ° C. at a rate of temperature rise of 100 ° C./hour and held at 350 ° C. for 12 hours for fluorination treatment.
[0033]
In the container 19 surface-treated by the above method, dried KThreeNiFFivePowder (K prepared separately)ThreeNiF6Or KThreeNiF7The apparatus shown in FIG. 1 was assembled. The main valves of the various containers of the valves 4, 6, 7, 9, 12, 13, and 15, 16 were closed, and He14 was filled with 0.1 MPa by the valve 11, and it was confirmed that there was no line leak.
[0034]
Next, the line and valves were heated up to 150 ° C. with a tape heater, and a little adsorbed when the equipment was assembled.2High purity He14 was heated and vacuum purged using He container source valve, valve 11 and vacuum pump 25. Upon completion of the heating vacuum purge, an outdoor meter (Panametrics) was connected to the valve 9, and it was confirmed that the dew point of He was −80 ° C. or less, and the process proceeded to the next step.
Next, valves 1, 2, 4, 6, 7, 9, 10, 11 are closed and F2Open the main valve 16 and use the pressure gauge 17 and the valve 2 to2Was left to stand at a temperature of 150 ° C. for 2 hours, and the solid line was passivated as shown in FIG. Completion was confirmed by FT-IR to confirm that HF was 1 ppm or less, and then proceeded to the next step.
[0035]
Next, the valves 1, 2, 4, 5, 6, 7, and 9 are closed, the entire system is cooled, the pressure is reduced by the valve 6 and the vacuum pump 25, the valve 6 is closed, and F2Open the main valve 16 and use the pressure gauge 17 and the valve 2 to put F in the container 19.2Was closed to 0.5 MPa, the main valve and the valves 2, 3, and 4 were closed, and the internal temperature of the container 19 was increased to 500 ° C. at a heating rate of 100 ° C./hour with the heater 18 and immediately cooled to 250 ° C. After cooling to 250 ° C., the valve 3 and the main valve are opened, and the pressure gauge 17 and the valve 2 are used.2Was closed to 0.5 MPa, the valves 3 and 4 were closed, the internal temperature of the container 19 was increased to 500 ° C. at a heating rate of 100 ° C./hour with the heater 18, and immediately cooled to 250 ° C. This operation was repeated until there was no pressure reduction, and the process was moved to the next step.
[0036]
Next, the valve 1, 2, 4, 5, 7, 9 is reconfirmed in a state where the temperature is 250 ° C., and the valve 6 and the vacuum pump 26 are used.2Was exhausted while detoxifying with the soda lime filling abatement cylinder 24. After confirming the completion of exhaustion with the pressure gauge 17, the valve 6 is closed, the valve 3 and the main valve are opened again, and the pressure gauge 17 and the valve 2 are used.2Is filled to 0.5 MPa, held for 1 to 2 hours, and then the valve 6 and vacuum pump 26 are used to2Was exhausted while detoxifying with the soda lime filling abatement cylinder 24. This operation is repeated until HF is confirmed to be 1 ppm or less by FT-IR, cooled to room temperature, and then pressurized with high-purity He14 to bring the fluorine gas removal separating agent (KThreeNiF6)
[0037]
(Example 2)
Using the line subjected to the fluorination treatment of Example 1, it was confirmed that all the valves were once closed, and the valves 5, 7, and 8 were opened, and the high-purity He14 was added to the FT-IR cell 22 using the valve 11. (Transparent window: CaF2, Length: 150cm) and background 2350cm-1CO21 ppm or less from the absorption of HF, and HF (10 ppm; 4040 cm) with standard gas 15 (He base) and valve 10-1), SiFFour(10 ppm; 1016 cm-1), CFFour(10 ppm; 1280 cm-1) Was introduced into the FT-IR cell 22 to prepare a calibration curve.
Next, F2The original valve 16 is opened and the FT-IR cell 22 is switched to F with the valve 2.2Introduced high purity F2HF, SiF inFour, CFFourWas quantitatively analyzed from the calibration curve.
[0038]
Example 3
Fluorine gas removing / separating agent (KThreeNiF6) To confirm that all the valves are once closed, open the valves 2 and 3, depressurize the system with the vacuum pump 25 and the valve 6, close the valve 6, and the high purity He original valve 14 The valve 11 was opened, and the operation of filling the He gas up to 0.1 MPa with the pressure gauge 17 with the valve 1 and the in-system purge operation of evacuating the He gas were repeated three times or more. Further, high-purity He14 is filled to 0.1 MPa with the valve 1 and the pressure gauge 17, and the system He is introduced into the GC analyzer 20 using the valves 4 and 12, and the background is a gas separation column (molecular sieve 5A). PDD (Pulsed Discharge Detector USA Valco) gas detector O2, N2Confirmed that it was 0.1 ppm or less, and moved to the next step.
[0039]
Next, once it is confirmed that all the valves are closed, the valves 2 and 3 are opened, the inside of the system is depressurized by the valves 6 and the vacuum pump 25, then the valves 2 and 6 are closed and the high-purity container 16 and Generator F2Is filled to 0.1 MPa with the valve 2 and the pressure gauge 17, the valves 2 and 3 are closed, and the fluorine gas removing and separating agent (KThreeNiF6) The filling container 19 was heated up to 300 ° C. with the heater 18 and then kept at 300 ° C. for several minutes and cooled to room temperature. On the other hand, the remaining F in the system surrounded by valves 1, 2, 3, 5, 6, 92Opens valve 6 and purifies F14 with a higher purity He14 purge than valve 1.2The detoxification cylinder 24 exhausted the detoxification. After that, the high purity He14 is opened with the valves 1 and 11 and the pressure gauge 17 from the valve 32Similarly, after filling up to 0.1 MPa, the GC analyzer 202, O2, N2, CHFour, CO was analyzed, and CO was analyzed with a GC analyzer 21 (gas separation column (Polapack Q: manufactured by Waters), PDD gas detector).2, CFFour, SF6Was quantified.
[0040]
【The invention's effect】
As described above, according to the present invention, contamination from the equipment that comes into contact with the fluorine gas and the fluorine gas removing / separating agent can be suppressed, and trace impurities contained in the high-purity fluorine gas can be analyzed.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus used in the method for analyzing high purity fluorine gas of the present invention.
[Explanation of symbols]
1-13 valves
14 High purity He gas
15 standard gas
16 High purity F2gas
17 Pressure gauge
18 Heater
19 Fluorine gas removal and separation agent
20 Gas chromatograph analyzer 1
21 Gas Chromatograph Analyzer 2
22 Gas cell for FT-IR
23 FT-IR analyzer
24 Fluorine gas scrubber
25 Vacuum pump

Claims (5)

金属材料もしくはニッケル皮膜を有する金属材料からなり、金属材料もしくはニッケル皮膜の表面にフッ化層を形成した容器にフルオロニッケル化合物を充填し、フルオロニッケル化合物を250〜600℃に加熱し、かつ該容器内の圧力を0.01MPa(絶対圧)以下に減圧する工程(1)と、工程(1)を経たフルオロニッケル化合物に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを吸蔵する工程(2)とを少なくとも1回以上行い、さらに前記工程(1)を行った後、不純物ガスを含有するフッ素ガスを200〜350℃でフルオロニッケル化合物と接触させ、フッ素ガスを固定化除去した後にガスクロマトグラフにより分析することを特徴とする高純度フッ素ガス中の微量不純物の分析方法。  A container made of a metal material or a metal material having a nickel film, and having a fluoride layer formed on the surface of the metal material or the nickel film is filled with a fluoronickel compound, the fluoronickel compound is heated to 250 to 600 ° C., and the container (1) in which the internal pressure is reduced to 0.01 MPa (absolute pressure) or less, and fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less is occluded in the fluoronickel compound that has undergone step (1). After performing step (2) at least once and further performing the step (1), the fluorine gas containing the impurity gas was brought into contact with the fluoronickel compound at 200 to 350 ° C. to immobilize and remove the fluorine gas. A method for analyzing trace impurities in high-purity fluorine gas, which is later analyzed by gas chromatography. 金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、不活性ガスの存在下、200〜300℃で加熱処理し、次いでフッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである請求項1に記載の高純度フッ素ガス中の微量不純物の分析方法。  A method of forming a fluoride layer on the surface of a metal material or nickel film is a heat treatment at 200 to 300 ° C. in the presence of an inert gas, and then a fluorine gas in which the content of hydrogen fluoride is reduced to 500 volppm or less. The method for analyzing trace impurities in high-purity fluorine gas according to claim 1, which is used for fluorination. 金属材料もしくはニッケル皮膜の表面にフッ化層を形成する方法が、金属材料もしくはニッケル皮膜の表面を強制酸化後に、フッ化水素の含有量が500volppm以下に低減されたフッ素ガスを用いてフッ素化するものである請求項1に記載の高純度フッ素ガス中の微量不純物の分析方法。  A method of forming a fluoride layer on the surface of a metal material or a nickel film is fluorinated using a fluorine gas whose hydrogen fluoride content is reduced to 500 volppm or less after the surface of the metal material or nickel film is forcibly oxidized. The method for analyzing trace impurities in high purity fluorine gas according to claim 1. 容器に充填するフルオロニッケル化合物が、K3NiF5、K3NiF6およびK3NiF7からなる群から選ばれる少なくとも1種または2種以上の混合物である請求項1〜3のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。The fluoronickel compound with which the container is filled is at least one selected from the group consisting of K 3 NiF 5 , K 3 NiF 6 and K 3 NiF 7, or a mixture of two or more types. For analyzing trace impurities in high-purity fluorine gas. 微量不純物が、H2、O2、N2、CH4、CO、CO2、CF4、SF6、NF3、He、Ne、Ar、KrおよびXeからなる群から選ばれる少なくとも1種または2種以上のガスである請求項1〜4のいずれかに記載の高純度フッ素ガス中の微量不純物の分析方法。The trace impurity is at least one or two selected from the group consisting of H 2 , O 2 , N 2 , CH 4 , CO, CO 2 , CF 4 , SF 6 , NF 3 , He, Ne, Ar, Kr and Xe. The method for analyzing trace impurities in high-purity fluorine gas according to any one of claims 1 to 4, which is a gas of a species or more.
JP2001199731A 2001-06-29 2001-06-29 Analysis method of trace impurities in high purity fluorine gas Expired - Lifetime JP4744017B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001199731A JP4744017B2 (en) 2001-06-29 2001-06-29 Analysis method of trace impurities in high purity fluorine gas
US10/362,876 US6955801B2 (en) 2001-06-29 2002-06-27 High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
CNA028022432A CN1639058A (en) 2001-06-29 2002-06-27 High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
PCT/JP2002/006519 WO2003002454A2 (en) 2001-06-29 2002-06-27 High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
AT02738834T ATE505434T1 (en) 2001-06-29 2002-06-27 PRODUCTION OF A HIGH-PURITY FLUORINE GAS AND METHOD FOR ANALYZING TRACES IN A HIGH-PURITY FLUORINE GAS
EP02738834A EP1399382B1 (en) 2001-06-29 2002-06-27 Production of high-purity fluorine gas and method for analyzing trace impurities in high-purity fluorine gas
DE60239740T DE60239740D1 (en) 2001-06-29 2002-06-27 E FOR THE ANALYSIS OF TRACES IN A HIGH-PURITY FLUORESCENT
KR1020037002972A KR100633870B1 (en) 2001-06-29 2002-06-27 High-purity fluorine gas, production and use thereof
KR1020057006386A KR100633872B1 (en) 2001-06-29 2002-06-27 A method for analyzing trace impurities in high-purity fluorine gas
TW091114435A TW546254B (en) 2001-06-29 2002-06-28 High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199731A JP4744017B2 (en) 2001-06-29 2001-06-29 Analysis method of trace impurities in high purity fluorine gas

Publications (2)

Publication Number Publication Date
JP2003014716A JP2003014716A (en) 2003-01-15
JP4744017B2 true JP4744017B2 (en) 2011-08-10

Family

ID=19036984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199731A Expired - Lifetime JP4744017B2 (en) 2001-06-29 2001-06-29 Analysis method of trace impurities in high purity fluorine gas

Country Status (1)

Country Link
JP (1) JP4744017B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458438C (en) * 2004-09-30 2009-02-04 昭和电工株式会社 Method for trace analysis and analyzer therefor
JP4642602B2 (en) * 2005-08-24 2011-03-02 昭和電工株式会社 Method for quantitative analysis of gas components contained in fluorine gas and apparatus used therefor
KR101025748B1 (en) 2009-03-03 2011-04-04 (주)원익머트리얼즈 Analysis equipment of impurities for fluorine gas
US20120228144A1 (en) * 2009-10-16 2012-09-13 Solvay Fluor Gmbh High-purity fluorine gas, the production and use thereof, and a method for monitoring impurities in a fluorine gas
EP3767277B1 (en) 2018-03-12 2023-08-23 Kanto Denka Kogyo Co., Ltd. Method and device for analyzing gas
KR102056580B1 (en) 2018-06-25 2019-12-17 한국전력공사 Hexafluorosulfide analysis system and hexafluorosulfide analysis method using the same
CN112014419B (en) * 2020-07-31 2023-08-29 中国南方电网有限责任公司超高压输电公司检修试验中心 SF6 and typical impurity gas state analysis method thereof
CN112485348B (en) * 2020-11-05 2023-08-08 北京高麦克仪器科技有限公司 NF 3 Method for separating and analyzing medium impurity
CN112540140B (en) * 2020-12-16 2022-12-27 中船(邯郸)派瑞特种气体股份有限公司 Equipment and method for measuring trace impurities in HF (hydrogen fluoride) by gas chromatography
KR20240119258A (en) * 2021-12-06 2024-08-06 가부시끼가이샤 레조낙 Method for analyzing gas containing nitrosyl fluoride and method for removing nitrosyl fluoride in the gas
CN114814039B (en) * 2022-05-24 2022-11-11 福建德尔科技股份有限公司 Method for analyzing content of impurities in fluorine gas
CN115308321B (en) * 2022-07-04 2024-08-09 浙江赛鹭鑫仪器有限公司 Fluorine gas and fluoride analysis system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162257A (en) * 1988-12-16 1990-06-21 Central Glass Co Ltd Method and apparatus for measuring concentrations of components of fluorine-containing gas
JPH049757A (en) * 1990-04-27 1992-01-14 Central Glass Co Ltd Method and apparatus for analyzing very small amount of impurity in fluorine or chlorine fluoride gas
JPH05502981A (en) * 1990-05-23 1993-05-20 オックスフォード レーザーズ リミテッド halogen generator
JPH07287001A (en) * 1994-04-18 1995-10-31 Kanto Denka Kogyo Co Ltd Method and apparatus for analyzing impurity gas in fluorine gas
JPH1112200A (en) * 1997-06-18 1999-01-19 Showa Denko Kk Production of perfluorocarbon
JP2001007423A (en) * 1999-06-24 2001-01-12 Showa Denko Kk Method and device for supplying fluorine gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162257A (en) * 1988-12-16 1990-06-21 Central Glass Co Ltd Method and apparatus for measuring concentrations of components of fluorine-containing gas
JPH049757A (en) * 1990-04-27 1992-01-14 Central Glass Co Ltd Method and apparatus for analyzing very small amount of impurity in fluorine or chlorine fluoride gas
JPH05502981A (en) * 1990-05-23 1993-05-20 オックスフォード レーザーズ リミテッド halogen generator
JPH07287001A (en) * 1994-04-18 1995-10-31 Kanto Denka Kogyo Co Ltd Method and apparatus for analyzing impurity gas in fluorine gas
JPH1112200A (en) * 1997-06-18 1999-01-19 Showa Denko Kk Production of perfluorocarbon
JP2001007423A (en) * 1999-06-24 2001-01-12 Showa Denko Kk Method and device for supplying fluorine gas

Also Published As

Publication number Publication date
JP2003014716A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US6955801B2 (en) High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
TWI442969B (en) Recovering of xenon by adsorption process
EP1406837B1 (en) Production of tetrafluorosilane
WO2020129726A1 (en) Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
JP2725876B2 (en) Method and apparatus for analyzing trace impurities in fluorine or chlorine fluoride gas
JP3339962B2 (en) Method and apparatus for analyzing impurity gas in fluorine gas
JP4699377B2 (en) Trace component analysis method and analyzer
JPWO2004015401A1 (en) Silanol group concentration measuring method and measuring cell
JP4843635B2 (en) Method for producing carbonyl fluoride with reduced hydrogen fluoride content
JP4211983B2 (en) Method and apparatus for measuring F2 gas concentration
JP4642602B2 (en) Method for quantitative analysis of gas components contained in fluorine gas and apparatus used therefor
WO2023105975A1 (en) Method for analyzing gas containing nitrosyl fluoride, and method for removing nitrosyl fluoride in gas
CN114200039A (en) Method for detecting HF content in fluorine gas
JP2003081614A (en) High purity gaseous fluorine, production method therefor, and its use
JP2012194042A (en) Preprocessing apparatus for gas analyzer
JP7586091B2 (en) Method for measuring fluorine gas concentration in halogen fluoride-containing gas using a mass spectrometer
JP4859384B2 (en) Metal fluoride deoxidizer and method for producing the same
WO2021106601A1 (en) Method for measuring fluorine gas concentration in halogen-fluoride-containing gas using mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term