Nothing Special   »   [go: up one dir, main page]

JP4627874B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP4627874B2
JP4627874B2 JP2000390684A JP2000390684A JP4627874B2 JP 4627874 B2 JP4627874 B2 JP 4627874B2 JP 2000390684 A JP2000390684 A JP 2000390684A JP 2000390684 A JP2000390684 A JP 2000390684A JP 4627874 B2 JP4627874 B2 JP 4627874B2
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
exterior material
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000390684A
Other languages
Japanese (ja)
Other versions
JP2002190432A (en
Inventor
誠 東別府
健児 島津
真也 松野
和雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000390684A priority Critical patent/JP4627874B2/en
Publication of JP2002190432A publication Critical patent/JP2002190432A/en
Application granted granted Critical
Publication of JP4627874B2 publication Critical patent/JP4627874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor that can inhibit increase in the internal resistance, without deteriorating the contact state between a polarization electrode and a collector, even if gas is generated by the repetition of chargings and discharging, can inhibit expansion in an outer covering material, and can prevent the decrease of positional accuracy in a laminate at the inside and at the same time, rupture due to the expansion of the outer covering material. SOLUTION: In this electric double-layer capacitor 1, a cell laminate 5 of a cell is accommodated in the outer covering material 7 filled with an electrolyte. In the cell laminate 5 of the cell, a separator 3 is arranged between a pair of polarization electrodes 2a and 2b, and at the same time, collectors 4a and 4b are laminated to each of other surfaces of the polarization electrodes 2a and 2b. Also, in the electric double-layer capacitor 1, a pressure resistant member 12 is provided at each portion between the upper and lower surfaces of the cell laminate 5 and armor material 7. The pressure resistance member 12 has a Young's modulus which is larger than the armor material 7.

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサに関し、特に高電圧用電源として好適な電気二重層コンデンサに関するものである。
【0002】
【従来技術】
電気二重層コンデンサは、電極と電解液との界面においてイオンの分極によりできる電気二重層を利用したコンデンサであり、コンデンサと電池の両方の機能を兼ね備えたものであり、従来のコンデンサと比較して大容量の静電容量を充電できるとともに、急速充放電が可能であることから、小型のメモリーバックアップ電源や自動車の駆動源等、大容量モータなどの補助電源として注目されている。
【0003】
かかる電気二重層コンデンサの一般的な例としては、2枚の分極性電極と、該電極間設けられたセパレータと、前記分極性電極の他の表面それぞれに設けられた集電体の積層体を一単位セルとして、該セルが複数層積層されて外装材内に収納された構成からなり、外装材内に充填され、かつ一対の分極性電極とその間に配設されたセパレータ内に含浸された電解液中のイオンの移動により分極性電極内に静電容量を発生させることができるものである。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる電気二重層コンデンサは、充放電の繰り返しにより分極性電極の劣化や電解液中の不純物の分解等によって分極性電極表面からガスが発生し、該ガスによって分極性電極と集電体間の接触状態が悪くなって電気二重層コンデンサ全体の内部抵抗が上昇してしまったり、外装材の内圧が上昇して外装材自体が局部的に膨張し、最終的には外装材が破裂するという問題があった。
【0005】
本発明は、上記課題を解決するためになされたもので、その目的は、電気二重層コンデンサの充放電の繰り返しに伴うガスの発生によっても分極性電極と集電体との間の接触状態を悪化させず内部抵抗の増大を抑制できるとともに、外装材の膨張を抑制でき、外装材の破裂を防止できる電気二重層コンデンサを提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題について検討した結果、分極性電極とセパレータと集電体の積層体の上下面と外装材との間に前記外装材よりもヤング率が高い耐圧部材を設けることによって、電気二重層コンデンサの充放電の繰り返しに伴うガスの発生によっても外装材が局所的に膨らむことがなく、分極性電極とセパレータと集電体との積層体にかかる圧力の部分的なムラをなくし分極性電極と集電体との間の接触状態を悪化させず均一にできる結果、電気二重層コンデンサの内部抵抗の増大を抑制できることを知見した。
【0007】
すなわち、本発明の電気二重層コンデンサは、一対の分極性電極間にセパレータを配し、かつ前記分極性電極の他の表面それぞれに集電体を積層した積層体を電解液を充填した外装材内に収納してなるものであって、前記積層体の上下面と前記外装材との間にそれぞれジグザグ状または波状の断面を有する板状体からなる前記外装材よりもヤング率が高い部材を設けるとともに、前記積層体の側面と前記外装材との間に、前記外装材よりもヤング率が高い他の部材を設けてなることを特徴とするものである。
【0008】
ここで、前記外装材よりもヤング率が高い部材と前記積層体との間に平板配設されていることが望ましい。
【0009】
さらに、前記積層体の側面と前記外装材との間に前記外装材よりもヤング率が高い他の部材を設けてなることが望ましい。
【0010】
【発明の実施の形態】
本発明の電気二重層コンデンサの一例について、その概略断面図である図1を基に説明する。
図1によれば、電気二重層コンデンサ1は、正極および負極をなす一対の分極性電極2a、2b間にセパレータ3を配し、かつ分極性電極2a、2bの他の表面それぞれに正極および負極をなす集電体4a、4bを積層した積層体を1単位のセルとして複数のセルを積層したセル積層体5を積層し、これを外装材7内に収納している。
【0011】
また、図1によれば、集電体4の一端に端子部が形成され、正極をなす集電体4aの端子部および負極をなす集電体4bの端子部同士を収束してそれぞれ正極および負極をなす接続端子8aおよび接続端子8bが形成され、該接続端子8a、8bは外装材7の壁面を貫通して外部に突出している。なお、図2の要部拡大図に示すように、集電体4の端子部9(9a、9b)は1層おきにセル積層体5の側面に配設された絶縁層10を貫通して、該絶縁層10に沿って折り曲げられ、さらに端子部9a(9aは図示せず。)同士、端子部9b同士が収束され、溶接等により一体化されるとともに、外装材7側に折り曲げられることによって接続端子8を形成する。
【0012】
本発明によれば、セル積層体5の上下面と外装材7との間にそれぞれ外装材7よりもヤング率が高い耐圧部材12を設けてなることが大きな特徴であり、これによって、電気二重層コンデンサ1の充放電の繰り返しに伴うガスの発生によっても外装材7が局所的に膨らむことがなく、セル積層体5にかかる圧力の局所的なムラをなくして分極性電極2と集電体4との間の接触状態を悪化させない結果、電気二重層コンデンサ1の内部抵抗の増大を抑制できるとともに、外装材7の局部的な膨張に起因する破裂を防止できる。
【0013】
すなわち、耐圧部材12を配設しないか、または耐圧部材12のヤング率が外装材7のそれ以下であると、充放電の繰り返しにより発生するガスにより外装材7の中央部が突出するように凸状に膨らむために、セル積層体5にかかるかしめ圧にムラが生じ、分極性電極2と集電体4との接触状態が変動してしまうとともに、外装材7の膨張により最終的に破裂する。
【0014】
また、図1によれば、耐圧部材12は、ジグザグ状または波状の断面を有する板状体であり、かつ耐圧部材12とセル積層体5との間(図1では耐圧部材12)の両面には耐圧部材12以上のヤング率を有する平板13が配設されており、これによって、ガスが発生した場合でもセル積層体5の場所によらず均一で安定な圧力を付与することができ、分極性電極2と集電体4間の接触状態を変動することがないために、両者間の接触状態に起因する内部抵抗の変動を防止できる。なお、少なくとも耐圧部材12とセル積層体5との間に配設される平板13は、絶縁体からなる。
【0015】
さらに、図1によれば、セル積層体5の両端部と外装材7との間に加えて、セル積層体5の側面と外装材7との間にも耐圧部材12が配設され、これによって、外装材7のセル積層体5の側面に位置する面の局部的な膨張を防止して外装材7の破裂を防止することができる。
【0016】
なお、外装材7の角部はネジ止めや溶接等により強固に接着され、外装材7の内圧に耐える構造からなることが望ましい。
【0017】
また、外装材7としては、シリコンゴム、ウレタンゴム、ブタジエンゴム等のゴム、またはアルミニウム、銀、錫、ジュラルミン等の金属の群から選ばれる少なくとも1種からなるが、特に安価で軽量な金属アルミニウムからなることが望ましい。さらに、外装材7の形状は、放熱性、衝撃緩衝性および電気二重層コンデンサ1の小型化の点で、厚み0.5〜3mmであることが望ましい。
【0018】
また、耐圧部材12は、外装材7よりもヤング率が高い材質からなり、例えば、ステンレス、銅、鉄、タングステン等の金属、アルミナ、ムライト、ジルコニア、窒化ケイ素、炭化ケイ素等のセラミックスからなることが望ましく、特に安価で剛性の高いステンレスからなることが望ましい。なお、外装材7はネジ部材14によってかしめられることが望ましい。
【0019】
さらに、セル積層体5にかかるかしめ圧の変動を防止するために、耐圧部材12の形状は、図3に示すように、断面が隣接する頂部o、p間の距離(d)が5〜30mm、特に10〜20mm、対向する頂部p、q間の高さ(t)が5〜50mm、特に10〜20mmのジグザグ状または波状であることが望ましく、中でも応力集中を防止する点で角部が存在しない波状であることが望ましい。
【0020】
また、セル積層体5と耐圧部材12との間に介在させる平板13は、ステンレス、銅、鉄、タングステン、アルミナ、ムライト、ジルコニア、窒化ケイ素、炭化ケイ素の群から選ばれる少なくとも1種からなることが望ましい。
【0021】
一方、分極性電極2は、例えば、高い比表面積を有する活性炭を含有し、前記活性炭と結合するための接合剤を配合したものが好適に使用でき、静電容量の向上、内部抵抗の低減の点で炭化処理を施したものであってもよい。また、電気二重層コンデンサ1の静電容量を高め、かつ構造体として必要な強度を維持するためには、電解液を除いた分極性電極2の比表面積が500〜3000m2/g、特に1000〜3000m2/gであることが望ましい。
【0022】
なお、結合剤として添加される炭素成分は、活性炭粒子間に存在するが、前記炭化処理を施す場合には、前記活性炭質構造体中にしめる割合が5〜50重量%であることが望ましく、これによって前記活性炭粒子間の焼結性および結合性を高めることができる。
【0023】
さらに、分極性電極2は円板、矩形状(図1では矩形状)の平板状等であることが好ましく、電気二重層コンデンサ1の製造時の取り扱いや使用時の振動、衝撃等に耐えうる機械的強度という信頼性の点でJISR1601に準じた室温における3点曲げ強度が30kPa以上、特に60kPa以上であることが好ましい。また、分極性電極2の厚みは、内部抵抗の低減の観点から1.5mm以下、特に1.0mm以下、さらに0.6mm以下であることが好ましい。
【0024】
また、セパレータ3は、パルプやポリエチレン、ポリプロピレン、ポリビニリデンフロライド(PVdF)等の有機フィルムまたはガラス繊維不織布及びセラミックスなどを用いることができ、分極性電極2間を絶縁するために形成されるものであるが、分極性電極2内に含有される電解液中のイオンを透過させることができる多孔質体により形成される。なお、セパレータ3の厚みは、ショート等を防止し、内部抵抗を低減するために0.02〜0.15mmの厚みが好ましい。
【0025】
さらに、分極性電極2およびセパレータ3内部には、硫酸や硝酸等の水溶液や、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γ−BL)、N,N−ジメチルホルムアミド、スルホラン、3−メチルスルホラン等の非水系溶媒とテトラエチルアンモニウムテトラフルオロボレート等の4級アンモニウム塩、4級スルホニウム塩、4級ホスホニウム塩等の電解質を組み合わせた非水系電解液等の電解液が含浸されるが、本発明において分解電圧の高い非水系電解液を用いることが望ましい。なお、前記電解質の前記非水系溶媒に対する溶解量は、安定して高い静電容量を得るために0.5〜2mol/lであることが望ましい。
【0026】
また、集電体4は、導電性を有するアルミニウム、チタン、タンタル、白金、金等の金属箔、ステンレス鋼などにより形成され、分極性電極2、2間で電荷をやり取りするが、特に放熱性および分解電圧の高い非水系電解液に対する耐食性の点でアルミニウムを主体とする金属箔からなることが望ましい。また、集電体4の厚みは内部抵抗を低減するためには薄いものが好ましいが組立時の取り扱いなどによる破損を考慮すると0.02〜0.10mm程度が望ましい。
【0027】
また、外装材7の外周面には電解液を分極性電極2およびセパレータ3内に注入、含浸せしめるための電解液注入口(図示せず)を形成し、例えば、電解液注入口からセル積層体5内に付着した水分等の不純物を除去した後、非水系電解液を注入して封止することにより、電気二重層コンデンサ1内の水分量を低減して電解液の劣化を防止し、電気二重層コンデンサ1の信頼性を高めることができる。
【0028】
【実施例】
(実施例1)
BET値が2000m2/gの活性炭粉末試料100重量部に対して、ポリビニルブチラール(PVB)を50重量部混合して高速混合攪拌機にて攪拌し、得られた粉体を40メッシュでメッシュパスを行った後、ロール成形によってシート状成形体を作製し、所定の形状にカットして、真空中、900℃で熱処理を行い、100mm×100mm、厚み0.3mm矩形形状の活性炭質構造体を作製した。
【0029】
一方、100mm×100mm、厚さ50μmのアルミニウム箔からなり、その一端に幅30mmの端子部を形成した集電体を準備した。また、105mm×105mm、厚さ50μmのセルロースパルプからなるセパレータを準備した。
【0030】
そして、上記活性炭質構造体32枚、集電体32枚およびセパレータ16枚を用いて図1の順に積層した積層体を形成し、該積層体の側面の前記集電体の端子部形成面にポリエチレン系のフィルムからなる絶縁体を配設するとともに、該絶縁体から前記集電体の接続端子を1層おきに貫通させて絶縁体を固定した。また、1つおきの集電体の端子部同士を束ねて溶接することにより接続端子を形成した。
【0031】
他方、ヤング率350GPaのステンレス(SUS304製)からなり、110mm×110mm、厚み5mmで、隣接する頂部間の距離(d)が10mm、対向する頂部間の高さ(t)が3mmの波形形状の耐圧部材を準備した。また、ステンレスからなり、110mm×110mm、厚み0.5mmの平板状の板状体を2枚準備した。さらに、ヤング率70GPaの金属アルミニウムからなり、内壁形状が120mm×120mm×120mm、肉厚が3mmの容器と蓋体からなる外装材を準備した。
【0032】
次に、前記外装材容器の内面に上記積層体を収納するとともに、前記外装材容器の内壁面と前記積層体との間に前記板状体および耐圧部材を挿入した。そして、前記板状体および耐圧部材を介して前記外装材の蓋体を前記外装材容器にネジ止めし、外装材容器に形成した電解液注入口にて外装材内部を真空引きした後、外装材内に1mol/lのテトラエチルアンモニウムテトラフルオロボレート(Et4NBF4)の炭酸プロピレン(PC)溶液を電解液として注入した。また、電解液注入後、前記外装材容器のネジ部材によって前記積層体をかしめ圧400kPaとなるようかしめた。
【0033】
得られた電気二重層コンデンサについて、1kHzにおけるインピーダンスを内部抵抗として測定したところ1.5mΩであった。70℃、3.0V、電流5Aで1000時間充放電を繰り返し行った前後の内部抵抗は1.8mΩであった。また、さらに3000時間充放電を繰り返しても外装材は破裂しなかった。
【0034】
(実施例2)
実施例1の電気二重層コンデンサに対して、積層体の側面に耐圧部材と板状体を配設しない以外は実施例1と同様にして電気二重層コンデンサを作製し、同様に評価した結果、初期の内部抵抗1.5mΩ、1000時間充放電後の内部抵抗15mΩであり、500時間充放電後に外装材の破裂により電解液の漏洩が見られた。
【0035】
(比較例1)
実施例1の電気二重層コンデンサに対して、耐圧部材と板状体を全く形成しない以外は実施例1と同様に電気二重層コンデンサを作製し、同様に評価した結果、初期の内部抵抗1.5mΩ、1000時間充放電後の内部抵抗15mΩであり、800時間充放電後に外装材の破裂により電解液の漏洩が見られた。
【0036】
(比較例2)
実施例1の電気二重層コンデンサに対して、耐圧部材と板状体を外装材と同じ材質に代える以外は実施例1と同様に電気二重層コンデンサを作製し、同様に評価した結果、初期の内部抵抗1.5mΩ、1000時間充放電後の内部抵抗18mΩであり、600時間充放電後に外装材の破裂により電解液の漏洩が見られた。
