JP4638090B2 - Method for manufacturing variable blade profile in VGS type turbocharger - Google Patents
Method for manufacturing variable blade profile in VGS type turbocharger Download PDFInfo
- Publication number
- JP4638090B2 JP4638090B2 JP2001235676A JP2001235676A JP4638090B2 JP 4638090 B2 JP4638090 B2 JP 4638090B2 JP 2001235676 A JP2001235676 A JP 2001235676A JP 2001235676 A JP2001235676 A JP 2001235676A JP 4638090 B2 JP4638090 B2 JP 4638090B2
- Authority
- JP
- Japan
- Prior art keywords
- variable
- metal
- exhaust gas
- mold
- vgs type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は自動車用エンジン等に用いられるターボチャージャに関するものであって、特にこのものに組み込まれる可変翼の原形(素形材)を製造するにあたり、形状、寸法ともに、より実製品に近い、いわゆるニヤネットシェイプに仕上げ得る新規な製造方法に係るものである。
【0002】
【発明の背景】
自動車用エンジンの高出力化、高性能化の一手段として用いられる過給機としてターボチャージャが知られており、このものはエンジンの排気エネルギによってタービンを駆動し、このタービンの出力によってコンプレッサを回転させ、エンジンに自然吸気以上の過給状態をもたらす装置である。ところでこのターボチャージャは、エンジンが低速回転しているときには、排気流量の低下により排気タービンがほとんど働かず、従って高回転域まで回るエンジンにあってはタービンが効率的に回るまでのもたつき感と、その後の一挙に吹き上がるまでの所要時間いわゆるターボラグ等が生ずることを免れないものであった。またもともとエンジン回転が低いディーゼルエンジンでは、ターボ効果を得にくいという欠点があった。
【0003】
このため低回転域からでも効率的に作動するVGSタイプのターボチャージャが開発されてきている。このものは、少ない排気流量を可変翼(羽)で絞り込み、排気の速度を増し、排気タービンの仕事量を大きくすることで、低速回転時でも高出力を発揮できるようにしたものである。このためVGSタイプのターボチャージャにあっては、別途可変翼の可変機構等を必要とし、周辺の構成部品も従来のものに比べて形状等をより複雑化させなければならなかった。
そしてVGSタイプのターボチャージャにおける可変翼を製造するにあたっては、翼部と軸部とを一体に形成した金属素材(可変翼の原形となる素形材)をまず形成し、このような素形材を適宜切削加工等して行き、所望の形状や寸法に仕上げるものである。
【0004】
ところで上述した可変翼の素形材を形成するにあたっては、例えばロストワックス鋳造に代表される精密鋳造法や、金属射出成形法等の手法がある。そしてこのような手法によって素形材を、形状、寸法ともに、より完成品に近づけた、いわゆるニヤネットシェイプに仕上げれば、後加工が極めて楽になり、加工の効率化や工程数の削減化が図れるものである。すなわち素形材を極力ニヤネットシェイプに仕上げることによって、例えばその後、素形材の軸部を転造して所望の径太さに仕上げる場合には、転造代が少なくて済み、ひいては転造に伴う軸伸びが極力抑えられ、軸伸びを修正するための切削加工も排除できるものである。また更には、現実に可変翼を高い品質レベル、寸法精度レベルを維持しながら、大量に生産できるようにもなる。
【0005】
しかしながら、精密鋳造法や金属射出成形法等によって、可変翼の素形材を形成するには、以下のような問題点があった。まず精密鋳造法によって素形材を得るにあたっては、例えば鋳込む溶融金属の湯流れ性を良好に維持するのが難しいために、素形材の寸法精度が良くなく、且つばらつくという問題があった。また鋳込んだ溶融金属が凝固する際、その結晶粒が伸長ないしは大きくなり、転造等の後加工に際して、シャープエッジ(軸部の転造によって、軸部表面の金属素材が塑性流動を起こし、軸部の先端部から突出状態に形成される鋭角部位)を作り易いという問題があった。
一方、金属射出成形法によって素形材を得るにあたっては、ソリド材に比べて微細ボイドが比較的多く存在し、空孔率の高い状態となるという問題があった。特に耐熱高合金では嵩密度が不充分であり、これに起因して高温回転曲げ疲労性が低いことが問題であった。
【0006】
このようなことから精密鋳造法や金属射出成形法等によって、可変翼の素形材をニヤネットシェイプに仕上げることは極めて難しく、可変翼を現実に常に安定した高いレベルで量産するまでの段階には到っていないのが現状であり、量産化実現のためにも、上記問題点の克服が求められていた。
また近年、特にディーゼル車においては、環境保護等の観点から大気中に放出される排気ガスが強く規制される現状にあり、元来エンジン回転が低いディーゼルエンジンにおいては、NOX や粒子状物質(PM)等を低減するためにも低回転域からエンジンの効率化が図れるVGSタイプのターボチャージャの量産化が、切望されるものであった。
【0007】
【開発を試みた技術的課題】
本発明はこのような背景を認識してなされたものであって、上述した精密鋳造法や金属射出成形法等の問題点を解決し、これらの手法によって、現実に可変翼の素形材をニヤネットシェイプに得られるようにした新規な製造手法の開発を試みたものである。
【0008】
【課題を解決するための手段】
すなわち請求項1記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、
回動中心となる軸部と、実質的に排気ガスの流量を調節する翼部とを具え、
エンジンから排出された比較的少ない排気ガスを適宜絞り込み、排気ガスの速度を増幅させ、排気ガスのエネルギで排気タービンを回し、この排気タービンに直結されたコンプレッサで自然吸気以上の空気をエンジンに送り込み、低速回転時であってもエンジンが高出力を発揮できるようにしたVGSタイプのターボチャージャに組み込まれる可変翼を製造するにあたり、
翼部と軸部とを一体に有し、可変翼の原形となる素形材を得る工程は、精密鋳造法によって行うものであり、
鋳造にあたっては、スクラップの過程を経ず、砂鉄や鉄鉱石等から直接還元してつくられた溶融状態の耐熱合金を適用するものであり、且つこの溶融金属中のC、Si、Oの各々の重量%を0.05〜0.5%、0.5〜1.5%、0.01〜0.1%に調整するものであり、
かかる構成により、鋳型に鋳込む溶融金属の湯流れ性を向上させるようにしたことを特徴として成るものである。
この発明によれば、可変翼の素形材を精密鋳造法によって得る際、処女材に含有されるC(炭素)、Si(ケイ素)、O(酸素)量を調整して、型に鋳込む素材の湯流れ性を向上させているため、形状、寸法ともにより精度の高い素形材が得られ、また個々の素形材のばらつきもより小さな範囲に抑え得る。
【0009】
また請求項2記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、前記請求項1記載の要件に加え、前記鋳造においては、鋳型または素形材のうち、どちらか一方または双方を冷却して、溶融金属を鋳込んでから型破砕までの時間を短縮し、素形材の凝固組織を微細化するようにしたことを特徴として成るものである。
この発明によれば、結晶粒子の細かい素形材が得られるため、例えばその後、素形材の軸部を転造加工する場合、シャープエッジを生じ難くし、形状、寸法ともに、より一層精度の高い素形材や完成品としての可変翼を実現し得る。
【0010】
更にまた請求項3記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、前記請求項1または2記載の要件に加え、前記鋳造においては、型に鋳込む溶融金属にPb、Se、Teのうち1種もしくは複数種を添加するとともに非金属介在物の存在が差し支えない範囲で、O、Sを多めに含有させるようにしたことを特徴として成るものである。
この発明によれば、Pb(鉛)、Se(セレン)、Te(テルル)等を適宜添加することによって、素形材の転造性や切削性(ここでの切削とは主に後加工において施される研磨を意味する)等を向上させ得る。また一般に鋼材には少ない方が好ましいとされるO(酸素)、S(硫黄)等の非金属介在物をあえて含有させることで鋳造における溶融金属の湯流れ性を向上させ得るものである。
【0011】
また請求項4記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、前記請求項1、2または3記載の要件に加え、前記鋳造においては、型に鋳込む溶融金属を融点以上に高め、融点温度よりも粘性を低下させた状態で鋳込むようにしたことを特徴として成るものである。
この発明によれば、型に鋳込む溶融金属を融点以上に加熱し、粘性を低下させた状態で鋳込むため、素材の湯流れ性を、より一層向上させることができる。なお溶融金属の粘性は、融点付近では温度依存性が高く、高温にする程、粘性が低くなるが、例えば融点から約30℃以上の高温域では、温度依存性が低くなり、加熱してもそれ程、粘性の低下が見られないため、本実施の形態では粘性低下の効果と、加温のコストとを考慮して、一例として融点から約30℃程度、高温にした状態で鋳込むようにしている。
【0012】
また請求項5記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、回動中心となる軸部と、実質的に排気ガスの流量を調節する翼部とを具え、エンジンから排出された比較的少ない排気ガスを適宜絞り込み、排気ガスの速度を増幅させ、排気ガスのエネルギで排気タービンを回し、この排気タービンに直結されたコンプレッサで自然吸気以上の空気をエンジンに送り込み、低速回転時であってもエンジンが高出力を発揮できるようにしたVGSタイプのターボチャージャに組み込まれる可変翼を製造するにあたり、翼部と軸部とを一体に有し、可変翼の原形となる素形材を得る工程は、可塑性を賦与した金属粉を金型内に射出して固形化させる金属射出成形法によって行うものであり、また射出成形にあたっては、金属粒子間の球状間隙である独立泡を細かく且つ均一に生成させるように、焼結を行うものであり、その後、射出成形された素形材に熱間静水圧プレス処理(HIP処理)を施し、素形材の高密度化を図るようにしたことを特徴として成るものである。
この発明によれば、金属射出成形によって得られる金属素材の空孔率が低減され、素形材の強度を増加させ得る。すなわち金属射出成形の欠点の一つとされていた、高い空孔率を改善でき、射出成形によって形成された素形材を現実に適用可能なものとする。また空孔率が低減されることに起因して、寸法精度が向上し、成形される素形材は、目的の可変翼により近い、ニヤネットシェイプのものが得られる。従って後加工における転造代等も、より抑えられることになり、転造工程等の簡略化も達成され得る。
【0013】
また請求項6記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、前記請求項5記載の要件に加え、前記金属射出成形にあたっては、原料となる金属粉の形状を球状且つ微細化し、素形材の高温回転曲げ疲労性を向上させるようにしたことを特徴として成るものである。
この発明によれば、射出成形によって得られる金属素材の高温回転曲げ疲労性が向上する。すなわち金属射出成形の欠点の一つとされていた、高温回転曲げ疲労を克服でき、射出成形による素形材の形成手法を現実なものとする。
【0014】
また請求項7記載のVGSタイプターボチャージャにおける可変翼の素形材の製造方法は、前記請求項5または6記載の要件に加え、前記金属射出成形にあたっては、焼結前に原料となる金属粉の粒子表面を還元することを特徴として成るものである。
この発明によれば、焼結前に金属粒子の表面を還元し、粒子表面の酸化物を除去するため、焼結性が向上する。また熱間静水圧プレス処理の効果が増大し、素形材における気孔率低減に大きく寄与する。
【0015】
【発明の実施の形態】
以下本発明を図示の実施の形態に基づいて説明する。説明にあたっては本発明の目的対象物である可変翼1を適用したVGSタイプのターボチャージャにおける排気ガイドアッセンブリAについて説明しながら、併せて可変翼1について説明し、その後、本発明である、可変翼1の素形材の製造方法について説明する。
排気ガイドアッセンブリAは、特にエンジンの低速回転時において排気ガスGを適宜絞り込んで排気流量を調節するものであり、一例として図1に示すように、排気タービンTの外周に設けられ実質的に排気流量を設定する複数の可変翼1と、可変翼1を回動自在に保持するタービンフレーム2と、排気ガスGの流量を適宜設定すべく可変翼1を一定角度回動させる可変機構3とを具えて成るものである。以下各構成部について説明する。
【0016】
まず可変翼1について説明する。このものは一例として図1に示すように排気タービンTの外周に沿って円弧状に複数(一基の排気ガイドアッセンブリAに対して概ね10個から15個程度)配設され、そのそれぞれが、ほぼ同程度づつ回動して排気流量を適宜調節するものである。そして各可変翼1は、翼部11と、軸部12とを具えて成る。翼部11は、主に排気タービンTの幅寸法に応じて一定幅を有するように形成されるものであり、その幅方向における断面が概ね翼状に形成され、排気ガスGが効果的に排気タービンTに向かうように構成されている。なおここで翼部11の幅寸法を便宜上、羽根高さhとする。
また軸部12は、翼部11と一体で連続するように形成されるものであり、翼部11を動かす際の回動軸に相当する部位となる。
【0017】
そして翼部11と軸部12との接続部位には、軸部12から翼部11に向かって窄まるようなテーパ部13と、軸部12より幾分大径の鍔部14とが連なるように形成されている。なお鍔部14の底面は、翼部11における軸部12側の端面と、ほぼ同一平面上に形成され、この平面が、可変翼1をタービンフレーム2に取り付けた状態における摺動面となり、可変翼1の円滑な回動状態が確保される。更に軸部12の先端部には、可変翼1の取付状態の基準となる基準面15が形成される。この基準面15は、後述する可変機構3に対しカシメ等によって固定される部位であり、一例として図1、2に示すように、軸部12を対向的に切り欠いた平面が、翼部11に対してほぼ一定の傾斜状態に形成されて成るものである。
【0018】
次にタービンフレーム2について説明する。このものは、複数の可変翼1を回動自在に保持するフレーム部材として構成されるものであって、一例として図1に示すように、フレームセグメント21と保持部材22とによって可変翼1を挟み込むように構成される。そしてフレームセグメント21は、可変翼1の軸部12を受け入れるフランジ部23と、後述する可変機構3を外周に嵌めるボス部24とを具えて成る。なおこのような構造からフランジ部23には、周縁部分に可変翼1と同数の受入孔25が等間隔で形成されるものである。また保持部材22は、図1に示すように中央部分が開口された円板状に形成されている。そしてこれらフレームセグメント21と保持部材22とによって挟み込まれた可変翼1の翼部11を、常に円滑に回動させ得るように、両部材間の寸法は、ほぼ一定(概ね可変翼1の翼幅寸法程度)に維持されるものであり、一例として受入孔25の外周部分に、四カ所設けられたカシメピン26によって両部材間の寸法が維持されている。ここでこのカシメピン26を受け入れるためにフレームセグメント21及び保持部材22に開口される孔をピン孔27とする。
【0019】
なおこの実施の形態では、フレームセグメント21のフランジ部23は、保持部材22とほぼ同径のフランジ部23Aと、保持部材22より幾分大きい径のフランジ部23Bとの二つのフランジ部分から成るものであり、これらを同一部材で形成するものであるが、同一部材での加工が複雑になる場合等にあっては、径の異なる二つのフランジ部を分割して形成し、後にカシメ加工やブレージング加工等によって接合することも可能である。
【0020】
次に可変機構3について説明する。このものはタービンフレーム2のボス部24の外周側に設けられ、排気流量を調節するために可変翼1を回動させるものであり、一例として図1に示すように、アッセンブリ内において実質的に可変翼1の回動を生起する回動部材31と、この回動を可変翼1に伝える伝達部材32とを具えて成るものである。回動部材31は、図示するように中央部分が開口された略円板状に形成され、その周縁部分に可変翼1と同数の伝達部材32を等間隔で設けるものである。なおこの伝達部材32は、回動部材31に回転自在に取り付けられる駆動要素32Aと、可変翼1の基準面15に固定状態に取り付けられる受動要素32Bとを具えて成るものであり、これら駆動要素32Aと受動要素32Bとが接続された状態で、回動が伝達される。具体的には四角片状の駆動要素32Aを、回動部材31に対して回転自在にピン止めするとともに、この駆動要素32Aを受け入れ得るように略U字状に形成した受動要素32Bを、可変翼1の先端の基準面15に固定し、四角片状の駆動要素32AをU字状の受動要素32Bに嵌め込み、双方を係合させるように、回動部材31をボス部24に取り付けるものである。
【0021】
なお複数の可変翼1を取り付けた初期状態において、これらを周状に整列させるにあたっては、各可変翼1と受動要素32Bとが、ほぼ一定の角度で取り付けられる必要があり、本実施の形態においては、主に可変翼1の基準面15がこの作用を担っている。また回動部材31を単にボス部24に嵌め込んだままでは、回動部材31がタービンフレーム2と僅かに離反した際、伝達部材32の係合が解除されてしまうことが懸念されるため、これを防止すべく、タービンフレーム2の対向側から回動部材31を挟むようにリング33等を設け、回動部材31に対してタービンフレーム2側への押圧傾向を賦与するものである。
このような構成によって、エンジンが低速回転を行った際には、可変機構3の回動部材31を適宜回動させ、伝達部材32を介して軸部12に伝達し、図1に示すように可変翼1を回動させ、排気ガスGを適宜絞り込んで、排気流量を調節するものである。
【0022】
本発明の目的対象物である可変翼1を適用した排気ガイドアッセンブリAの一例は、以上のように構成されて成り、以下、この可変翼1の原形となる素形材の製造方法について説明する。なおこの素形材は、完成以前の状態における翼部11と軸部12とを一体に有した金属素材であり、このものに適宜、転造加工や研磨加工等を施して、目的の可変翼1を形成するものである。また素形材の素材としては例えばSUS310S等の耐熱性を有した金属素材が適用される。ここで本発明においては精密鋳造法または金属射出成形法によって素形材を得るものであり、以下、その製造方法について精密鋳造法を〔実施の形態1〕、金属射出成形法を〔実施の形態2〕として説明する。
【0023】
〔実施の形態1〕精密鋳造法
精密鋳造法は、一般に鋳造品(素形材)を高精度に実現できる手法であり、ここでは一例としてロストワックス手法が適用される。ロストワックス手法は、一般に鋳造しようとする製品と同じ形状のろう模型原形をまず形成し、このろう模型原形のまわりに耐火物の被覆層を形成した後、全体を加熱して、ろう模型のみを溶かし出し、鋳型(被覆層)を造るものであり、このような手法によって目的の製品に忠実な鋳型を得、高精度に鋳造品を再現するものである。
【0024】
なお精密鋳造法には、上述したロストワックス手法以外にも、ショープロセス手法やCADIC法などがあり、これらの手法も適用可能である。因みにショープロセス手法は、液体状のアルキルシリケート粘結剤と粉粒状耐火物とを混練して生鋳型を成形するものであり、この生鋳型を急激に乾燥させて、乾燥に伴って生じる割れを目に見えない微細なヘアークラックとして発生させ、鋳型の全体的な収縮変形を防止するようにした手法である。
【0025】
このように精密鋳造法は、目的の製品(ここでは可変翼1)とほぼ同じ形状及び大きさを有するように鋳型を形成し、目的の製品に対して極めて忠実な鋳造品(素形材)を高精度に再現し得るものである。しかしながらこのような精密鋳造法であっても、そのままでは素形材をニヤネットシェイプに仕上げるのは難しく、目的の形状や精度を有する可変翼1を得るには、鋳造した素形材の寸法精度がまだ不充分であり、且つばらつくという欠点があった。また素形材に、その後、転造等の後加工を施すような場合、シャープエッジを形成し易いという欠点もあった。このため本発明においては、鋳造に際し、以下のような技術的工夫を適宜施すものである。
【0026】
まず鋳型に鋳込む溶融金属の湯流れ性を向上させるべく、耐熱金属を主要母材とした処女材を適用するとともに、この処女材に含有されるC(炭素)、Si(ケイ素)、O(酸素)量を適正化する。具体的には、スクラップの過程を経ず、砂鉄や鉄鉱石等から直接還元してつくられた素材(処女材)を適用するものであり、且つC、Si、Oの成分量を各々0.05〜0.5%、0.5〜1.5%、0.01〜0.1%(それぞれ重量%)に調整し、溶融金属の湯流れ性や素形材の形状および寸法精度を向上させ、且つ転造性の向上をも図るものである。因みに上記各元素の成分量を調整するにあたっては、電気炉において分析変動量を監視しながら行うものである。
【0027】
また鋳造においては、鋳型または素形材のうち、どちらか一方または双方を急冷することによって型破砕までの時間を短縮し、素形材の凝固組織を細かくするものである。具体的には例えば鋳造の前後において鋳型に水を噴霧して冷却し、型破砕までに要する時間を、一例として1時間以下に短縮するものである(通常の空冷では1〜4時間かかる)。この際、鋳込み前の事前冷却では、鋳型のみを冷却することになり、鋳込み後の冷却では、鋳型と素形材との双方を冷却することになる。もちろん急冷にあたっては、鋳型が熱応力割れを起こさない範囲で行うものである。なお鋳造の前後両時期において冷却する必要がなければ、どちらか一方でも良いし、より一層、冷却効果を高めたい場合には、鋳造前後の両時期の冷却に加え、鋳型から取り出した素形材に冷却水を噴霧することも可能である。
【0028】
なおこのような技術的な工夫(急冷)によって、素形材の凝固組織は、一例として、50〜200μmに微細化でき(通常の空冷では約100〜500μmの凝固粒)、その後の転造等の加工の際に、変形歪均一化効果によってシャープエッジを発生させ難くし、転造加工等をより行い易くするものである。
【0029】
更にまた、型に鋳込む溶融金属には、Pb(鉛)、Se(セレン)、Te(テルル)のうち、1種もしくは複数種を添加するとともに非金属介在物の存在が差し支えない範囲で、O(酸素)、S(硫黄)を多めに含有させるものである。具体的にはPbは0.01〜0.1%、Seは0.01〜0.1%、Teは0.01〜0.1%(それぞれ重量%)含有させ得るものであり、またOは0.02〜0.1%、Sは0.005〜0.5%(それぞれ重量%)の成分量とするものである。ここでPb、Se、Te等を添加させるのは、素形材の転造性や切削性(主に研磨を示す)を向上させるためであり、またO、S等を添加させるのは、湯流れ性の向上を図るためである。因みに湯流れ性については、ストークス流の粘性流動性が少なくとも20〜40%向上することが、本出願人によって確認されている。
【0030】
また鋳造にあたり溶融金属は、融点以上に加温し、粘性を融点温度よりも低くした状態で型に鋳込むものであり、Ni(ニッケル)系耐熱材及びFe(鉄)系耐熱材を例にとり、温度(融点に対する加温状況で表示)と粘性との関係を図3に示す。なお本図中に記載する湯流れ性(規格値)とは、注湯溶融体の流動性を示すものであり、粘性に相当するものである。この図から溶融金属の粘性は、融点付近では温度依存性が高く、素材の温度が高い程、粘性が低下することが分かるが、融点に対して約30℃程度加温した付近にあっては、粘性の温度依存性が弱まり、加温してもそれほど程粘性が低下しないことが分かる。このため本実施の形態では、粘性低下の効果と、加温のコストとを考慮して、一例として素材を融点から約30℃程度、高温にした状態で鋳込むものである。
【0031】
〔実施の形態2〕金属射出成形法
金属射出成形は、実質的には、従来公知の一般的な合成樹脂(プラスチック)の射出成形と同様であり、例えば鉄、チタン等の金属粉(材料)にバインダ(主に金属粉どうしを結合させる添加剤であり、一例としてポリエチレン樹脂、ワックス、フタル酸エステルの混合物)を混練し、可塑性を賦与する。そしてこの可塑性を賦与したものを、金型内に射出し、適宜の形状に固め、バインダを除去した後、焼結して所望形状の素形材を得るものである。
【0032】
このように金属射出成形も、精密鋳造法と同様に目的の製品(ここでは可変翼1)に対してほぼ忠実な成形品(素形材)が得られるものであるが、一方では、成形された素形材の空孔率がソリド材に比べて高くなり、特に耐熱高合金材にあっては、嵩密度が不充分であることや、高温曲げ疲労性に劣るという欠点があった。ここで空孔とは、金属素材等における結晶中のキャビティ(点欠陥の多数の集合体であり、更にこれが合体して微細クラックの形成に至る)の一種であり、この割合が高過ぎると金属素材にとっては、悪影響を来すものである。このようなことから、本発明においては、金属射出成形に際し、以下のような技術的工夫を適宜施すものである。
【0033】
まず独立泡(金属粒子間の球状間隙)を小さく且つ均一に生じさせるべく、時間をかけた焼結を行うものであって、具体的には、例えば融点が1500℃であるSUS310Sを適用した場合には、1300℃で約2時間程度の比較的長時間の焼結を行う。
このような焼結を行うことにより、素形材の空孔率が低減され、嵩密度の向上が図れるものであるが、射出成形された素形材には、更にHIP処理(Hot Isostatic Pressingの略;熱間静水圧プレス処理)が施され、より一層の嵩密度向上を図るものである。具体的には素形材を例えば約1300℃に加熱しながら、素形材に等方的に約100MPa(1000気圧)程度の圧力をかけるものである。
【0034】
なお上記焼結やHIP処理等によって、焼結前、約100μm程度であった独立泡が、焼結後、約10μm程度になり、嵩密度が約5%向上することが、本出願人によって確認されている。そしてこの嵩密度の向上によって、素形材の強度アップが図れるとともに、寸法精度が向上し、よりニヤネットシェイプの素形材が得られるものである。
また金属粉を焼結する際、例えばSUH660等の析出硬化型耐熱材にあっては、γ′(ガンマプライムと称され、Ni3 (Al、Ti)の金属間化合物を示す)生成を急熱によって、成長を抑制し、微細化するものである。なおこれは高温環境下での過時効現象を抑制するためであり、この際の急熱手法は、電磁誘導によって加熱電流を発生させる誘導加熱が望ましい。
【0035】
また本実施の形態では、射出成形用の金属粉を球状且つ微細化し、成形される素形材の高温回転曲げ疲労性を向上させる技術的な工夫が併せて施される。ここで金属粉を球状且つ微細化するにあたっては、例えば溶融金属をノズルから噴出させ、これに空気や水などの高速流体を作用させ、高速流体の衝撃力によって金属を多数の液滴に分割した後、冷却、凝固させて金属粉末を得る、いわゆる空気アトマイズ法や水アトマイズ法が適用されるものである。そしてこのようなアトマイズ法においては、溶融金属を噴出させるノズルの形状や径寸法、溶融金属に作用させる空気や水などの放出速度、冷却速度などを適宜変更することによって、所望の大きさの金属粉末が得られるものである。因みにSUS310Sの金属粉を約200μm程度に細かくして焼結を行った場合、高温回転曲げ疲労性が約20%向上したことが、本出願人によって確認されている。
【0036】
更にまた金属射出成形を行うにあたっては、焼結前の金属素材の表面を還元するものであり、具体的には還元雰囲気をもたらす水素、アンモニア、一酸化炭素等のガスを、金属粒子の表面に流動させ、接触させることによって還元を行うものである。これによって金属粒子の表面の酸化物が除去され、焼結性が向上するとともに、熱間静水圧プレス処理の効果を増大せしめ、気孔率低減に大きく寄与するものである。
【0037】
【発明の効果】
まず請求項1記載の発明によれば、精密鋳造を行うにあたり、C、Si、Oの含有成分量を適正化した処女材を適用するため、湯流れ性が向上し、ニヤネットシェイプの素形材が形成できる。
【0038】
また請求項2記載の発明によれば、素形材の凝固粒を極めて微細なものとし、後に素形材の軸部12を転造加工する場合、シャープエッジを生じ難くし、転造加工を行い易くするものである。
【0039】
更にまた請求項3記載の発明によれば、鋳込む原料素材にPb、Se、Te、O、Sを適宜、添加するため、溶融金属の湯流れ性を高めながら、素形材の転造性や切削性(研磨性)を高めることができる。
【0040】
また請求項4記載の発明によれば、原料素材を融点以上に加熱し、粘性を融点温度よりも低下させた状態で鋳込むため、湯流れ性を、より一層向上させ得る。
【0041】
また請求項5記載の発明によれば、金属射出成形後、焼結された素形材は、金属粒子間の気孔が効果的に縮小されるとともに球形の独立泡化し、更にHIP処理によって、このような気孔がより縮小され、素形材の更なる高密度化が達成できる。
【0042】
また請求項6記載の発明によれば、射出成形される金属粉の粒子は、球状且つ微細であるため、成形品となる素形材の高温回転曲げ疲労性が格段に向上される。
【0043】
また請求項7記載の発明によれば、成形以前の段階で原料となる金属粒子の表面を還元し、粒子表面の酸化物を除去するため、焼結性が向上するとともに、HIP処理の効果を増大せしめ、素形材の気孔率低減に大きく寄与するものである。
【図面の簡単な説明】
【図1】 本発明に係る可変翼を組み込んだVGSタイプのターボチャージャを示す斜視図(a)、並びに排気ガイドアッセンブリを示す分解斜視図(b)である。
【図2】 本発明に係る可変翼を示す正面図並びに左側面図である。
【図3】 Ni系耐熱材及びFe系耐熱材における、温度と粘性との関係を示すグラフである。
【符号の説明】
1 可変翼
2 タービンフレーム
3 可変機構
11 翼部
12 軸部
13 テーパ部
14 鍔部
15 基準面
21 フレームセグメント
22 保持部材
23 フランジ部
23A フランジ部(小)
23B フランジ部(大)
24 ボス部
25 受入孔
26 カシメピン
27 ピン孔
31 回動部材
32 伝達部材
32A 駆動要素
32B 受動要素
33 リング
A 排気ガイドアッセンブリ
G 排気ガス
h 羽根高さ
T 排気タービン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbocharger used for an automobile engine or the like, and in particular, when manufacturing a prototype of a variable wing incorporated in the engine (form material), both the shape and dimensions are closer to an actual product, so-called. The present invention relates to a novel manufacturing method that can be finished into a near net shape.
[0002]
BACKGROUND OF THE INVENTION
A turbocharger is known as a turbocharger that is used as a means to increase the output and performance of an automobile engine. This turbocharger drives the turbine by the exhaust energy of the engine, and rotates the compressor by the output of the turbine. It is a device that brings the engine to a supercharged state that is higher than natural intake. By the way, in this turbocharger, when the engine is rotating at a low speed, the exhaust turbine hardly works due to a decrease in the exhaust flow rate. Therefore, in an engine that rotates to a high rotation range, a feeling of stickiness until the turbine rotates efficiently, It was inevitable that so-called turbo lag, etc. would be required for the subsequent blow-up. In addition, the diesel engine with low engine speed originally has a drawback that it is difficult to obtain a turbo effect.
[0003]
For this reason, VGS type turbochargers have been developed that operate efficiently even in the low rotation range. In this system, a small exhaust flow rate is narrowed down with variable blades (blades), the exhaust speed is increased, and the work of the exhaust turbine is increased so that a high output can be exhibited even at a low speed. For this reason, in the VGS type turbocharger, a variable mechanism of a variable blade is required separately, and the peripheral components have to be more complicated in shape and the like than the conventional one.
When manufacturing a variable wing in a VGS type turbocharger, a metal material (a shape material that becomes the original shape of the variable wing) is first formed by integrally forming the wing portion and the shaft portion. Is appropriately cut and finished to a desired shape and size.
[0004]
By the way, in forming the above-described variable blade shaped material, there are techniques such as precision casting represented by lost wax casting and metal injection molding. And by using such a method, finishing the so-called near-net shape, which is closer to the finished product in shape and size, makes post-processing extremely easy, improving processing efficiency and reducing the number of processes. It can be planned. That is, by finishing the base material as close to the near-net shape as possible, for example, when rolling the shaft portion of the base material to finish it to the desired diameter, the rolling allowance is small, and consequently rolling As a result, the axial elongation associated with is suppressed as much as possible, and cutting for correcting the axial elongation can be eliminated. Furthermore, the variable blades can be produced in large quantities while maintaining a high quality level and dimensional accuracy level.
[0005]
However, there are the following problems in forming a variable blade shaped material by a precision casting method, a metal injection molding method, or the like. First of all, when obtaining a shaped material by a precision casting method, for example, it is difficult to maintain a good flowability of molten metal to be cast, so that there is a problem that the dimensional accuracy of the shaped material is not good and varies. . In addition, when the cast molten metal is solidified, the crystal grains are elongated or enlarged, and during post-processing such as rolling, a sharp edge (the rolling of the shaft part causes the metal material on the surface of the shaft to cause plastic flow, There is a problem that it is easy to make an acute angle portion formed in a protruding state from the tip of the shaft portion.
On the other hand, when obtaining a shaped material by a metal injection molding method, there is a problem that a relatively large amount of fine voids are present as compared with a solid material, resulting in a high porosity. In particular, the bulk density of heat-resistant high alloys is insufficient, resulting in a problem of low high temperature rotational bending fatigue.
[0006]
For this reason, it is extremely difficult to finish the shape of the variable wing shape into a near net shape by precision casting or metal injection molding. However, the present situation has not yet reached, and there has been a demand for overcoming the above problems in order to realize mass production.
In recent years, especially in diesel vehicles, the exhaust gas released into the atmosphere is strongly regulated from the viewpoint of environmental protection and the like.X In order to reduce the amount of particulate matter (PM) and the like, mass production of a VGS type turbocharger capable of improving the efficiency of the engine from a low rotation range has been desired.
[0007]
[Technical issues for which development was attempted]
The present invention has been made in view of such a background, and solves the problems such as the precision casting method and the metal injection molding method described above. This is an attempt to develop a new manufacturing method that can be obtained in a near net shape.
[0008]
[Means for Solving the Problems]
That is, the manufacturing method of the shape member of the variable wing in the VGS type turbocharger according to claim 1 is:
It includes a shaft portion serving as a rotation center and a wing portion that substantially adjusts the flow rate of exhaust gas,
A relatively small amount of exhaust gas discharged from the engine is appropriately throttled, the speed of the exhaust gas is amplified, the exhaust turbine is rotated by the energy of the exhaust gas, and air that exceeds natural intake is sent to the engine by a compressor directly connected to this exhaust turbine. When manufacturing variable wings incorporated in VGS type turbochargers that enable the engine to exhibit high output even at low speed rotation,
The process of obtaining the base material that has the wing part and the shaft part integrally and becomes the original shape of the variable wing, SpiritIt is performed by the dense casting method,
In casting,A heat-resistant alloy in a molten state produced by direct reduction from iron sand or iron ore is applied without going through the scrap process.0.05% to 0.5%, 0.5% to 1.5%, 0.01% to 0.1% by weight of each of C, Si, and OTo adjust to
With this configuration,The present invention is characterized in that the flowability of molten metal cast into the mold is improved.
According to the present invention, when a variable blade shape is obtained by a precision casting method, the amount of C (carbon), Si (silicon), and O (oxygen) contained in the virgin material is adjusted and cast into a mold. Since the flowability of the raw material is improved, a highly accurate shape material can be obtained depending on the shape and size, and variations in individual shape materials can be suppressed to a smaller range.
[0009]
According to a second aspect of the present invention, in the VGS type turbocharger, in addition to the requirements of the first aspect, in the casting, in the casting, either or both of a mold and a raw material are used. This is characterized in that the time from the casting of the molten metal to the crushing of the mold is shortened and the solidification structure of the raw material is refined.
According to the present invention, since a shaped material with fine crystal grains can be obtained, for example, when the shaft portion of the shaped material is subsequently rolled, it is difficult to produce a sharp edge, and both the shape and size are more accurate. High shape material and variable wing as finished product can be realized.
[0010]
Furthermore, in the VGS type turbocharger according to the third aspect of the present invention, in addition to the requirement according to the first or second aspect, the method of manufacturing the variable blade shaped member in the VGS type turbocharger includes Pb, Se as the molten metal cast into the mold. In addition, one or more of Te are added, and O and S are contained in a large amount within a range in which non-metallic inclusions may be present.
According to the present invention, by appropriately adding Pb (lead), Se (selenium), Te (tellurium), etc., the rolling property and machinability of the shaped material (the cutting here is mainly in post-processing) Meaning polishing that is applied). Moreover, generally, it is possible to improve the flowability of molten metal in casting by intentionally containing non-metallic inclusions such as O (oxygen) and S (sulfur), which are preferably less in steel materials.
[0011]
According to a fourth aspect of the present invention, in the VGS type turbocharger, in addition to the requirements of the first, second, and third aspects, in the casting, the molten metal to be cast into the mold is equal to or higher than the melting point. It is characterized by being cast in a state where the viscosity is lower than the melting point temperature.
According to this invention, since the molten metal cast into the mold is heated to the melting point or more and cast in a state where the viscosity is lowered, the hot water flowability of the material can be further improved. The viscosity of the molten metal is highly temperature-dependent near the melting point and decreases as the temperature increases. For example, in the high temperature range from the melting point to about 30 ° C. Since the viscosity is not so much reduced, in this embodiment, considering the effect of viscosity reduction and the cost of heating, as an example, the casting is performed at a high temperature of about 30 ° C. from the melting point. .
[0012]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a variable blade shaped member for a VGS type turbocharger comprising a shaft portion serving as a rotation center and a blade portion that substantially adjusts the flow rate of exhaust gas. The relatively small amount of exhaust gas is appropriately throttled, the speed of the exhaust gas is amplified, the exhaust turbine is rotated by the energy of the exhaust gas, and the air directly above the natural intake is sent to the engine by the compressor directly connected to the exhaust turbine, and the engine rotates at low speed. When manufacturing variable wings incorporated in a VGS type turbocharger that allows the engine to demonstrate high output even at times, the wings and shafts are integrated into one body, which is the original shape of the variable wings The process of obtaining the material is performed by a metal injection molding method in which a metal powder imparted with plasticity is injected into a mold and solidified. Sintering is performed so that closed bubbles, which are spherical gaps between particles, are finely and uniformly formed, and then subjected to hot isostatic pressing (HIP treatment) on the injection-molded material. This is characterized in that the density of the base material is increased.
According to the present invention, the porosity of the metal material obtained by metal injection molding can be reduced, and the strength of the shaped material can be increased. That is, it is possible to improve the high porosity, which has been one of the drawbacks of metal injection molding, and to apply the shape material formed by injection molding to reality. In addition, due to the reduced porosity, the dimensional accuracy is improved, and a molded material having a near net shape that is closer to the target variable blade is obtained. Therefore, the rolling allowance and the like in the post-processing are further suppressed, and simplification of the rolling process and the like can be achieved.
[0013]
In addition to the requirement of claim 5, the manufacturing method of the variable blade shape material in the VGS type turbocharger according to
According to this invention, the high temperature rotation bending fatigue property of the metal raw material obtained by injection molding improves. That is, high temperature rotational bending fatigue, which has been one of the disadvantages of metal injection molding, can be overcome, and the forming method of the shape material by injection molding becomes a reality.
[0014]
Further, in the VGS type turbocharger according to the seventh aspect, in addition to the requirement according to the fifth or sixth aspect, in addition to the requirement of the fifth or sixth aspect, the method of manufacturing the variable blade shaped member is a metal powder used as a raw material before sintering. It is characterized by reducing the particle surface.
According to the present invention, since the surface of the metal particles is reduced and the oxide on the particle surface is removed before sintering, the sinterability is improved. In addition, the effect of the hot isostatic pressing process is increased, which greatly contributes to the reduction of the porosity of the raw material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on the illustrated embodiments. In the description, while explaining the exhaust guide assembly A in the VGS type turbocharger to which the variable blade 1 as the object of the present invention is applied, the variable blade 1 will be described together, and then the variable blade according to the present invention. A method for producing the first shape material 1 will be described.
The exhaust guide assembly A adjusts the exhaust gas flow rate by appropriately narrowing the exhaust gas G particularly when the engine is running at a low speed. As shown in FIG. 1, as an example, the exhaust guide assembly A is provided on the outer periphery of the exhaust turbine T and substantially exhausts. A plurality of variable blades 1 for setting the flow rate, a
[0016]
First, the variable blade 1 will be described. As an example, as shown in FIG. 1, a plurality of these are arranged in an arc shape along the outer periphery of the exhaust turbine T (approximately 10 to 15 with respect to one exhaust guide assembly A). The exhaust gas flow is adjusted appropriately by rotating approximately the same degree. Each variable wing 1 includes a
The
[0017]
A tapered
[0018]
Next, the
[0019]
In this embodiment, the
[0020]
Next, the
[0021]
In the initial state where a plurality of variable blades 1 are attached, in order to align them in a circumferential shape, each variable blade 1 and the passive element 32B must be attached at a substantially constant angle. The
With this configuration, when the engine rotates at a low speed, the
[0022]
An example of the exhaust guide assembly A to which the variable blade 1 that is the object of the present invention is applied is configured as described above. Hereinafter, a method of manufacturing a shape material that is the original shape of the variable blade 1 will be described. . The shape material is a metal material integrally having the
[0023]
[Embodiment 1] Precision casting method
The precision casting method is generally a method that can realize a cast product (raw material) with high accuracy, and here, as an example, a lost wax method is applied. In the lost wax method, generally, a wax model prototype having the same shape as that of the product to be cast is first formed, a refractory coating layer is formed around the wax model prototype, and then the whole is heated so that only the wax model is formed. It melts out and forms a casting mold (coating layer). By such a method, a casting mold that is faithful to the target product is obtained, and a cast product is reproduced with high accuracy.
[0024]
In addition to the lost wax method described above, the precision casting method includes a show process method and a CADIC method, and these methods are also applicable. By the way, the show process method is to knead a liquid alkyl silicate binder and a granular refractory to form a green mold. The green mold is dried rapidly and cracks caused by drying are cracked. It is a technique that is generated as fine hair cracks that cannot be seen, and prevents the overall shrinkage deformation of the mold.
[0025]
Thus, in the precision casting method, a mold is formed so as to have almost the same shape and size as the target product (here, variable blade 1), and the cast product (original material) is extremely faithful to the target product. Can be reproduced with high accuracy. However, even with such a precision casting method, it is difficult to finish the shaped material into a near net shape as it is, and in order to obtain the variable blade 1 having the desired shape and accuracy, the dimensional accuracy of the cast shaped material However, there was a drawback that it was still insufficient and varied. Further, when post-processing such as rolling is performed on the original shape material, there is a drawback that it is easy to form a sharp edge. For this reason, in the present invention, the following technical devices are appropriately applied during casting.
[0026]
First cast into moldIncludedIn order to improve the flowability of molten metal, a virgin material mainly composed of a refractory metal is applied, and the amount of C (carbon), Si (silicon), and O (oxygen) contained in the virgin material is reduced. Optimize. Specifically, a material (virgin material) produced by direct reduction from iron sand or iron ore without applying the scrap process is applied, and the amount of each component of C, Si, and O is set to 0.0. Adjusted to 0.5-0.5%, 0.5-1.5%, 0.01-0.1% (each weight%) to improve molten metal flow and shape and dimensional accuracy The rollability is also improved. Incidentally, the adjustment of the amount of each element described above is performed in an electric furnace while monitoring the amount of analysis variation.
[0027]
In casting, either one or both of the mold and the shaped material is rapidly cooled to shorten the time until mold crushing and to refine the solidified structure of the shaped material. Specifically, for example, water is sprayed on the mold before and after casting to cool it, and the time required for mold crushing is reduced to 1 hour or less as an example (normal air cooling takes 1 to 4 hours). At this time, in the pre-cooling before casting, only the mold is cooled, and in the cooling after casting, both the mold and the raw material are cooled. Of course, rapid cooling is performed within a range in which the mold does not cause thermal stress cracking. If it is not necessary to cool at both periods before and after casting, either of them can be used. To further enhance the cooling effect, in addition to cooling at both periods before and after casting, the shaped material taken out from the mold It is also possible to spray cooling water on the surface.
[0028]
In addition, by such a technical device (rapid cooling), the solidified structure of the shaped material can be refined to 50 to 200 μm as an example (about 100 to 500 μm solidified particles in normal air cooling), and subsequent rolling, etc. In this processing, it is difficult to generate sharp edges due to the effect of uniform deformation strain, and it is easier to perform rolling processing and the like.
[0029]
Furthermore, in the molten metal cast into the mold, one or more of Pb (lead), Se (selenium), and Te (tellurium) are added, and the presence of non-metallic inclusions is allowed. A large amount of O (oxygen) and S (sulfur) is contained. Specifically, Pb can be contained in an amount of 0.01 to 0.1%, Se can be contained in an amount of 0.01 to 0.1%, Te can be contained in an amount of 0.01 to 0.1% (each by weight). Is 0.02 to 0.1%, and S is 0.005 to 0.5% (each weight%). Here, Pb, Se, Te, etc. are added in order to improve the rollability and machinability (mainly showing polishing) of the shaped material, and O, S, etc. are added. This is to improve flowability. Incidentally, it has been confirmed by the present applicant that the hot fluidity of the Stokes flow is improved by at least 20 to 40%.
[0030]
In the casting process, the molten metal is heated to a temperature higher than the melting point and cast into a mold with the viscosity lower than the melting point temperature. For example, Ni (nickel) heat-resistant materials and Fe (iron) heat-resistant materials are used as examples. FIG. 3 shows the relationship between the temperature (indicated by the heating condition with respect to the melting point) and the viscosity. In addition, the hot-water flow property (standard value) described in this figure shows the fluidity | liquidity of a pouring melt, and is equivalent to a viscosity. From this figure, it can be seen that the viscosity of the molten metal is highly temperature-dependent near the melting point, and the viscosity decreases as the temperature of the material increases. It can be seen that the temperature dependence of the viscosity is weakened, and the viscosity does not decrease so much even when heated. For this reason, in the present embodiment, in consideration of the effect of lowering the viscosity and the cost of heating, as an example, the raw material is cast in a state of being about 30 ° C. from the melting point.
[0031]
[Embodiment 2] Metal injection molding method
The metal injection molding is substantially the same as the conventionally known general synthetic resin (plastic) injection molding. For example, a metal powder (material) such as iron or titanium is bonded to a binder (mainly metal powders). For example, a mixture of polyethylene resin, wax and phthalate ester) is kneaded to impart plasticity. Then, the plastic imparted with plasticity is injected into a mold, hardened into an appropriate shape, the binder is removed, and sintered to obtain a shaped material having a desired shape.
[0032]
In this way, metal injection molding can also obtain a molded product (shape material) that is almost faithful to the target product (here, variable blade 1), as in the precision casting method. In addition, the porosity of the raw material was higher than that of the solid material, and in particular, the heat-resistant high-alloy material had disadvantages that the bulk density was insufficient and the high temperature bending fatigue property was inferior. Here, the vacancy is a kind of cavity in a crystal in a metal material or the like (which is an aggregate of a large number of point defects, which are combined to lead to formation of fine cracks). For materials, it has a negative effect. For this reason, in the present invention, the following technical devices are appropriately applied in metal injection molding.
[0033]
First, in order to produce small and uniform closed bubbles (spherical gaps between metal particles), sintering is performed over time. Specifically, for example, when SUS310S having a melting point of 1500 ° C. is applied. The sintering is performed at 1300 ° C. for a relatively long time of about 2 hours.
By performing such sintering, the porosity of the shaped material can be reduced and the bulk density can be improved, but the injection-molded shaped material is further subjected to HIP treatment (Hot Isostatic Pressing). (Substantially; hot isostatic pressing) is performed to further improve the bulk density. Specifically, a pressure of about 100 MPa (1000 atm) is applied isotropically to the shape material while heating the shape material to about 1300 ° C., for example.
[0034]
By the above-mentioned sintering and HIP treatment, the present applicant confirmed that the independent foam, which was about 100 μm before sintering, becomes about 10 μm after sintering and the bulk density is improved by about 5%. Has been. By improving the bulk density, the strength of the shaped material can be increased, the dimensional accuracy can be improved, and a shaped material having a more near-net shape can be obtained.
When sintering metal powder, for example, in precipitation hardening type heat-resistant materials such as SUH660, γ ′ (called gamma prime, NiThree (Indicates an intermetallic compound of Al, Ti) The generation is suppressed by rapid heating and refined. This is to suppress the overaging phenomenon in a high temperature environment, and the rapid heating method in this case is preferably induction heating that generates a heating current by electromagnetic induction.
[0035]
Moreover, in this Embodiment, the technical idea which refines the metal powder for injection molding spherically and finely and improves the high temperature rotation bending fatigue property of the shaping | molding raw material is also given. Here, when making the metal powder spherical and fine, for example, molten metal is ejected from a nozzle, a high-speed fluid such as air or water is applied thereto, and the metal is divided into a number of droplets by the impact force of the high-speed fluid. Thereafter, a so-called air atomization method or water atomization method in which metal powder is obtained by cooling and solidification is applied. In such an atomizing method, the shape and diameter of the nozzle for ejecting the molten metal, the discharge rate of air or water acting on the molten metal, the cooling rate, etc. are appropriately changed to appropriately change the size of the metal. A powder is obtained. Incidentally, it has been confirmed by the present applicant that the high temperature rotational bending fatigue property is improved by about 20% when the metal powder of SUS310S is sintered to about 200 μm.
[0036]
Furthermore, when performing metal injection molding, the surface of the metal material before sintering is reduced. Specifically, a gas such as hydrogen, ammonia, carbon monoxide or the like that brings about a reducing atmosphere is applied to the surface of the metal particles. Reduction is performed by flowing and contacting. This removes oxides on the surface of the metal particles, improves the sinterability, increases the effect of hot isostatic pressing, and greatly contributes to the reduction of porosity.
[0037]
【The invention's effect】
First, according to the first aspect of the present invention, since the virgin material in which the content of C, Si, and O is optimized is applied in precision casting, the hot water flow is improved and the shape of the near net shape is improved. A material can be formed.
[0038]
According to the invention described in
[0039]
Furthermore, according to the invention described in
[0040]
According to the invention described in claim 4, since the raw material is heated to the melting point or higher and cast in a state where the viscosity is lower than the melting point temperature, the hot water flowability can be further improved.
[0041]
According to the invention described in claim 5, after the metal injection molding, the sintered shaped material is effectively reduced in pores between the metal particles and formed into a spherical closed-cell foam, and further, this is performed by HIP treatment. Such pores are further reduced, and further densification of the shaped material can be achieved.
[0042]
According to the sixth aspect of the present invention, the particles of the metal powder to be injection-molded are spherical and fine, so that the high temperature rotational bending fatigue property of the shaped material to be a molded product is remarkably improved.
[0043]
Further, according to the invention of claim 7, since the surface of the metal particles as a raw material is reduced at the stage before molding and the oxide on the surface of the particles is removed, the sinterability is improved and the effect of the HIP treatment is improved. It increases and greatly contributes to the reduction of the porosity of the shaped material.
[Brief description of the drawings]
FIG. 1 is a perspective view (a) showing a VGS type turbocharger incorporating variable blades according to the present invention, and an exploded perspective view (b) showing an exhaust guide assembly.
FIG. 2 is a front view and a left side view showing a variable wing according to the present invention.
FIG. 3 is a graph showing the relationship between temperature and viscosity in Ni-based heat-resistant materials and Fe-based heat-resistant materials.
[Explanation of symbols]
1 Variable wing
2 Turbine frame
3 Variable mechanism
11 Wings
12 Shaft
13 Taper
14 Buttocks
15 Reference plane
21 frame segments
22 Holding member
23 Flange
23A Flange (Small)
23B Flange (Large)
24 Boss
25 receiving hole
26 Caulking Pin
27 pin holes
31 Rotating member
32 Transmission member
32A driving element
32B passive element
33 rings
A Exhaust guide assembly
G exhaust gas
h Blade height
T Exhaust turbine
Claims (7)
エンジンから排出された比較的少ない排気ガスを適宜絞り込み、排気ガスの速度を増幅させ、排気ガスのエネルギで排気タービンを回し、この排気タービンに直結されたコンプレッサで自然吸気以上の空気をエンジンに送り込み、低速回転時であってもエンジンが高出力を発揮できるようにしたVGSタイプのターボチャージャに組み込まれる可変翼を製造するにあたり、
翼部と軸部とを一体に有し、可変翼の原形となる素形材を得る工程は、精密鋳造法によって行うものであり、
鋳造にあたっては、スクラップの過程を経ず、砂鉄や鉄鉱石等から直接還元してつくられた溶融状態の耐熱合金を適用するものであり、且つこの溶融金属中のC、Si、Oの各々の重量%を0.05〜0.5%、0.5〜1.5%、0.01〜0.1%に調整するものであり、
かかる構成により、鋳型に鋳込む溶融金属の湯流れ性を向上させるようにしたことを特徴とするVGSタイプターボチャージャにおける可変翼の素形材の製造方法。It includes a shaft part serving as a rotation center and a wing part that substantially adjusts the flow rate of exhaust gas,
Appropriately reduce the amount of exhaust gas discharged from the engine, amplify the speed of the exhaust gas, rotate the exhaust turbine with the energy of the exhaust gas, and send air above natural intake to the engine with the compressor directly connected to the exhaust turbine When manufacturing variable wings incorporated in VGS type turbochargers that enable the engine to demonstrate high output even at low speed rotation,
And a blade portion and a shaft portion integrally to obtain a formed and fabricated material as the original form of the variable vanes are those performed by precision casting,
In casting, a heat-resistant alloy in a molten state produced by direct reduction from iron sand or iron ore without applying a scrap process is applied, and each of C, Si, and O in the molten metal is applied . The weight% is adjusted to 0.05 to 0.5%, 0.5 to 1.5%, 0.01 to 0.1% ,
With this configuration, the method of manufacturing a variable blade shape material in a VGS type turbocharger is characterized in that the hot metal flowability of molten metal cast into a mold is improved.
エンジンから排出された比較的少ない排気ガスを適宜絞り込み、排気ガスの速度を増幅させ、排気ガスのエネルギで排気タービンを回し、この排気タービンに直結されたコンプレッサで自然吸気以上の空気をエンジンに送り込み、低速回転時であってもエンジンが高出力を発揮できるようにしたVGSタイプのターボチャージャに組み込まれる可変翼を製造するにあたり、
翼部と軸部とを一体に有し、可変翼の原形となる素形材を得る工程は、可塑性を賦与した金属粉を金型内に射出して固形化させる金属射出成形法によって行うものであり、また射出成形にあたっては、金属粒子間の球状間隙である独立泡を細かく且つ均一に生成させるように、焼結を行うものであり、
その後、射出成形された素形材に熱間静水圧プレス処理(HIP処理)を施し、素形材の高密度化を図るようにしたことを特徴とするVGSタイプターボチャージャにおける可変翼の素形材の製造方法。It includes a shaft part serving as a rotation center and a wing part that substantially adjusts the flow rate of exhaust gas,
Appropriately reduce the amount of exhaust gas discharged from the engine, amplify the speed of the exhaust gas, rotate the exhaust turbine with the energy of the exhaust gas, and send air above natural intake to the engine with the compressor directly connected to the exhaust turbine When manufacturing variable wings incorporated in VGS type turbochargers that enable the engine to demonstrate high output even at low speed rotation,
The process of obtaining the base material that has the wing part and the shaft part integrally and becomes the original shape of the variable wing is performed by a metal injection molding method in which a metal powder imparted with plasticity is injected into a mold and solidified. In addition, in the injection molding, sintering is performed so that closed bubbles, which are spherical gaps between metal particles, are finely and uniformly generated.
Then subjected to hot isostatic pressing treatment to a formed and fabricated material that is injection molded (HIP process), the variable vane in the VGS type turbocharger being characterized in that so as to increase the density of the formed and fabricated material and fabricated A method of manufacturing the material .
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001235676A JP4638090B2 (en) | 2001-08-03 | 2001-08-03 | Method for manufacturing variable blade profile in VGS type turbocharger |
KR10-2003-7014587A KR20040028753A (en) | 2001-05-10 | 2002-05-10 | Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto |
US10/476,789 US20040213665A1 (en) | 2001-05-10 | 2002-05-10 | Exhaust gas assembly with improved heat resistance for vgs turbocharger, method for manufacturing heat resisting member applicable thereto, and method for manufacturing shaped material for adjustable blade applicable thereto |
CN2007101407176A CN101187316B (en) | 2001-05-10 | 2002-05-10 | Exhaust guide assembly for variable giometry shape turbocharger with improved high-temperature endurance |
EP02769562A EP1396620A4 (en) | 2001-05-10 | 2002-05-10 | Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto |
CNB028139240A CN100340749C (en) | 2001-05-10 | 2002-05-10 | Exhaust guide assembly for VGS type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes |
KR1020107027054A KR20110003393A (en) | 2001-05-10 | 2002-05-10 | Method of producing raw material for variable vanes applicable for exhaust guide assembly for vgs type turbo charger improved in heat resistance |
PCT/JP2002/004552 WO2002092979A1 (en) | 2001-05-10 | 2002-05-10 | Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto |
HK05101579A HK1069196A1 (en) | 2001-05-10 | 2005-02-24 | A method for manufacturing a heat resisting memberapplicable to an exhaust gas guide assembly of a gas turbocharger |
US12/213,985 US20090145523A1 (en) | 2001-05-10 | 2008-06-26 | Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for VGS turbocharger |
US12/980,924 US20110308084A1 (en) | 2001-05-10 | 2010-12-29 | Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for vgs turbocharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001235676A JP4638090B2 (en) | 2001-08-03 | 2001-08-03 | Method for manufacturing variable blade profile in VGS type turbocharger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003049658A JP2003049658A (en) | 2003-02-21 |
JP4638090B2 true JP4638090B2 (en) | 2011-02-23 |
Family
ID=19067082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001235676A Expired - Fee Related JP4638090B2 (en) | 2001-05-10 | 2001-08-03 | Method for manufacturing variable blade profile in VGS type turbocharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4638090B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103314A1 (en) | 2004-04-19 | 2005-11-03 | Hitachi Metals, Ltd. | HIGH-Cr HIGH-Ni AUSTENITIC HEAT-RESISTANT CAST STEEL AND EXHAUST SYSTEM COMPONENT PRODUCED FROM SAME |
JP4098821B1 (en) | 2007-06-07 | 2008-06-11 | 株式会社アキタファインブランキング | Variable mechanism in VGS type turbocharger and exhaust guide assembly incorporating the same |
EP2317096B1 (en) | 2009-03-13 | 2013-05-29 | Akita Fine Blanking Co., Ltd. | Lever plate for vgs-type turbo charger and method for producing the same |
EP3124641B1 (en) | 2014-07-23 | 2021-05-05 | IHI Corporation | Method of manufacturing ni alloy part |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001164345A (en) * | 1999-12-03 | 2001-06-19 | Nippon Funmatsu Gokin Kk | Sintered stainless steel material for supercharger, and manufacturing method therefor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60174842A (en) * | 1984-02-20 | 1985-09-09 | Toyota Motor Corp | Bearing material for turbo charger |
JPH01142215A (en) * | 1987-11-28 | 1989-06-05 | Toyota Motor Corp | Supercharger for internal combustion engine |
JP3664761B2 (en) * | 1994-12-22 | 2005-06-29 | 三菱重工業株式会社 | Exhaust turbocharger variable capacity turbine |
-
2001
- 2001-08-03 JP JP2001235676A patent/JP4638090B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001164345A (en) * | 1999-12-03 | 2001-06-19 | Nippon Funmatsu Gokin Kk | Sintered stainless steel material for supercharger, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2003049658A (en) | 2003-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4523032B2 (en) | Compressor impeller manufacturing method | |
US20090145523A1 (en) | Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for VGS turbocharger | |
RU2456116C2 (en) | Method of forming cast moulds | |
CN105149603B (en) | High sphericity Inconel625 alloy powders and preparation method and application | |
CN104582875B (en) | The method of composition and cast titanium and titanium aluminide alloy containing calcium titanate | |
CN104475682A (en) | Combined wax pattern-based method of achieving precision investment casting for heat-resistant cast steel thin-wall turbine shell | |
CN104789804B (en) | A kind of titanium alloy particle strengthens the preparation method of magnesium-based composite material | |
JPH0639885B2 (en) | Gas turbine shroud and gas turbine | |
CN105803255B (en) | High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof | |
KR100946972B1 (en) | Variable blade manufacturing method and variable blade in vgs type turbo charger | |
JP3944819B2 (en) | Method of manufacturing variable wing blade portion applied to exhaust guide assembly in VGS type turbocharger | |
JP4638090B2 (en) | Method for manufacturing variable blade profile in VGS type turbocharger | |
EP3492198A1 (en) | Non-equilibrium alloy cold spray feedstock powders, manufacturing processes utilizing the same, and articles produced thereby | |
JP4779159B2 (en) | Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method | |
JP2003049663A (en) | Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method | |
JP4065114B2 (en) | Rolling method of shaft part of variable blade applied to exhaust guide assembly in VGS type turbocharger | |
JP3126582U (en) | Die-cast compressor impeller | |
JPH09168842A (en) | Precision casting using disposable pattern of lost wax, or the like and turbine blade | |
JP6985118B2 (en) | Manufacturing method of metal parts | |
CN107035412A (en) | A kind of ceramic-metal composite turbine shaft of low inertia, quick response | |
JP2003049655A (en) | Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method | |
CN113373502B (en) | Process method for controlling freckle defect in single crystal casting | |
KR100976744B1 (en) | Variable blade manufacturing method and variable blade in vgs type turbo charger | |
JPH0481523A (en) | Turbine housing for turbocharger and manufacture thereof | |
JPH08174150A (en) | Multiple part core for enclosed casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |