Nothing Special   »   [go: up one dir, main page]

JP4636242B2 - Optical semiconductor element sealing material and optical semiconductor element - Google Patents

Optical semiconductor element sealing material and optical semiconductor element Download PDF

Info

Publication number
JP4636242B2
JP4636242B2 JP2005123139A JP2005123139A JP4636242B2 JP 4636242 B2 JP4636242 B2 JP 4636242B2 JP 2005123139 A JP2005123139 A JP 2005123139A JP 2005123139 A JP2005123139 A JP 2005123139A JP 4636242 B2 JP4636242 B2 JP 4636242B2
Authority
JP
Japan
Prior art keywords
component
semiconductor element
sio
optical semiconductor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005123139A
Other languages
Japanese (ja)
Other versions
JP2006299099A (en
Inventor
欣也 児玉
努 柏木
利夫 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005123139A priority Critical patent/JP4636242B2/en
Publication of JP2006299099A publication Critical patent/JP2006299099A/en
Application granted granted Critical
Publication of JP4636242B2 publication Critical patent/JP4636242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、光半導体素子の封止材(封止用樹脂組成物に関し、詳しくは、シリコーン系の光半導体素子封止用付加硬化型樹脂組成物であって、特に発光ダイオード(LED)封止用樹脂組成物に関するものである。
また、本発明はこの樹脂組成物の硬化物によって封止された光半導体素子、LEDに関するものである。
The present invention relates to a sealing material ( sealing resin composition ) for an optical semiconductor element, and more particularly to a silicone-based addition-curable resin composition for sealing an optical semiconductor element, particularly a light-emitting diode (LED) sealing. The present invention relates to a stopping resin composition.
The present invention also relates to an optical semiconductor element and an LED sealed with a cured product of this resin composition.

発光ダイオード(LED)等の光半導体素子の被覆保護用樹脂組成物としては、その硬化体が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を用いて得られるものが用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。
しかし、かかる透明エポキシ樹脂においても、樹脂の吸水率が高いために耐湿耐久性が低い、特に短波長の光に対する光線透過性が低いために耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。
そのため、SiH基と反応性を有する炭素−炭素二重結合を一分子中に少なくとも2個含有する有機化合物、及び一分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒からなる光半導体素子の被覆保護用樹脂組成物も提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。
しかし、このようなシリコーン系の硬化物は耐クラック性を改良しようとすると、一般に硬化物表面にタックが残り、埃が容易に付着し光の透過性を損なう欠点がある。
そのため、硬度を上げたシリコーン樹脂を保護被覆用に使用したものが提案されている(特許文献5:特開2002−314139号公報、特許文献6:特開2002−314143号公報参照)。
しかし、これらのシリコーン樹脂では、まだ接着性が乏しく、セラミック及び/又はプラスチック筐体内に発光素子が配置され、その筐体内部をシリコーン樹脂で充填したケース型の発光半導体装置では、−40℃〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題点が生じていた。
As a resin composition for protecting a coating of an optical semiconductor element such as a light emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. What is obtained using resin and an acid anhydride type hardening | curing agent is used (patent document 1: patent 3241338 gazette, patent document 2: Unexamined-Japanese-Patent No. 7-25987).
However, even in such a transparent epoxy resin, the moisture absorption resistance of the resin is high, so the moisture resistance durability is low, particularly the light resistance to low-wavelength light is low, so the light resistance is low, or it is colored due to light deterioration. Had.
Therefore, it consists of an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. Resin compositions for protecting the coating of optical semiconductor elements have also been proposed (see Patent Document 3: Japanese Patent Laid-Open No. 2002-327126, Patent Document 4: Japanese Patent Laid-Open No. 2002-338833).
However, when such a silicone-based cured product is to be improved in crack resistance, generally, tack remains on the surface of the cured product, and there is a defect that dust easily adheres and impairs light transmission.
Therefore, what uses the silicone resin which raised hardness for protective coating is proposed (refer patent document 5: Unexamined-Japanese-Patent No. 2002-314139, patent document 6: Unexamined-Japanese-Patent No. 2002-314143).
However, in these silicone resins, the adhesiveness is still poor, and in a case type light emitting semiconductor device in which a light emitting element is arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, −40 ° C. to In the thermal shock test at 120 ° C., there was a problem that the silicone resin was peeled off from the ceramic or plastic of the housing.

特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A 特開2002−314139号公報JP 2002-314139 A 特開2002−314143号公報JP 2002-314143 A

本発明は上記事情に鑑みなされたもので、高硬度で透明性が高く、耐熱衝撃性が高く、また、半導体部品に使用される基板(回路)を腐食させることのない光半導体素子封止材(封止用付加硬化型シリコーン樹脂組成物及びこれを用いて封止された光半導体素子、特に、LEDを提供することを目的とする。 The present invention has been made in view of the above circumstances, high transparency high hardness, high thermal shock resistance, also, an optical element encapsulating material that does not corrode the substrate (circuit) used in the semiconductor component It is an object of the present invention to provide ( addition-curable silicone resin composition for sealing ) and an optical semiconductor element sealed using the composition, particularly an LED.

本発明者は、上記目的を達成するため鋭意検討を行った結果、光半導体装置を封止するための付加硬化型シリコーン樹脂組成物にシラノールを含有させないことにより信頼性に優れた光半導体装置が得られること、またこの場合、更に全クロル量を30ppm以下にすることにより光半導体部品の腐食を効果的に防止し得ることを見出したものである。   As a result of intensive studies to achieve the above object, the present inventor has obtained an optical semiconductor device excellent in reliability by not containing silanol in an addition-curable silicone resin composition for sealing an optical semiconductor device. It has been found that, in this case, the corrosion of the optical semiconductor component can be effectively prevented by further reducing the total chloro content to 30 ppm or less.

従って、本発明は、
(A)下記平均組成式(1)
(R1SiO3/2a(R23SiO)b(R456SiO1/2c(SiO4/2d (1)
(式中、R1〜R6はそれぞれ同一もしくは異種の一価炭化水素基を示し、その全一価炭化水素基の1〜50モル%はアルケニル基であり、a、b、c及びdは各シロキサン単位のモル比を示す正数であり、a/(a+b+c+d)=0.40〜0.95、b/(a+b+c+d)=0.05〜0.60、c/(a+b+c+d)=0〜0.05、d/(a+b+c+d)=0〜0.10、a+b+c+d=1.0である。)
で示されるオルガノポリシロキサンを(A)成分全体の30〜100質量%、及び
下記一般式(2)
7 8 9 SiO−(R 10 11 SiO) e −(R 12 13 SiO) f −SiR 7 8 9 (2)
(式中、R 7 は非共有結合性二重結合基含有一価炭化水素基を示し、R 8 〜R 13 はそれぞれ同一もしくは異種の一価炭化水素基を示し、このうちR 12 及び/又はR 13 は芳香族一価炭化水素基を示し、0≦e+f≦500の整数であり、0≦e≦500、0≦f≦250の整数である。)
で示されるオルガノシロキサンを(A)成分全体の0〜70質量%
とからなる一分子中に2個以上のアルケニル基を有する有機ケイ素化合物、
(B)下記式

Figure 0004636242
から選ばれる1種又は2種以上の一分子中に珪素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンを(A)成分のアルケニル基一個当り珪素原子結合水素原子を0.75〜2.0個与えるに十分な量
(C)触媒量の白金系触媒
を必須成分とし、(A)成分及び(B)成分のオルガノポリシロキサンがシラノールを含有しないことを特徴とする光半導体素子封止を提供する。 Therefore, the present invention
(A) The following average composition formula (1)
(R 1 SiO 3/2 ) a (R 2 R 3 SiO) b (R 4 R 5 R 6 SiO 1/2 ) c (SiO 4/2 ) d (1)
(Wherein R 1 to R 6 each represent the same or different monovalent hydrocarbon group, 1 to 50 mol% of the total monovalent hydrocarbon group is an alkenyl group, and a, b, c and d are It is a positive number indicating the molar ratio of each siloxane unit, a / (a + b + c + d) = 0.40-0.95, b / (a + b + c + d) = 0.05-0.60, c / (a + b + c + d) = 0-0 .05, d / (a + b + c + d) = 0 to 0.10, a + b + c + d = 1.0.)
(A) 30 to 100% by mass of the total component (A) , and
The following general formula (2)
R 7 R 8 R 9 SiO- ( R 10 R 11 SiO) e - (R 12 R 13 SiO) f -SiR 7 R 8 R 9 (2)
(Wherein R 7 represents a non-covalent double bond group-containing monovalent hydrocarbon group, R 8 to R 13 each represent the same or different monovalent hydrocarbon group, of which R 12 and / or R 13 represents an aromatic monovalent hydrocarbon group, an integer of 0 ≦ e + f ≦ 500, and an integer of 0 ≦ e ≦ 500 and 0 ≦ f ≦ 250.
0 to 70% by mass of the whole component (A)
Organosilicon compound having two or more alkenyl groups in one molecule consisting of,
(B) The following formula
Figure 0004636242
An organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one or two or more molecules selected from 0.75 to 0.75 silicon atom-bonded hydrogen atoms per alkenyl group of component (A) Enough to give ~ 2.0 ,
(C) Provided is an optical semiconductor element sealing material characterized in that a catalytic amount of a platinum-based catalyst is an essential component, and the organopolysiloxanes of the components ( A) and (B) do not contain silanol.

この場合、(C)成分を除く組成物中の全クロル量が30ppm以下であることが好ましい。   In this case, it is preferable that the total chloro content in the composition excluding the component (C) is 30 ppm or less.

更に、本発明は、上記光半導体素子封止用樹脂組成物の硬化物により封止された光半導体素子、また、上記光半導体素子封止用樹脂組成物の硬化物により封止されたLEDを提供する。   Furthermore, the present invention provides an optical semiconductor element sealed with a cured product of the resin composition for sealing an optical semiconductor element, and an LED sealed with a cured product of the resin composition for sealing an optical semiconductor element. provide.

本発明の光半導体素子封止用樹脂組成物は、高透明で、高硬度で、金属への腐食性がなく、また、樹脂の保存安定性に優れるため、実用的な光半導体素子封止材料として好適で、特に、LEDパッケージに有効であるという特徴をもつ。   The resin composition for encapsulating an optical semiconductor element of the present invention is highly transparent, has high hardness, has no corrosiveness to metals, and is excellent in storage stability of a resin. And is particularly effective for LED packages.

本発明の光半導体素子封止用樹脂組成物において、(A)成分としての一分子中に2個以上の非共有結合性二重結合基を有する有機ケイ素化合物としては、オルガノシラン、オルガノシロキサン、オルガノシルアルキレン、オルガノシルアリーレン等が挙げられ、特にオルガノシロキサンとして、下記平均組成式(1)又はこれと後述する下記一般式(2)で示されるものを好適に使用することができる。
(R1SiO3/2a(R23SiO)b(R456SiO1/2c(SiO4/2d (1)
(式中、R1〜R6はそれぞれ同一もしくは異種の一価炭化水素基を示し、その全一価炭化水素基の1〜50モル%、好ましくは2〜40モル%、より好ましくは5〜30モル%は非共有結合性二重結合含有基であり、a、b、c及びdは各シロキサン単位のモル比を示す正数であり、a/(a+b+c+d)=0.40〜0.95、好ましくは0.50〜0.90、b/(a+b+c+d)=0.05〜0.60、好ましくは0.10〜0.50、c/(a+b+c+d)=0〜0.05、好ましくは0〜0.03、d/(a+b+c+d)=0〜0.10、好ましくは0〜0.05、a+b+c+d=1.0である。)
In the resin composition for encapsulating an optical semiconductor element of the present invention, the organosilicon compound having two or more non-covalent double bond groups in one molecule as the component (A) includes organosilane, organosiloxane, Organosylalkylene, organosylarylene and the like can be mentioned. Particularly, as the organosiloxane, those represented by the following average composition formula (1) or the following general formula (2) described later can be preferably used.
(R 1 SiO 3/2 ) a (R 2 R 3 SiO) b (R 4 R 5 R 6 SiO 1/2 ) c (SiO 4/2 ) d (1)
(In the formula, R 1 to R 6 each represent the same or different monovalent hydrocarbon group, and 1 to 50 mol%, preferably 2 to 40 mol%, more preferably 5 to 5 mol% of the total monovalent hydrocarbon group. 30 mol% is a non-covalent double bond-containing group, a, b, c and d are positive numbers indicating the molar ratio of each siloxane unit, and a / (a + b + c + d) = 0.40-0.95. , Preferably 0.50 to 0.90, b / (a + b + c + d) = 0.05 to 0.60, preferably 0.10 to 0.50, c / (a + b + c + d) = 0 to 0.05, preferably 0 -0.03, d / (a + b + c + d) = 0-0.10, preferably 0-0.05, a + b + c + d = 1.0.

この場合、R1〜R6は炭素数が1〜20、特に1〜10の範囲にあるものが好適である。
具体的には、R1〜R6において、非共有結合性二重結合含有基としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基などが代表的なものとして挙げられ、アクリロキシ基、メタクリロキシ基で置換されたアルキル基(例えば(メタ)アクリロキシプロピル基)等も挙げられる。また、R1〜R6の少なくとも一つは同一又は異種の芳香族一価炭化水素基であることが、光半導体用途における屈折率の制御という観点から好ましいが、芳香族基としては、フェニル基、トリル基等のアリール基、ベンジル基等のアラルキル基などが代表的なものとして挙げられる。また、その他の代表的な一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、イソプロピル基、イソブチル基、tert−ブチル基、シクロヘキシル基等のアルキル基などが挙げられる。また、これらの基の水素原子の1個又は2個以上がフッ素原子等のハロゲン原子で置換されたものであってもよい。
In this case, R 1 to R 6 preferably have 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms.
Specifically, in R 1 to R 6 , the non-covalent double bond-containing group is typically an alkenyl group such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, or a butenyl group. And an alkyl group substituted with an acryloxy group or a methacryloxy group (for example, a (meth) acryloxypropyl group). In addition, at least one of R 1 to R 6 is preferably the same or different aromatic monovalent hydrocarbon group from the viewpoint of controlling the refractive index in optical semiconductor applications. Typical examples include aryl groups such as tolyl group and aralkyl groups such as benzyl group. Other typical monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, isopropyl, isobutyl, tert-butyl, and cyclohexyl groups. It is done. In addition, one or two or more hydrogen atoms of these groups may be substituted with a halogen atom such as a fluorine atom.

上記平均組成式(1)で示されるオルガノポリシロキサンは、通常、原料として該平均組成式のシロキサン単位に対応する下記のオルガノキシシラン(3)〜(6)又はクロロシラン(7)〜(10)を所定の反応モル比、即ち下記式(3)〜(6)で示されるオルガノキシシランをそれぞれ0.40〜0.95、0.05〜0.60、0〜0.05、0〜0.10のモル比で使用するか、又は下記式(7)〜(10)で示されるクロロシランをそれぞれ0.40〜0.95、0.05〜0.60、0〜0.05、0〜0.10のモル比で使用して、これらシランを酸性条件下で加水分解して得られるものであるが、本発明においては特に、加水分解物中に残存するシラノール基、特にシラノール基とクロル分を除去あるいは所定のレベル以下に低減する(シラノール基については質量%レベルで完全に除去し、クロル分については、(A)成分と後述する(B)成分との合計に対して30ppm以下に低減する)ために、該加水分解生成物を、更に、アルカリ条件下において縮合(平衡化)させて、これらシラノール基、特にシラノール基とクロル分を除去又は低減することが重要である。このアルカリ条件下における縮合(平衡化)処理を施していない、クロル分及び/又はシラノール基を所定量を超えて含有する従来の単なる加水分解生成物では本願の目的、作用効果を発揮し得ない。
1Si(OR143 (3)
23Si(OR142 (4)
456SiOR14 (5)
Si(OR144 (6)
1SiCl3 (7)
23SiCl2 (8)
456SiCl (9)
SiCl4 (10)
(式中、R1〜R6は上記の通り。R14は好ましくは炭素数1〜6の一価炭化水素基、特にアルキル基を示す。)
The organopolysiloxane represented by the above average composition formula (1) is usually the following organoxysilane (3) to (6) or chlorosilane (7) to (10) corresponding to the siloxane unit of the average composition formula as a raw material. In a predetermined reaction molar ratio, that is, organoxysilanes represented by the following formulas (3) to (6) are 0.40 to 0.95, 0.05 to 0.60, 0 to 0.05, 0 to 0, respectively. .10 or a chlorosilane represented by the following formulas (7) to (10): 0.40 to 0.95, 0.05 to 0.60, 0 to 0.05, 0 to These silanes are obtained by hydrolysis under acidic conditions using a molar ratio of 0.10. In the present invention, silanol groups remaining in the hydrolyzate, particularly silanol groups and chloro Minutes or less than a certain level (The silanol group is completely removed at the mass% level, and the chloro content is reduced to 30 ppm or less with respect to the total of the component (A) and the component (B) described later). It is important that the decomposition products are further condensed (equilibrated) under alkaline conditions to remove or reduce these silanol groups, especially silanol groups and chloro. The conventional mere hydrolysis product containing a chloro component and / or silanol group in excess of a predetermined amount, which has not been subjected to the condensation (equilibration) treatment under the alkaline condition, cannot exhibit the purpose and action of the present application. .
R 1 Si (OR 14 ) 3 (3)
R 2 R 3 Si (OR 14 ) 2 (4)
R 4 R 5 R 6 SiOR 14 (5)
Si (OR 14 ) 4 (6)
R 1 SiCl 3 (7)
R 2 R 3 SiCl 2 (8)
R 4 R 5 R 6 SiCl (9)
SiCl 4 (10)
(In the formula, R 1 to R 6 are as described above. R 14 preferably represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, particularly an alkyl group.)

上記加水分解・縮合の方法を更に説明すると、酸加水分解はクロロシランを反応原料とする場合は、別途酸触媒を加える必要性はないが、アルコキシシランを原料とする場合には、塩酸や硫酸、シュウ酸などの酸触媒を用いて、低温で反応させる場合もあるが、通常、0℃以上100℃以下程度までの温度範囲で数十分から一日程度行うことができる。その後、中和や水洗などの操作を行い、アルカリ縮合(平衡化)を行う。アルカリ縮合は、カリウムやナトリウムなどのアルカリ金属塩、アンモニアやアンモニウム塩などは主として触媒として使用され、溶剤にもよるが、80〜200℃程度までの温度範囲で1時間から数日程度行うことができる。   The hydrolysis / condensation method will be further described. Acid hydrolysis does not require the addition of a separate acid catalyst when chlorosilane is used as a reaction raw material, but when alkoxysilane is used as a raw material, hydrochloric acid, sulfuric acid, Although the reaction may be performed at a low temperature using an acid catalyst such as oxalic acid, the reaction can usually be carried out for several tens of minutes to about one day in a temperature range from about 0 ° C. to about 100 ° C. Thereafter, operations such as neutralization and water washing are performed to perform alkali condensation (equilibration). Alkaline condensation is carried out for about 1 hour to several days in a temperature range of about 80 to 200 ° C., although alkali metal salts such as potassium and sodium, ammonia and ammonium salts are mainly used as catalysts, and depending on the solvent. it can.

なお、上記式(1)のオルガノポリシロキサンのGPC(ゲルパーミエーションクロマトグラフィ分析)によるポリスチレン換算重量平均分子量は、500〜1,000,000、特に1,000〜300,000であることが好ましい。   In addition, it is preferable that the polystyrene conversion weight average molecular weight by GPC (gel permeation chromatography analysis) of the organopolysiloxane of the above formula (1) is 500 to 1,000,000, particularly 1,000 to 300,000.

上記式(1)で示されるオルガノポリシロキサンは、(A)成分中30〜100質量%、好ましくは35〜95質量%、更に好ましくは40〜95質量%含有される。   The organopolysiloxane represented by the above formula (1) is contained in the component (A) in an amount of 30 to 100% by mass, preferably 35 to 95% by mass, and more preferably 40 to 95% by mass.

一方、(A)成分の一部として用いることができる下記一般式(2)で示されるオルガノポリシロキサンは下記の通りである。
789SiO−(R1011SiO)e−(R1213SiO)f−SiR789 (2)
(式中、R7は非共有結合性二重結合基含有一価炭化水素基を示し、R8〜R13はそれぞれ同一もしくは異種の一価炭化水素基を示し、このうちR10〜R13は、好ましくは脂肪族不飽和結合を除く一価炭化水素基を示し、また、R12及び/又はR13は芳香族一価炭化水素基を示し、0≦e+f≦500、好ましくは10≦e+f≦500の整数であり、0≦e≦500、好ましくは10≦e≦500、0≦f≦250、好ましくは0≦f≦150の整数である。)
この場合、R7は炭素数2〜8、特に2〜6のアルケニル基で代表される脂肪族不飽和結合を有し、R8〜R13は炭素数が1〜20、特に1〜10の範囲にあるものが好適であり、アルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、このうちR10〜R13は好適にはアルケニル基等の脂肪族不飽和結合を除くアルキル基、アリール基、アラルキル基などが挙げられる。また、R12及び/又R13はフェニル基やトリル基などの炭素数が6〜12のアリール基等の芳香族一価炭化水素基であることが望ましいものである。
On the other hand, the organopolysiloxane represented by the following general formula (2) that can be used as a part of the component (A) is as follows.
R 7 R 8 R 9 SiO- ( R 10 R 11 SiO) e - (R 12 R 13 SiO) f -SiR 7 R 8 R 9 (2)
(In the formula, R 7 represents a monovalent hydrocarbon group containing a non-covalent double bond group, and R 8 to R 13 each represents the same or different monovalent hydrocarbon group, of which R 10 to R 13 Preferably represents a monovalent hydrocarbon group excluding an aliphatic unsaturated bond, and R 12 and / or R 13 represents an aromatic monovalent hydrocarbon group, and 0 ≦ e + f ≦ 500, preferably 10 ≦ e + f ≦ 500, 0 ≦ e ≦ 500, preferably 10 ≦ e ≦ 500, 0 ≦ f ≦ 250, preferably 0 ≦ f ≦ 150.
In this case, R 7 has an aliphatic unsaturated bond represented by an alkenyl group having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, and R 8 to R 13 have 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms. Those within the range are preferred, and examples thereof include an alkyl group, an alkenyl group, an aryl group, and an aralkyl group. Among them, R 10 to R 13 are preferably an alkyl group excluding an aliphatic unsaturated bond such as an alkenyl group. , Aryl group, aralkyl group and the like. R 12 and / or R 13 is preferably an aromatic monovalent hydrocarbon group such as an aryl group having 6 to 12 carbon atoms such as a phenyl group or a tolyl group.

上記一般式(2)のオルガノポリシロキサンとしては、具体的に下記のものが例示される。   Specific examples of the organopolysiloxane of the general formula (2) include the following.

Figure 0004636242
(上記式において、k,mは、0≦k+m≦500を満足する整数であり、好ましくは5≦k+m≦250で、0≦m/(k+m)≦0.5を満足する整数である。)
Figure 0004636242
(In the above formula, k and m are integers satisfying 0 ≦ k + m ≦ 500, preferably 5 ≦ k + m ≦ 250, and integers satisfying 0 ≦ m / (k + m) ≦ 0.5.)

上記式(2)のオルガノポリシロキサンは、例えば主鎖を構成する環状ジメチルポリシロキサン、環状ジフェニルポリシロキサン、環状メチルフェニルポリシロキサン等の環状ジオルガノポリシロキサンと、末端基を構成するジビニルテトラメチルジシロキサン、ジメチルテトラビニルジシロキサン、ヘキサビニルジシロキサン、ジフェニルテトラビニルジシロキサン、ジビニルテトラフェニルジシロキサン等のジシロキサンとのアルカリ平衡化反応によって得ることができるが、この場合、通常、シラノール基及びクロル分は含有されない。   The organopolysiloxane of the above formula (2) includes, for example, cyclic diorganopolysiloxanes such as cyclic dimethylpolysiloxane, cyclic diphenylpolysiloxane, and cyclic methylphenylpolysiloxane constituting the main chain, and divinyltetramethyldisiloxane constituting the terminal group. It can be obtained by alkali equilibration reaction with disiloxane such as siloxane, dimethyltetravinyldisiloxane, hexavinyldisiloxane, diphenyltetravinyldisiloxane, divinyltetraphenyldisiloxane, etc. Minutes are not contained.

上記式(2)のオルガノポリシロキサンは、(A)成分中に0〜70質量%、より好ましくは5〜65質量%、更に好ましくは5〜60質量%配合することが好ましく、多すぎると、硬化物表面にタックが残るようになり、埃などの付着により光透過性が損なわれるおそれがある。   The organopolysiloxane of the above formula (2) is preferably blended in the component (A) in an amount of 0 to 70% by mass, more preferably 5 to 65% by mass, and still more preferably 5 to 60% by mass. A tack | tuck will remain on the hardened | cured material surface, and there exists a possibility that light transmittance may be impaired by adhesion of dust etc.

また、(A)成分中の非共有結合性二重結合基は、全一価炭化水素基の1〜50モル%、好ましくは2〜40モル%、より好ましくは5〜30モル%程度であり、少なすぎると硬化物が得られず、また、多すぎると機械的特性が悪くなる場合がある。芳香族基は、全一価炭化水素基の0〜95モル%、好ましくは10〜90モル%、より好ましくは20〜80モル%程度である。芳香族基は樹脂中に適量含まれたほうが、機械的特性が良く、また、製造もしやすいという利点がある。また、芳香族基の導入により屈折率を制御できることも利点として挙げられる。   The non-covalent double bond group in component (A) is about 1 to 50 mol%, preferably 2 to 40 mol%, more preferably about 5 to 30 mol% of the total monovalent hydrocarbon group. If the amount is too small, a cured product cannot be obtained. If the amount is too large, the mechanical properties may deteriorate. The aromatic group is 0 to 95 mol%, preferably 10 to 90 mol%, more preferably about 20 to 80 mol% of the total monovalent hydrocarbon group. When an appropriate amount of the aromatic group is contained in the resin, there are advantages that the mechanical properties are good and the production is easy. Another advantage is that the refractive index can be controlled by introducing an aromatic group.

次に、本発明の樹脂組成物の(B)成分は、オルガノハイドロジェンポリシロキサンである。このオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、該成分中のSiH基と(A)成分のビニル基等の非共有結合性二重結合含有基(典型的にはアルケニル基)とが付加反応することにより、硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればよい。   Next, the component (B) of the resin composition of the present invention is an organohydrogenpolysiloxane. This organohydrogenpolysiloxane acts as a crosslinking agent, and includes a SiH group in the component and a non-covalent double bond-containing group (typically an alkenyl group) such as a vinyl group in the component (A). Are cured to form a cured product. Such organohydrogenpolysiloxanes only need to have two or more hydrogen atoms (that is, SiH groups) bonded to silicon atoms in one molecule.

また、オルガノハイドロジェンポリシロキサンは、芳香族炭化水素基を有することで、前記(A)成分の非共有結合性二重結合基を有する有機ケイ素化合物が高屈折率の場合に相溶性を高め、透明な硬化物を与えることができる。   In addition, the organohydrogenpolysiloxane has an aromatic hydrocarbon group, thereby increasing compatibility when the organosilicon compound having a non-covalent double bond group as the component (A) has a high refractive index, A transparent cured product can be provided.

従って、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、芳香族一価炭化水素基を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含むことができる。   Accordingly, in the organohydrogenpolysiloxane of the component (B), an organohydrogenpolysiloxane having an aromatic monovalent hydrocarbon group can be included as a part or all of the component (B).

また、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、グリシジル構造を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含むことができ、オルガノハイドロジェンポリシロキサンはグリシジル構造含有基を有することで、基板との接着性の高い光半導体用封止樹脂組成物を与えることができる。   In addition, in the organohydrogenpolysiloxane of the component (B), the organohydrogenpolysiloxane having a glycidyl structure can be included as part or all of the component (B), and the organohydrogenpolysiloxane contains a glycidyl structure. By having a group, a sealing resin composition for optical semiconductors having high adhesion to the substrate can be provided.

上記オルガノハイドロジェンポリシロキサンとしては、これに限られるものではないが、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−グリシドキシプロピル−5−トリメトキシシリルエチル−1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシラン重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。 Examples of the organohydrogenpolysiloxane include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (dimethylhydrogen Siloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-glycidoxypropyl-1,3,5 7-tetramethylcyclotetrasiloxane, 1-glycidoxypropyl-5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy-blocked dimethylsiloxane Methyl hydrogen siloxane copolymer, both ends dimethyl hydrogen siloxy group-capped dimethyl polysiloxane, both ends dimethyl hydrogen siloxy group capped dimethyl siloxane / methyl hydrogen siloxane copolymer, both ends trimethyl siloxy group capped methyl hydrogen siloxane From diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, trimethoxysilane polymer, (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit And a copolymer composed of (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units and (C 6 H 5 ) SiO 3/2 units.

また、下記構造で示されるような化合物も使用することができる。   Moreover, a compound as shown by the following structure can also be used.

Figure 0004636242
Figure 0004636242

このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(又は重合度)は2個以上、好ましくは2〜1,000、より好ましくは2〜300程度のものを使用することができる。   The molecular structure of this organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number (or degree of polymerization) of silicon atoms in one molecule is 2 or more. Preferably, about 2 to 1,000, more preferably about 2 to 300 can be used.

上記(B)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分の非共有結合性二重結合基(典型的にはアルケニル基)1個当たり(B)成分中のケイ素原子結合水素原子(SiH基)を0.75〜2.0個与えるに十分な量を含むことが好ましい。   The blending amount of the organohydrogenpolysiloxane of the component (B) is such that silicon atom-bonded hydrogen in the component (B) per non-covalent double bond group (typically alkenyl group) of the component (A) It is preferable to include an amount sufficient to give 0.75 to 2.0 atoms (SiH groups).

本発明の樹脂組成物の(C)成分は、白金系触媒であり、これには塩化白金酸、アルコール変性塩化白金酸、キレート構造を有する白金錯体などが代表的なものである。
その配合量は触媒量であり、通常、白金金属として(A)成分に対し1〜1,000ppmである。
The component (C) of the resin composition of the present invention is a platinum-based catalyst, and typical examples thereof include chloroplatinic acid, alcohol-modified chloroplatinic acid, and a platinum complex having a chelate structure.
The blending amount is a catalytic amount, and is usually 1 to 1,000 ppm as platinum metal with respect to the component (A).

本発明のシリコーン樹脂組成物は、上述した(A)〜(C)成分を必須成分とするが、これに必要に応じて各種のシランカップリング剤を添加してもよい。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシラン、3−メルカプトプロピルトリメトキシシランなどや、トリメトキシシラン、テトラメトキシシラン及びそのオリゴマーなどが挙げられる。これらを複数混合して使用することも可能である。その配合量は、組成物全体の10質量%以下(0〜10質量%)、特に5質量%以下(0〜5質量%)程度配合することが好ましい。   The silicone resin composition of the present invention contains the above-described components (A) to (C) as essential components, and various silane coupling agents may be added thereto as necessary. For example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, N-2 (amino Ethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxy Run, 3-aminopropyltriethoxysilane, N- phenyl-3-aminopropyl trimethoxysilane, and the like 3-mercaptopropyltrimethoxysilane, trimethoxysilane, etc. tetramethoxysilane and its oligomers and the like. It is also possible to use a mixture of these. The blending amount is preferably 10% by mass or less (0 to 10% by mass), particularly 5% by mass or less (0 to 5% by mass) of the entire composition.

また、その他の成分として、これらの透明樹脂組成物には、装置の性能を悪化させない範囲で必要に応じて、例えば、酸化防止剤としてBHT、ビタミンBなどや、公知の変色防止剤、例えば有機リン系変色防止剤などや、ヒンダードアミンのような光劣化防止剤などや、反応性希釈剤としてビニルエーテル類、ビニルアミド類、エポキシ樹脂、オキセタン類、アリルフタレート類、アジピン酸ビニルなどや、ヒュームドシリカや沈降性シリカなどの補強性充填材、難燃性向上剤、蛍光体、有機溶剤などを添加して封止樹脂組成物としてもよい。また、着色成分により着色しても構わない。   Further, as other components, these transparent resin compositions include, for example, BHT and vitamin B as antioxidants as well as known discoloration inhibitors such as organic, as long as the performance of the apparatus is not deteriorated. Phosphorus-based discoloration inhibitors, photodegradation inhibitors such as hindered amines, vinyl ethers, vinylamides, epoxy resins, oxetanes, allyl phthalates, vinyl adipates, etc. as reactive diluents, fumed silica, Reinforcing fillers such as precipitated silica, flame retardants, phosphors, organic solvents, and the like may be added to form a sealing resin composition. Moreover, you may color with a coloring component.

本発明のシリコーン樹脂組成物は、上記(A),(B),(C)成分、その他の任意成分を十分に混合することにより得ることができる。   The silicone resin composition of the present invention can be obtained by sufficiently mixing the above components (A), (B), (C) and other optional components.

本発明のシリコーン樹脂組成物は、光半導体素子の封止に用いられるもので、光半導体としては、これに限定されないが、例えば、発光ダイオード、フォトトランジスタ、フォトダイオード、CCD、太陽電池モジュール、EPROM、フォトカプラなどが挙げられ、特に発光ダイオードが有効に用いられる。   The silicone resin composition of the present invention is used for sealing an optical semiconductor element, and the optical semiconductor is not limited to this. For example, a light emitting diode, a phototransistor, a photodiode, a CCD, a solar cell module, an EPROM In particular, light-emitting diodes are effectively used.

この場合、封止方法としては、光半導体の種類に応じた常法が採用されるが、本発明の樹脂組成物の硬化条件は、室温から200℃程度までの温度範囲で、数十秒から数日間程度の時間範囲を考えることができるが、好ましくは80〜180℃の温度範囲で1分程度から10時間程度であることが好ましい。   In this case, as a sealing method, a conventional method according to the type of the optical semiconductor is adopted, but the curing condition of the resin composition of the present invention is from several tens of seconds in a temperature range from room temperature to about 200 ° C. Although a time range of several days can be considered, it is preferably about 1 minute to 10 hours in a temperature range of 80 to 180 ° C.

本発明の光半導体素子封止用樹脂組成物の硬化物で被覆保護された光半導体装置は、装置の耐熱、耐湿、耐光性に優れ、装置を腐食することなく、その結果、信頼性に優れる光半導体装置を提供することが可能となり、産業上のメリットは多大である。   The optical semiconductor device coated and protected with the cured product of the resin composition for encapsulating an optical semiconductor element of the present invention is excellent in heat resistance, moisture resistance and light resistance of the device, and is excellent in reliability without corroding the device. An optical semiconductor device can be provided, and the industrial merit is great.

以下、合成例、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、分子量はGPC(ゲルパーミエーションクロマトグラフィ分析)におけるポリスチレン換算の重量平均分子量を示す。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited to the following Example. In addition, molecular weight shows the weight average molecular weight of polystyrene conversion in GPC (gel permeation chromatography analysis).

[合成例1]
フェニルトリクロロシラン54.0g(55mol%)、ジメチルジクロロシラン24.7g(15mol%)及びメチルビニルジクロロシラン148.4g(30mol%)の混合物を、80℃に加熱した水250g及びトルエン100gの混合溶媒中に撹拌しながら1時間かけて滴下した。滴下終了後、2時間還流させることにより、共加水分解縮合物のトルエン溶液を得た。この溶液を静置して室温まで冷却し、水層を除去した後、トルエン層の水洗を抽出水が中性になるまで行った。得られたポリオルガノシロキサンのトルエン溶液(有機層1)にKOHをクロル分の20倍量加え、2時間還流した。反応後、トリメチルクロロシランで中和し、水洗をトルエン層が中性になるまで行った(有機層2)。有機層2を脱水した後、ろ過して不純物を除去した。このろ液からトルエンを除去(減圧下)し、目的の(A)成分のポリオルガノシロキサン(分子量;3,300)を得た(樹脂1)。
[Synthesis Example 1]
A mixture of 54.0 g (55 mol%) of phenyltrichlorosilane, 24.7 g (15 mol%) of dimethyldichlorosilane and 148.4 g (30 mol%) of methylvinyldichlorosilane was mixed with 250 g of water heated to 80 ° C. and 100 g of toluene. The mixture was added dropwise over 1 hour with stirring. After completion of dropping, the mixture was refluxed for 2 hours to obtain a toluene solution of a cohydrolyzed condensate. The solution was allowed to stand, cooled to room temperature, the aqueous layer was removed, and then the toluene layer was washed with water until the extracted water became neutral. To the obtained toluene solution of organic polyorganosiloxane (organic layer 1), KOH was added in an amount 20 times the amount of chloro and refluxed for 2 hours. After the reaction, the mixture was neutralized with trimethylchlorosilane and washed with water until the toluene layer became neutral (organic layer 2). The organic layer 2 was dehydrated and then filtered to remove impurities. Toluene was removed from the filtrate (under reduced pressure) to obtain the desired component (A) polyorganosiloxane (molecular weight; 3,300) (resin 1).

[合成例2]
フェニルトリメトキシシラン108.9g(55mol%)、ジメチルジメトキシシラン18.0g(15mol%)及びメチルビニルジメトキシシラン39.6g(30mol%)の混合物を、80℃に加熱した20%HCl水溶液80g及びトルエン160gの混合溶媒中に撹拌しながら1時間かけて滴下した。滴下終了後、2時間還流させることにより、共加水分解縮合物のトルエン溶液を得た。この溶液を静置して室温まで冷却し、水層を除去した後、トルエン層の水洗を抽出水が中性になるまで行った。得られたポリオルガノシロキサンのトルエン溶液にKOHを0.05g加え、2時間還流した。反応後、トリメチルクロロシランで中和し、トルエン層が中性になるまで水洗を行った。水層を除去し、トルエン層を脱水した後、ろ過して不純物を除去した。このろ液からトルエンを除去(減圧下)し、目的の(A)成分のポリオルガノシロキサン(分子量;3,000)を得た(樹脂2)。
[Synthesis Example 2]
A mixture of 108.9 g (55 mol%) of phenyltrimethoxysilane, 18.0 g (15 mol%) of dimethyldimethoxysilane and 39.6 g (30 mol%) of methylvinyldimethoxysilane was added to 80 g of 20% aqueous HCl solution and toluene heated to 80 ° C. The mixture was added dropwise to 160 g of the mixed solvent with stirring for 1 hour. After completion of dropping, the mixture was refluxed for 2 hours to obtain a toluene solution of a cohydrolyzed condensate. The solution was allowed to stand, cooled to room temperature, the aqueous layer was removed, and then the toluene layer was washed with water until the extracted water became neutral. 0.05 g of KOH was added to the obtained toluene solution of polyorganosiloxane and refluxed for 2 hours. After the reaction, the mixture was neutralized with trimethylchlorosilane and washed with water until the toluene layer became neutral. The aqueous layer was removed, the toluene layer was dehydrated, and then filtered to remove impurities. Toluene was removed from the filtrate (under reduced pressure) to obtain the desired component (A) polyorganosiloxane (molecular weight: 3,000) (resin 2).

[比較合成例1]
フェニルトリクロロシラン54.0g(55mol%)、ジメチルジクロロシラン24.7g(15mol%)及びメチルビニルジクロロシラン148.4g(30mol%)の混合物を、フラスコ内で予め80℃に加熱した水500g及びトルエン200gの混合溶媒に撹拌しながら1時間かけて滴下し、滴下終了後、更に2時間還流させて共加水分解縮合物のトルエン溶液を得た。この溶液を静置して室温まで冷却した後、分離した水層を除去し、引き続き水を混合して撹拌後静置し、水層を除去するという水洗浄操作をトルエン層が中性になるまで行い、反応を停止させた。得られたポリオルガノシロキサンのトルエン溶液をろ過して、不純物を除去した後、更に、減圧蒸留によってトルエンを除去し、ポリオルガノシロキサン(分子量;5,100)を得た(比較樹脂1)。
[Comparative Synthesis Example 1]
A mixture of 54.0 g (55 mol%) of phenyltrichlorosilane, 24.7 g (15 mol%) of dimethyldichlorosilane and 148.4 g (30 mol%) of methylvinyldichlorosilane was added to 500 g of water and toluene previously heated to 80 ° C. in a flask. The mixture was added dropwise to 200 g of the mixed solvent over 1 hour with stirring. After completion of the addition, the mixture was further refluxed for 2 hours to obtain a toluene solution of a cohydrolyzed condensate. After this solution is allowed to stand and cool to room temperature, the separated aqueous layer is removed, followed by mixing with water, stirring, and leaving to stand, and the toluene layer is neutralized by removing the aqueous layer. Until the reaction was stopped. The obtained toluene solution of polyorganosiloxane was filtered to remove impurities, and then toluene was removed by distillation under reduced pressure to obtain polyorganosiloxane (molecular weight: 5,100) (Comparative Resin 1).

[比較合成例2]
比較合成例1と同様の手順で、フェニルトリクロロシラン55mol%、フェニルメチルジクロロシラン15mol%、メチルビニルジクロロシラン30mol%の共加水分解によってポリオルガノシロキサン(分子量;4,500)を得た(比較樹脂2)。
[Comparative Synthesis Example 2]
A polyorganosiloxane (molecular weight: 4,500) was obtained by cohydrolysis of 55 mol% phenyltrichlorosilane, 15 mol% phenylmethyldichlorosilane, and 30 mol% methylvinyldichlorosilane in the same procedure as in Comparative Synthesis Example 1 (Comparative resin) 2).

[比較合成例3]
比較合成例1と同様の手順で、フェニルトリクロロシラン45mol%、ジメチルジクロロシラン15mol%、メチルビニルジクロロシラン15mol%、トリメチルクロロシラン25mol%の共加水分解によって、ポリオルガノシロキサン(分子量;2,900)を得た(比較樹脂3)。
[Comparative Synthesis Example 3]
In the same procedure as in Comparative Synthesis Example 1, polyorganosiloxane (molecular weight: 2,900) was obtained by cohydrolysis of 45 mol% phenyltrichlorosilane, 15 mol% dimethyldichlorosilane, 15 mol% methylvinyldichlorosilane, and 25 mol% trimethylchlorosilane. Obtained (Comparative Resin 3).

[比較合成例4]
1,1,3,3−テトラメチルジシロキサン53.6g(22mol%)、ジフェニルジメトキシシラン195.2g(45mol%)及び1,3,5,7−テトラメチルシクロテトラシロキサン144.0g(33mol%)を仕込んだフラスコに10℃にて濃硫酸17.8g、純水15.4gを順次添加し、12時間撹拌して、加水分解及び平衡化反応をさせた。この反応液に、水5.9g、トルエン195.8gを加えて撹拌し、反応を停止させた後、水を混合して撹拌後静置し、水層を除去するという水洗浄操作をトルエン層が中性になるまで行った。更に、減圧蒸留によってトルエンを除去し得られたオルガノハイドロジェンポリシロキサンをろ過し、不純物を除去してポリオルガノシロキサン(分子量;800)を得た(比較樹脂4)。
[Comparative Synthesis Example 4]
1,1,3,3-tetramethyldisiloxane 53.6 g (22 mol%), diphenyldimethoxysilane 195.2 g (45 mol%) and 1,3,5,7-tetramethylcyclotetrasiloxane 144.0 g (33 mol%) Concentrated sulfuric acid (17.8 g) and pure water (15.4 g) were sequentially added at 10 ° C. and stirred for 12 hours to cause hydrolysis and equilibration reactions. To this reaction solution, 5.9 g of water and 195.8 g of toluene were added and stirred to stop the reaction. Then, water was mixed, stirred and allowed to stand, and the water washing operation of removing the aqueous layer was performed with the toluene layer. I went until it became neutral. Furthermore, the organohydrogenpolysiloxane obtained by removing toluene by vacuum distillation was filtered to remove impurities to obtain polyorganosiloxane (molecular weight: 800) (Comparative Resin 4).

[比較合成例5]
比較合成例4と同様の手順で、1,1,1,3,3,3−ヘキサメチルジシロキサン30mol%、ジフェニルジメトキシシラン40mol%、1,3,5,7−テトラメチルシクロテトラシロキサン30mol%の加水分解及び平衡化反応によって、ポリオルガノシロキサン(分子量;600)を得た(比較樹脂5)。
[Comparative Synthesis Example 5]
In the same procedure as Comparative Synthesis Example 4, 1,1,1,3,3,3-hexamethyldisiloxane 30 mol%, diphenyldimethoxysilane 40 mol%, 1,3,5,7-tetramethylcyclotetrasiloxane 30 mol% The polyorganosiloxane (molecular weight: 600) was obtained by hydrolysis and equilibration reaction (Comparative Resin 5).

[比較合成例6]
比較合成例1と同様の手順で、フェニルトリクロロシラン45mol%、メチルジクロロシラン15mol%、メチルビニルジクロロシラン15mol%、トリメチルクロロシラン25mol%の共加水分解によって、ポリオルガノシロキサン(分子量;3,800)を得た(比較樹脂6)。
[Comparative Synthesis Example 6]
In the same procedure as in Comparative Synthesis Example 1, polyorganosiloxane (molecular weight; 3,800) was obtained by cohydrolysis of 45 mol% of phenyltrichlorosilane, 15 mol% of methyldichlorosilane, 15 mol% of methylvinyldichlorosilane, and 25 mol% of trimethylchlorosilane. Obtained (Comparative Resin 6).

[比較合成例7]
合成例1記載の有機層1にクロル分相当のナトリウムエトキシドを加えて中和を行った後、水洗浄操作をトルエン層が中性になるまで行った。ろ過して、不純物を除去した後、減圧下でトルエンを除去し、ポリオルガノシロキサン(分子量;2,700)を得た(比較樹脂7)。
[Comparative Synthesis Example 7]
The organic layer 1 described in Synthesis Example 1 was neutralized by adding sodium ethoxide corresponding to the chloro content, and then a water washing operation was performed until the toluene layer became neutral. After removing impurities by filtration, toluene was removed under reduced pressure to obtain polyorganosiloxane (molecular weight; 2,700) (Comparative Resin 7).

次に、封止樹脂調製例を示す。なお、下記例で(A)成分の樹脂aは下記式(a)で示されるものであり、(B)成分のオルガノハイドロジェンポリシロキサンb−1は下記式(b−1)で示され、b−2は下記式(b−2)で示されるものである。下記式でMeはメチル基を示す。   Next, an example of preparing a sealing resin is shown. In the following examples, the resin a as the component (A) is represented by the following formula (a), and the organohydrogenpolysiloxane b-1 as the component (B) is represented by the following formula (b-1). b-2 is represented by the following formula (b-2). In the following formulae, Me represents a methyl group.

Figure 0004636242
Figure 0004636242

[封止樹脂調製例1]
(A)成分として樹脂1を、(B)成分としてb−1を、H−Si(B成分中)/Vi−Si(A成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した(Viはビニル基を示す。以下、同様。)。
[Seal Resin Preparation Example 1]
Resin 1 as component (A), b-1 as component (B), H-Si (in component B) / Vi-Si (in component A) = 1.2, and (C) As a component, 200 ppm of platinum catalyst was uniformly mixed (Vi represents a vinyl group. The same applies hereinafter).

[封止樹脂調製例2]
(A)成分として樹脂2を、(B)成分としてb−1を、H−Si(B成分中)/Vi−Si(A成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した。
[Seal Resin Preparation Example 2]
Resin 2 as component (A), b-1 as component (B), H-Si (in component B) / Vi-Si (in component A) = 1.2, and (C) As a component, 200 ppm of platinum catalyst was uniformly mixed.

[封止樹脂調製例3]
(A)成分として樹脂1と樹脂aを質量比100:20の混合物で、(B)成分としてb−1を、H−Si(B成分中)/Vi−Si(A成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した。
[Seal Resin Preparation Example 3]
As the component (A), the resin 1 and the resin a are mixed at a mass ratio of 100: 20, and as the component (B), b-1 is H-Si (in the component B) / Vi-Si (in the component A) = 1. Further, 200 ppm of a platinum catalyst was uniformly mixed as the component (C).

[封止樹脂調製例4]
(A)成分として樹脂2と樹脂aを質量比100:20の混合物で、(B)成分としてb−1を、H−Si(B成分中)/Vi−Si(A成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した。
[Seal Resin Preparation Example 4]
(A) Component 2 is resin 2 and resin a in a mass ratio of 100: 20, (B) component is b-1, H-Si (in component B) / Vi-Si (in component A) = 1. Further, 200 ppm of a platinum catalyst was uniformly mixed as the component (C).

[封止樹脂調製例5]
(A)成分として樹脂1を、(B)成分としてb−1とb−2との質量比6:4の混合物を、H−Si(B成分中)/Vi−Si(A成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した。
[Seal Resin Preparation Example 5]
Resin 1 as component (A), a mixture of b-1 and b-2 in a mass ratio of 6: 4 as component (B), H-Si (in component B) / Vi-Si (in component A) = Also, 200 ppm of platinum catalyst was uniformly mixed as the component (C) so as to be 1.2.

[封止樹脂調製例6]
(A)成分として樹脂2を、(B)成分としてb−1とb−2との質量比6:4の混合物を、H−Si((B)成分中)/Vi−Si((A)成分中)=1.2となるように、また、(C)成分として白金触媒200ppmを均一に混合した。
[Seal Resin Preparation Example 6]
Resin 2 as the component (A), a mixture of b-1 and b-2 in the mass ratio 6: 4 as the component (B), H-Si (in the component (B)) / Vi-Si ((A) In the component), 200 ppm of platinum catalyst was uniformly mixed as the component (C) so as to be 1.2.

[比較封止樹脂調製例1]
比較樹脂1と比較樹脂4を、質量比80:20となるように、また、白金触媒200ppmを均一に混合した。
[Comparative sealing resin preparation example 1]
The comparative resin 1 and the comparative resin 4 were mixed uniformly with a platinum catalyst of 200 ppm so that the mass ratio was 80:20.

[比較封止樹脂調製例2]
比較樹脂2と比較樹脂5を、質量比75:25となるように、また、白金触媒200ppmを均一に混合した。
[Comparative sealing resin preparation example 2]
Comparative resin 2 and comparative resin 5 were mixed uniformly so that the mass ratio was 75:25 and platinum catalyst was 200 ppm.

[比較封止樹脂調製例3]
比較樹脂1と比較樹脂5を、質量比75:25となるように、また、白金触媒200ppmを均一に混合した。
[Comparative sealing resin preparation example 3]
Comparative resin 1 and comparative resin 5 were mixed uniformly so that the mass ratio was 75:25 and platinum catalyst was 200 ppm.

[比較封止樹脂調製例4]
比較樹脂3と比較樹脂6を、質量比10:90となるように、また、白金触媒200ppmを均一に混合した。
(水酸基及びクロル分の定量)
封止樹脂調製例1〜6及び比較封止樹脂例1〜4で調製した各組成物において、(C)成分(白金触媒)を加える前の(A)成分と(B)成分の混合組成物について、含有クロル分及び水酸基量の定量を行った。結果を表1に示す。
[Comparative sealing resin preparation example 4]
The comparative resin 3 and the comparative resin 6 were mixed uniformly with 200 ppm of platinum catalyst so that the mass ratio was 10:90.
(Quantification of hydroxyl and chloro contents)
In each composition prepared in sealing resin preparation examples 1 to 6 and comparative sealing resin examples 1 to 4, a mixed composition of the component (A) and the component (B) before adding the component (C) (platinum catalyst) The content of chloro and the amount of hydroxyl groups were determined. The results are shown in Table 1.

Figure 0004636242
[実施例1]
(腐食試験)
封止樹脂調製例1〜6及び比較封止樹脂調製例1〜4で調製した樹脂組成物を3cm×3cm×1mmの大きさに150℃,4時間で硬化させた。この硬化物(試験片)をアルミシャーレ上におき、150℃雰囲気下に24時間放置した。その後、試験片に接していたアルミシャーレの表面状態を観察し、アルミが腐食し、白く変色しているか否かを調べた。結果を表2に示す。
Figure 0004636242
[Example 1]
(Corrosion test)
The resin compositions prepared in Sealing Resin Preparation Examples 1 to 6 and Comparative Sealing Resin Preparation Examples 1 to 4 were cured to a size of 3 cm × 3 cm × 1 mm at 150 ° C. for 4 hours. This cured product (test piece) was placed on an aluminum petri dish and allowed to stand in an atmosphere at 150 ° C. for 24 hours. Thereafter, the surface state of the aluminum petri dish that was in contact with the test piece was observed to examine whether the aluminum was corroded and turned white. The results are shown in Table 2.

Figure 0004636242
Figure 0004636242

[実施例2]
(保存安定性試験)
封止樹脂調製例1〜6及び比較封止樹脂調製例1〜4で調製した各樹脂組成物において、(C)成分(白金触媒)を加える前の(A)成分と(B)成分の混合組成物について、30℃で10日間放置し、変化を観察した。
[Example 2]
(Storage stability test)
In each resin composition prepared in sealing resin preparation examples 1 to 6 and comparative sealing resin preparation examples 1 to 4, mixing of component (A) and component (B) before adding component (C) (platinum catalyst) The composition was left at 30 ° C. for 10 days and the change was observed.

Figure 0004636242
[実施例3]
LEDパッケージによる封止樹脂の評価を行った。
(評価方法)
発光半導体パッケージ
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを搭載した、図1に示すような発光半導体装置を使用した。ここで、1が筐体、2が発光素子、3,4がリード電極、5がダイボンド材、6が金線、7が封止樹脂である。封止樹脂7の硬化条件は150℃,4時間である。
耐湿及び赤外線リフローの試験方法
作製した発光半導体装置10個を、85℃,85%の恒温恒湿室に24時間入れた後、赤外線リフロー装置(260℃)を3回通し、外観の変化を観察した。結果を表4に示す。なお、樹脂のクラックやLEDパッケージからの剥離が確認されたものをNGとしてカウントした。
Figure 0004636242
[Example 3]
Evaluation of the sealing resin by the LED package was performed.
(Evaluation methods)
As the light emitting semiconductor package light emitting element, a light emitting semiconductor device as shown in FIG. 1 having a light emitting layer made of InGaN and mounting an LED chip having a main light emission peak of 470 nm was used. Here, 1 is a housing, 2 is a light emitting element, 3 and 4 are lead electrodes, 5 is a die bond material, 6 is a gold wire, and 7 is a sealing resin. The curing conditions for the sealing resin 7 are 150 ° C. and 4 hours.
Moisture resistance and infrared reflow test method 10 light-emitting semiconductor devices were placed in a constant temperature and humidity chamber at 85 ° C and 85% for 24 hours, and then passed through an infrared reflow device (260 ° C) three times to observe changes in appearance. did. The results are shown in Table 4. In addition, the thing by which the crack of resin and peeling from the LED package were confirmed was counted as NG.

Figure 0004636242
Figure 0004636242

実施例で用いた表面実装型半導体発光装置(発光素子が絶縁性の筐体上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows the surface mount type semiconductor light-emitting device (what the light emitting element was die-bonded on the insulating housing | casing) used in the Example.

符号の説明Explanation of symbols

1 筐体
2 発光素子
3,4 リード電極
5 ダイボンド材
6 金線
7 封止樹脂
DESCRIPTION OF SYMBOLS 1 Case 2 Light emitting element 3, 4 Lead electrode 5 Die bond material 6 Gold wire 7 Sealing resin

Claims (6)

(A)下記平均組成式(1)
(R1SiO3/2a(R23SiO)b(R456SiO1/2c(SiO4/2d (1)
(式中、R1〜R6はそれぞれ同一もしくは異種の一価炭化水素基を示し、その全一価炭化水素基の1〜50モル%はアルケニル基であり、a、b、c及びdは各シロキサン単位のモル比を示す正数であり、a/(a+b+c+d)=0.40〜0.95、b/(a+b+c+d)=0.05〜0.60、c/(a+b+c+d)=0〜0.05、d/(a+b+c+d)=0〜0.10、a+b+c+d=1.0である。)
で示されるオルガノポリシロキサンを(A)成分全体の30〜100質量%、及び
下記一般式(2)
7 8 9 SiO−(R 10 11 SiO) e −(R 12 13 SiO) f −SiR 7 8 9 (2)
(式中、R 7 は非共有結合性二重結合基含有一価炭化水素基を示し、R 8 〜R 13 はそれぞれ同一もしくは異種の一価炭化水素基を示し、このうちR 12 及び/又はR 13 は芳香族一価炭化水素基を示し、0≦e+f≦500の整数であり、0≦e≦500、0≦f≦250の整数である。)
で示されるオルガノシロキサンを(A)成分全体の0〜70質量%
とからなる一分子中に2個以上のアルケニル基を有する有機ケイ素化合物、
(B)下記式
Figure 0004636242
から選ばれる1種又は2種以上の一分子中に珪素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンを(A)成分のアルケニル基一個当り珪素原子結合水素原子を0.75〜2.0個与えるに十分な量
(C)触媒量の白金系触媒
を必須成分とし、(A)成分及び(B)成分のオルガノポリシロキサンがシラノールを含有しないことを特徴とする光半導体素子封止
(A) The following average composition formula (1)
(R 1 SiO 3/2 ) a (R 2 R 3 SiO) b (R 4 R 5 R 6 SiO 1/2 ) c (SiO 4/2 ) d (1)
(Wherein R 1 to R 6 each represent the same or different monovalent hydrocarbon group, 1 to 50 mol% of the total monovalent hydrocarbon group is an alkenyl group, and a, b, c and d are It is a positive number indicating the molar ratio of each siloxane unit, a / (a + b + c + d) = 0.40-0.95, b / (a + b + c + d) = 0.05-0.60, c / (a + b + c + d) = 0-0 .05, d / (a + b + c + d) = 0 to 0.10, a + b + c + d = 1.0.)
(A) 30 to 100% by mass of the total component (A) , and
The following general formula (2)
R 7 R 8 R 9 SiO- ( R 10 R 11 SiO) e - (R 12 R 13 SiO) f -SiR 7 R 8 R 9 (2)
(Wherein R 7 represents a non-covalent double bond group-containing monovalent hydrocarbon group, R 8 to R 13 each represent the same or different monovalent hydrocarbon group, of which R 12 and / or R 13 represents an aromatic monovalent hydrocarbon group, an integer of 0 ≦ e + f ≦ 500, and an integer of 0 ≦ e ≦ 500 and 0 ≦ f ≦ 250.
0 to 70% by mass of the whole component (A)
Organosilicon compound having two or more alkenyl groups in one molecule consisting of,
(B) The following formula
Figure 0004636242
An organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one or two or more molecules selected from 0.75 to 0.75 silicon atom-bonded hydrogen atoms per alkenyl group of component (A) Enough to give ~ 2.0 ,
(C) An optical semiconductor element encapsulating material comprising a catalytic amount of a platinum-based catalyst as an essential component, and the organopolysiloxanes of the component ( A) and the component (B) do not contain silanol.
(C)成分を除く組成物中の全クロル量が30ppm以下である請求項1記載の光半導体素子封止(C) The optical-semiconductor element sealing material of Claim 1 whose total chloro content in the composition except a component is 30 ppm or less. (A)成分の式(1)で示されるオルガノポリシロキサンにおいて、R1〜R6の少なくとも一つは同一もしくは異種の芳香族一価炭化水素基である請求項1又は2記載の光半導体素子封止 3. The optical semiconductor device according to claim 1, wherein in the organopolysiloxane represented by the formula (1) of the component (A), at least one of R 1 to R 6 is the same or different aromatic monovalent hydrocarbon group. sealing material. (A)成分の式(1)で示されるオルガノポリシロキサンが、下記式(3)〜(6)で示されるオルガノキシシランをそれぞれ0.40〜0.95、0.05〜0.60、0〜0.05、0〜0.10のモル比で使用するか、又は下記式(7)〜(10)で示されるクロロシランをそれぞれ0.40〜0.95、0.05〜0.60、0〜0.05、0〜0.10のモル比で使用して、これらシランを酸加水分解し、続いてアルカリ縮合することにより得られるものである請求項1〜のいずれか1項記載の光半導体素子封止
1Si(OR143 (3)
23Si(OR142 (4)
456SiOR14 (5)
Si(OR144 (6)
1SiCl3 (7)
23SiCl2 (8)
456SiCl (9)
SiCl4 (10)
(式中、R1〜R6は上記の通り。R14は一価炭化水素基を示す。)
The organopolysiloxane represented by the formula (1) of the component (A) is an organoxysilane represented by the following formulas (3) to (6): 0.40 to 0.95, 0.05 to 0.60, It is used in a molar ratio of 0 to 0.05, 0 to 0.10, or chlorosilanes represented by the following formulas (7) to (10) are respectively 0.40 to 0.95 and 0.05 to 0.60. using a molar ratio of 0~0.05,0~0.10, these silanes acid hydrolysis, followed by any one of claims 1 to 3, those obtained by alkaline condensation The optical semiconductor element sealing material of description.
R 1 Si (OR 14 ) 3 (3)
R 2 R 3 Si (OR 14 ) 2 (4)
R 4 R 5 R 6 SiOR 14 (5)
Si (OR 14 ) 4 (6)
R 1 SiCl 3 (7)
R 2 R 3 SiCl 2 (8)
R 4 R 5 R 6 SiCl (9)
SiCl 4 (10)
(In the formula, R 1 to R 6 are as described above. R 14 represents a monovalent hydrocarbon group.)
請求項1〜のいずれか1項記載の光半導体素子封止の硬化物により封止された光半導体素子。 The optical semiconductor element sealed with the hardened | cured material of the optical semiconductor element sealing material of any one of Claims 1-4 . 請求項1〜のいずれか1項記載の光半導体素子封止の硬化物により封止された発光ダイオード。 The light emitting diode sealed with the hardened | cured material of the optical-semiconductor element sealing material of any one of Claims 1-4 .
JP2005123139A 2005-04-21 2005-04-21 Optical semiconductor element sealing material and optical semiconductor element Active JP4636242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123139A JP4636242B2 (en) 2005-04-21 2005-04-21 Optical semiconductor element sealing material and optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123139A JP4636242B2 (en) 2005-04-21 2005-04-21 Optical semiconductor element sealing material and optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2006299099A JP2006299099A (en) 2006-11-02
JP4636242B2 true JP4636242B2 (en) 2011-02-23

Family

ID=37467781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123139A Active JP4636242B2 (en) 2005-04-21 2005-04-21 Optical semiconductor element sealing material and optical semiconductor element

Country Status (1)

Country Link
JP (1) JP4636242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809480B2 (en) 2012-01-16 2014-08-19 Shin-Etsu Chemical Co., Ltd. Silicone resin composition, luminous substance-containing wavelength-converting film, and cured product thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138158B2 (en) * 2005-05-23 2013-02-06 信越化学工業株式会社 Silicone lens molding material for LED light-emitting devices
JP5247979B2 (en) * 2005-06-01 2013-07-24 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Polyorganosiloxane composition giving a transparent cured product
JP5148088B2 (en) * 2006-08-25 2013-02-20 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP5259947B2 (en) * 2006-11-24 2013-08-07 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Silicone composition for semiconductor encapsulation and semiconductor device
KR20090092324A (en) * 2006-12-20 2009-08-31 다우 코닝 코포레이션 Composite article including a cation-sensitive layer
JP2008227119A (en) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd Integral structure of light-emitting diode chip and lens, and its manufacturing method
JP5320910B2 (en) * 2007-09-04 2013-10-23 豊田合成株式会社 Light emitting device
JP2010013503A (en) * 2008-07-01 2010-01-21 Showa Highpolymer Co Ltd Curable resin composition and opto device
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
WO2011049078A1 (en) * 2009-10-22 2011-04-28 日産化学工業株式会社 Film-forming composition containing silicon compound
KR101870304B1 (en) 2011-02-18 2018-06-22 제이엔씨 주식회사 Curable resin composition and colour conversion material using same
CN103547632A (en) * 2011-07-14 2014-01-29 积水化学工业株式会社 Sealing agent for optical semiconductor devices, and optical semiconductor device
JP6057503B2 (en) * 2011-09-21 2017-01-11 東レ・ダウコーニング株式会社 Curable silicone composition for encapsulating optical semiconductor element, method for producing resin-encapsulated optical semiconductor element, and resin-encapsulated optical semiconductor element
TWI473841B (en) 2011-11-25 2015-02-21 Lg Chemical Ltd Curable composition
JP5575820B2 (en) 2012-01-31 2014-08-20 信越化学工業株式会社 Curable organopolysiloxane composition, optical element sealing material, and optical element
KR102071013B1 (en) 2012-05-14 2020-01-29 모멘티브 퍼포먼스 머티리얼즈 인크. High refractive index material
US9453105B2 (en) 2012-09-18 2016-09-27 Jnc Corporation Epoxy and alkoxysilyl group-containing silsesquioxane and composition thereof
KR101466149B1 (en) 2012-12-26 2014-11-27 제일모직주식회사 Curable polysiloxane composition for optical device and encapsulant and optical device
CN104884535B (en) 2012-12-26 2017-05-10 第一毛织株式会社 Curable polysiloxane composition for optical instrument, packaging material, and optical instrument
JP6015864B2 (en) * 2013-08-09 2016-10-26 横浜ゴム株式会社 Curable resin composition
KR101739824B1 (en) * 2014-06-30 2017-05-25 제일모직 주식회사 Thermosetting polyorganosiloxane composition, encapsulant, and optical instrument
JP2016169358A (en) * 2014-07-24 2016-09-23 セントラル硝子株式会社 Curable silicone resin composition and cured product of the same, and optical semiconductor device using them
WO2016013421A1 (en) * 2014-07-24 2016-01-28 セントラル硝子株式会社 Curable silicone resin composition, cured object obtained therefrom, and optical semiconductor device formed using same
JP2021021038A (en) 2019-07-30 2021-02-18 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable silicone composition, optical semiconductor device and method of manufacturing the optical semiconductor device
CN112300576B (en) 2019-07-30 2024-05-14 杜邦东丽特殊材料株式会社 Hot melt curable silicone composition, sealant, film, and optical semiconductor element
JP2022039440A (en) 2020-08-28 2022-03-10 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable silicone composition, sealant, and optical semiconductor device
JP2022084179A (en) 2020-11-26 2022-06-07 デュポン・東レ・スペシャルティ・マテリアル株式会社 Hotmelt silicone composition, encapsulant, hotmelt adhesive and optical semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247212A (en) * 1991-09-30 1993-09-24 Toray Dow Corning Silicone Co Ltd Production of silicone resin
JPH10513493A (en) * 1995-02-03 1998-12-22 オーエスアイ スペシャルティーズ,インコーポレイテッド Polysiloxane composition
JP2003261576A (en) * 2002-03-08 2003-09-19 Shin Etsu Chem Co Ltd Method for purifying organosilicon compound and curable silicone composition
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP2004292807A (en) * 2003-03-12 2004-10-21 Shin Etsu Chem Co Ltd Covering protective material for light-emitting semiconductor and light-emitting semiconductor device
JP2004359756A (en) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Sealant composition for led
JP2004361692A (en) * 2003-04-07 2004-12-24 Dow Corning Asia Ltd Curable organopolysiloxane resin composition for optical transmission components, optical transmission components consisting of organopolysiloxane resin cured product, and method for fabricating optical transmission components
JP2005015666A (en) * 2003-06-27 2005-01-20 Shin Etsu Chem Co Ltd Curable silicone resin composition
JP2005042099A (en) * 2003-07-09 2005-02-17 Shin Etsu Chem Co Ltd Silicone rubber composition, coating protective material for light-emitting semiconductor, and light-emitting semiconductor device
JP2005248122A (en) * 2004-03-08 2005-09-15 Dow Corning Corp Laser light-resistant optical material and laser light-resistant optical element
JP2006052331A (en) * 2004-08-12 2006-02-23 Shin Etsu Chem Co Ltd Self-adhesive addition reaction-curable silicone composition
JP2006307180A (en) * 2005-04-01 2006-11-09 Shin Etsu Chem Co Ltd Silsesquioxane-based compound mixture, method for producing the same mixture and resist composition and patterning method each using the same mixture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247212A (en) * 1991-09-30 1993-09-24 Toray Dow Corning Silicone Co Ltd Production of silicone resin
JPH10513493A (en) * 1995-02-03 1998-12-22 オーエスアイ スペシャルティーズ,インコーポレイテッド Polysiloxane composition
JP2003261576A (en) * 2002-03-08 2003-09-19 Shin Etsu Chem Co Ltd Method for purifying organosilicon compound and curable silicone composition
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP2004292807A (en) * 2003-03-12 2004-10-21 Shin Etsu Chem Co Ltd Covering protective material for light-emitting semiconductor and light-emitting semiconductor device
JP2004361692A (en) * 2003-04-07 2004-12-24 Dow Corning Asia Ltd Curable organopolysiloxane resin composition for optical transmission components, optical transmission components consisting of organopolysiloxane resin cured product, and method for fabricating optical transmission components
JP2004359756A (en) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Sealant composition for led
JP2005015666A (en) * 2003-06-27 2005-01-20 Shin Etsu Chem Co Ltd Curable silicone resin composition
JP2005042099A (en) * 2003-07-09 2005-02-17 Shin Etsu Chem Co Ltd Silicone rubber composition, coating protective material for light-emitting semiconductor, and light-emitting semiconductor device
JP2005248122A (en) * 2004-03-08 2005-09-15 Dow Corning Corp Laser light-resistant optical material and laser light-resistant optical element
JP2006052331A (en) * 2004-08-12 2006-02-23 Shin Etsu Chem Co Ltd Self-adhesive addition reaction-curable silicone composition
JP2006307180A (en) * 2005-04-01 2006-11-09 Shin Etsu Chem Co Ltd Silsesquioxane-based compound mixture, method for producing the same mixture and resist composition and patterning method each using the same mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809480B2 (en) 2012-01-16 2014-08-19 Shin-Etsu Chemical Co., Ltd. Silicone resin composition, luminous substance-containing wavelength-converting film, and cured product thereof

Also Published As

Publication number Publication date
JP2006299099A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
JP4933179B2 (en) Curable silicone rubber composition and cured product thereof
JP4803339B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
KR100848861B1 (en) Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
US8017246B2 (en) Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP4300418B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
KR101265886B1 (en) Addition-curable silicone resin composition for light emitting diode
JP5414337B2 (en) Method for sealing optical semiconductor device
TWI666267B (en) Silicone gel composition
JP4614075B2 (en) Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP5524424B1 (en) Silicone composition for optical semiconductor element sealing and optical semiconductor device
JP6565818B2 (en) Hydrosilyl group-containing organopolysiloxane, method for producing the same, and addition-curable silicone composition
US7592399B2 (en) Epoxy/silicone hybrid resin composition and optical semiconductor device
JP6245136B2 (en) Silicone resin composition for optical semiconductor element sealing and optical semiconductor device
JP6313722B2 (en) Addition-curing silicone composition and semiconductor device
WO2019026754A1 (en) Curable silicone composition and optical semiconductor device
JP2007191697A (en) Epoxy/silicone hybrid resin composition and photosemiconductor device
TW202115188A (en) Addition-curable polysiloxane composition and optical element which has sulfidation resistance, and provides a cured product with high tensile strength and excellent crack resistance
WO2014002919A1 (en) Coating agent, electrical-electronic equipment, and method for protecting metal parts of electrical-electronic equipment
JP4479883B2 (en) Light emitting semiconductor device
JP6393659B2 (en) Addition-curing silicone composition and semiconductor device
WO2019026755A1 (en) Curable silicone composition and optical semiconductor device
JP2020070324A (en) Addition-curable silicone resin composition, cured product of the same, and optical semiconductor device
JP6307470B2 (en) Addition-curing silicone composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4636242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150