【0037】
【発明の効果】
以上詳述した通り、本発明の電気二重層コンデンサでは、分極性電極とセパレータと集電体の積層体の上下面と前記外装材との間に前記外装材よりもヤング率が高い耐圧部材を設けることによって、電気二重層コンデンサの充放電の繰り返しに伴うガスの発生によっても外装材が局所的に膨らむことがなく、分極性電極とセパレータと集電体との積層体にかかる圧力の部分的なムラをなくし分極性電極と集電体との間の接触状態を悪化させない結果、電気二重層コンデンサの内部抵抗の増大を抑制でき、内部の積層体の位置精度を低下させることなく、かつ外装材の膨張による破裂を防止できる。
【図面の簡単な説明】
【図1】本発明の電気二重層コンデンサの一例を示す概略断面図である。
【図2】図1の電気二重層コンデンサの集電体の端子部の構造を説明するための要部拡大図である。
【図3】図1の電気二重層コンデンサの耐圧部材の形状を説明するための図である。
【符号の説明】
1 電気二重層コンデンサ
2 分極性電極
3 セパレータ
4 集電体
5 セル積層体
7 外装材
8 接続端子
9 端子部
10 絶縁層
12 耐圧部材
13 平板
14 ネジ部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor suitable as a high voltage power source.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer formed by the polarization of ions at the interface between the electrode and the electrolyte, and combines the functions of both a capacitor and a battery. Since it can charge a large capacitance and can be rapidly charged and discharged, it has been attracting attention as an auxiliary power source for large-capacity motors such as small memory backup power sources and automobile drive sources.
[0003]
As a general example of such an electric double layer capacitor, a laminate of two polarizable electrodes, a separator provided between the electrodes, and a current collector provided on each of the other surfaces of the polarizable electrode is provided. As a single unit cell, a plurality of layers of the cells are stacked and accommodated in an exterior material, filled in the exterior material, and impregnated in a pair of polarizable electrodes and a separator disposed therebetween. Capacitance can be generated in the polarizable electrode by the movement of ions in the electrolyte.
[0004]
[Problems to be solved by the invention]
However, such an electric double layer capacitor generates gas from the surface of the polarizable electrode due to deterioration of the polarizable electrode or decomposition of impurities in the electrolyte due to repeated charge and discharge, and the gas causes the gas between the polarizable electrode and the current collector. As a result, the internal resistance of the entire electric double layer capacitor increases, the internal pressure of the exterior material rises, the exterior material itself expands locally, and eventually the exterior material bursts. There was a problem.
[0005]
The present invention has been made to solve the above-mentioned problems, and its purpose is to change the contact state between the polarizable electrode and the current collector even by the generation of gas accompanying repeated charging and discharging of the electric double layer capacitor. An object of the present invention is to provide an electric double layer capacitor capable of suppressing an increase in internal resistance without deteriorating, suppressing expansion of the exterior material, and preventing the exterior material from bursting.
[0006]
[Means for Solving the Problems]
As a result of examining the above problems, the present inventors have provided a pressure-resistant member having a higher Young's modulus than the exterior material between the upper and lower surfaces of the laminate of the polarizable electrode, the separator, and the current collector, and the exterior material. The exterior material does not swell locally due to the generation of gas due to repeated charging and discharging of the electric double layer capacitor, and the partial unevenness of the pressure applied to the laminate of the polarizable electrode, the separator and the current collector is reduced. As a result, the contact state between the polarizable electrode and the current collector can be made uniform without deteriorating, and as a result, an increase in the internal resistance of the electric double layer capacitor can be suppressed.
[0007]
That is, covered electric double layer capacitor of the present invention, arranged separator between a pair of polarizable electrodes, and the respective other surface in the laminated body obtained by laminating a current collector of the polarizable electrode, filled with electrolyte solution A member that is housed in a material and has a higher Young's modulus than the exterior material comprising a plate-like body having a zigzag or wavy cross section between the upper and lower surfaces of the laminate and the exterior material. the provided Rutotomoni, between the side surface of the laminated body and the exterior material, and is characterized in that formed by providing other members Young's modulus is higher than the outer member.
[0008]
Here, it is desirable that the flat plate is disposed between the Young's modulus than before Kigaiso material is higher member and the laminate.
[0009]
Furthermore, it is desirable to provide another member having a Young's modulus higher than that of the exterior material between the side surface of the laminate and the exterior material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An example of the electric double layer capacitor of the present invention will be described with reference to FIG.
According to FIG. 1, the electric double layer capacitor 1 includes a separator 3 disposed between a pair of polarizable electrodes 2a and 2b forming a positive electrode and a negative electrode, and a positive electrode and a negative electrode on the other surfaces of the polarizable electrodes 2a and 2b, respectively. A cell stack 5 in which a plurality of cells are stacked is stacked using the stack of the current collectors 4 a and 4 b forming a single unit as a unit cell, and this is housed in an exterior material 7.
[0011]
Further, according to FIG. 1, a terminal part is formed at one end of the current collector 4, and the terminal part of the current collector 4a forming the positive electrode and the terminal part of the current collector 4b forming the negative electrode are converged to converge the positive electrode and the positive electrode, respectively. A connection terminal 8a and a connection terminal 8b that form a negative electrode are formed, and the connection terminals 8a and 8b penetrate the wall surface of the exterior member 7 and project outside. 2, the terminal portions 9 (9a, 9b) of the current collector 4 penetrate through the insulating layer 10 disposed on the side surface of the cell stack 5 every other layer. The terminals 9a (9a are not shown) and the terminals 9b are converged and integrated by welding or the like, and are bent toward the exterior material 7 side. Thus, the connection terminal 8 is formed.
[0012]
According to the present invention, a major feature is that the pressure-resistant member 12 having a Young's modulus higher than that of the exterior material 7 is provided between the upper and lower surfaces of the cell laminate 5 and the exterior material 7. The outer packaging material 7 does not swell locally due to the generation of gas due to repeated charging and discharging of the multilayer capacitor 1, and local unevenness of the pressure applied to the cell stack 5 is eliminated, so that the polarizable electrode 2 and the current collector are removed. As a result of not deteriorating the contact state with 4, the increase in the internal resistance of the electric double layer capacitor 1 can be suppressed, and the burst due to the local expansion of the exterior material 7 can be prevented.
[0013]
That is, if the pressure member 12 is not provided or if the Young's modulus of the pressure member 12 is equal to or less than that of the exterior material 7, the center portion of the exterior material 7 protrudes due to gas generated by repeated charge and discharge. As a result, the contact pressure between the polarizable electrode 2 and the current collector 4 fluctuates and finally ruptures due to the expansion of the outer packaging material 7. .
[0014]
Further, according to FIG. 1, the pressure-resistant member 12 is a plate-like body having a zigzag-like or wavy cross section, and on both surfaces between the pressure-resistant member 12 and the cell stack 5 (the pressure-resistant member 12 in FIG. 1). Is provided with a flat plate 13 having a Young's modulus equal to or greater than that of the pressure-resistant member 12, so that even when gas is generated, a uniform and stable pressure can be applied regardless of the location of the cell stack 5. Since the contact state between the polar electrode 2 and the current collector 4 does not fluctuate, fluctuations in internal resistance due to the contact state between them can be prevented. Note that at least the flat plate 13 disposed between the pressure-resistant member 12 and the cell stack 5 is made of an insulator.
[0015]
Further, according to FIG. 1, the pressure-resistant member 12 is disposed between the side surface of the cell laminate 5 and the exterior material 7 in addition to the both ends of the cell laminate 5 and the exterior material 7. Thus, local expansion of the surface of the exterior material 7 located on the side surface of the cell stack 5 can be prevented, and the exterior material 7 can be prevented from bursting.
[0016]
In addition, it is desirable that the corner portion of the exterior material 7 is firmly bonded by screwing, welding, or the like and has a structure that can withstand the internal pressure of the exterior material 7.
[0017]
The exterior material 7 is made of rubber such as silicon rubber, urethane rubber, butadiene rubber, or at least one selected from the group of metals such as aluminum, silver, tin, and duralumin. It is desirable to consist of. Furthermore, the shape of the exterior material 7 is desirably 0.5 to 3 mm in terms of heat dissipation, shock buffering properties, and miniaturization of the electric double layer capacitor 1.
[0018]
The pressure-resistant member 12 is made of a material having a higher Young's modulus than the exterior material 7, and is made of, for example, a metal such as stainless steel, copper, iron, or tungsten, or a ceramic such as alumina, mullite, zirconia, silicon nitride, or silicon carbide. It is desirable to use stainless steel that is particularly inexpensive and highly rigid. The exterior material 7 is preferably caulked with a screw member 14.
[0019]
Furthermore, in order to prevent fluctuations in the caulking pressure applied to the cell stack 5, the shape of the pressure-resistant member 12 is such that the distance (d) between the apexes o and p adjacent to each other is 5 to 30 mm as shown in FIG. In particular, it is desirable that the height (t) between 10 to 20 mm and the opposing apexes p and q is 5 to 50 mm, particularly 10 to 20 mm, and the corner portion is particularly preferable in terms of preventing stress concentration. It is desirable to have a wavy shape that does not exist.
[0020]
The flat plate 13 interposed between the cell laminate 5 and the pressure-resistant member 12 is made of at least one selected from the group consisting of stainless steel, copper, iron, tungsten, alumina, mullite, zirconia, silicon nitride, and silicon carbide. Is desirable.
[0021]
On the other hand, the polarizable electrode 2 contains, for example, activated carbon having a high specific surface area, and can be suitably used in combination with a bonding agent for bonding with the activated carbon, which improves capacitance and reduces internal resistance. It may be carbonized in terms. Further, in order to increase the capacitance of the electric double layer capacitor 1 and maintain the strength necessary for the structure, the specific surface area of the polarizable electrode 2 excluding the electrolyte is 500 to 3000 m 2 / g, particularly 1000. It is desirable to be ˜3000 m 2 / g.
[0022]
In addition, although the carbon component added as a binder exists between activated carbon particles, when performing the carbonization treatment, it is desirable that the proportion of the carbon component in the activated carbon structure is 5 to 50% by weight. Thus, the sinterability and bondability between the activated carbon particles can be enhanced.
[0023]
Furthermore, the polarizable electrode 2 is preferably a disk, a rectangular plate (rectangular shape in FIG. 1) or the like, and can withstand vibrations, shocks, etc. during the manufacture and use of the electric double layer capacitor 1. From the point of reliability of mechanical strength, the three-point bending strength at room temperature according to JIS R1601 is preferably 30 kPa or more, particularly preferably 60 kPa or more. The thickness of the polarizable electrode 2 is preferably 1.5 mm or less, particularly 1.0 mm or less, and more preferably 0.6 mm or less from the viewpoint of reducing internal resistance.
[0024]
The separator 3 can be made of an organic film such as pulp, polyethylene, polypropylene, polyvinylidene fluoride (PVdF), a glass fiber nonwoven fabric, ceramics, or the like, and is formed to insulate between the polarizable electrodes 2. However, it is formed of a porous body that can transmit ions in the electrolytic solution contained in the polarizable electrode 2. In addition, the thickness of the separator 3 is preferably 0.02 to 0.15 mm in order to prevent a short circuit and reduce internal resistance.
[0025]
Further, in the polarizable electrode 2 and the separator 3, an aqueous solution such as sulfuric acid and nitric acid, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), N, Non-aqueous electrolytes combining non-aqueous solvents such as N-dimethylformamide, sulfolane, 3-methylsulfolane and the like and electrolytes such as quaternary ammonium salts such as tetraethylammonium tetrafluoroborate, quaternary sulfonium salts, and quaternary phosphonium salts Although the electrolyte is impregnated, it is desirable to use a non-aqueous electrolyte having a high decomposition voltage in the present invention. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / l in order to stably obtain a high capacitance.
[0026]
The current collector 4 is formed of conductive aluminum, titanium, tantalum, platinum, gold or other metal foil, stainless steel, etc., and exchanges electric charges between the polarizable electrodes 2 and 2. In addition, it is desirable to use a metal foil mainly composed of aluminum from the viewpoint of corrosion resistance against a non-aqueous electrolyte having a high decomposition voltage. The current collector 4 is preferably thin in order to reduce the internal resistance, but is preferably about 0.02 to 0.10 mm in consideration of damage due to handling during assembly.
[0027]
In addition, an electrolyte solution injection port (not shown) for injecting and impregnating the electrolyte solution into the polarizable electrode 2 and the separator 3 is formed on the outer peripheral surface of the outer packaging material 7. After removing impurities such as water adhering to the body 5, the non-aqueous electrolyte solution is injected and sealed, thereby reducing the amount of water in the electric double layer capacitor 1 and preventing deterioration of the electrolyte solution, The reliability of the electric double layer capacitor 1 can be increased.
[0028]
【Example】
Example 1
50 parts by weight of polyvinyl butyral (PVB) is mixed with 100 parts by weight of activated carbon powder sample having a BET value of 2000 m 2 / g and stirred with a high-speed mixing stirrer. After that, a sheet-like molded body is produced by roll molding, cut into a predetermined shape, and heat treated at 900 ° C. in a vacuum to produce a rectangular activated carbon structure having a size of 100 mm × 100 mm and a thickness of 0.3 mm. did.
[0029]
On the other hand, a current collector made of an aluminum foil having a size of 100 mm × 100 mm and a thickness of 50 μm and having a terminal portion with a width of 30 mm at one end thereof was prepared. In addition, a separator made of cellulose pulp having a size of 105 mm × 105 mm and a thickness of 50 μm was prepared.
[0030]
And the laminated body laminated | stacked in order of FIG. 1 using 32 sheets of the said activated carbonaceous structures, 32 electrical power collectors, and 16 separators is formed, and the terminal part formation surface of the said electrical power collector of the side surface of this laminated body is formed. An insulator made of a polyethylene film was disposed, and the insulator was fixed by penetrating every other connection terminal of the current collector from the insulator. Moreover, the connection terminal was formed by bundling and welding the terminal portions of every other current collector.
[0031]
On the other hand, it is made of stainless steel with a Young's modulus of 350 GPa (made of SUS304), has a corrugated shape of 110 mm × 110 mm, thickness 5 mm, distance (d) between adjacent tops is 10 mm, and height (t) between opposing tops is 3 mm. A pressure-resistant member was prepared. Moreover, two flat plate-shaped bodies made of stainless steel and having a size of 110 mm × 110 mm and a thickness of 0.5 mm were prepared. Furthermore, an exterior material comprising a container and a lid made of metallic aluminum having a Young's modulus of 70 GPa, an inner wall shape of 120 mm × 120 mm × 120 mm, and a wall thickness of 3 mm was prepared.
[0032]
Next, while storing the said laminated body in the inner surface of the said exterior material container, the said plate-shaped body and the pressure | voltage resistant member were inserted between the inner wall face of the said exterior material container, and the said laminated body. Then, the lid of the exterior material is screwed to the exterior material container via the plate-like body and the pressure-resistant member, and the interior of the exterior material is evacuated at the electrolyte inlet formed in the exterior material container, and then the exterior A propylene carbonate (PC) solution of 1 mol / l tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) was injected into the material as an electrolyte. Further, after the injection of the electrolyte, the laminate was caulked with a screw member of the outer packaging container so that the caulking pressure was 400 kPa.
[0033]
With respect to the obtained electric double layer capacitor, the impedance at 1 kHz was measured as an internal resistance, and it was 1.5 mΩ. The internal resistance before and after repeated charging / discharging for 1000 hours at 70 ° C., 3.0 V, and current 5 A was 1.8 mΩ. Further, the outer packaging material did not rupture even when charging and discharging were repeated for 3000 hours.
[0034]
(Example 2)
With respect to the electric double layer capacitor of Example 1, an electric double layer capacitor was produced in the same manner as in Example 1 except that the pressure-resistant member and the plate-like body were not provided on the side surface of the laminate, and the results were evaluated in the same manner. The initial internal resistance was 1.5 mΩ, the internal resistance after 1000 hours of charge / discharge was 15 mΩ, and leakage of the electrolyte was observed due to the rupture of the exterior material after 500 hours of charge / discharge.
[0035]
(Comparative Example 1)
The electric double layer capacitor of Example 1 was manufactured in the same manner as in Example 1 except that a pressure-resistant member and a plate-like member were not formed at all. The internal resistance was 5 mΩ and the internal resistance after charging / discharging for 1000 hours was 15 mΩ, and leakage of the electrolyte solution was observed due to the bursting of the exterior material after 800 hours charging / discharging.
[0036]
(Comparative Example 2)
For the electric double layer capacitor of Example 1, an electric double layer capacitor was prepared in the same manner as in Example 1 except that the pressure-resistant member and the plate-like body were replaced with the same material as the exterior material. The internal resistance was 1.5 mΩ, the internal resistance after charging / discharging for 1000 hours was 18 mΩ, and the leakage of the electrolyte was observed due to the rupture of the exterior material after charging / discharging for 600 hours.
[0037]
【The invention's effect】
As described in detail above, in the electric double layer capacitor of the present invention, a pressure-resistant member having a Young's modulus higher than that of the exterior material is provided between the upper and lower surfaces of the laminate of the polarizable electrode, the separator, and the current collector, and the exterior material. By providing, the exterior material does not swell locally due to the generation of gas due to repeated charging and discharging of the electric double layer capacitor, and the pressure applied to the laminate of the polarizable electrode, the separator and the current collector is partially As a result, the increase in the internal resistance of the electric double layer capacitor can be suppressed, the position accuracy of the internal laminate is not lowered, and the exterior Rupture due to expansion of the material can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an electric double layer capacitor of the present invention.
2 is an enlarged view of a main part for explaining the structure of a terminal portion of a current collector of the electric double layer capacitor of FIG. 1;
FIG. 3 is a view for explaining the shape of a pressure-resistant member of the electric double layer capacitor of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Polarized electrode 3 Separator 4 Current collector 5 Cell laminated body 7 Exterior material 8 Connection terminal 9 Terminal part 10 Insulating layer 12 Pressure-resistant member 13 Flat plate 14 Screw member

Claims (2)

一対の分極性電極間にセパレータを配し、かつ前記分極性電極の他の表面それぞれに集電体を積層した積層体を電解液を充填した外装材内に収納してなる電気二重層コンデンサであって、前記積層体の上下面と前記外装材との間にそれぞれジグザグ状または波状の断面を有する板状体からなる前記外装材よりもヤング率が高い部材を設けるとともに、前記積層体の側面と前記外装材との間に、前記外装材よりもヤング率が高い他の部材を設けてなることを特徴とする電気二重層コンデンサ。Disposing a separator between a pair of polarizable electrodes, and the respective other surface in the laminated body obtained by laminating a current collector of the polarizable electrode, an electric double layer capacitor comprising housed in an outer material filled with electrolyte a is, the respective zigzag or wavy cross-section the outer Young's modulus is higher than the material member consisting of a plate-like body having a between the upper and lower surfaces and the outer member of the laminate is provided Rutotomoni, the laminate An electric double layer capacitor , wherein another member having a Young's modulus higher than that of the exterior material is provided between the side surface of the exterior material and the exterior material . 前記外装材よりもヤング率が高い部材と前記積層体との間に平板配設されていることを特徴とする請求項記載の電気二重層コンデンサ。The electric double layer capacitor according to claim 1, wherein the flat plate is disposed between the Young's modulus than the outer package is higher member and the laminate.
JP2000390684A 2000-12-22 2000-12-22 Electric double layer capacitor Expired - Fee Related JP4627874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390684A JP4627874B2 (en) 2000-12-22 2000-12-22 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390684A JP4627874B2 (en) 2000-12-22 2000-12-22 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002190432A JP2002190432A (en) 2002-07-05
JP4627874B2 true JP4627874B2 (en) 2011-02-09

Family

ID=18857000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390684A Expired - Fee Related JP4627874B2 (en) 2000-12-22 2000-12-22 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4627874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005000155U1 (en) * 2005-01-07 2006-05-18 Minebea Co., Ltd., Kitasaku Fluid dynamic storage system
JP4765604B2 (en) * 2005-12-15 2011-09-07 Tdk株式会社 Electrochemical devices
JP5831044B2 (en) * 2011-08-25 2015-12-09 株式会社Gsユアサ battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203625A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric double-layer capacitor
JPH1069665A (en) * 1996-08-29 1998-03-10 Fujitsu Ltd Optical head device
JPH10106524A (en) * 1996-09-24 1998-04-24 Fuji Elelctrochem Co Ltd Electric parts
JP2000286171A (en) * 1999-03-30 2000-10-13 Tokin Ceramics Corp Electric double-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203625A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric double-layer capacitor
JPH1069665A (en) * 1996-08-29 1998-03-10 Fujitsu Ltd Optical head device
JPH10106524A (en) * 1996-09-24 1998-04-24 Fuji Elelctrochem Co Ltd Electric parts
JP2000286171A (en) * 1999-03-30 2000-10-13 Tokin Ceramics Corp Electric double-layer capacitor

Also Published As

Publication number Publication date
JP2002190432A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US6621687B2 (en) Micro-supercapacitor
US7589955B2 (en) Electric double layer capacitor and aggregation thereof
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
JP2010097891A (en) Stacked lithium-ion secondary battery
JP4923086B2 (en) Electric double layer capacitor package
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
JP2002246269A (en) Electrochemical element
KR100871345B1 (en) Secondary Battery of Improved Safety and Capacity
JP4627874B2 (en) Electric double layer capacitor
US7198654B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP4637325B2 (en) Electric double layer capacitor
JP4514275B2 (en) Electric double layer capacitor
JP2002252145A (en) Electrochemical device
JP2002043180A (en) Electrical double layer capacitor
JP2006196235A (en) Battery-capacitor composite element
JP3794569B2 (en) Storage element and method for manufacturing the same
JP2001217166A (en) Electric double-layer capacitor and determination method for service life of electric double-layer capacitor
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode
JP3784205B2 (en) Electric double layer capacitor
JP2001284172A (en) Electric double-layer capacitor
JP4518625B2 (en) Electric double layer capacitor
JP2001284177A (en) Electric double-layer capacitor
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JP3766562B2 (en) Electric double layer capacitor
KR101205846B1 (en) Lithium ion capacitor having current collector of plate type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees