JP4623690B2 - Star block copolymer - Google Patents
Star block copolymer Download PDFInfo
- Publication number
- JP4623690B2 JP4623690B2 JP2000261074A JP2000261074A JP4623690B2 JP 4623690 B2 JP4623690 B2 JP 4623690B2 JP 2000261074 A JP2000261074 A JP 2000261074A JP 2000261074 A JP2000261074 A JP 2000261074A JP 4623690 B2 JP4623690 B2 JP 4623690B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- polymer
- reaction
- block copolymer
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、アルケニルフェノール系単独重合体あるいは共重合体をポリマー鎖として有するアーム部をもつ星型ブロックコポリマーとその製造方法に関する。本発明の星型ブロックコポリマーは、エキシマレーザーおよび電子線用レジスト材料としての利用が期待される化合物である。
【0002】
【従来の技術】
ポリ−p−ヒドロキシスチレンに代表されるアルケニルフェノールのホモポリマーやコポリマーは、化学増幅型エキシマレーザーレジスト材料として有用であり、中でも、ポリ−(p−ヒドロキシスチレン)、又は、(p−ヒドロキシスチレン/スチレン)コポリマーを用いたレジストは、高解像化が可能なレジストとして知られている。
【0003】
また、星型ブロックコポリマーに関しては、例えば、特開平5−222114号公報には、イソプレン及びスチレンを陰イオン重合してブロックコポリマー分子を製造し、ブロックコポリマー分子1モル当たり2.5モル以上のポリアルケニルカップリング剤とカップリングさせ、さらに少なくとも95%以のイソプレン単位(オレフィン性不飽和)及び15%より少量のスチレン単位(芳香族不飽和)を選択的に水素化した星型ポリマーが記載されている。
【0004】
特開平6−220203号公報には、(1,1−ジ置換)アルキルの不飽和カルボン酸エステルから誘導される少なくとも1種のポリマーブロック、並びに共役ジエンから誘導される少なくとも1種のポリマーブロック及び/又はモノビニル芳香族化合物から誘導される少なくとも1種のポリマーブロックを含む改質ブロックコポリマーであって、多官能カップリング剤の架橋した核を含む改質ブロックコポリマーが記載されている。
【0005】
特開平6−256436号公報には、水素化重合共役ジエンを含み、ピーク分子量が10,000〜200,000の少なくとも3個の第1アーム;重合メタクリレート及び/又はそのアミド又はイミド誘導体を含み、ピーク分子量が500〜10,000の少なくとも3個の第2アーム;及び第1及び第2のアームを星型配置に接続し、重合ビス不飽和モノマーを含む中心核に含むポリマーが記載されている。
【0006】
特開平7−97413号公報には、一般式
【化11】
(式中、Cは架橋ビス不飽和モノマーのブロックであり;Aは各々独立してアニオン重合モノマーのブロックであり;Mはメタクリル酸部分のエチレン不飽和を介して重合した重合メタクリル酸アルキルのブロックであり;rは0又は1であり;s及びtは平均2以上、但しs≦tである)を有し、分子量が20,000〜2,000,000であり、Aがスチレン又はイソプレンである星型ブロックポリマーが記載されている。
【0007】
特開平8−48987号公報には、(EP’−S−EP’’)n−X(式中、EP’は水素化前の数平均分子量(Mn)が10,000〜100,000であるポリイソプレン(I’)の第1水素化されたブロックであり、Sは平均分子量(Mn)が6,000〜50,000のポリスチレンブロックであり、EP’’は水素化前の数平均分子量(Mn)が2,500〜50,000であるポリイソプレン(I’’)の第2の水素化されたブロックであり、I’/I’’の分子量比が少なくとも1.4であり、Xはポリアルケニルカップリング剤からなる核であり、nは、(EP’−S−EP’’)アーム1モル当たり2モル以上のポリアルケニルカップリング剤を反応させることによって形成される星状分子1分子当たりの平均アーム数である)で表される構造を持つ分子内で結合しているポリスチレンブロック及び水素化ポリイソプレンブロックからなる、粘度指数(VI)改良剤として有用な星状ポリマーが記載されている。
【0008】
特開平8−81514号公報には、非極性溶媒に可溶性で如何なる残留二重結合も含有しない(又は実質的に含有しない)、一般式(I)(PA)aNn-nLi+(式中、PAは、ビニル芳香族モノマー及びジエンモノマーから選ばれる少なくとも1種のモノマーAから生じるポリマーブロックを表し、;aはPAブロックのアームの数であって、3〜30、特に3〜15の数を表し;Nは、式:(PMc)(RLi)p(式中、Mcは、分子当たり少なくとも2つの重合性二重結合を含有するモノマーであり;PMcは、モノマーMc由来の初期二重結合に関して3〜30%の残留二重結合を含有する少なくとも1種の重合モノマーMcの架橋コアであり;Rは、直鎖又は分枝鎖を有するアルキル基等であり;pは、RLiにより中和されているPMc中の残留二重結合の数である。)を有する、如何なる残留二重結合も含有しないか又は実質的に含有しない架橋コアを表し;nは、架橋コア中に存在するアニオン部位の数であって、a+p(又はp)に等しい(pは上記の意味を有し、aはRLiの付加前の架橋PMcコア内に存在するアニオン部位の数である)。)により表されるアニオン重合の多官能性開始剤が記載されている。
【0009】
特表平8−504865号公報には、(a)モノビニル芳香族炭化水素、共役ジエン、及びそれらの混合物からなるグルーから選ばれた、少なくとも1つのアニオン重合した単量体から少なくとも3つのアーム、(b)ポリジメチルシロキサンからなる少なくとも3つのアーム、並びに(C)ポリアルケニル芳香族カップリング剤からなるコア(上記(a)及び(b)のアームがこのコアから外側に向かって放射状に伸びている)からなる星型ブロック共重合体が記載されている。
【0010】
特表平8−505179号公報には、一般式(A−B)n(B)mX(式中、Aは15,000未満のピーク分子量を有するポリスチレンのブロックであり、Bは15,000〜50,000の範囲のピーク分子量を有する水素化共役ジエンのポリマーブロックであり、Xはジビニルベンゼンのブロックでありかつn及びmは0以上の整数であり、nとmとの合計は少なくとも10である)のブロックコポリマーが記載されている。
【0011】
特表平9−510236号公報には、(a)ジビニル芳香族化合物、トリビニル芳香族化合物、ジエポキシド、ジケトン、及びジアルデヒドでなる群から選ばれるコアを形成する多官能性結合剤4分子以上;及び(b)前記コアに結合する3以上のカチオン重合体分枝を含有してなり、前記重合体分枝が、ホモ重合体、共重合体、少なくとも1つのポリオレフィンセグメント及び少なくとも1のポリアリールセグメントを有するブロック共重合体、グラフト共重合体でなる群から選ばれるものである、星型共重合体が記載されている。
【0012】
【発明が解決しようとする課題】
従来からポジ型レジスト材料用のベ一スポリマーとしては、高分子量のポリマーの方が解像度、耐熱性等の面で好ましいことが知られているが、基板上へのレジスト塗布は通常スピンコート法によるため、ベ一スポリマーの分子構造を従来のような線状構造として高分子量化した場合、レジスト粘度が上昇し、結果としてスピンコートが困難となる問題があった。また、前述した星型ブロックコポリマーにおいて、アーム部にヒドロキシスチレン骨格を有するものは今まで知られていなかった。
【0013】
本発明の課題は、溶液とした場合、高分子量化が可能であり、同一分子量を有する線状構造のポリマーに比べて低粘度であるレジスト材料として期待される新規な星型ブロックコポリマー及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明者等は、前記課題を達成すべく鋭意研究した結果、リビングアニオン重合法により、アルケニルフェノールのフェノール残基の水酸基が保護基により保護された化合物を単独重合させた後、あるいは該化合物とビニル芳香族化合物等とを共重合させた後、ポリビニル化合物等を用いて共重合反応を行うことにより得られた星型ブロックコポリマーを、酸性試剤を用いてフェノール性水酸基の保護基を脱離させることにより、分子量分布が狭く、且つ構造の制御されたアルケニルフェノールを主骨格とするアルケニルフェノール系星型ブロックコポリマーが得られることを見出し本発明を完成するに至った。
【0015】
すなわち本発明は、
(1)中心核と中心核より伸びるポリマー鎖からなるアーム部を有する星型ブロックコポリマーにおいて、アーム部(A)に一般式(I)
【化12】
(式中、R1は、水素原子又はメチル基を表し、R2は、水素原子、又はC1〜C6のアルキル基を表し、pは1又は2を表し、pが2の場合、R2は同一又は相異なっていてもよい。)で表される繰り返し単位を有するポリマー鎖(A1)を含むことを特徴とする星型ブロックコポリマーや、
(2)ポリマー鎖(A1)が、一般式(I)及び一般式(II)
【化13】
(式中、R3は、水素原子又はメチル基を表し、R4は、C1〜C6のアルキル基を表し、R5は酸分解・脱離基を表し、qは0、1、又は2を表し、qが2の場合、R4は同一又は相異なっていてもよい。)で表される繰り返し単位を有する共重合体であることを特徴とする(1)に記載の星型ブロックコポリマーや、
(3)ポリマー鎖(A1)が、一般式(I)及び一般式(III)
【化14】
(式中、R6は、水素原子、メチル基、又は置換基を有していてもよいアリール基を表し、R7は、C1〜C6のアルキル基を表し、rは0、1、又は2を表し、rが2の場合、R7は同一又は相異なっていてもよい。)で表される繰り返し単位を有する共重合体であることを特徴とする(1)に記載の星型ブロックコポリマーや、
(4)ポリマー鎖(A1)が、一般式(I)、一般式(II)及び一般式(III)で表される繰り返し単位を有することを特徴とする(1)〜(3)に記載の星型ブロックコポリマーや、
(5)アーム部(A)が、ポリマー鎖(A1)と、一般式(IV)
【化15】
(式中、R8は、水素原子又はメチル基を表し、R9は、水素原子、C1〜C12のアルキル基、置換基を有してもよいC3以上の脂環式骨格を有する炭化水素基、該脂環式骨格を有する炭化水素基を有するアルキル基、又はヘテロ環基を表す。)で表される繰り返し単位(A21)を有するポリマー鎖(A2)とを有することを特徴とする(1)〜(4)のいずれかに記載の星型ブロックコポリマーや、
(6)ポリマー鎖(A2)が一般式(IV)で表される繰り返し単位(A21)及び一般式(V)
【化16】
(式中、R10は、水素原子、メチル基、又は置換基を有していてもよいアリール基を表し、R11は、C1〜C6のアルキル基、OR12基(R12は、水素原子、C1〜C6のアルキル基、又は酸分解・脱離基を表し、tは0又は1〜3のいずれかの整数を表し、tが2以上の場合、R11は同一又は相異なっていてもよい。)で表される繰り返し単位(A22)を有することを特徴とする(5)に記載の星型ブロックコポリマーや、
(7)ポリマー鎖(A2)が中心核より順に(A22)−(A21)型にブロック共重合していることを特徴とする(6)に記載の星型ブロックコポリマーや、
(8)アーム部を構成するポリマー鎖の数平均分子量が1,000〜100,000であり、且つ、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.00〜1.50の範囲にあることを特徴とする(1)〜(7)のいずれかに記載の星型ブロックコポリマーや、
(9)中心核が、多官能性カップリング剤の架橋した核であることを特徴とする(1)〜(8)のいずれかに記載の星型ブロックコポリマーや、
(10)多官能性カップリング剤が1分子あたり少なくとも2つの重合性2重結合を有する化合物であることを特徴とする(9)に記載の星型ブロックコポリマーや、
(11)多官能性カップリング剤が一般式(VI)
【化17】
(式中、R13は、水素原子、又はメチル基を表し、Yは、酸素原子、イオウ原子、R16R17N(R16、及びR17はそれぞれ独立に水素原子、C1〜C6のアルキル基、アルコキシカルボニル基を表す。)、置換基を有していてもよいメチレン基、置換基を有していてもよいフェニレン基、C(R18R19)O、C(R18R19)S、C(R18R19)N(R20)、OC(R18R19)、SC(R18R19)、N(R20)C(R18R19)、(R18、R19、及びR20は、C1〜C6のアルキル基、置換基を有していてもよいフェニル基を表す。)、OCO、又はCO2CH2を表し、wは0又は1〜2の整数を表し、wが2の場合は、Yは同一又は相異なっていてもよく、uは2又は3を表し、その場合、Y、R13、及びwは、同一又は相異なっていてもよい。)で表される化合物であることを特徴とする(9)又は(10)に記載の星型ブロックコポリマーや、
(12)数平均分子量が3,000〜300,000であることを特徴とする(1)〜(11)のいずれかに記載の星型ブロックコポリマーや、
(13)重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.00〜1.50の範囲にあることを特徴とする(1)〜(12)のいずれかに記載の星型ブロックコポリマーに関する。
【0016】
また本発明は、
(14)アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)
【化18】
(式中、R3、R4、R5、及びqは、前記と同じ意味を表す。)で表される化合物を単独重合させた後、あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させた後、さらに、多官能性カップリング剤(C)を共重合させ、フェノール性水酸基の保護基を脱離させることを特徴とする(1)〜(13)のいずれかに記載の星型ブロックコポリマーの製造方法や、
(15)アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)で表される化合物を単独重合させた後、あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させた後、多官能性カップリング剤(C)を共重合させ、さらにアニオン重合可能な化合物を共重合させ、フェノール性水酸基の保護基を脱離させることを特徴とする(1)〜(13)のいずれかに記載の星型ブロックコポリマーの製造方法や、
(16)多官能性カップリング剤(C)と、アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)で表される化合物を単独重合させたポリマー鎖の活性末端あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させたポリマー鎖の活性末端(D)とのモル比[(C)/(D)]が0.1〜10であることを特徴とする(14)又は(15)に記載の星型ブロックコポリマーの製造方法や、
(17)多官能性カップリング剤が一般式(VI)
【化19】
(式中、Y、R13、w、及びuは前記と同じ意味を表す。)で表される化合物であることを特徴とする(14)〜(16)のいずれかに記載の星型ブロックコポリマーの製造方法や、
(18)一般式(VII)で表される化合物と共重合可能な化合物が、一般式(VIII)
【化20】
(式中、R6、R7、及びrは、前記と同じ意味を表す。)で表される化合物であることを特徴とする(14)〜(17)のいずれかに記載の星型ブロックコポリマーの製造方法や、
(19)アニオン重合可能な化合物が、一般式(IX)
【化21】
(式中、R8、及びR9は、前記と同じ意味を表す)で表される化合物であることを特徴とする(15)〜(17)のいずれかに記載の星型ブロックコポリマーの製造方法に関する。
【0017】
【発明の実施の形態】
本発明の星型ブロックコポリマーとしては、中心核と中心核より伸びるポリマー鎖からなるアーム部を有する星型ブロックコポリマーにおいて、アーム部(A)に一般式(I)で表される繰り返し単位を有するポリマー鎖(A1)を含むポリマーであれば特に制限されるものではなく、一般式(I)で表される繰り返し単位中、R1は、水素原子又はメチル基を表し、R2は、水素原子、又はC1〜C6のアルキル基を表し、具体的には、メチル基、エチル基、イソプロピル基、t−ブチル基等を例示することができ、pは1又は2を表し、pが2の場合、R2は同一又は相異なっていてもよく、R2及び水酸基(OH基)の置換位置は特に制限されないが、水酸基はアルケニル基のパラ位又はメタ位が好ましい。
【0018】
上記ポリマー鎖(A1)としては、一般式(I)で表される繰り返し単位及び一般式(II)で表される繰り返し単位を有する共重合体が好ましい。このポリマー鎖(A1)における、一般式(I)で表される繰り返し単位と一般式(II)で表される繰り返し単位のモル比は、特に限定されないが、その比[一般式(I)/一般式(II)]は、99/1〜50/50、好ましくは95/5〜60/40の範囲である。上記一般式(II)で表される繰り返し単位中、R3は、水素原子、メチル基、又は置換基を有していてもよいアリール基を表す。具体的には、フェニル基、p−トリル基、4−メトキシフェニル基等を例示することができる。また、R4は、水素原子又はC1〜C6のアルキル基を表す。具体的には、メチル基、エチル基、イソプロピル基、t−ブチル基等を例示することができる。qは1又は2を表し、qが2の場合、R4は同一又は相異なっていてもよい。R4及びアルコキシ基(OR5基)の置換位置は特に制限されないが、アルコキシ基はアルケニル基のパラ位又はメタ位が好ましい。
【0019】
また、R5は酸分解・脱離基を表す。ここで、酸脱離・分解基とは酸により脱離及び/又は分解する基を意味する。具体的には、メトキシメチル基、2−メトキシエトキシメチル基、ビス(2−クロロエトキシ)メチル基、テトラヒドロピラニル基、4−メトキシテトラヒドロピラニル基、テトラヒドロフラニル基、トリフェニルメチル基、トリメチルシリル基、2−(トリメチルシリル)エトキシメチル基、t−ブチルジメチルシリル基、トリメチルシリルメチル基、t−ブチル基、t−ブトキシカルボニル基、t−ブトキシカルボニルメチル基、2−メチル−2−t−ブトキシカルボニルメチル基等を例示することができる。
【0020】
さらに、R5としては下式(式中、R14はC1〜C20の無置換若しくはアルコキシ置換のアルキル基、C5〜C10のシクロアルキル基、又はC6〜C20の無置換若しくはアルコキシ置換のアリール基を表し、R15は、水素又はC1〜C3のアルキル基を表し、R16は水素、C1〜C6のアルキル基、又はC1〜C6のアルコキシ基を表す。)で表される基を例示することができ、このような置換基として具体的には、1−メトキシエチル基、1−エトキシエチル基、1−メトキシプロピル基、1−メチル−1−メトキシエチル基、1−(イソプロポキシ)エチル基等を例示することができる。
【0021】
【化22】
【0022】
また、上記ポリマー鎖(A1)としては、一般式(I)で表される繰り返し単位及び一般式(III)で表される繰り返し単位を有する共重合体が好ましい。一般式(III)で表される繰り返し単位中、R6は水素原子、又はメチル基を表し、R7は、水素原子又はC1〜C6のアルキル基を表し、具体的には、メチル基、エチル基、イソプロピル基、t−ブチル基等を例示することができ、rは1又は2を表し、rが2の場合、R7は同一又は相異なっていてもよく、その置換位置は特に制限されない。このポリマー鎖(A1)における、一般式(I)で表される繰り返し単位と一般式(III)で表される繰り返し単位とのモル比は特に制限されないが、その比[一般式(I)/一般式(III)]は、99/1〜50/50の範囲が好ましい。
【0023】
さらに、上記ポリマー鎖(A1)としては、一般式(I)で表される繰り返し単位、一般式(II)で表される繰り返し単位、及び一般式(III)で表される繰返し単位を有する共重合体が好ましい。このポリマー鎖(A1)における、各々の繰り返し単位のモル比は特に制限されないが、そのモル比(一般式(I)/[一般式(II)+一般式(III)])は、99/1〜50/50の範囲が好ましい。
【0024】
上記アーム部(A)としては、ポリマー鎖(A1)と、一般式(IV)で表される繰り返し単位(A21)を有するポリマー鎖(A2)とを有するものが好ましい。一般式(IV)で表される繰り返し単位中、R8は、水素原子又はメチル基を表す。また、R9は、水素原子、C1〜C12のアルキル基、置換基を有してもよいC3以上の脂環式骨格を有する炭化水素基(但し、炭素数に置換基の炭素を含まない)、該脂環式骨格を有する炭化水素基を有するアルキル基、又はヘテロ環基を表すが、特に、酸分解・脱離基が好ましく、さらに酸により脱離・分解し得るt−ブチル基を持つ基が好ましい。ここで、酸分解・脱離基とは酸により分解及び/又は脱離する基を意味する。
【0025】
上記R9として具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、メトキシメチル基、2−メトキシエトキシメチル基、ビス(2−クロロエトキシ)メチル基、テトラヒドロピラニル基、4−メトキシテトラヒドロピラニル基、テトラヒドロフラニル基、トリフェニルメチル基、トリメチルシリル基、2−(トリメチルシリル)エトキシメチル基、t−ブチルジメチルシリル基、トリメチルシリルメチル基、及び下記式(式中、uは0又は1を表す。)で表されるような官能基を例示することができる。
【0026】
【化23】
【0027】
さらに、R9として下記式(式中、R17はC1〜C20の無置換又はアルコキシ置換のアルキル基、C5〜C10のシクロアルキル基、又はC6〜C20の無置換又はアルコキシ置換のアリール基を表し、R18は、水素又はC1〜C3のアルキル基を表し、R19は水素、C1〜C6のアルキル基、又はC1〜C6のアルコキシ基を表す。)で表される基を具体的に例示することができ、このような置換基として具体的には、1−メトキシエチル基、1−エトキシエチル基、1−メトキシプロピル基、1−メチル−1−メトキシエチル基、1−(イソプロポキシ)エチル基等を例示することができる。
【0028】
【化24】
【0029】
一般式(VI)で表される繰り返し単位(A21)を有するポリマー鎖(A)中の繰り返し単位は単一又は2種以上の混合であってもよく、2種以上の混合の場合、その構造は、特に制限されず、ランダム又はブロックで結合していてもよい。さらに、その際のモル比は、特に制限されないが、例えば、2種混合の場合、1/9〜9/1の範囲のいずれの値を採ることができる。
【0030】
上記ポリマー鎖(A2)としては、一般式(IV)で表される繰り返し単位(A21)及び一般式(V)で表される繰り返し単位(A22)を有するものが好ましい。このポリマー鎖(A2)における(A21)と(A22)のモル比は特に制限されないが、その比[(A21)/(A22)]は、5/95〜100/0、好ましくは50/50〜99/1の範囲である。上記一般式(V)で表される繰り返し単位中、R10は、水素原子、メチル基、又は置換基を有していてもよいアリール基を表し、具体的には、フェニル基、p−トリル基、4−メトキシフェニル基等を例示することができる。R11は、水素原子、C1〜C6のアルキル基、又はOR12基(R12は、水素原子、C1〜C6のアルキル基、又は酸分解・脱離基を表す。)を表す。上記C1〜C6のアルキル基としては、メチル基、エチル基、イソプロピル基、t−ブチル基等を具体的に例示することができる。上記OR12基におけるR12としては、具体的には、R5として例示した置換基と同様の置換基を例示することができる。tは0又は1〜3のいずれかの整数を表し、tが2以上の場合、R11は同一又は相異なっていてもよい。またR11の置換位置は特に限定されないが、OR12基の場合、アルケニル基のパラ位、又はメタ位が好ましい。
【0031】
上記ポリマー鎖(A2)中、一般式(IV)で表される繰り返し単位(A21)及び一般式(V)で表される繰り返し単位(A22)の配置は特に限定されず、ランダム重合、ブロック重合等いずれの共重合体でも構わない。中でも、繰り返し単位(A21)及び(A22)が中心核から(A22)−(A21)型にブロック共重合した重合体を有しているアーム部が好ましい。
【0032】
本願発明の重合体には必要に応じて、一般式(I)〜一般式(V)で表される繰り返し単位以外の繰り返し単位を含めることができる。この繰り返し単位としては、一般式(I)〜一般式(V)に対応する単量体と共重合可能な2重結合を有する化合物から得られる繰り返し単位であれば特に制限されないが、スルホン酸基、カルボキシル基、フェノール水酸基等の酸性置換基を有しない繰り返し単位が好ましく、該繰り返し単位に対応する単量体としては、ビニル基含有化合物、(メタ)アクロイル基含有化合物等を例示することができる。
【0033】
上記ビニル基含有化合物としては、ビニルピリジン等のヘテロ原子含有芳香族ビニル化合物、メチルビニルケトン、エチルビニルケトン等のビニルケトン化合物、メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル化合物、ビニルピロリドン、ビニルラクタム等のヘテロ原子含有脂環式ビニル化合物等を具体的に例示することができる。また、上記(メタ)アクロイル基含有化合物としては、(メタ)アクリル酸アミド又は(メタ)アクリロニトリル等を例示することができる。
【0034】
これらビニル基含有化合物や(メタ)アクロイル基含有化合物は、1種又は2種以上の混合物として使用することができ、またこれらビニル基含有化合物や、(メタ)アクロイル基含有化合物から得られる繰り返し単位は、一般式(I)〜一般式(V)に示される繰り返し単位とランダムに又はブロックで共重合して本発明のアルケニルフェノール共重合体に含有させることができる。
【0035】
本発明の星型ブロックコポリマーのアーム部(A)を構成するポリマー(アームポリマー)鎖の数平均分子量は特に限定されず、1,000〜100,000の範囲を具体的に例示することができる。また、アーム部(A)を構成するポリマー鎖の数平均分子量が1,000〜100,000のとき、該ポリマー鎖として、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.00〜1.50の範囲にある単峰性のものが好ましい。
【0036】
本発明の星型ブロックコポリマーの中心核としては、多官能性カップリング剤を好適に例示することができ、例えば3官能以上の化合物を例示することができ、2官能の化合物であっても、重合体を形成して3官能以上の化合物を形成することができる場合は、使用を妨げるものではない。特に、多官能性カップリング剤が重合架橋した構造を有する中心核が好ましい。
【0037】
上記多官能性カップリング剤として、具体的には、ジビニル芳香族化合物、トリビニル芳香族化合物等の一般式(VI)で表される化合物、ジエポキシド、ジケトン、ジアルデヒド及び下記一般式(X)で表される化合物(式中、Xは、ハロゲン原子、炭素数1〜6のアルコキシル基及び炭素数2〜6のアシルオキシル基からなる群より選択される置換基を表す。R1及びR2は、それぞれ、水素原子又は炭素数1〜6の1価の炭化水素基を表し、R1及びR2は同一であっても異なっていてもよい。R3は、n個の置換基(CR1R2X)を有することができる多価の芳香族炭化水素基又は多価の脂肪族炭化水素基を表す。nは3〜6のいずれかの整数を表す。)を挙げることができる。
【0038】
【化25】
【0039】
また、上記多官能性カップリング剤として、具体的に下記式からなるシラン化合物等より選択される少なくとも1種の化合物を挙げることができる。
【0040】
【化26】
【0041】
上記ジビニル芳香族化合物としては特に限定されず、例えば、1,3−ジビニルベンゼン、1,4−ジビニルベンゼン、1,2−ジイソプロペニルベンゼン、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、1,3−ジビニルナフタレン、1,8−ジビニルナフタレン、2,4−ジビニルビフェニル、1,2−ジビニル−3,4−ジメチルベンゼン、1,3−ジビニル−4,5,8−トリブチルナフタレン、2,2′−ジビニル−4−エチル−4′−プロピルビフェニル等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0042】
かかるジビニル芳香族化合物として、例えば、エチルビニルベンゼン等との混合物として通常市販されているものであっても、上記ジビニル芳香族化合物が主たる成分であればそのまま使用することが可能であり、また必要に応じて精製して純度を高めて用いてもよい。さらに、スチレン等の他の重合可能な二重結合芳香族化合物等を混合して使用することもでき、この場合、スチレンの混合比率は、ジビニル芳香族化合物等と混合して架橋重合した中心核を形成することができれば、特に限定されないが、1〜50重量%、好ましくは5〜20重量%の範囲である。
【0043】
上記トリビニル芳香族化合物としては特に限定されず、例えば、1,2,4−トリビニルベンゼン、1,3,5−トリビニルナフタレン、3,5,4′−トリビニルビフェニル、1,5,6−トリビニル−3,7−ジエチルナフタレン等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0044】
また、上記ジビニル芳香族化合物やトリビニル芳香族化合物として、ビニル基と芳香環の間に、スペーサーを設けた一般式(VI)で表される化合物群をさらに好ましく例示することができる。より具体的には、下記式に示す化合物を例示することができ、これらは、単独で用いてもよく、2種以上を併用してもよい。
【0045】
【化27】
【0046】
上記ジエポキシドとしては特に限定されず、例えば、シクロヘキサンジエポキシド、1,4−ペンタンジエポキシド、1,5−ヘキサンジエポキシド等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0047】
上記ジケトンとしては特に限定されず、例えば、2,4−ヘキサン−ジオン、2,5−ヘキサン−ジオン、2,6−ヘプタン−ジオン等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0048】
上記ジアルデヒドとしては特に限定されず、例えば、1,4−ブタンジアール、1,5−ペンタンジアール、1,6−ヘキサンジアール等を挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0049】
上記一般式(X)において、Xは、ハロゲン原子、炭素数1〜6のアルコキシル基又は炭素数2〜6のアシルオキシ基を表す。上記ハロゲン原子としては、例えば、塩素、フッ素、臭素、ヨウ素等を挙げることができる。上記炭素数1〜6のアルコキシル基としては特に限定されず、例えば、メトキシ基、エトキシ基、n−又はイソプロポキシ基等を挙げることができる。上記炭素数2〜6のアシルオキシ基としては特に限定されず、例えば、アセチルオキシ基、プロピオニルオキシ基等を挙げることができる。
【0050】
上記一般式(X)において、R1及びR2は、それぞれ、水素原子又は炭素数1〜6の1価の炭化水素基を表す。R1及びR2は同一であっても異なっていてもよい。また、複数存在するR1及び複数存在するR2は、それぞれ、同一であっても異なっていてもよい。上記炭素数1〜6の1価の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、n−又はイソプロピル基等を挙げることができる。
【0051】
上記一般式(X)において、R3は、前記のとおり、n個の置換基(CR1R2X)を有することができる多価の芳香族炭化水素基又は多価の脂肪族炭化水素基を表し、nは3〜6のいずれかの整数を表す。そして、かかる一般式(X)で表される化合物として、下記化学式で表される化合物を具体的に例示することができる。
【0052】
【化28】
【0053】
以上例示した化合物以外にも、さらに下記化学式で表される化合物を多官能性カップリング剤として例示することができる。
【0054】
【化29】
【0055】
本発明の星型ブロックコポリマーの製造方法としては、アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)(式中、R3、R4、R5、及びqは、前記と同じ意味を表す。)で表される化合物を単独重合させた後、あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させた後、さらに、多官能性カップリング剤を共重合させ、フェノール性水酸基の保護基を脱離させる方法や、アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)で表される化合物を単独重合させた後、あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させた後、多官能性カップリング剤を共重合させ、さらにアニオン重合可能な化合物を共重合させ、フェノール性水酸基の保護基を脱離させる方法であれば、特に制限されるものではない。
【0056】
上記一般式(VII)で表される化合物中、R3、R4、R5、及びqは前記と同じ意味を表し、同様の置換基を例示することができる。一般式(VII)で表される化合物として具体的には、p−t−ブトキシスチレン、p−t−ブトキシ−α−メチルスチレン、p−(テトラヒドロピラニルオキシ)スチレン、p−(テトラヒドロピラニルオキシ)−α−メチルスチレン、p−(1−エトキシエトキシ)スチレン、p−(1−エトキシエトキシ)−α−メチルスチレン等を例示することができ、これらは一種単独又は二種以上の混合物として使用することができる。
【0057】
上記アニオン重合法に用いられるアニオン重合開始剤としては、アルカリ金属又は有機アルカリ金属を例示することができ、アルカリ金属としては、リチウム、ナトリウム、カリウム、セシウム等を例示することができ、有機アルカリ金属としては、上記アルカリ金属のアルキル化物、アリル化物、アリール化物等を例示することができ、具体的には、エチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、エチルナトリウム、リチウムビフェニル、リチウムナフタレン、リチウムトリフェニル、ナトリウムナフタレン、α−メチルスチレンナトリウムジアニオン、1,1−ジフェニルヘキシルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム等を挙げることができる。
【0058】
本発明の星型ブロックコポリマーの製造方法としては、(1)アニオン重合開始剤の存在下、一般式(VII)で示される化合物単独、又は一般式(VII)で表される化合物及び一般式(VIII)で表される化合物、又は一般式(VII)で表される化合物及び該化合物と共重合可能な二重結合を有する化合物をアニオン重合してアームポリマーを合成し、次に、多官能性カップリング剤を反応させ、得られた共重合体からフェノール性水酸基の保護基を全部又は一部脱離させる方法、(2)アニオン重合開始剤の存在下、多官能性カップリング剤を反応させて、多官能性コアを形成した後、一般式(VII)で示される化合物単独、又は一般式(VII)で表される化合物及び一般式(VIII)で表される化合物、又は一般式(VII)で表される化合物及び該化合物と共重合可能な二重結合を有する化合物をアニオン重合し、得られた共重合体からフェノール性水酸基の保護基を全部又は一部脱離させる方法、(3)アニオン重合開始剤の存在下、一般式(VII)で示される化合物単独、又は一般式(VII)で表される化合物及び一般式(VIII)で表される化合物、又は一般式(VII)で表される化合物と該化合物及び共重合可能な二重結合を有する化合物をアニオン重合してアームポリマーを合成し、次に、多官能性カップリング剤を反応させ、さらに、一般式(IX)で表される化合物、又は一般式(VIII)で表される化合物及び一般式(IX)で表される化合物等のアニオン重合可能なモノマーを反応させ、得られた共重合体からフェノール性水酸基の保護基を全部又は一部脱離させる方法、を挙げることができるが、上記(1)や(3)の方法が、反応の制御が容易であり、構造を制御した星型ブロックコポリマーを製造する上で好ましい。
【0059】
その他、本発明の星型ブロックコポリマーは、トリエチルアミン、2−クロロ−2,4,4−トリメチル−1−ペンテン/TiCl4等のカチオン重合開始剤の存在下、一般式(VII)で示される化合物単独、又は一般式(VII)で表される化合物及び一般式(VIII)で表される化合物、又は一般式(VII)で表される化合物と該化合物と共重合可能な二重結合を有する化合物をカチオン重合し、次に、多官能性カップリング剤を反応させ、得られた共重合体からフェノール性水酸基の保護基を全部又は一部脱離させる方法等によっても製造することができる。
【0060】
上記(1)又は(3)の方法におけるアームポリマーを合成する重合反応としては、モノマー(混合)溶液中にアニオン重合開始剤を滴下する方法や、アニオン重合開始剤を含む溶液にモノマー(混合)溶液を滴下する方法のいずれの方法でも行うことができるが、分子量及び分子量分布を制御することができることから、アニオン重合開始剤を含む溶液にモノマー(混合)溶液を滴下する方法が好ましい。このアームポリマーの合成反応は、通常、窒素、アルゴンなどの不活性ガス雰囲気下、有機溶媒中において、−100〜50℃、好ましくは−100〜40℃の範囲の温度下で行われる。
【0061】
上記アームポリマーの合成反応に用いられる有機溶媒としては、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類、シクロヘキサン、シクロペンタン等の脂環族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル類の他、アニソール、ヘキサメチルホスホルアミド等のアニオン重合において通常使用される有機溶媒を挙げることができ、これらは一種単独溶媒又は二種以上の混合溶媒として使用することができる。これらのうち、極性及び溶解性の観点から、テトラヒドロフランとトルエン、テトラヒドロフランとヘキサン、テトラヒドロフランとメチルシクロヘキサンの混合溶媒を好ましく例示することができる。
【0062】
アームポリマーの重合形態としては、各成分がコポリマー鎖全体に統計的に分布しているランダム共重合体、部分ブロック共重合体、完全ブロック共重合体を挙げることができ、これらは前述の一般式(VII)で表される化合物、およびビニル芳香族化合物の添加法を選択することにより、それぞれ合成することができ、例えば、一般式(VII)で示される化合物とビニル芳香族化合物との混合物を反応系に加えて重合することによりランダム共重合体を、どちらか一方の全部をあらかじめ重合しておき、その後、もう一方の混合物を加えて重合を継続するか、又は、どちらか一方の一部を予め重合しておき、その後両者の混合物を加えて重合を継続することによリ部分ブロック共重合体を、また、一般式(VII)で示される化合物とビニル芳香族化合物とを反応系に逐次添加して重合を行うことによリ完全ブロック共重合体を、それぞれ合成することができる。
【0063】
このようにして得られたアームポリマーを分岐ポリマー鎖として星型ブロックコポリマーを生成せしめる反応は、アームポリマー合成反応終了後、反応液中ヘさらに多官能性カップリング剤を添加することにより行うことができる。この反応は通常、窒素、アルゴン等の不活性ガス雰囲気下で、有機溶媒中において−100℃〜50℃、好ましくは−70℃〜40℃の温度で重合反応を行うことにより構造が制御され、且つ分子量分布の狭い重合体を得ることができる。また、かかる星型ブロックコポリマー生成反応は、アームポリマーを形成させるのに用いた溶媒中で連続して行うこともできる他、溶媒を添加して組成を変更して、又は溶媒を別の溶媒に置換して行うこともできる。かかる溶媒として、アームポリマーの合成反応に用いられる有機溶媒と同様の溶媒を用いることができる。
【0064】
本発明の星型ブロックコポリマーの製造方法において、多官能性カップリング剤(C)と、アニオン重合開始剤を重合開始剤とするアニオン重合法により、一般式(VII)で表される化合物を単独重合させたポリマー鎖の活性末端あるいは該一般式(VII)で表される化合物と共重合可能な化合物と共重合させたポリマー鎖の活性末端(D)とのモル比[(C)/(D)]を0.1〜10とすることが好ましい。例えば、多官能性カップリング剤として、ジビニルベンゼン等のポリビニル化合物を用いる場合、ポリビニル化合物の添加量は、アームポリマー鎖の活性末端に対して0.1〜10当量、好ましくは、1〜10当量の範囲とすることが好ましい。アームポリマー鎖と多官能性カップリング剤との反応は、活性末端を有するアームポリマー鎖に多官能性カップリング剤を添加する方法、多官能性カップリング剤に活性末端を有するアームポリマー鎖を添加する方法のいずれの方法も採用することができる。
【0065】
星型ブロックコポリマーのアーム数は、ポリビニル化合物の添加量と反応温度、反応時間により決定されるが、通常はリビングポリマー末端とビニル基との反応性差や立体障害等の影響を受けてアーム数の異なる複数の星型ブロックコポリマーが同時に生成する。本発明の星型ブロックコポリマーでは、アーム数が3以上のものが特に好ましい。また、生成する星型ブロックコポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.00〜1.50の範囲にあることが好ましく、星型ブロックコポリマーの数平均分子量は、3,000〜300,000であるのが好ましい。
【0066】
あらかじめ調製されたアームポリマー鎖と多官能性カップリング剤とを反応させることにより形成される活性末端を有する中心核(多官能性コア)に対して、アニオン重合可能なモノマーを反応させ新たなアームポリマー鎖を形成させる前記(3)の方法では、異なる種類のアームポリマー鎖を有する星型ブロックコポリマーを製造することができる。中心核に存在する活性末端に対して、直接重合可能なモノマーを反応させることもできるが、ジフェニルエチレン、スチルベン等の化合物を反応させた後、また、塩化リチウム等のアルカリ金属又はアルカリ土類金属の鉱酸塩を添加した後、モノマーを反応させた方が、例えば、アクリル酸誘導体のように反応性の高いモノマーを反応させる場合、ゆっくりと重合反応を進行させることができ、生成する星型ブロックコポリマーの全体の構造を制御する上で有利となる場合がある。また、上記反応は、活性末端を有する中心核を形成させるのに用いた溶媒中で連続して行うこともできる他、溶媒を添加して組成を変更して、又は溶媒を別の溶媒に置換して行うこともできる。かかる溶媒としては、アームポリマーの合成に用いた溶媒と同様の溶媒を例示することができる。また、上記(3)の方法における中心核に存在する活性末端に対して新たに導入されたアームポリマー鎖、又は前記(2)の方法におけるアームポリマー鎖を、2種のモノマーを混合して反応させることによりランダム共重合したポリマー鎖とすることも、また、2種のモノマーを順次添加することでブロックポリマー鎖とすることも可能である。また、反応終了後、二酸化炭素、エポキシ等を添加することにより、末端に官能基を導入することも可能である。
【0067】
このようにして得られた共重合体からフェノール性水酸基の保護基を脱離させ、アルケニルフェノール骨格を生成せしめる反応は、前記重合反応で例示した溶媒の他、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、メチルセロソルブ、エチルセロソルブ等の多価アルコール誘導体類、水などの一種単独又は二種以上の混合溶媒の存在下、塩酸、硫酸、塩化水素ガス、臭化水素酸、p−トルエンスルホン酸、1,1,1−トリフロロ酢酸、一般式XHSO4(式中、XはLi,Na,K等のアルカリ金属を表す)で示される重硫酸塩などの酸性試剤を触媒として、室温〜150℃の温度で行われる。この反応において、溶媒の種類と濃度、触媒の種類と添加量、及び反応温度と反応時間を適当に組み合わせることにより、フェノール性水酸基の保護基が全部又は選択的に一部脱離されて、本発明の狭分散且つ構造の制御されたアルケニルフェノール系星型ブロックコポリマーを製造することができる。
【0068】
以上のようにして得られた本発明のアルケニルフェノール骨格を有する星型ブロックコポリマーのうち、多官能性カップリング剤とアームポリマーの反応で得られるコポリマーでは、反応が完全に進行せずアームポリマー鎖が最終生成物に混入する場合がある。この場合、星型ブロックコポリマーの物性にばらつきが出る場合など、必要に応じて、アームポリマー鎖を除去することも可能である。除去する方法としては分別再沈法を好適に例示することができ、かかる分別再沈法としては、ポリマー溶解性の高い溶媒とポリマー溶解性の低い溶媒の混合溶媒を用いて再沈を行うのが好ましく、ポリマー溶解性の高い溶媒とポリマー溶解性の低い溶媒の混合溶媒中で星型ブロックコポリマーを加熱溶解し冷却する方法や、ポリマー溶解性の高い溶媒に溶解後にポリマー溶解性の低い溶媒を添加して星型ブロックコポリマーを結晶化させる方法等を例示することができ、後者の方法においても、溶媒を適宜加熱しながら行うことができる。上記星型ブロックコポリマーの溶解性の高い溶媒としてメタノール、エタノール等の低級アルコール類を、ポリマー溶解性の低い溶媒として水等を好ましく例示することができる。また、両溶媒の混合比は、精製する星型ブロックコポリマーによっても異なるが、その容積比[(ポリマー溶解性の高い溶媒)/(ポリマー溶解性の低い溶媒)]は、90/10〜10/90、さらに80/20〜20/80の範囲が好ましい。かかる溶媒の濃度については特に制限はないが、例えば1〜50%の範囲を、好ましくは2〜30%の範囲を例示することができる。1%以下では、溶媒量が多くなるため、又は結晶回収率が低下し、50%以上では、不純物の除去の効率が低下する。そして、これらの操作を数回繰返すことにより、目的の星型ブロックコポリマーをほぼ純粋な形で取り出すことができる。
【0069】
【実施例】
以下、本発明を実施例により、さらに詳細に説明する。但し、本発明の技術的範囲は、下記実施例により何ら制限を受けるものではない。
【0070】
実施例1
窒素雰囲気下において、トルエン750gとテトラヒドロフラン(以下、THFと略す)750gの混合溶媒中に、n−ブチルリチウム(以下、NBLと略す)50ミリモルを加え、撹拌下、−40℃に保持しながら、p−tert−ブトキシスチレン(以下、PTBSTと略す)1モルを1時間かけて滴下し、さらに反応を1時間継続し、ガスクロマトグラフィー(以下、GCと略す)により反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、ゲルパーミェイションクロマトグラフィー(以下、GPCと略す)により分析したところ、得られたPTBSTポリマーは、Mn=3700,Mw/Mn=1.10の単分散ポリマーであった。
【0071】
次いで、反応系を−40℃に保ちながら、ジビニルベンゼン(以下、DVBと略す)150ミリモルを添加し、さらに反応を4時間継続した後、GCにより残モノマーが無いことを確認した。ついで、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.5%であった。このポリマーのGPC分析を行ったところ、Mn=29000,Mw/Mn=1.14の単分散ポリマーであった。
【0072】
次に、得られたポリマー10gをトルエン/エタノール=1/1(重量比)の混合溶媒に溶解して25%溶液とし、硫酸1.4gを加えて40℃で45時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー7.1gを得た。
【0073】
この反応において、反応前後におけるポリマーの赤外線吸収スペクトル(以下、IRと略す)及びl3CNMR(以下、NMRと略す)を比較した。IRにおいて、890cm-1におけるポリPTBSTのt−ブチル基由来の吸収が反応後は消失し、新たに3300cm-l付近に水酸基由来のブロードな吸収が観察された。また、NMRにおいて、77ppmおよび153ppm付近におけるポリPTBSTのt−ブチル基由来のピークが反応後は消失していた。また、生成したポリマーについてGPCを測定したところ、Mn=26500、Mw/Mn=1.16の単分散ポリマーであった。以上のことから、共重合反応とその後の脱離反応は設定どおりに行われ、p−ヒドロキシスチレンセグメントを主骨格とするアルケニルフェノール系星型ブロックコポリマーが生成したことを確認することができた。
【0074】
実施例2
窒素雰囲気下において、THF2000g中に、NBL30ミリモルを加え、撹拌下、−60℃に保持しながら、PTBST1モルを1時間かけて滴下し、さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=5700,Mw/Mn=1.10の単分散ポリマーであった。次いで、反応系を−60℃に保ちながら、DVB30ミリモルを添加し、さらに反応を4時間継続した後、GCにより残モノマーが無いことを確認した。
【0075】
次いで、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.1%であった。このポリマーのGPC分析を行ったところ、Mn=35000,Mw/Mn=1.15のポリマーとMn=5700のポリマーの混合物であった。
【0076】
次に、得られたポリマー10gをTHF/エタノール=4/1(重量比)の混合溶媒に溶解して25%溶液とし、濃塩酸3gを加えて50℃で30時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー6.9gを得た。
【0077】
この反応において、反応前後におけるポリマーのIR及びNMRを測定したところ、実施例1におけると同様に、PTBSTセグメントのt−ブトキシ基由来のピークの消失が確認された。また、生成したポリマーについてGPCを測定したところ、Mn=32000、Mw/Mn=1.19のポリマーとMn=5100のポリマーの混合物であった。以上のことから、共重合反応とその後の脱離反応は設定どおりに行われ、p−ヒドロキシスチレンセグメントを主骨格とするアルケニルフェノール系星型ブロックコポリマーが生成したことを確認することができた。
【0078】
実施例3
窒素雰囲気下において、THF1200gとヘキサン300gの混合溶媒中に、NBL20ミリモルを加え、撹拌下、−60℃に保持しながら、PTBST1モルを1時間かけて滴下し、さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=8900,Mw/Mn=1.07の単分散ポリマーであった。
【0079】
次いで、反応系を−40℃に昇温した後、DVB96ミリモルとエチルビニルベンゼン4ミリモルの混合物を添加し、さらに反応を4時間継続した後、GCにより残モノマーが無いことを確認した。ついで、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.5%であった。このポリマーのGPC分析を行ったところ、Mn=70000,Mw/Mn=1.21のポリマーとMn=8900のポリマーの混合物であった。
【0080】
次に、得られたポリマー10gをトルエン/エタノール=1/2(重量比)の混合溶媒に溶解して25%溶液とし、硫酸3gを加えて40℃で45時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー7.0gを得た。
【0081】
この反応において、反応前後におけるポリマーのIR及びNMRを測定したところ、実施例1におけると同様に、PTBSTセグメントのt−ブトキシ基由来のピークの消失が確認された。また、生成したポリマーについてGPCを測定したところ、Mn=64000、Mw/Mn=1.22のポリマーとMn=8000のポリマー(10%)の混合物であった。以上のことから、共重合反応とその後の脱離反応は設定どおりに行われ、p−ヒドロキシスチレンセグメントを主骨格とするアルケニルフェノール系スターポリマーが生成したことを確認することができた。
【0082】
以上のようにして得られた混合物3.5gを、濃度2重量%になるように純水/メタノール(体積比1/1)の混合溶媒を加え、加熱溶解し、室温まで放置し結晶化させたのち、濾過し、3.0gの結晶を得た。結晶をGPCを用いて分析したところ、アームポリマー残渣は0.35%であった。また、以上のようにして得られた混合物3.5gを、メタノール35mlに溶解し、その後35mlの純水を添加して結晶化させ、濾別し、3.2gの結晶を得た。結晶をGPCを用いて分析したところ、アームポリマー残渣は4.26%であった。
【0083】
実施例4
窒素雰囲気下において、THF2000g中にNBL29ミリモルを加え、撹拌下、−50℃に保持しながら、PTBST1モルとスチレン0.3モルとの混合物を1時間かけて滴下し、さらに1時間反応を継続し、GCによリ反応完結を確認した。この段階でのPTBST/スチレン系ポリマーは、Mn=7200、Mw/Mn=1.05の単分散ポリマーであった。ついで、反応系を−30℃に昇温後、DVB30ミリモルを添加し、さらに反応を5時間継続してから、GCにより反応完結を確認した。
【0084】
次に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.3%であった。このポリマーのGPC分析を行ったところ、Mn=63000,Mw/Mn=1.20の単分散ポリマーとMn=7200のポリマーの混合物であった。
【0085】
次いで、得られたポリマー10gをTHF/エタノール=1/1(重量比)の混合溶媒に溶解して25%溶液とし、硫酸水素ナトリウム3gを加えて50℃で20時間反応を行った後、反応液を濾過して硫酸水素ナトリウムを除去し、濾液を大量の水中に水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー7.1gを得た。この反応において、反応前後におけるポリマーのIR及びNMRを測定したところ、実施例1におけると同様に、PTBSTセグメントのt−ブトキシ基由来のピークの消失が確認された。また、生成したポリマーについてGPCを測定した結果、Mn=56000、Mw/Mn=1.24のポリマーとMn=6500のポリマーの混合物であった。以上のことから、共重合反応と脱離反応は設定どおりに行われ、p−ヒドロキシスチレンとスチレンのランダム共重合体を主骨格とするアルケニルフェノール系スターポリマーが生成したことを確認することができた。
【0086】
実施例5
窒素雰囲気下において、トルエン1000gとTHF1000gの混合溶媒中にNBL40ミリモルを加え、撹拌下、−40℃に保持しながら、PTBST1モルを1時間かけて滴下し、さらに1時間反応を継続し、GCによリ反応完結を確認した。この段階でのPTBSTポリマーは、Mn=4500、Mw/Mn=1.11の単分散ポリマーであった。次いで、スチレン0.3モルを15分かけて滴下し、さらに1時間反応を継続した後、GCによリ反応完結を確認した。この段階でのPTBST/スチレンブロック共重合体は、Mn=5300、Mw/Mn=1.09の単分散ポリマーであった。最後に、反応系を−40℃に保持し、DVB120ミリモルを添加した後に反応を5時間継続してから、GCにより反応完結を確認した。
【0087】
次に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.3%であった。このポリマーのGPC分析を行ったところ、Mn=34000,Mw/Mn=1.18の単分散ポリマーであった。
【0088】
次に、得られたポリマー10gをTHF/エタノール=2/1(重量比)の混合溶媒に溶解して25%溶液とし、硫酸水素ナトリウム3gを加えて50℃で20時間反応を行った後、反応液を濾過して硫酸水素ナトリウムを除去し、濾液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー7.2gを得た。この反応において、反応前後におけるポリマーのIR及びNMRを測定したところ、実施例1におけると同様に、PTBSTセグメントのt−ブトキシ基由来のピークの消失が確認された。また、生成したポリマーについてGPCを測定した結果、Mn=30000、Mw/Mn=1.22の単分散ポリマーであった。以上のことから、共重合反応と脱離反応は設定どおりに行われ、p−ヒドロキシスチレンセグメントとスチレンセグメントとのブロック共重合体を主骨格とするアルケニルフェノール系スターポリマーが生成したことを確認することができた。
【0089】
実施例6
窒素雰囲気下において、THF2000g中に、NBL30ミリモルを加え、撹拌下、−60℃に保持しながら、PTBST1モルを1時間かけて滴下。さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたポリマーは、Mn=6100、Mw/Mn=1.12の単分散ポリマーであった。次いで、反応系を−60℃に保ちながら、DVB90ミリモルを添加し、さらに反応を3時間継続した後、GCにより残モノマーが無いことを確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたポリマーは、Mn=45100、Mw/Mn=1.16の単分散ポリマーであった。
【0090】
次に、反応系を−60℃に保ちながら、1,1−ジフェニルエチレン(以下、DPEと略す)45ミリモルを添加して、30分熟成し、さらに、tert−ブチルメタクリレート(以下、t−BMAと略す)0.43モルを添加し、反応を1時間継続した。最後に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.1%であった。このポリマーのGPC分析を行ったところ、Mn=46400、Mw/Mn=1.20の単分散ポリマーであった。
【0091】
次いで、得られたポリマー10gTHF/エタノール=4/1(重量比)の混合溶媒に溶解して25%溶液とし、濃塩酸2gを加えて50℃で30時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー7.2gを得た。この反応において、反応前後におけるポリマーの赤外線吸収スペクトル(以下、IRと略す)及びNMRを比較した。IRにおいて、890cm-1におけるポリPTBSTのt−ブチル基由来の吸収が反応後は消失し、新たに3300cm-1付近に水酸基由来のブロードな吸収が観察された。また、NMRにおいて、77ppm付近におけるポリPTBSTのt−ブチル基由来のピークが反応後は消失していた。また、生成したポリマーについてGPCを測定しところ、Mn=42000、Mw/Mn=1.21のポリマーであった。
【0092】
実施例7
窒素雰囲気下において、トルエン1600gとTHF400gの混合溶媒中に、NBL23ミリモルを加え、撹拌下、−40℃に保持しながら、PTBST1モルを1時間かけて滴下した。さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=7900、Mw/Mn=1.07の単分散ポリマーであった。次いで、反応系を−40℃に保ちながら、DVB50ミリモルを添加し、さらに反応を3時間継続した後、GCにより残モノマーが無いことを確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたポリマーは、Mn=61500、Mn/Mw=1.17の単分散ポリマーとMn=7900のポリマーの混合物であった。
【0093】
次に、反応系を−40℃に保ちながら、DPE28ミリモルを添加して、30分熟成し、さらに、t−BMA0.2モルを添加し、反応を1時間継続した。最後に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.8%であった。このポリマーのGPC分析を行ったところ、Mn=63000、Mw/Mn=1.21の単分散ポリマーとMn=7900のポリマーの混合物であった。
【0094】
次に、得られたポリマー10gをTHF/エタノール=3/1(重量比)の混合溶媒に溶解して25%溶液とし、濃塩酸2.4gを加えて50℃で30時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー6.9gを得た。この反応において、反応前後におけるポリマーのIR及びNMRは実施例1と同様に変化した。また、生成したポリマーについてGPCを測定したところ、Mn=56000、Mw/Mn=1.21の単分散ポリマーとMn=7100のポリマーの混合物であった。
【0095】
実施例8
窒素雰囲気下において、トルエン1000gとTHF1000gの混合溶媒中に、NBL18ミリモルを加え、撹拌下、−40℃に保持しながら、PTBST0.9モルを1時間かけて滴下した。さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=9100、Mw/Mn=1.09の単分散ポリマーであった。次いで、反応系を−20℃に昇温して、DVB54ミリモルとスチレン13ミリモルの混合物を添加し、さらに反応を3時間継続した後、GCにより残モノマーが無いことを確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたポリマーは、Mn=57000、Mn/Mw=1.17の単分散ポリマーとMn=9100のポリマーの混合物であった。
【0096】
次に、反応系を−20℃に保ちながら、DPE21ミリモルを添加して、30分熟成し、さらに、t−BMA0.1モルを添加し、反応を1時間継続した。最後に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.6%であった。このポリマーのGPC分析を行ったところ、Mn=58200、Mw/Mn=1.21の単分散ポリマーとMn=9100のポリマーの混合物であった。
【0097】
次いで、得られたポリマー10gをTHF/エタノール=1/1(重量比)の混合溶媒に溶解して25%溶液とし、濃硫酸0.5gを加えて50℃で30時間反応を行った後、反応液を大量の水中に投入してポリマーを析出させ、濾過、洗浄後、60℃で5時間減圧乾燥して白色粉体状のポリマー6.9gを得た。この反応において、反応前後におけるポリマーのIR及びNMRは実施例1と同様に変化した。また、生成したポリマーについてGPCを測定したところ、Mn=51200、Mw/Mn=1.20の単分散ポリマーとMn=8100のポリマーの混合物であった。
【0098】
実施例9
窒素雰囲気下において、トルエン750gとTHF750gの混合溶媒中に、NBL50ミリモルを加え、撹拌下、−40℃に保持しながら、PTBST1モルを1時間かけて滴下し、さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=3700,Mw/Mn=1.10の単分散ポリマーであった。次いで、反応系を−40℃に保ちながら、DVB150ミリモルを添加し、さらに反応を4時間継続した後、GCにより残モノマーが無いことを確認した。ついで、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.5%であった。このポリマーのGPC分析を行ったところ、Mn=29000,Mw/Mn=1.14の単分散ポリマーであった。
【0099】
次に、得られたポリマー10gをトルエン/エタノール=1/1(重量比)の混合溶媒に溶解して25%溶液とし、硫酸1.4gを加えて脱ブチル化反応を開始した。65〜70℃で反応を行い、反応液を少量採取し、IRスペクトルを測定して、反応を追跡し、脱離が所定量に達したことを確認し、速やかに反応系を氷水浴で冷却後、反応液を多量の水中に投入してポリマーを析出させ、ろ過、洗浄後、70℃で5時間減圧乾燥して白色粉体状のポリマー7.0gを得た。このポリマーをGPCにより分析し、Mn=27000、Mw/Mn=1.15の単分散ポリマーであり、NMRにより求めたパラヒドロキシスチレン(PHS)単位/PTBST単位=0.88/0.12(モル比)であった。
【0100】
実施例10
窒素雰囲気下において、トルエン1600gとTHF400gの混合溶媒中に、NBL23ミリモルを加え、撹拌下、−40℃に保持しながら、PTBST1モルを1時間かけて滴下した。さらに反応を1時間継続し、GCにより反応完結を確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたPTBSTポリマーは、Mn=7900、Mw/Mn=1.07の単分散ポリマーであった。次いで、反応系を−40℃に保ちながら、DVB50ミリモルを添加し、さらに反応を3時間継続した後、GCにより残モノマーが無いことを確認した。この段階で反応系から少量を採取し、メタノールにより反応を停止させた後、GPCにより分析したところ、得られたポリマーは、Mn=55300、Mn/Mw=1.17の単分散ポリマーとMn=7900のポリマーの混合物であった。
【0101】
次に、反応系を−40℃に保ちながら、DPE28ミリモルを添加して、30分熟成し、さらに、t−BMA0.2モルを添加し、反応を2時間継続した。最後に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.8%であった。このポリマーのGPC分析を行ったところ、Mn=56500、Mw/Mn=1.21の単分散ポリマーとMn=7900のポリマーの混合物であった。
【0102】
この得られたポリマー10gをTHF/エタノール=3/1(重量比)の混合溶媒に溶解して25%溶液とし、濃塩酸2.4gを加えて50℃で脱ブチル化反応を開始した。65〜70℃で反応を行い、反応液を少量採取し、IRスペクトルを測定して、反応を追跡し、脱離が所定量に達したことを確認し、速やかに反応系を氷水浴で冷却後、反応液を多量の水中に投入してポリマーを析出させ、ろ過、洗浄後、70℃で5時間減圧乾燥して白色粉体状のポリマー7.0gを得た。このポリマーをGPCにより分析し、Mn=49000、Mw/Mn=1.20の単分散ポリマーであり、NMRにより求めたPHS単位/PTBST単位=0.90/0.10(モル比)であった。
【0103】
実施例11
窒素雰囲気下において、THF2000g中にNBL29ミリモルを加え、撹拌下、−50℃に保持しながら、PTBST1モルとスチレン0.3モルとの混合物を1時間かけて滴下し、さらに1時間反応を継続し、GCによリ反応完結を確認した。この段階でのPTBST/スチレン系ポリマーは、Mn=7200、Mw/Mn=1.05の単分散ポリマーであった。次いで、反応系を−30℃に昇温後、DVB30ミリモルを添加し、さらに反応を5時間継続してから、GCにより反応完結を確認した。
【0104】
次に、反応系にメタノールを加えて反応を停止させ、反応液を大量のメタノール中に投入してポリマーを析出させ、濾過、洗浄後、60℃で15時間減圧乾燥して白色粉体状のポリマーを得た。用いたモノマー総量に対する重合収率は、99.3%であった。このポリマーのGPC分析を行ったところ、Mn=47000、Mw/Mn=1.20の単分散ポリマーとMn=7200のポリマーの混合物であった。
【0105】
次いで、得られたポリマー10gをTHF/エタノール=1/1(重量比)の混合溶媒に溶解して25%溶液とし、硫酸1.4gを加えて脱ブチル化反応を開始した。65〜70℃で反応を行い、反応液を少量採取し、IRスペクトルを測定して、反応を追跡し、脱離が所定量に達したことを確認し、速やかに反応系を氷水浴で冷却後、反応液を多量の水中に投入してポリマーを析出させ、ろ過、洗浄後、70℃で5時間減圧乾燥して白色粉体状のポリマー7.0gを得た。
【0106】
このポリマーをGPCにより分析し、Mn=43500、Mw/Mn=1.15の単分散ポリマーであり、NMRにより求めたパラヒドロキシスチレン(PHS)単位/PTBST単位=0.88/0.12(モル比)であった。以上のことから、共重合反応と脱離反応は設定どおりに行われ、p−ヒドロキシスチレンとスチレンのランダム共重合体を主骨格とするアルケニルフェノール系スターポリマーが生成したことを確認することができた。
【0107】
【発明の効果】
本発明によると、エキシマレーザーおよび電子線用レジスト材料としての利用が期待される、アルケニルフェノール部をアーム部に有する分子量分布が狭く、且つ構造の制御された星型ブロック共重合体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a star block copolymer having an arm part having an alkenylphenol homopolymer or copolymer as a polymer chain and a method for producing the same. The star block copolymer of the present invention is a compound expected to be used as an excimer laser and electron beam resist material.
[0002]
[Prior art]
An alkenylphenol homopolymer or copolymer represented by poly-p-hydroxystyrene is useful as a chemically amplified excimer laser resist material. Among them, poly- (p-hydroxystyrene) or (p-hydroxystyrene / A resist using a styrene copolymer is known as a resist capable of high resolution.
[0003]
As for the star block copolymer, for example, in JP-A-5-222114, a block copolymer molecule is produced by anionic polymerization of isoprene and styrene, and 2.5 mol or more of poly (polystyrene) per mol of the block copolymer molecule. A star polymer is described which is coupled with an alkenyl coupling agent and is selectively hydrogenated with at least 95% or less isoprene units (olefinic unsaturation) and less than 15% styrene units (aromatic unsaturation). ing.
[0004]
JP-A-6-220203 discloses at least one polymer block derived from an unsaturated carboxylic acid ester of (1,1-disubstituted) alkyl, and at least one polymer block derived from a conjugated diene, and A modified block copolymer comprising at least one polymer block derived from a monovinyl aromatic compound and comprising a crosslinked core of a polyfunctional coupling agent is described.
[0005]
JP-A-6-256436 includes a hydrogenated polymerized conjugated diene and includes at least three first arms having a peak molecular weight of 10,000 to 200,000; a polymerized methacrylate and / or an amide or imide derivative thereof, A polymer comprising at least three second arms having a peak molecular weight of 500 to 10,000; and a central core comprising a polymerized bis-unsaturated monomer, connecting the first and second arms in a star configuration is described. .
[0006]
JP-A-7-97413 discloses a general formula.
Embedded image
(Wherein C is a block of cross-linked bis-unsaturated monomer; A is each independently a block of anionically polymerized monomer; M is a block of polymerized alkyl methacrylate polymerized via ethylene unsaturation of the methacrylic acid moiety) R is 0 or 1; s and t are on average 2 or more, where s ≦ t), the molecular weight is 20,000 to 2,000,000, and A is styrene or isoprene. Certain star block polymers have been described.
[0007]
In JP-A-8-48987, (EP′-S-EP ″) n—X (wherein EP ′ has a number average molecular weight (Mn) before hydrogenation of 10,000 to 100,000). It is a first hydrogenated block of polyisoprene (I ′), S is a polystyrene block having an average molecular weight (Mn) of 6,000 to 50,000, and EP ″ is a number average molecular weight before hydrogenation ( Mn) is a second hydrogenated block of polyisoprene (I ″) with 2,500 to 50,000, the molecular weight ratio of I ′ / I ″ is at least 1.4, and X is A nucleus composed of a polyalkenyl coupling agent, where n is one molecule of a star molecule formed by reacting 2 or more moles of polyalkenyl coupling agent per mole of (EP′-S-EP ″) arm. Is the average number of arms per unit) Of polystyrene blocks and hydrogenated polyisoprene blocks are combined in molecules having describes a useful star polymers as viscosity index (VI) improver.
[0008]
JP-A-8-81514 discloses a general formula (I) (PA) that is soluble in a nonpolar solvent and does not contain (or substantially does not contain) any residual double bond. a N n- nLi + Wherein PA represents a polymer block resulting from at least one monomer A selected from vinyl aromatic monomers and diene monomers; a is the number of arms of the PA block and is 3 to 30, in particular 3 N represents the number: N is the formula: (PMc) (RLi) p, where Mc is a monomer containing at least two polymerizable double bonds per molecule; PMc is the initial from the monomer Mc A cross-linked core of at least one polymerization monomer Mc containing 3-30% residual double bonds with respect to double bonds; R is a linear or branched alkyl group or the like; p is RLi Represents the number of residual double bonds in the PMc that have been neutralized by) and represents a crosslinked core that does not contain or substantially does not contain any residual double bonds; n is present in the crosslinked core The number of anion sites equal to a + p (or p) where p has the above meaning and a is the number of anion sites present in the bridged PMc core prior to the addition of RLi). The polyfunctional initiators represented by the anionic polymerization are described.
[0009]
JP-A-8-504865 discloses (a) at least three arms from at least one anionically polymerized monomer selected from the group consisting of monovinyl aromatic hydrocarbons, conjugated dienes, and mixtures thereof; (B) at least three arms made of polydimethylsiloxane, and (C) a core made of a polyalkenyl aromatic coupling agent (the arms of (a) and (b) extend radially outward from this core. A star-shaped block copolymer is described.
[0010]
JP-A-8-505179 discloses a general formula (AB) n (B) mX (wherein A is a polystyrene block having a peak molecular weight of less than 15,000, and B is 15,000 to A polymer block of a hydrogenated conjugated diene having a peak molecular weight in the range of 50,000, X is a block of divinylbenzene and n and m are integers greater than or equal to 0, and the sum of n and m is at least 10 Certain) block copolymers are described.
[0011]
JP-A-9-510236 discloses (a) 4 or more molecules of a multifunctional binder that forms a core selected from the group consisting of divinyl aromatic compounds, trivinyl aromatic compounds, diepoxides, diketones, and dialdehydes; And (b) comprising three or more cationic polymer branches bonded to the core, wherein the polymer branches are homopolymers, copolymers, at least one polyolefin segment and at least one polyaryl segment. A star copolymer is described which is selected from the group consisting of block copolymers and graft copolymers having.
[0012]
[Problems to be solved by the invention]
Conventionally, as a base polymer for a positive resist material, it is known that a high molecular weight polymer is preferable in terms of resolution, heat resistance and the like. However, resist coating on a substrate is usually performed by a spin coat method. Therefore, when the molecular structure of the base polymer is increased to a high molecular weight as a conventional linear structure, there is a problem that the resist viscosity increases and as a result, spin coating becomes difficult. In addition, in the above-described star block copolymer, an arm portion having a hydroxystyrene skeleton has not been known so far.
[0013]
An object of the present invention is to provide a novel star-shaped block copolymer that can be made high in molecular weight when used as a solution, and is expected as a resist material having a lower viscosity than a linear polymer having the same molecular weight, and its production It is to provide a method.
[0014]
[Means for Solving the Problems]
As a result of diligent research to achieve the above-mentioned problems, the present inventors have homopolymerized a compound in which the hydroxyl group of the phenol residue of alkenylphenol is protected by a protecting group by the living anion polymerization method, or After the copolymerization with a vinyl aromatic compound, etc., the star block copolymer obtained by carrying out a copolymerization reaction with the polyvinyl compound or the like is used to remove the protecting group of the phenolic hydroxyl group using an acidic reagent. As a result, it was found that an alkenylphenol-based star block copolymer having an alkenylphenol having a narrow molecular weight distribution and a controlled structure as a main skeleton was obtained, and the present invention was completed.
[0015]
That is, the present invention
(1) In a star block copolymer having an arm part composed of a central core and a polymer chain extending from the central core, the arm part (A) has the general formula (I)
Embedded image
(Wherein R 1 Represents a hydrogen atom or a methyl group, R 2 Represents a hydrogen atom or a C1-C6 alkyl group, p represents 1 or 2, and when p is 2, R represents 2 May be the same or different. A star-shaped block copolymer comprising a polymer chain (A1) having a repeating unit represented by ー ,
(2) The polymer chain (A1) has the general formula (I) and the general formula (II).
Embedded image
(Wherein R Three Represents a hydrogen atom or a methyl group, R Four Represents a C1-C6 alkyl group, R Five Represents an acid decomposition / leaving group, q represents 0, 1, or 2, and when q is 2, R represents Four May be the same or different. It is a copolymer having a repeating unit represented by (1) Star block copolymer described in ー ,
(3) The polymer chain (A1) has the general formula (I) and the general formula (III)
Embedded image
(Wherein R 6 Represents a hydrogen atom, a methyl group, or an aryl group which may have a substituent, and R 7 Represents a C1-C6 alkyl group, r represents 0, 1, or 2, and when r is 2, R represents 7 May be the same or different. It is a copolymer having a repeating unit represented by (1) Star block copolymer described in ー ,
(4) The polymer chain (A1) has a repeating unit represented by the general formula (I), the general formula (II) and the general formula (III). (1)-(3) Star block copolymer described in ー ,
(5) The arm part (A) has a polymer chain (A1) and a general formula (IV)
Embedded image
(Wherein R 8 Represents a hydrogen atom or a methyl group, R 9 Is a hydrogen atom, a C1-C12 alkyl group, a hydrocarbon group having a C3 or higher alicyclic skeleton which may have a substituent, an alkyl group having a hydrocarbon group having the alicyclic skeleton, or hetero Represents a cyclic group. And a polymer chain (A2) having a repeating unit (A21) represented by (1)-(4) Star block copolymer according to any of ー ,
(6) The repeating unit (A21) in which the polymer chain (A2) is represented by the general formula (IV) and the general formula (V)
Embedded image
(Wherein R Ten Represents a hydrogen atom, a methyl group, or an aryl group which may have a substituent, and R 11 Is a C1-C6 alkyl group, OR 12 Group (R 12 Represents a hydrogen atom, a C1-C6 alkyl group, or an acid decomposition / leaving group, t represents an integer of 0 or 1-3, and when t is 2 or more, R 11 May be the same or different. And a repeating unit (A22) represented by (5) Star block copolymer described in ー ,
(7) The polymer chain (A2) is block copolymerized in the (A22)-(A21) type in order from the central core. (6) Star block copolymer described in ー ,
(8) The number average molecular weight of the polymer chain constituting the arm part is 1,000 to 100,000, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.00 to 10,000. It is characterized by being in the range of 1.50 (1) to (7) Star block copolymer according to any of ー ,
(9) The central core is a cross-linked core of a polyfunctional coupling agent (1)-(8) Star block copolymer according to any of ー ,
(10) The polyfunctional coupling agent is a compound having at least two polymerizable double bonds per molecule (9) Star block copolymer described in ー ,
(11) Multifunctional coupling agents are represented by the general formula (VI)
Embedded image
(Wherein R 13 Represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom, R 16 R 17 N (R 16 And R 17 Each independently represents a hydrogen atom, a C1-C6 alkyl group or an alkoxycarbonyl group. ), A methylene group which may have a substituent, a phenylene group which may have a substituent, C (R 18 R 19 ) O, C (R 18 R 19 ) S, C (R 18 R 19 ) N (R 20 ), OC (R 18 R 19 ), SC (R 18 R 19 ), N (R 20 ) C (R 18 R 19 ), (R 18 , R 19 And R 20 Represents a C1-C6 alkyl group and a phenyl group which may have a substituent. ), OCO, or CO 2 CH 2 W represents an integer of 0 or 1 or 2, and when w is 2, Y may be the same or different, and u represents 2 or 3, in which case Y, R 13 , And w may be the same or different. It is a compound represented by (9) or (10) Star block copolymer described in ー ,
(12) The number average molecular weight is 3,000 to 300,000 (1) to (11) Star block copolymer according to any of ー ,
(13) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is in the range of 1.00 to 1.50. (1)-(12) Star block copolymer according to any of To Related.
[0016]
The present invention also provides
(14) By an anionic polymerization method using an anionic polymerization initiator as a polymerization initiator, general formula (VII)
Embedded image
(Wherein R Three , R Four , R Five And q represent the same meaning as described above. ), Or after copolymerization with a compound copolymerizable with the compound represented by the general formula (VII), a polyfunctional coupling agent (C) is further added. It is copolymerized to remove the protecting group of the phenolic hydroxyl group. (1) to (13) To produce a star block copolymer according to any one of Law or ,
(15) A compound which can be copolymerized with the compound represented by the general formula (VII) after homopolymerizing the compound represented by the general formula (VII) by an anionic polymerization method using an anionic polymerization initiator as a polymerization initiator The polyfunctional coupling agent (C) is copolymerized with the copolymer, and then an anionically polymerizable compound is copolymerized to remove the protecting group of the phenolic hydroxyl group. (1) to (13) To produce a star block copolymer according to any one of Law or ,
(16) The active terminal of the polymer chain obtained by homopolymerizing the compound represented by the general formula (VII) by the anionic polymerization method using the polyfunctional coupling agent (C) and the anionic polymerization initiator as the polymerization initiator, or the general formula The molar ratio [(C) / (D)] of the polymer chain copolymerized with the compound represented by (VII) to the active terminal (D) of the polymer chain is 0.1-10. Characterize (14) or (15) Of the star block copolymer described in 1 Law or ,
(17) Multifunctional coupling agents are represented by the general formula (VI)
Embedded image
(Where Y, R 13 , W, and u represent the same meaning as described above. It is a compound represented by (14)-(16) To produce a star block copolymer according to any one of Law or ,
(18) A compound copolymerizable with the compound represented by the general formula (VII) is represented by the general formula (VIII).
Embedded image
(Wherein R 6 , R 7 And r represent the same meaning as described above. It is a compound represented by (14)-(17) To produce a star block copolymer according to any one of Law or ,
(19) The compound capable of anion polymerization is represented by the general formula (IX)
Embedded image
(Wherein R 8 And R 9 Is a compound represented by the same meaning as described above) (15)-(17) To produce a star block copolymer according to any one of To the law Related.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As the star block copolymer of the present invention, the star block copolymer having an arm part composed of a central core and a polymer chain extending from the central core has a repeating unit represented by the general formula (I) in the arm part (A). If it is a polymer containing a polymer chain (A1), it will not restrict | limit in particular, In the repeating unit represented by general formula (I), R 1 Represents a hydrogen atom or a methyl group, R 2 Represents a hydrogen atom or a C1-C6 alkyl group, and specific examples include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, and the like, p represents 1 or 2, and p If is 2, R 2 May be the same or different and R 2 And the substitution position of the hydroxyl group (OH group) is not particularly limited, but the hydroxyl group is preferably a para-position or a meta-position of the alkenyl group.
[0018]
The polymer chain (A1) is preferably a copolymer having a repeating unit represented by the general formula (I) and a repeating unit represented by the general formula (II). The molar ratio of the repeating unit represented by the general formula (I) to the repeating unit represented by the general formula (II) in the polymer chain (A1) is not particularly limited, but the ratio [general formula (I) / The general formula (II)] is in the range of 99/1 to 50/50, preferably 95/5 to 60/40. In the repeating unit represented by the general formula (II), R Three Represents a hydrogen atom, a methyl group, or an aryl group which may have a substituent. Specifically, a phenyl group, p-tolyl group, 4-methoxyphenyl group and the like can be exemplified. R Four Represents a hydrogen atom or a C1-C6 alkyl group. Specifically, a methyl group, an ethyl group, an isopropyl group, a t-butyl group and the like can be exemplified. q represents 1 or 2, and when q is 2, R Four May be the same or different. R Four And an alkoxy group (OR Five The substitution position of the group) is not particularly limited, but the alkoxy group is preferably a para position or a meta position of the alkenyl group.
[0019]
R Five Represents an acid decomposition / leaving group. Here, the acid leaving / decomposing group means a group capable of leaving and / or decomposing by an acid. Specifically, methoxymethyl group, 2-methoxyethoxymethyl group, bis (2-chloroethoxy) methyl group, tetrahydropyranyl group, 4-methoxytetrahydropyranyl group, tetrahydrofuranyl group, triphenylmethyl group, trimethylsilyl group 2- (trimethylsilyl) ethoxymethyl group, t-butyldimethylsilyl group, trimethylsilylmethyl group, t-butyl group, t-butoxycarbonyl group, t-butoxycarbonylmethyl group, 2-methyl-2-t-butoxycarbonylmethyl Examples include groups.
[0020]
In addition, R Five As the following formula (wherein R 14 Represents a C1-C20 unsubstituted or alkoxy-substituted alkyl group, a C5-C10 cycloalkyl group, or a C6-C20 unsubstituted or alkoxy-substituted aryl group, and R 15 Represents hydrogen or a C1-C3 alkyl group, R 16 Represents hydrogen, a C1-C6 alkyl group, or a C1-C6 alkoxy group. ), And specific examples of such a substituent include 1-methoxyethyl group, 1-ethoxyethyl group, 1-methoxypropyl group, 1-methyl-1-methoxyethyl. Examples thereof include 1- (isopropoxy) ethyl group and the like.
[0021]
Embedded image
[0022]
Moreover, as said polymer chain (A1), the copolymer which has a repeating unit represented by general formula (I) and a repeating unit represented by general formula (III) is preferable. In the repeating unit represented by the general formula (III), R 6 Represents a hydrogen atom or a methyl group, R 7 Represents a hydrogen atom or a C1-C6 alkyl group, and specific examples include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, and the like, r represents 1 or 2, and r represents In case of 2, R 7 May be the same or different, and the substitution position is not particularly limited. In this polymer chain (A1), the molar ratio between the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (III) is not particularly limited, but the ratio [general formula (I) / The general formula (III)] is preferably in the range of 99/1 to 50/50.
[0023]
Further, the polymer chain (A1) includes a repeating unit represented by the general formula (I), a repeating unit represented by the general formula (II), and a repeating unit represented by the general formula (III). Polymers are preferred. The molar ratio of each repeating unit in the polymer chain (A1) is not particularly limited, but the molar ratio (general formula (I) / [general formula (II) + general formula (III)]) is 99/1. A range of ~ 50/50 is preferred.
[0024]
As said arm part (A), what has a polymer chain (A1) and a polymer chain (A2) which has a repeating unit (A21) represented by general formula (IV) is preferable. In the repeating unit represented by the general formula (IV), R 8 Represents a hydrogen atom or a methyl group. R 9 Is a hydrogen atom, a C1-C12 alkyl group, a hydrocarbon group having a C3 or higher alicyclic skeleton which may have a substituent (however, the carbon number of the substituent is not included), the alicyclic ring An alkyl group having a hydrocarbon group having a formula skeleton or a heterocyclic group is represented, and an acid-decomposing / leaving group is particularly preferable, and a group having a t-butyl group that can be eliminated / decomposed by an acid is preferable. Here, the acid-decomposing / leaving group means a group that is decomposed and / or eliminated by an acid.
[0025]
R above 9 Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, methoxymethyl group, 2-methoxyethoxymethyl group, bis (2-chloroethoxy) methyl group , Tetrahydropyranyl group, 4-methoxytetrahydropyranyl group, tetrahydrofuranyl group, triphenylmethyl group, trimethylsilyl group, 2- (trimethylsilyl) ethoxymethyl group, t-butyldimethylsilyl group, trimethylsilylmethyl group, and the following formula ( In the formula, u represents 0 or 1.).
[0026]
Embedded image
[0027]
In addition, R 9 As the following formula (wherein R 17 Represents a C1-C20 unsubstituted or alkoxy-substituted alkyl group, a C5-C10 cycloalkyl group, or a C6-C20 unsubstituted or alkoxy-substituted aryl group, and R 18 Represents hydrogen or a C1-C3 alkyl group, R 19 Represents hydrogen, a C1-C6 alkyl group, or a C1-C6 alkoxy group. ), And specific examples of such substituents include 1-methoxyethyl group, 1-ethoxyethyl group, 1-methoxypropyl group, 1-methyl-1 Examples include a -methoxyethyl group, 1- (isopropoxy) ethyl group, and the like.
[0028]
Embedded image
[0029]
The repeating unit in the polymer chain (A) having the repeating unit (A21) represented by the general formula (VI) may be a single unit or a mixture of two or more types, and in the case of a mixture of two or more types, its structure Is not particularly limited, and may be combined randomly or in blocks. Furthermore, the molar ratio at that time is not particularly limited. For example, in the case of mixing two kinds, any value in the range of 1/9 to 9/1 can be taken.
[0030]
As said polymer chain (A2), what has the repeating unit (A22) represented by the repeating unit (A21) represented by general formula (IV) and general formula (V) is preferable. The molar ratio of (A21) to (A22) in this polymer chain (A2) is not particularly limited, but the ratio [(A21) / (A22)] is 5/95 to 100/0, preferably 50/50 to The range is 99/1. In the repeating unit represented by the general formula (V), R Ten Represents a hydrogen atom, a methyl group, or an aryl group which may have a substituent, and specific examples thereof include a phenyl group, a p-tolyl group, and a 4-methoxyphenyl group. R 11 Is a hydrogen atom, a C1-C6 alkyl group, or OR 12 Group (R 12 Represents a hydrogen atom, a C1-C6 alkyl group, or an acid decomposition / leaving group. ). Specific examples of the C1-C6 alkyl group include a methyl group, an ethyl group, an isopropyl group, and a t-butyl group. OR above 12 R in the group 12 Specifically, R Five The same substituents as those exemplified above can be exemplified. t represents an integer of 0 or 1 to 3, and when t is 2 or more, R 11 May be the same or different. Also R 11 The substitution position of is not particularly limited, but OR 12 In the case of a group, the para-position or meta-position of the alkenyl group is preferred.
[0031]
In the polymer chain (A2), the arrangement of the repeating unit (A21) represented by the general formula (IV) and the repeating unit (A22) represented by the general formula (V) is not particularly limited, and random polymerization, block polymerization Any copolymer may be used. Among these, an arm portion having a polymer in which the repeating units (A21) and (A22) are block-copolymerized from the central core to the (A22)-(A21) type is preferable.
[0032]
The polymer of the present invention may contain a repeating unit other than the repeating units represented by the general formula (I) to the general formula (V) as necessary. The repeating unit is not particularly limited as long as it is a repeating unit obtained from a compound having a double bond copolymerizable with the monomer corresponding to the general formula (I) to the general formula (V). A repeating unit having no acidic substituent such as a carboxyl group and a phenol hydroxyl group is preferable. Examples of the monomer corresponding to the repeating unit include a vinyl group-containing compound and a (meth) acryloyl group-containing compound. .
[0033]
Examples of the vinyl group-containing compounds include heteroatom-containing aromatic vinyl compounds such as vinyl pyridine, vinyl ketone compounds such as methyl vinyl ketone and ethyl vinyl ketone, vinyl ether compounds such as methyl vinyl ether and ethyl vinyl ether, and heterogeneous compounds such as vinyl pyrrolidone and vinyl lactam. Specific examples thereof include atom-containing alicyclic vinyl compounds. Examples of the (meth) acryloyl group-containing compound include (meth) acrylic acid amide and (meth) acrylonitrile.
[0034]
These vinyl group-containing compounds and (meth) acryloyl group-containing compounds can be used as one kind or a mixture of two or more kinds, and these vinyl group-containing compounds and repeating units obtained from (meth) acryloyl group-containing compounds Can be incorporated into the alkenylphenol copolymer of the present invention by copolymerizing with the repeating units represented by the general formulas (I) to (V) at random or in blocks.
[0035]
The number average molecular weight of the polymer (arm polymer) chain constituting the arm part (A) of the star block copolymer of the present invention is not particularly limited, and a range of 1,000 to 100,000 can be specifically exemplified. . Further, when the number average molecular weight of the polymer chain constituting the arm portion (A) is 1,000 to 100,000, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) is preferably unimodal with a range of 1.00 to 1.50.
[0036]
As the central core of the star-shaped block copolymer of the present invention, a polyfunctional coupling agent can be preferably exemplified, for example, a trifunctional or higher functional compound can be exemplified, and even if it is a bifunctional compound, When a polymer can be formed to form a tri- or higher functional compound, the use is not hindered. In particular, a central core having a structure in which a polyfunctional coupling agent is polymerized and crosslinked is preferable.
[0037]
Specific examples of the polyfunctional coupling agent include compounds represented by general formula (VI) such as divinyl aromatic compounds and trivinyl aromatic compounds, diepoxides, diketones, dialdehydes, and the following general formula (X). The compound represented (In formula, X represents the substituent selected from the group which consists of a halogen atom, a C1-C6 alkoxyl group, and a C2-C6 acyloxyl group. R 1 And R 2 Each represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms; 1 And R 2 May be the same or different. R Three Are n substituents (CR 1 R 2 X) represents a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group that can have X. n represents an integer of 3 to 6. ).
[0038]
Embedded image
[0039]
Moreover, as said polyfunctional coupling agent, the at least 1 sort (s) of compound specifically selected from the silane compound etc. which consist of a following formula can be mentioned.
[0040]
Embedded image
[0041]
The divinyl aromatic compound is not particularly limited. For example, 1,3-divinylbenzene, 1,4-divinylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4- Diisopropenylbenzene, 1,3-divinylnaphthalene, 1,8-divinylnaphthalene, 2,4-divinylbiphenyl, 1,2-divinyl-3,4-dimethylbenzene, 1,3-divinyl-4,5,8 -Tributylnaphthalene, 2,2'-divinyl-4-ethyl-4'-propylbiphenyl and the like can be mentioned. These may be used alone or in combination of two or more.
[0042]
As such a divinyl aromatic compound, for example, even if it is usually commercially available as a mixture with ethyl vinyl benzene or the like, it can be used as it is if the divinyl aromatic compound is the main component. Depending on the above, it may be used after being purified. Furthermore, other polymerizable double bond aromatic compounds such as styrene can also be mixed and used. In this case, the mixing ratio of styrene is the central core mixed with divinyl aromatic compound and crosslinked. If it can form, it will not be specifically limited, However, It is 1 to 50 weight%, Preferably it is the range of 5 to 20 weight%.
[0043]
The trivinyl aromatic compound is not particularly limited. For example, 1,2,4-trivinylbenzene, 1,3,5-trivinylnaphthalene, 3,5,4'-trivinylbiphenyl, 1,5,6 -Trivinyl-3,7-diethylnaphthalene etc. can be mentioned. These may be used alone or in combination of two or more.
[0044]
Moreover, as the divinyl aromatic compound or the trivinyl aromatic compound, a compound group represented by the general formula (VI) in which a spacer is provided between a vinyl group and an aromatic ring can be exemplified more preferably. More specifically, the compound shown to a following formula can be illustrated, These may be used independently and may use 2 or more types together.
[0045]
Embedded image
[0046]
The diepoxide is not particularly limited, and examples thereof include cyclohexane diepoxide, 1,4-pentane diepoxide, 1,5-hexane diepoxide, and the like. These may be used alone or in combination of two or more.
[0047]
The diketone is not particularly limited, and examples thereof include 2,4-hexane-dione, 2,5-hexane-dione, and 2,6-heptane-dione. These may be used alone or in combination of two or more.
[0048]
The dialdehyde is not particularly limited, and examples thereof include 1,4-butane dial, 1,5-pentane dial, 1,6-hexane dial, and the like. These may be used alone or in combination of two or more.
[0049]
In the general formula (X), X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or an acyloxy group having 2 to 6 carbon atoms. Examples of the halogen atom include chlorine, fluorine, bromine, iodine and the like. It does not specifically limit as said C1-C6 alkoxyl group, For example, a methoxy group, an ethoxy group, n- or an isopropoxy group etc. can be mentioned. It does not specifically limit as said C2-C6 acyloxy group, For example, an acetyloxy group, a propionyloxy group, etc. can be mentioned.
[0050]
In the general formula (X), R 1 And R 2 Each represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 1 And R 2 May be the same or different. Also, there are multiple R 1 And multiple R 2 May be the same or different. It does not specifically limit as said C1-C6 monovalent hydrocarbon group, For example, a methyl group, an ethyl group, n-, or an isopropyl group etc. can be mentioned.
[0051]
In the general formula (X), R Three As described above, n substituents (CR 1 R 2 X) represents a polyvalent aromatic hydrocarbon group or polyvalent aliphatic hydrocarbon group which can have X, and n represents an integer of 3 to 6. And as a compound represented by this general formula (X), the compound represented by the following chemical formula can be illustrated concretely.
[0052]
Embedded image
[0053]
In addition to the compounds exemplified above, compounds represented by the following chemical formulas can be further exemplified as polyfunctional coupling agents.
[0054]
Embedded image
[0055]
As a method for producing the star-shaped block copolymer of the present invention, an anionic polymerization method using an anionic polymerization initiator as a polymerization initiator is used. Three , R Four , R Five And q represent the same meaning as described above. ), Or after copolymerization with a compound copolymerizable with the compound represented by the general formula (VII), and further copolymerizing a polyfunctional coupling agent. , After homopolymerizing the compound represented by the general formula (VII) by a method of removing a protecting group of a phenolic hydroxyl group or an anionic polymerization method using an anionic polymerization initiator as a polymerization initiator, or the general formula After copolymerization with a compound that can be copolymerized with the compound represented by (VII), a polyfunctional coupling agent is copolymerized, an anion polymerizable compound is further copolymerized, and a protective group for the phenolic hydroxyl group is formed. There is no particular limitation as long as it is a desorption method.
[0056]
In the compound represented by the general formula (VII), R Three , R Four , R Five , And q represent the same meaning as described above, and the same substituents can be exemplified. Specific examples of the compound represented by the general formula (VII) include pt-butoxystyrene, pt-butoxy-α-methylstyrene, p- (tetrahydropyranyloxy) styrene, and p- (tetrahydropyranyl). Oxy) -α-methylstyrene, p- (1-ethoxyethoxy) styrene, p- (1-ethoxyethoxy) -α-methylstyrene and the like can be exemplified, and these can be used alone or as a mixture of two or more. Can be used.
[0057]
Examples of the anionic polymerization initiator used in the anionic polymerization method include alkali metals or organic alkali metals. Examples of the alkali metals include lithium, sodium, potassium, cesium, and the like. Examples of the alkali metal alkylates, allylates, arylates and the like include, specifically, ethyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, ethyl sodium, lithium Biphenyl, lithium naphthalene, lithium triphenyl, sodium naphthalene, α-methylstyrene sodium dianion, 1,1-diphenylhexyl lithium, 1,1-diphenyl-3-methylpentyl lithium and the like can be mentioned.
[0058]
The method for producing the star block copolymer of the present invention includes (1) a compound represented by the general formula (VII) alone or a compound represented by the general formula (VII) and the general formula (VII) in the presence of an anionic polymerization initiator. VIII), or a compound represented by the general formula (VII) and a compound having a double bond copolymerizable with the compound to synthesize an arm polymer, A method of reacting a coupling agent and removing all or part of protecting groups of phenolic hydroxyl groups from the resulting copolymer; (2) a reaction of a polyfunctional coupling agent in the presence of an anionic polymerization initiator; After forming the multifunctional core, the compound represented by the general formula (VII) alone, the compound represented by the general formula (VII) and the compound represented by the general formula (VIII), or the general formula (VII And a compound represented by A method of anionically polymerizing a compound having a polymerizable double bond, and removing all or part of the protecting groups of the phenolic hydroxyl group from the obtained copolymer, (3) in the presence of an anionic polymerization initiator, a general formula A compound represented by (VII) alone, a compound represented by general formula (VII) and a compound represented by general formula (VIII), or a compound represented by general formula (VII), and the compound and copolymerizable An arm polymer is synthesized by anionic polymerization of a compound having a double bond, and then a polyfunctional coupling agent is reacted. Further, a compound represented by general formula (IX), or general formula (VIII) A method of reacting an anionically polymerizable monomer such as a compound represented by formula (IX) and a compound represented by the general formula (IX), and removing all or part of the protecting groups of the phenolic hydroxyl group from the obtained copolymer; Can be mentioned, The methods (1) and (3) are preferable for producing a star-shaped block copolymer having a controlled structure because the reaction is easily controlled.
[0059]
In addition, the star block copolymer of the present invention includes triethylamine, 2-chloro-2,4,4-trimethyl-1-pentene / TiCl. Four In the presence of a cationic polymerization initiator such as, a compound represented by general formula (VII) alone, a compound represented by general formula (VII) and a compound represented by general formula (VIII), or general formula (VII) And a compound having a double bond copolymerizable with the compound, and then reacting with a polyfunctional coupling agent. From the resulting copolymer, a protecting group for a phenolic hydroxyl group Can also be produced by a method of detaching all or part of it.
[0060]
The polymerization reaction for synthesizing the arm polymer in the above method (1) or (3) includes a method of dropping an anionic polymerization initiator into a monomer (mixed) solution, or a monomer (mixed) in a solution containing an anionic polymerization initiator. Although any method of dropping the solution can be performed, the method of dropping the monomer (mixed) solution into the solution containing the anionic polymerization initiator is preferable because the molecular weight and the molecular weight distribution can be controlled. This arm polymer synthesis reaction is usually carried out in an organic solvent under an inert gas atmosphere such as nitrogen or argon at a temperature in the range of −100 to 50 ° C., preferably −100 to 40 ° C.
[0061]
Examples of the organic solvent used in the arm polymer synthesis reaction include aliphatic hydrocarbons such as n-hexane and n-heptane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, and aromatic carbonization such as benzene and toluene. In addition to ethers such as hydrogen, diethyl ether, tetrahydrofuran (THF) and dioxane, organic solvents usually used in anionic polymerization such as anisole and hexamethylphosphoramide can be mentioned. It can be used as a mixed solvent of more than one species. Among these, from the viewpoints of polarity and solubility, a mixed solvent of tetrahydrofuran and toluene, tetrahydrofuran and hexane, tetrahydrofuran and methylcyclohexane can be preferably exemplified.
[0062]
Examples of the polymerized form of the arm polymer include random copolymers, partial block copolymers, and complete block copolymers in which each component is statistically distributed throughout the copolymer chain. By selecting the addition method of the compound represented by (VII) and the vinyl aromatic compound, each can be synthesized, for example, a mixture of the compound represented by the general formula (VII) and the vinyl aromatic compound Either a random copolymer is polymerized in addition to the reaction system, and either one of them is polymerized in advance, and then the other mixture is added to continue the polymerization, or a part of either one Is then polymerized in advance, and then a mixture of the two is added to continue the polymerization, whereby the partially block copolymer is converted into a compound represented by the general formula (VII) and a vinyl aromatic. The compound and the reaction system sequentially added to it the I Li complete block copolymer to carry out the polymerization polymer, can be respectively synthesized.
[0063]
The reaction to form a star block copolymer using the arm polymer thus obtained as a branched polymer chain can be carried out by adding a polyfunctional coupling agent to the reaction solution after completion of the arm polymer synthesis reaction. it can. This reaction is usually controlled by carrying out a polymerization reaction at −100 ° C. to 50 ° C., preferably −70 ° C. to 40 ° C. in an organic solvent under an inert gas atmosphere such as nitrogen or argon. In addition, a polymer having a narrow molecular weight distribution can be obtained. In addition, the star block copolymer formation reaction can be continuously performed in the solvent used to form the arm polymer, or the composition is changed by adding a solvent, or the solvent is changed to another solvent. It can also be performed by substitution. As such a solvent, a solvent similar to the organic solvent used in the arm polymer synthesis reaction can be used.
[0064]
In the method for producing a star block copolymer of the present invention, the compound represented by the general formula (VII) is isolated by an anionic polymerization method using a polyfunctional coupling agent (C) and an anionic polymerization initiator as a polymerization initiator. Molar ratio [(C) / (D) between the active terminal of the polymer chain polymerized or the active terminal (D) of the polymer chain copolymerized with a compound copolymerizable with the compound represented by the general formula (VII) )] Is preferably 0.1-10. For example, when a polyvinyl compound such as divinylbenzene is used as the polyfunctional coupling agent, the added amount of the polyvinyl compound is 0.1 to 10 equivalents, preferably 1 to 10 equivalents with respect to the active terminal of the arm polymer chain. It is preferable to set it as the range. The reaction between the arm polymer chain and the polyfunctional coupling agent is performed by adding a polyfunctional coupling agent to the arm polymer chain having an active end, or adding an arm polymer chain having an active end to the polyfunctional coupling agent. Any of the methods can be employed.
[0065]
The number of arms of the star block copolymer is determined by the amount of polyvinyl compound added, the reaction temperature, and the reaction time. However, the number of arms is usually affected by the difference in reactivity between the end of the living polymer and the vinyl group, and steric hindrance. Different star block copolymers are formed simultaneously. In the star block copolymer of the present invention, those having 3 or more arms are particularly preferred. The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) of the resulting star block copolymer is preferably in the range of 1.00 to 1.50. The number average molecular weight of is preferably 3,000 to 300,000.
[0066]
A new arm can be prepared by reacting a monomer capable of anion polymerization with a central core (polyfunctional core) having an active end formed by reacting a previously prepared arm polymer chain with a polyfunctional coupling agent. In the method (3) for forming polymer chains, a star block copolymer having different types of arm polymer chains can be produced. The active terminal present in the central core can be reacted directly with a polymerizable monomer, but after reacting with a compound such as diphenylethylene or stilbene, an alkali metal or alkaline earth metal such as lithium chloride is also available. After adding the mineral acid salt, if the monomer is reacted, for example, when a highly reactive monomer such as an acrylic acid derivative is reacted, the polymerization reaction can proceed slowly, and the star shape produced It may be advantageous to control the overall structure of the block copolymer. In addition, the above reaction can be continuously performed in the solvent used to form the central nucleus having an active end, the composition is changed by adding a solvent, or the solvent is replaced with another solvent. It can also be done. Examples of such a solvent include the same solvents as those used for the synthesis of the arm polymer. In addition, the arm polymer chain newly introduced to the active terminal existing in the central core in the method (3) or the arm polymer chain in the method (2) is reacted by mixing two kinds of monomers. Thus, it is possible to make a polymer chain randomly copolymerized, or to form a block polymer chain by sequentially adding two kinds of monomers. Moreover, it is also possible to introduce a functional group at the terminal by adding carbon dioxide, epoxy or the like after the reaction is completed.
[0067]
The reaction in which the protecting group of the phenolic hydroxyl group is eliminated from the copolymer thus obtained to produce an alkenylphenol skeleton includes, in addition to the solvents exemplified in the polymerization reaction, alcohols such as methanol and ethanol, acetone , Ketones such as methyl ethyl ketone, polyhydric alcohol derivatives such as methyl cellosolve, ethyl cellosolve, water alone, or a mixture of two or more of hydrochloric acid, sulfuric acid, hydrogen chloride gas, hydrobromic acid, p -Toluenesulfonic acid, 1,1,1-trifluoroacetic acid, general formula XHSO Four (In the formula, X represents an alkali metal such as Li, Na, K, etc.) The reaction is carried out at a temperature of room temperature to 150 ° C. using an acidic reagent such as bisulfate represented by In this reaction, the protecting group of the phenolic hydroxyl group is completely or selectively removed by appropriately combining the type and concentration of the solvent, the type and addition amount of the catalyst, and the reaction temperature and reaction time. Narrowly dispersed and structure-controlled alkenylphenol-based star block copolymers of the invention can be produced.
[0068]
Among the star-shaped block copolymers having an alkenylphenol skeleton of the present invention obtained as described above, in the copolymer obtained by the reaction of the polyfunctional coupling agent and the arm polymer, the reaction does not proceed completely and the arm polymer chain May be mixed into the final product. In this case, the arm polymer chain can be removed as necessary, for example, when the physical properties of the star block copolymer vary. As the removal method, a fractional reprecipitation method can be preferably exemplified, and as such a fractional reprecipitation method, reprecipitation is performed using a mixed solvent of a solvent having high polymer solubility and a solvent having low polymer solubility. It is preferable to use a method in which the star block copolymer is heated and cooled in a mixed solvent of a solvent having a high polymer solubility and a solvent having a low polymer solubility, or a solvent having a low polymer solubility after being dissolved in a solvent having a high polymer solubility. Examples thereof include a method of adding and crystallizing a star-shaped block copolymer, and the latter method can be carried out while appropriately heating the solvent. Preferred examples of the star block copolymer having a high solubility include lower alcohols such as methanol and ethanol, and examples of the solvent having a low polymer solubility include water. The mixing ratio of the two solvents varies depending on the star block copolymer to be purified, but the volume ratio [(solvent with high polymer solubility) / (solvent with low polymer solubility)] is 90/10 to 10 / 90 and more preferably in the range of 80/20 to 20/80. Although there is no restriction | limiting in particular about the density | concentration of this solvent, For example, the range of 1-50% can be illustrated, Preferably the range of 2-30% can be illustrated. If it is 1% or less, the amount of solvent increases or the crystal recovery rate decreases, and if it is 50% or more, the efficiency of removing impurities decreases. By repeating these operations several times, the target star block copolymer can be taken out in a substantially pure form.
[0069]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited by the following examples.
[0070]
Example 1
In a nitrogen atmosphere, 50 mmol of n-butyllithium (hereinafter abbreviated as NBL) was added to a mixed solvent of 750 g of toluene and 750 g of tetrahydrofuran (hereinafter abbreviated as THF), and the mixture was kept at −40 ° C. with stirring. 1 mol of p-tert-butoxystyrene (hereinafter abbreviated as PTBST) was added dropwise over 1 hour, the reaction was continued for 1 hour, and the completion of the reaction was confirmed by gas chromatography (hereinafter abbreviated as GC). A small amount was collected from the reaction system at this stage, and the reaction was stopped with methanol, and then analyzed by gel permeation chromatography (hereinafter abbreviated as GPC). As a result, the obtained PTBST polymer had Mn = 3700, Mw /Mn=1.10 monodispersed polymer.
[0071]
Next, 150 mmol of divinylbenzene (hereinafter abbreviated as DVB) was added while maintaining the reaction system at −40 ° C., and the reaction was further continued for 4 hours. Then, it was confirmed by GC that there was no residual monomer. Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to obtain a white powdery polymer. Got. The polymerization yield based on the total amount of monomers used was 99.5%. When GPC analysis of this polymer was conducted, it was a monodisperse polymer with Mn = 29000 and Mw / Mn = 1.14.
[0072]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of toluene / ethanol = 1/1 (weight ratio) to make a 25% solution, and 1.4 g of sulfuric acid was added and reacted at 40 ° C. for 45 hours. The reaction solution was poured into a large amount of water to precipitate a polymer, filtered and washed, and then dried under reduced pressure at 60 ° C. for 5 hours to obtain 7.1 g of a white powdery polymer.
[0073]
In this reaction, the infrared absorption spectrum of the polymer before and after the reaction (hereinafter abbreviated as IR) and l3 CNMR (hereinafter abbreviated as NMR) was compared. In IR, 890cm -1 The absorption derived from the t-butyl group of poly PTBST disappeared after the reaction, and a new 3300 cm -l Broad absorption derived from hydroxyl groups was observed in the vicinity. In NMR, peaks derived from the t-butyl group of polyPTBST at around 77 ppm and 153 ppm disappeared after the reaction. Moreover, when GPC was measured about the produced | generated polymer, it was a monodispersed polymer of Mn = 26500 and Mw / Mn = 1.16. From the above, the copolymerization reaction and the subsequent elimination reaction were carried out as set, and it was confirmed that an alkenylphenol-based star block copolymer having a p-hydroxystyrene segment as the main skeleton was produced.
[0074]
Example 2
Under a nitrogen atmosphere, 30 mmol of NBL was added to 2000 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −60 ° C. with stirring. Further, the reaction was continued for 1 hour, and the completion of the reaction was confirmed by GC. . A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained PTBST polymer was a monodisperse polymer with Mn = 5700 and Mw / Mn = 1.10. It was. Then, while maintaining the reaction system at −60 ° C., 30 mmol of DVB was added, and the reaction was further continued for 4 hours. Then, it was confirmed by GC that there was no residual monomer.
[0075]
Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to give a white powdery polymer. Got. The polymerization yield based on the total amount of monomers used was 99.1%. When GPC analysis of this polymer was performed, it was a mixture of a polymer with Mn = 35000, Mw / Mn = 1.15 and a polymer with Mn = 5700.
[0076]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 4/1 (weight ratio) to make a 25% solution, 3 g of concentrated hydrochloric acid was added, and the reaction was performed at 50 ° C. for 30 hours. The solution was poured into a large amount of water to precipitate a polymer, filtered and washed, and then dried under reduced pressure at 60 ° C. for 5 hours to obtain 6.9 g of a white powdery polymer.
[0077]
In this reaction, the IR and NMR of the polymer before and after the reaction were measured. As in Example 1, the disappearance of the peak derived from the t-butoxy group of the PTBST segment was confirmed. Moreover, when GPC was measured about the produced | generated polymer, it was a mixture of the polymer of Mn = 32000, Mw / Mn = 1.19, and the polymer of Mn = 5100. From the above, the copolymerization reaction and the subsequent elimination reaction were carried out as set, and it was confirmed that an alkenylphenol-based star block copolymer having a p-hydroxystyrene segment as the main skeleton was produced.
[0078]
Example 3
Under a nitrogen atmosphere, 20 mmol of NBL was added to a mixed solvent of 1200 g of THF and 300 g of hexane, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −60 ° C. with stirring, and the reaction was further continued for 1 hour. To confirm the completion of the reaction. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained PTBST polymer was a monodisperse polymer with Mn = 8900 and Mw / Mn = 1.07. It was.
[0079]
Subsequently, after raising the temperature of the reaction system to −40 ° C., a mixture of 96 mmol of DVB and 4 mmol of ethylvinylbenzene was added, and the reaction was further continued for 4 hours. Then, it was confirmed by GC that there was no residual monomer. Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to obtain a white powdery polymer. Got. The polymerization yield based on the total amount of monomers used was 99.5%. When GPC analysis of this polymer was performed, it was a mixture of a polymer with Mn = 70000, Mw / Mn = 1.21 and a polymer with Mn = 8900.
[0080]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of toluene / ethanol = 1/2 (weight ratio) to obtain a 25% solution, and 3 g of sulfuric acid was added and reacted at 40 ° C. for 45 hours. Was poured into a large amount of water to precipitate a polymer, filtered, washed, and then dried under reduced pressure at 60 ° C. for 5 hours to obtain 7.0 g of a white powdery polymer.
[0081]
In this reaction, the IR and NMR of the polymer before and after the reaction were measured. As in Example 1, the disappearance of the peak derived from the t-butoxy group of the PTBST segment was confirmed. Moreover, when GPC was measured about the produced | generated polymer, it was a mixture of the polymer of Mn = 64000, Mw / Mn = 1.22, and the polymer of Mn = 8000 (10%). From the above, the copolymerization reaction and the subsequent elimination reaction were carried out as set, and it was confirmed that an alkenylphenol-based star polymer having a p-hydroxystyrene segment as the main skeleton was produced.
[0082]
3.5 g of the mixture obtained as described above is added with a pure water / methanol (volume ratio 1/1) mixed solvent so as to have a concentration of 2% by weight, dissolved by heating, and allowed to stand at room temperature for crystallization. Thereafter, filtration was performed to obtain 3.0 g of crystals. When the crystal was analyzed using GPC, the arm polymer residue was 0.35%. Further, 3.5 g of the mixture obtained as described above was dissolved in 35 ml of methanol, and then 35 ml of pure water was added to cause crystallization, followed by filtration to obtain 3.2 g of crystals. When the crystal was analyzed using GPC, the arm polymer residue was 4.26%.
[0083]
Example 4
In a nitrogen atmosphere, 29 mmol of NBL was added to 2000 g of THF, and a mixture of 1 mol of PTBST and 0.3 mol of styrene was added dropwise over 1 hour while maintaining at −50 ° C. with stirring, and the reaction was continued for another 1 hour. The completion of the reaction was confirmed by GC. The PTBST / styrene polymer at this stage was a monodisperse polymer with Mn = 7200 and Mw / Mn = 1.05. Subsequently, after raising the temperature of the reaction system to −30 ° C., 30 mmol of DVB was added, and the reaction was further continued for 5 hours, and then the completion of the reaction was confirmed by GC.
[0084]
Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.3%. When GPC analysis of this polymer was conducted, it was a mixture of a monodisperse polymer with Mn = 63,000 and Mw / Mn = 1.20 and a polymer with Mn = 7200.
[0085]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 1/1 (weight ratio) to make a 25% solution, 3 g of sodium hydrogen sulfate was added, and the reaction was performed at 50 ° C. for 20 hours. The solution is filtered to remove sodium hydrogen sulfate, and the filtrate is poured into a large amount of water to precipitate the polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 5 hours. 1 g was obtained. In this reaction, the IR and NMR of the polymer before and after the reaction were measured. As in Example 1, the disappearance of the peak derived from the t-butoxy group of the PTBST segment was confirmed. Moreover, as a result of measuring GPC about the produced | generated polymer, it was a mixture of the polymer of Mn = 56000, Mw / Mn = 1.24, and the polymer of Mn = 6500. From the above, it can be confirmed that the copolymerization reaction and elimination reaction were carried out as set up, and that an alkenylphenol star polymer having a random copolymer of p-hydroxystyrene and styrene as the main skeleton was formed. It was.
[0086]
Example 5
Under a nitrogen atmosphere, 40 mmol of NBL was added to a mixed solvent of 1000 g of toluene and 1000 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −40 ° C. with stirring, and the reaction was continued for 1 hour. The completion of the reaction was confirmed. The PTBST polymer at this stage was a monodisperse polymer with Mn = 4500 and Mw / Mn = 1.11. Next, 0.3 mol of styrene was added dropwise over 15 minutes, and the reaction was continued for another hour, and then completion of the reaction was confirmed by GC. The PTBST / styrene block copolymer at this stage was a monodisperse polymer with Mn = 5300 and Mw / Mn = 1.09. Finally, the reaction system was kept at −40 ° C., and after adding 120 mmol of DVB, the reaction was continued for 5 hours, and then the completion of the reaction was confirmed by GC.
[0087]
Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.3%. When GPC analysis of this polymer was conducted, it was a monodisperse polymer with Mn = 34000 and Mw / Mn = 1.18.
[0088]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 2/1 (weight ratio) to make a 25% solution, and after 3 g of sodium hydrogen sulfate was added and reacted at 50 ° C. for 20 hours, The reaction solution is filtered to remove sodium bisulfate, and the filtrate is poured into a large amount of water to precipitate a polymer. After filtration, washing and drying under reduced pressure at 60 ° C. for 5 hours, 7.2 g of a white powdery polymer Got. In this reaction, the IR and NMR of the polymer before and after the reaction were measured. As in Example 1, the disappearance of the peak derived from the t-butoxy group of the PTBST segment was confirmed. Moreover, as a result of measuring GPC about the produced | generated polymer, it was a monodispersed polymer of Mn = 30000 and Mw / Mn = 1.22. From the above, it is confirmed that the copolymerization reaction and elimination reaction are carried out as set, and that an alkenylphenol star polymer having a block copolymer of p-hydroxystyrene segment and styrene segment as a main skeleton is formed. I was able to.
[0089]
Example 6
In a nitrogen atmosphere, 30 mmol of NBL was added to 2000 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −60 ° C. with stirring. The reaction was further continued for 1 hour, and the completion of the reaction was confirmed by GC. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. The obtained polymer was a monodisperse polymer with Mn = 6100 and Mw / Mn = 1.12. . Next, while maintaining the reaction system at −60 ° C., 90 mmol of DVB was added, and the reaction was further continued for 3 hours. Then, it was confirmed by GC that there was no residual monomer. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. The obtained polymer was a monodisperse polymer with Mn = 45100 and Mw / Mn = 1.16. .
[0090]
Next, while maintaining the reaction system at −60 ° C., 45 mmol of 1,1-diphenylethylene (hereinafter abbreviated as DPE) was added and aged for 30 minutes, and further tert-butyl methacrylate (hereinafter referred to as t-BMA). 0.43 mol was added and the reaction was continued for 1 hour. Finally, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.1%. When GPC analysis of this polymer was conducted, it was a monodispersed polymer with Mn = 46400 and Mw / Mn = 1.20.
[0091]
Next, the polymer obtained was dissolved in a mixed solvent of 10 g THF / ethanol = 4/1 (weight ratio) to make a 25% solution, 2 g of concentrated hydrochloric acid was added and the reaction was carried out at 50 ° C. for 30 hours, Was poured into water to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 5 hours to obtain 7.2 g of a white powdery polymer. In this reaction, the infrared absorption spectra (hereinafter abbreviated as IR) and NMR of the polymer before and after the reaction were compared. In IR, 890cm -1 The absorption derived from the t-butyl group of poly PTBST disappeared after the reaction, and a new 3300 cm -1 Broad absorption derived from hydroxyl groups was observed in the vicinity. Moreover, in NMR, the peak derived from the t-butyl group of polyPTBST in the vicinity of 77 ppm disappeared after the reaction. Moreover, when GPC was measured about the produced | generated polymer, it was a polymer of Mn = 42000 and Mw / Mn = 1.21.
[0092]
Example 7
Under a nitrogen atmosphere, 23 mmol of NBL was added to a mixed solvent of 1600 g of toluene and 400 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −40 ° C. with stirring. The reaction was further continued for 1 hour, and the completion of the reaction was confirmed by GC. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained PTBST polymer was a monodisperse polymer with Mn = 7900 and Mw / Mn = 1.07. It was. Next, while maintaining the reaction system at −40 ° C., 50 mmol of DVB was added, and the reaction was further continued for 3 hours. Then, it was confirmed by GC that there was no residual monomer. A small amount was collected from the reaction system at this stage, and the reaction was stopped with methanol, and then analyzed by GPC. As a result, the obtained polymer was a monodisperse polymer with Mn = 61500 and Mn / Mw = 1.17 and Mn = It was a mixture of 7900 polymers.
[0093]
Next, while maintaining the reaction system at −40 ° C., 28 mmol of DPE was added and ripened for 30 minutes. Further, 0.2 mol of t-BMA was added, and the reaction was continued for 1 hour. Finally, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.8%. When GPC analysis of this polymer was conducted, it was a mixture of a monodisperse polymer with Mn = 63000 and Mw / Mn = 1.21 and a polymer with Mn = 7900.
[0094]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 3/1 (weight ratio) to make a 25% solution, and 2.4 g of concentrated hydrochloric acid was added and reacted at 50 ° C. for 30 hours. The reaction solution was poured into a large amount of water to precipitate a polymer, filtered, washed, and then dried under reduced pressure at 60 ° C. for 5 hours to obtain 6.9 g of a white powdery polymer. In this reaction, the IR and NMR of the polymer before and after the reaction changed in the same manner as in Example 1. Moreover, when GPC was measured about the produced | generated polymer, it was a mixture of the monodispersed polymer of Mn = 56000 and Mw / Mn = 1.21, and the polymer of Mn = 7100.
[0095]
Example 8
Under a nitrogen atmosphere, 18 mmol of NBL was added to a mixed solvent of 1000 g of toluene and 1000 g of THF, and 0.9 mol of PTBST was added dropwise over 1 hour while maintaining at −40 ° C. with stirring. The reaction was further continued for 1 hour, and the completion of the reaction was confirmed by GC. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. The obtained PTBST polymer was a monodisperse polymer with Mn = 9100 and Mw / Mn = 1.09. It was. Next, the temperature of the reaction system was raised to −20 ° C., a mixture of 54 mmol of DVB and 13 mmol of styrene was added, and the reaction was further continued for 3 hours. Then, it was confirmed by GC that there was no residual monomer. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained polymer was a monodisperse polymer with Mn = 57000 and Mn / Mw = 1.17 and Mn = It was a mixture of 9100 polymers.
[0096]
Next, while maintaining the reaction system at −20 ° C., 21 mmol of DPE was added and ripened for 30 minutes. Further, 0.1 mol of t-BMA was added, and the reaction was continued for 1 hour. Finally, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.6%. When GPC analysis of this polymer was conducted, it was a mixture of a monodisperse polymer with Mn = 58200 and Mw / Mn = 1.21 and a polymer with Mn = 9100.
[0097]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 1/1 (weight ratio) to make a 25% solution, 0.5 g of concentrated sulfuric acid was added, and the reaction was performed at 50 ° C. for 30 hours. The reaction solution was poured into a large amount of water to precipitate a polymer, filtered, washed, and then dried under reduced pressure at 60 ° C. for 5 hours to obtain 6.9 g of a white powdery polymer. In this reaction, the IR and NMR of the polymer before and after the reaction changed in the same manner as in Example 1. Moreover, when GPC was measured about the produced | generated polymer, it was a mixture of the monodispersed polymer of Mn = 51200 and Mw / Mn = 1.20, and the polymer of Mn = 8100.
[0098]
Example 9
Under a nitrogen atmosphere, 50 mmol of NBL was added to a mixed solvent of 750 g of toluene and 750 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −40 ° C. with stirring, and the reaction was continued for 1 hour. To confirm the completion of the reaction. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained PTBST polymer was a monodisperse polymer with Mn = 3700 and Mw / Mn = 1.10. It was. Next, while maintaining the reaction system at −40 ° C., 150 mmol of DVB was added, and the reaction was further continued for 4 hours. Then, it was confirmed by GC that there was no residual monomer. Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to obtain a white powdery polymer. Got. The polymerization yield based on the total amount of monomers used was 99.5%. When GPC analysis of this polymer was conducted, it was a monodisperse polymer with Mn = 29000 and Mw / Mn = 1.14.
[0099]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of toluene / ethanol = 1/1 (weight ratio) to make a 25% solution, and 1.4 g of sulfuric acid was added to start the debutylation reaction. Perform the reaction at 65-70 ° C, collect a small amount of the reaction solution, measure the IR spectrum, trace the reaction, confirm that the desorption has reached the specified amount, and quickly cool the reaction system in an ice-water bath Thereafter, the reaction solution was poured into a large amount of water to precipitate a polymer, filtered and washed, and then dried under reduced pressure at 70 ° C. for 5 hours to obtain 7.0 g of a white powdery polymer. This polymer was analyzed by GPC, and it was a monodisperse polymer with Mn = 27000 and Mw / Mn = 1.15. Parahydroxystyrene (PHS) units / PTBST units determined by NMR = 0.88 / 0.12 (moles) Ratio).
[0100]
Example 10
Under a nitrogen atmosphere, 23 mmol of NBL was added to a mixed solvent of 1600 g of toluene and 400 g of THF, and 1 mol of PTBST was added dropwise over 1 hour while maintaining at −40 ° C. with stirring. The reaction was further continued for 1 hour, and the completion of the reaction was confirmed by GC. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained PTBST polymer was a monodisperse polymer with Mn = 7900 and Mw / Mn = 1.07. It was. Next, while maintaining the reaction system at −40 ° C., 50 mmol of DVB was added, and the reaction was further continued for 3 hours. Then, it was confirmed by GC that there was no residual monomer. A small amount was collected from the reaction system at this stage, the reaction was stopped with methanol, and analyzed by GPC. As a result, the obtained polymer was a monodisperse polymer with Mn = 55300 and Mn / Mw = 1.17 and Mn = It was a mixture of 7900 polymers.
[0101]
Next, while maintaining the reaction system at −40 ° C., 28 mmol of DPE was added and aged for 30 minutes, and 0.2 mol of t-BMA was further added, and the reaction was continued for 2 hours. Finally, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.8%. When GPC analysis of this polymer was conducted, it was a mixture of a monodisperse polymer with Mn = 56500 and Mw / Mn = 1.21 and a polymer with Mn = 7900.
[0102]
10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 3/1 (weight ratio) to make a 25% solution, 2.4 g of concentrated hydrochloric acid was added, and debutylation reaction was started at 50 ° C. Perform the reaction at 65-70 ° C, collect a small amount of the reaction solution, measure the IR spectrum, trace the reaction, confirm that the desorption has reached the specified amount, and quickly cool the reaction system in an ice-water bath Thereafter, the reaction solution was poured into a large amount of water to precipitate a polymer, filtered and washed, and then dried under reduced pressure at 70 ° C. for 5 hours to obtain 7.0 g of a white powdery polymer. This polymer was analyzed by GPC and found to be a monodisperse polymer with Mn = 49000 and Mw / Mn = 1.20, and PHS units / PTBST units determined by NMR = 0.90 / 0.10 (molar ratio). .
[0103]
Example 11
In a nitrogen atmosphere, 29 mmol of NBL was added to 2000 g of THF, and a mixture of 1 mol of PTBST and 0.3 mol of styrene was added dropwise over 1 hour while maintaining at −50 ° C. with stirring, and the reaction was continued for another 1 hour. The completion of the reaction was confirmed by GC. The PTBST / styrene polymer at this stage was a monodisperse polymer with Mn = 7200 and Mw / Mn = 1.05. Subsequently, after raising the temperature of the reaction system to −30 ° C., 30 mmol of DVB was added, and the reaction was further continued for 5 hours, and then the completion of the reaction was confirmed by GC.
[0104]
Next, methanol is added to the reaction system to stop the reaction, the reaction solution is poured into a large amount of methanol to precipitate a polymer, filtered, washed, and dried under reduced pressure at 60 ° C. for 15 hours to form a white powder. A polymer was obtained. The polymerization yield based on the total amount of monomers used was 99.3%. When GPC analysis of this polymer was conducted, it was a mixture of a monodisperse polymer with Mn = 47000 and Mw / Mn = 1.20 and a polymer with Mn = 7200.
[0105]
Next, 10 g of the obtained polymer was dissolved in a mixed solvent of THF / ethanol = 1/1 (weight ratio) to make a 25% solution, and 1.4 g of sulfuric acid was added to start the debutylation reaction. Perform the reaction at 65-70 ° C, collect a small amount of the reaction solution, measure the IR spectrum, trace the reaction, confirm that the desorption has reached the specified amount, and quickly cool the reaction system in an ice-water bath Thereafter, the reaction solution was poured into a large amount of water to precipitate a polymer, filtered and washed, and then dried under reduced pressure at 70 ° C. for 5 hours to obtain 7.0 g of a white powdery polymer.
[0106]
This polymer was analyzed by GPC, and it was a monodisperse polymer with Mn = 43500 and Mw / Mn = 1.15. Parahydroxystyrene (PHS) unit / PTBST unit determined by NMR = 0.88 / 0.12 (mol) Ratio). From the above, it can be confirmed that the copolymerization reaction and elimination reaction were carried out as set up, and that an alkenylphenol star polymer having a random copolymer of p-hydroxystyrene and styrene as the main skeleton was formed. It was.
[0107]
【The invention's effect】
According to the present invention, it is possible to obtain a star-shaped block copolymer having a narrow molecular weight distribution having an alkenylphenol part in an arm part and a controlled structure, which is expected to be used as an excimer laser and electron beam resist material. it can.
Claims (7)
アーム部(A)が一般式(I)
ポリマー鎖(A2)が中心核より順に(A22)−(A21)型にブロック共重合していることを特徴とする星型ブロックコポリマー。In a star block copolymer having an arm portion composed of a central core and a polymer chain extending from the central core,
Arm part (A) is represented by general formula (I)
A star-shaped block copolymer in which the polymer chain (A2) is block copolymerized in the order of (A22)-(A21) in order from the central core .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000261074A JP4623690B2 (en) | 1999-08-31 | 2000-08-30 | Star block copolymer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24625699 | 1999-08-31 | ||
JP11-246256 | 1999-08-31 | ||
JP2000261074A JP4623690B2 (en) | 1999-08-31 | 2000-08-30 | Star block copolymer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010184611A Division JP2010255008A (en) | 1999-08-31 | 2010-08-20 | Star block copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001139647A JP2001139647A (en) | 2001-05-22 |
JP4623690B2 true JP4623690B2 (en) | 2011-02-02 |
Family
ID=26537644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000261074A Expired - Fee Related JP4623690B2 (en) | 1999-08-31 | 2000-08-30 | Star block copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4623690B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255008A (en) * | 1999-08-31 | 2010-11-11 | Nippon Soda Co Ltd | Star block copolymer |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1688440B1 (en) * | 2003-11-26 | 2014-01-01 | Nippon Soda Co., Ltd. | Novel hyperbranched polymer |
US7423102B2 (en) * | 2004-07-05 | 2008-09-09 | Sumitomo Chemical Company, Limited | Star polymer |
JP4689216B2 (en) * | 2004-09-06 | 2011-05-25 | 日本曹達株式会社 | Alkenylphenol star polymer |
JP4767552B2 (en) * | 2005-02-21 | 2011-09-07 | 日本曹達株式会社 | Phenolic star polymer |
JPWO2007020734A1 (en) * | 2005-08-12 | 2009-02-19 | ライオン株式会社 | Photoresist polymer and resist composition having nano-smoothness and etching resistance |
KR100723294B1 (en) | 2005-11-10 | 2007-05-30 | 금호석유화학 주식회사 | Functional Star Polymers and Multiple Star Polymers and Preparation Method Thereof |
WO2010109928A1 (en) | 2009-03-24 | 2010-09-30 | 丸善石油化学株式会社 | Vinyl ether-based star polymer and process for production thereof |
WO2014036498A2 (en) * | 2012-08-30 | 2014-03-06 | ATRP Solutions, Inc. | Dual mechanism thickening agents for hydraulic fracturing fluids |
CN102471410B (en) * | 2009-08-04 | 2015-04-08 | 日本曹达株式会社 | High-molecular-weight copolymer |
US20120172535A1 (en) * | 2009-08-14 | 2012-07-05 | Maruzen Petrochemical Co., Ltd. | Vinyl ether-based star polymer and process for production thereof |
JP5506299B2 (en) * | 2009-08-31 | 2014-05-28 | ダイキン工業株式会社 | Star polymer |
EP2546270B1 (en) | 2010-04-21 | 2016-07-13 | Nippon Soda Co., Ltd. | Star polymer and method of producing same |
JP6994097B1 (en) * | 2020-09-23 | 2022-01-14 | 第一工業製薬株式会社 | Thermosetting resin and its cured product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09502217A (en) * | 1993-09-10 | 1997-03-04 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Method for producing bonded asymmetric polymer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2975454B2 (en) * | 1990-05-29 | 1999-11-10 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Functional star polymer |
JPH05170920A (en) * | 1991-12-20 | 1993-07-09 | Nippon Soda Co Ltd | Production of modified polysiloxane compound |
JPH08169920A (en) * | 1994-10-17 | 1996-07-02 | Asahi Chem Ind Co Ltd | Resin composition containing branched polystyrene |
JP3731328B2 (en) * | 1997-12-03 | 2006-01-05 | Jsr株式会社 | Radiation sensitive resin composition |
-
2000
- 2000-08-30 JP JP2000261074A patent/JP4623690B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09502217A (en) * | 1993-09-10 | 1997-03-04 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Method for producing bonded asymmetric polymer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255008A (en) * | 1999-08-31 | 2010-11-11 | Nippon Soda Co Ltd | Star block copolymer |
Also Published As
Publication number | Publication date |
---|---|
JP2001139647A (en) | 2001-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010255008A (en) | Star block copolymer | |
Hirao et al. | Recent advance in living anionic polymerization of functionalized styrene derivatives | |
JP4623690B2 (en) | Star block copolymer | |
JPS5871909A (en) | Block copolymer of conjugate diene or vinyl substituted aromatic hydrocarbon and acryl ester and manufacture | |
JP4116788B2 (en) | Star polymers and polyelectrolytes | |
JP4727801B2 (en) | Alkenylphenol-based star block copolymer and method for producing the same | |
Charleux et al. | Styrene-terminated poly (vinyl alcohol) macromonomers: 1. Synthesis by aldol group transfer polymerization | |
JP4223641B2 (en) | Process for producing alkenylphenol copolymer | |
Ishizone et al. | Anionic polymerization of monomers containing functional groups. 7. Anionic polymerizations of N-alkyl-N-(4-vinylbenzylidene) amines | |
JP3034183B2 (en) | Derivatives of 1,5-divinylnaphthalene, methods for their preparation and their application as precursors of bifunctional initiators for anionic polymerization | |
JPH0672173B2 (en) | Graft polymer and method for producing the same | |
JP4767552B2 (en) | Phenolic star polymer | |
Ishizone et al. | Protection and Polymerization of Functional Monomers. 24. Anionic Living Polymerizations of 5-Vinyl-and 4-Vinyl-1, 3-benzodioxoles | |
JP2001158805A (en) | Method of polymerization for methacrylic or acrylic ester | |
US6258905B1 (en) | Stabilized, unimolecular initiators for hydrocarbon polymerization | |
WO2001018083A1 (en) | Alkenylphenol copolymer and process for producing the same | |
JP4727795B2 (en) | Alkenylphenol copolymer and process for producing the same | |
Sugiyama et al. | Anionic polymerization of 2-haloethyl methacrylates | |
JP4689216B2 (en) | Alkenylphenol star polymer | |
Börner et al. | Anionic block copolymerization of vinyl functionalized triphenylphosphines with styrene | |
JP3744246B2 (en) | Process for producing poly (pt-butoxystyrene) | |
JP2000072837A (en) | Production of block copolymer using dilithium initiator | |
JPH0678405B2 (en) | Living block copolymer | |
JPH04335003A (en) | Poly(4-ethynylstyrene), intermediate therefor, and block copolymer thereof | |
KR100340276B1 (en) | Functionalized Macromonomers and Preparation of Crystalline- Amorphous Graft Copolymers Using Them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |