JP4614554B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP4614554B2 JP4614554B2 JP2001035703A JP2001035703A JP4614554B2 JP 4614554 B2 JP4614554 B2 JP 4614554B2 JP 2001035703 A JP2001035703 A JP 2001035703A JP 2001035703 A JP2001035703 A JP 2001035703A JP 4614554 B2 JP4614554 B2 JP 4614554B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electric field
- guard ring
- auto
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Description
【発明の属する技術分野】
本発明は、半導体装置、特に耐圧維持構造として用いられるガードリング構造を備えた半導体装置に関する。
【0002】
【従来の技術】
半導体装置の耐圧維持構造としてガードリング構造が知られている。一般にガードリングとは、接合周辺の幾何学的形状に伴う空乏層内の電界集中を防ぐため、内部接合をその降伏電圧よりも高い降伏電圧を有するダイオードで取り囲んだ構造をいい、これにより接合リーク電流を低下させ、素子の安定動作を確保するものである。
ガードリング構造は、金属層と半導体層間のショットキー接合の整流作用を利用したショットキーバリアダイオード(以下、SBDという)や、その他のファーストリカバリダイオード(FRD)、電源用MOSFETにおいても採用されている。
SBDは、PN接合のダイオードと比較して電位障壁が低く順方向電圧降下が少ないという利点を有する反面、耐圧が低く逆方向特性が悪いという欠点がある。そのため、SBDではショットキー接合周囲にガードリングを設けショットキー接合のリーク電流を制限し逆方向電圧に対する耐性を高めている。
従来、ガードリング構造を備えたSBDにおいて、逆方向電圧に対する特性改善を目的とした種々の提案がなされている。
【0003】
特開昭58−58774号公報には、ショットキーバリアがブレイクダウンを起こす前にガードリングの空乏層が半導体基板に達するように構成したSBD(従来例1とする)が開示されている。かかる公報によれば、従来例1のSBDは、ガードリングの空乏層を半導体基板に到達させ、PN接合を導通状態にすることによりショットキーバリアのブレイクダウンを防ぎ、ひいてはショットキーバリアのブレイクダウンによる熱破壊を防止するとされる。
一方、特開平10−173205号公報に開示されるSBD(従来例2とする)は、P型ガードリング拡散層の不純物表面濃度を5×1017/cm3以下にすることで、拡散層におけるアバランシェ降伏を起きにくくするともに、ガードリング部のPN接合から伸びる空乏層がN+層であるシリコン半導体基板に到達しないだけの厚さをN-エピタキシャル層に持たせることにより、アバランシェ降伏による破壊をN-層で起こさせることでエネルギ破壊値を大きくしたとされる。
【0004】
図17に従来例1,2にみられる構造のSBD1を示す。図17に示すようにSBD1は、N+型シリコン基板2と、N+型シリコン基板2上にエピタキシャル成長により形成されたN-型エピタキシャル層3と、N-型エピタキシャル層3の表層部にリング状に拡散して形成されたP型ガードリング4と、N-型エピタキシャル層3表面に形成されたコンタクト開口部を有する保護膜である酸化膜6と、そのコンタクト開口部に被着されたアノード電極となる電極メタル7と、N+型シリコン基板2の裏面に付設されたカソード電極となる電極メタル8とを備えて構成される。
従来例1においては、電極メタル7とN-型エピタキシャル層3とからなるショットキー接合がブレイクダウンする前にN-型エピタキシャル層3側の空乏層5aがN+型シリコン基板2に到達し、P型ガードリング4とN-型エピタキシャル層3とからなるPN接合がパンチスルー(リーチスルー)降伏するとされる。
このような従来例1によれば、SBD1のブレイクダウンは急峻なブレイクダウン波形を有するPN接合の破壊によって起き、緩慢なブレイクダウン波形のショットキーバリアによるブレイクダウンは起きないため熱破壊は発生しないとされる。
また従来例2によれば、逆方向最大電圧が印加された時にN-型エピタキシャル層3へ伸びる空乏層5bはN+型シリコン基板2に接触しないとされ、アバランシェ降伏による破壊をN-型エピタキシャル層3で起こさせることでエネルギ破壊値を大きくしたとされる。
【0005】
ところで、強い逆バイアスモードにあるとき、P型ガードリング4を形成するP型領域とN-型エピタキシャル層3とのPN接合により、P型ガードリング4からN-型エピタキシャル層3側に延びる空乏層4が、ガードリング外方コーナー部9、9の曲率の影響を受け、B−B’ラインで示す部分で十分に延び切らず、この部分の空乏層5の幅が狭くなる。この結果ガードリング外方コーナー部9、9における電界強度Eが非常に高くなり、強い電界の影響を受けてガードリング外方コーナー部9、9にキャリア発生Gが局所集中する。なお、このキャリア発生Gは、式(1)により求められるものとする。
【数1】
ここで、Jnは電子電流、Jpは正孔電流、αn及びαpは電離係数、qは電荷素量である。
そして図18に示すように、ガードリング外方コーナー部9、9に局所的に発生したキャリア対のうち、電子e1…はカソード電極Kに引かれ吸収されるが、アノード電極Aに引きつけられる正孔h1…は、P型ガードリング4の不純物濃度分布がその表面に近いほど高濃度分布であるため正孔電流Jpが酸化膜6下でより表面側に引きつけられ、その経路が、矢印C…に示すように酸化膜6直下を通過してコンタクト開口端11に達する。そのために、酸化膜6直下位置での正孔電流Jpが局所集中し、正孔電流Jpの密度が膨大な値に達するため、デバイスを破壊させる可能性があった。
【0006】
【発明が解決しようとする課題】
以上の従来技術にあっては次のような問題があった。
【0007】
(1)不純物濃度が低い、すなわち、比抵抗が高いpn接合では空乏層が広くなる。これは、不純物濃度を低くすることによって半導体内のキャリアは少なくなるため、広範囲からキャリアを取り込み空間電荷を蓄えようとして、空乏層が比較的広範囲に広がる傾向にあるからである。
また、不純物濃度が低いpn接合では空乏層が広くなる結果、広い高電界領域によりなだれ増倍が起こる。すなわち、アバランシェモードの降伏が起こる。
(2)pn接合の降伏は、空乏領域の最大電界Emaxが臨界電界Ecritに達するときに起こるというのが実験結果によく一致する一般的な理論である。
(3)したがって、電界分布面積に対しその最高電界Emaxが低いほど、より電界分布面積を拡大した後、最大電界Emaxが臨界電界Ecritに達するので、その際の電界分布面積に相当する降伏電圧は高いということになる。
(4)電界分布面積に対しその最高電界Emaxを低くするためには、空乏層が広範に広がる必要がある。
(5)空乏層が広範に広がるためには、不純物濃度を低くすればよい。
(6)N-型エピタキシャル層の層厚が無限大であれば、不純物濃度が低いほど降伏電圧は高くなる。しかし、N-型エピタキシャル層が有限の場合、リーチスルーによって降伏電圧は制限される。リーチスルーが起こる場合、N-型エピタキシャル層が薄いほど、比較的低電圧でリーチスルーし、降伏電圧は低くなる。
(7)N-型エピタキシャル層の層厚等によって降伏電圧は異なるため、一定の層厚のエピタキシャル層、一定の深さ及び不純物濃度のガードリングを有するデバイス構造について、N-型エピタキシャル層の比抵抗ρの最適値を考察する。
(8)従来例1では、比較的低い逆電圧で空乏層がN+基板に到達しリーチスルーによって降伏電圧は制限される。すなわち、リーチスルーによって空乏層の広がりが制限されるため、印加電圧の上昇が電界強度の上昇に使われ、比較的低電圧で最大電界が臨界電界に達し降伏する。
したがって、比較的低電圧で降伏するので高いアバランシェ耐量が得られ難いという問題がある。
(9)従来例2は、比抵抗を1Ω・cmとし、逆電圧印加時に空乏層がN+型シリコン基板に到達しないだけのN-型エピタキシャル層厚を有するとしている。一定の層厚のエピタキシャル層、一定の深さ及び不純物濃度のガードリングを有するデバイス構造について言い換えれば、逆電圧印加時に空乏層がN+基板に到達しないように比抵抗を低く設定するということである。
比抵抗を低く設定し、空乏層が広範に広がらない場合には、電界強度の上昇を招き比較的低い逆電圧で最大電界が臨界電界に達する。
したがって、比較的低電圧で降伏するので高いアバランシェ耐量が得られ難いという問題がある。
また従来例2は、どの程度空乏層を半導体基板から離せばよいのか、或いは離してはいけないのか、明確な基準がなく有効な解決手段とならないという問題がある。
さらに、N-型エピタキシャル層不純物濃度を高くする、すなわち、比抵抗ρを低くするので、順方向電圧VFと逆方向漏れ電流IRとの積VF・IRの増加を招き損失が大きくなるという問題がある。
【0008】
本発明は以上の従来技術における問題に鑑みてなされたものであって、ガードリング構造を備えた半導体装置において、空乏層の到達度の設定によってアバランシェ耐量が最大限引き出された高耐圧の半導体装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
以上の課題を解決するため、請求項1記載の半導体装置は、例えば図1に示すように、比較的高不純物濃度の第一導電型の半導体基板2上に比較的低不純物濃度の第一導電型のエピタキシャル層13が積層され、前記エピタキシャル層13の表層部に前記第一導電型と反対導電型の第二導電型領域4が形成された半導体装置10において、
前記第二導電型領域4と前記エピタキシャル層13の第一導電型領域13aとからなるPN接合にアバランシェ降伏電圧が印加された時に、
前記PN接合の接合面から前記第一導電型領域13a側に伸びた空乏層15が、前記半導体基板2から前記エピタキシャル層13へ不純物が拡散してできたオートドーピング層13bに到達し、
かつ、前記空乏層15と前記半導体基板2との間に前記エピタキシャル層13の一部が介在することを特徴とする。
【00010】
上述した従来例1,2の問題点に鑑みると、▲1▼空乏層をエピタキシャル層内に十分に広がらせることと、▲2▼空乏層のリーチスルーにより降伏電圧が制限されないことという相反する2つの条件を充足する交点に、最もアバランシェ降伏電圧が高くなる最適値が存在する。
【0011】
請求項1記載の発明によれば、第二導電型領域とエピタキシャル層の第一導電型領域とからなるPN接合にアバランシェ降伏電圧が印加された時に、
第一導電型領域側に伸びた空乏層が、前記半導体基板から前記エピタキシャル層へ不純物が拡散してできたオートドーピング層に到達する。
したがって、空乏層をエピタキシャル層内に十分に広がらせることができ、空乏層がオートドーピング層に達しない場合(例えば従来例2)に比較して、同一逆電圧に対して最大電界が低くなり、降伏電圧が高くなる。
また請求項1記載の発明によれば、前記アバランシェ降伏電圧が印加された時に、空乏層と半導体基板との間にエピタキシャル層の一部が介在する。
したがって、空乏層が半導体基板に到達する場合(例えば従来例1)に比較して、空乏層のリーチスルーによる降伏電圧の制限が少ない。
以上の理論により請求項1記載の発明によれば、比較的高電圧で降伏するので高いアバランシェ耐量が得られるという効果がある。
また、空乏層がオートドーピング層に達しない場合(例えば従来例2)に比較して、比抵抗ρが高いので、順方向電圧VFと逆方向漏れ電流IRとの積VF・IRが低くなり、損失を比較的低く抑えることができる。
【0012】
ここで、オートドーピング層とは半導体基板中の不純物がエピタキシャル層に進出した領域のうち、次の範囲をいう。
すなわち、(例えば図2〜図4又は図10に示すように)デバイス完成後の基板に垂直な方向の濃度分布曲線を半導体基板(2)の位置からエピタキシャル層(13)側へ辿ると、徐々に減少率を大きくし、変曲点(G)に達するが、この変曲点(G)を通る前記不純物濃度分布曲線の接線(H)と、エピタキシャル層表面における外的ドーピング不純物の濃度Cfの値を示す横軸に平行な直線との交点(I)によって示される位置から半導体基板(2)までの範囲がオートドーピング層である。
このオートドーピング層はエピタキシャル成長中、及びその後の高温熱処理中に半導体基板の不純物が再分布することにより形成される。そしてオートドーピング層の不純物濃度は、エピタキシャル成長時に外部から混入される不純物と、拡散により半導体基板からエピタキシャル層に進出した不純物の合計の濃度により決定される。
【0013】
請求項2記載の半導体装置は、請求項1記載の発明において、前記第二導電型領域4が環状に形成され、これに包囲される位置に内部接合が形成され、
前記PN接合にアバランシェ降伏電圧が印加された時に、
前記内部接合から前記第一導電型領域側に伸びた空乏層15と前記オートドーピング層13bとの間に前記エピタキシャル層13の一部が介在するか、又はこの空乏層15が前記オートドーピング層13bに接することを特徴とする。
【0014】
ここで「接する」とは、空乏層の端が、オートドーピング層とエピタキシャル層の第一導電型領域との界面に一致することを意味する。
また「内部接合」にはショットキー接合やPN接合が該当する。
したがって請求項2記載の発明によれば、第二導電型領域とエピタキシャル層の第一導電型領域とからなるPN接合にアバランシェ降伏電圧が印加された時に、内部接合から第一導電型領域側に伸びた空乏層とオートドーピング層との間にエピタキシャル層の一部が介在するか、又はこの空乏層がオートドーピング層に接するまでとなるので、内部接合から第一導電型領域側に伸びた空乏層はオートドーピング層に侵入することはない、すなわち、内部接合はリーチスルーによる降伏電圧の制限を受けない。そのため、ガードリングに囲まれるSBD、FRD、FET等の半導体素子の逆電圧特性を損ねることがないという利点がある。
【0015】
請求項3記載の半導体装置は、請求項1又は請求項2記載の発明において、前記第二導電型領域4表面の不純物濃度Csが、1×1017以上,1×1018(1/cm3)以下であることを特徴とする。
【0016】
したがって請求項3記載の発明によれば、第二導電型領域表面の不純物濃度が、1×1017(1/cm3)以上であるので、十分なオーミックコンタクト性を確保することができるとともに、第二導電型領域表面の不純物濃度が、1×1018(1/cm3)以下であるので、第二導電型領域表面への正孔電流の局所集中をさけることができる。
【0017】
【発明の実施の形態】
以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
【0018】
〔第1の実施の形態〕
まず、本発明の第1の実施の形態につき、図1を参照して説明する。図1は本発明の第1の実施の形態の半導体装置(SBD10)を示す断面図である。
【0019】
図1に示すように、本実施形態のSBD10は、N+型シリコン基板2と、N+型シリコン基板2上にエピタキシャル成長により形成されたエピタキシャル層13と、エピタキシャル層13の表層部にリング状に拡散して形成されたP型ガードリング4と、エピタキシャル層13表面に形成されたコンタクト開口部を有する酸化膜6と、そのコンタクト開口部に被着されたアノード電極となる電極メタル7と、N+型シリコン基板2の裏面に付設されたカソード電極となる電極メタル8とを備えて構成される。
【0020】
N+型シリコン基板2はシリコンにリン、ヒ素又はアンチモン等の不純物を高濃度に含有するN+型半導体である。
【0021】
エピタキシャル層13は、エピタキシャル成長により形成されたシリコン層であり、N+型シリコン基板2と同様の不純物を低濃度に含有する半導体である。エピタキシャル層13の層厚をd−Epで表す。
エピタキシャル層13は、N-層13aと、オートドーピング層13bと、P型ガードリング4とに分けられる。
【0022】
オートドーピング層13bは上述したようにエピタキシャル成長中、及びその後の高温熱処理中にN+型シリコン基板2中の不純物がエピタキシャル層13に進出した領域のうち一定範囲の半導体領域である。オートドーピング層13bの層厚をd−ADで表す。
【0023】
N-層13aは、オートドーピング層13b上に積層されるN-型半導体である。
P型ガードリング4は、エピタキシャル層13の表面にイオン注入法により、例えばボロンイオンを注入し、拡散して形成されたP型半導体である。このP型ガードリング4とN-層13aとによりPN接合が構成される。P型ガードリング4の深さをX−jpで表す。
また、P型ガードリング4表面の不純物濃度は、1×1017以上,1×1018(1/cm3)以下とする。十分なオーミックコンタクト性を確保するとともに、P型ガードリング4表面への正孔電流の局所集中をさけるためである。
【0024】
酸化膜6はエピタキシャル層13の表面に露出するP型ガードリング4の外周縁を覆う開口パターンを有するシリコン酸化膜からなり、絶縁膜及び保護膜の役割を有する。
【0025】
電極メタル7はアノード側の電極であり、エピタキシャル層13とショットキー接合を構成する。電極メタル8はカソード側の電極である。
【0026】
本実施形態のSBD10は上述した従来例1,2とは、逆電圧印加時の空乏層15の到達度が異なる。
すなわち、本実施形態のSBD10においては、P型ガードリング4とN-層13aとからなるPN接合にアバランシェ降伏電圧が印加された時に、前記PN接合の接合面からN-層13a側に伸びた空乏層15が、オートドーピング層13bに到達している。
また、図1に示す例の場合、空乏層15は、オートドーピング層13b内に侵入している。
しかし、アバランシェ降伏電圧下において空乏層15はN+型シリコン基板2には到達せず、空乏層15とN+型シリコン基板2との間にエピタキシャル層13の一部が介在する。すなわち、空乏層15とN+型シリコン基板2とは接触せず、分離している。
【0027】
以上のような空乏層15の到達度は、エピタキシャル層13の層厚d−Ep、P型ガードリング4の深さX−jp、P型ガードリング4の不純物濃度、N-層13aの比抵抗ρの選択により実現するすることができる。その具体的手法の一つとしては、次のように行う。
定格電圧によって、エピタキシャル層13の層厚d−Ep、P型ガードリング4の深さX−jp、P型ガードリング4の不純物濃度の適当な値を定め、N-層13aの比抵抗ρの異なるいくつかの構造についてシミュレーションし、各構造についてガードリング部(図1におけるA1−A2線)の不純物の濃度分布曲線を得る。図2〜図4に濃度分布曲線の例を示し、以下これを参照して説明する。図2〜図4は異なる3種の比抵抗ρを有する構造A,B,Cの各濃度分布曲線である。構造A,B,Cの順でその比抵抗ρが小さくなるように設定した。そのうち最も高い比抵抗値を有する構造Aの濃度分布曲線を図2に、構造Aより低く構造Cより高い比抵抗値を有する構造Bの濃度分布曲線を図3に、最も低い比抵抗値を有する構造Cの濃度分布曲線を図4に示した。グラフ上部に示すように左からP型ガードリング4、N-層13a、オートドーピング層13b、N+型シリコン基板2の順で対応する。
【0028】
次ぎに、各構造についてオートドーピング層13bを次のように特定する。
図2〜図4に示すように、濃度分布曲線をN+型シリコン基板2の位置からエピタキシャル層13側へ辿ると、徐々に減少率を大きくし、変曲点Gに達するが、この変曲点Gを通る不純物濃度分布曲線の接線Hを引く。接線Hとエピタキシャル層表面における外的ドーピング不純物の濃度Cfの値を示す横軸に平行な直線との交点を交点Iとする。交点Iを通る横軸に垂直な直線Jを引く。エピタキシャル層13のうち、グラフ上、この直線Jより右側となる部分をオートドーピング層13bとする。
【0029】
ここで定格電圧によってエピタキシャル層13の層厚d−Epを定める基準を図5に示す。図5(a)に示す表又は(b)に示すグラフに従って、定格(Absolute Maximum Rating)耐圧Vamrに応じたN-層13aの不純物濃度Ndを特定し、Vamr及びNd及びオートドーピング層13bの層厚d−ADを次式(2)に代入する。
【数2】
又は、Vamrを近似式としての次式(3)に代入する。
【数3】
代入した式からエピタキシャル層13の層厚d−Epが算出する。なお、d−Epの値を図5(a)の表及びVamrとd−Epの関係を図5(b)のグラフに示す。
【0030】
一方、アバランシェ降伏電圧印加時におけるA1−A2線の電界分布曲線を得る。図6にアバランシェ降伏電圧印加時における構造A,B,Cの電界分布曲線を示す。空乏層15は電荷を帯びた領域であるから、その幅は、各電界分布曲線と電界強度0の直線によって囲まれる領域の幅によって示される。
したがって図6からわかるように、各構造A,B,Cの空乏層15は、オートドーピング層13bに到達している。
また構造A,Bの空乏層15は、オートドーピング層13b内に確実に侵入している。オートドーピング層13bとN-層13aとの境界付近において構造A,Bの電界分布曲線が屈折しているのはそのためである。
しかし、各構造A,B,Cの空乏層15はN+型シリコン基板2には到達せず、空乏層15とN+型シリコン基板2との間にエピタキシャル層13の一部が介在する。
仮に、空乏層15が、オートドーピング層13bに到達していないものや、空乏層15が、N+型シリコン基板2に到達しているものが生じた場合、それらを除外して、以上のような構造A,B,Cを選択する。
【0031】
構造A,B,Cの中でも、より耐圧の高い構造を選ぶには構造Bを選択する。
図6に示されるように、構造Aの最大電界Em2−A、構造Bの最大電界Em2−B,構造Cの最大電界Em2−Cを比較すると、構造Bの最大電界Em2−Bが一番低いからである。
【0032】
次ぎに図6に加え図7を参照して、最大電界と空乏層の到達度との関係につき説明する。図7に定格電圧印加時における構造A,B,Cの電界分布曲線を示す。
図7に示すように定格電圧印加時において、各構造の最大電界は、構造Aの最大電界Em1−A、構造Bの最大電界Em1−B,構造Cの最大電界Em1−Cの順で高い値となる。これは、構造Aより構造Bが、構造Bより構造Cの方が、空乏層15の拡大領域が狭い(=空乏層が広がり難い)分、電界強度の上昇を招いたためである。一方、構造A,Bの空乏層15はオートドーピング層13bに若干侵入し、リーチスルーによる制限を受け始めている。
図6に示すように定格電圧印加時より高いアバランシェ降伏電圧印加時ともなれば、リーチスルーによって空乏層15の広がりが制限されるため、構造Aの最大電界が最も大きく上昇し、次いで構造Bが大きく上昇している(図6中、定格電圧からアバランシェ降伏電圧に変化した場合の最大電界の増分を矢印により示した。)。これは、リーチスルーによって空乏層15の広がりが制限されるため、構造Cより構造Bが、構造Bより構造Aの方が空乏層が広がり難い分、印加電圧の上昇が電界強度の上昇に使われたからである。
【0033】
以上のことから、空乏層15がオートドーピング層13bに到達する前は、空乏層15がより広い構造の最大電界がより低くなる傾向にあり、降伏電圧はより高くなるということがわかる。また、空乏層15がオートドーピング層13bにある程度侵入すると、その傾向は逆転し、空乏層15がより広い構造の最大電界がより高くなる傾向となり、降伏電圧はより低くなるということがわかる。
したがって、その傾向の逆転ポイントにおいて最大電界が最小となり、その状態が得られる比抵抗ρが最適値である。そして構造A,B,Cのうち構造Bがその最適値に最も近い構造である。
したがって、以上のように、デバイス構造を構成することにより、最適値を含んだ耐性の高いデバイス構造を確実に構成することができる。
【0034】
次ぎに、ショットキー接合部の電界分布ひいては空乏層の広がりの様子について説明する。図8に各構造A,B,Cのアバランシェ降伏電圧印加時におけるショットキー接合部(図1におけるC1−C2線)とガードリング部(図1におけるA1−A2線)の電界分布曲線を示す。
【0035】
図8に示すように構造A,B,Cのすべてにおいて、ショットキー接合部の最大電界はガードリング部の最大電界より大きい。
構造Cにおいては、ショットキー接合からN-層13a側に伸びた空乏層15とオートドーピング層13bとの間にエピタキシャル層13の一部が介在する。
構造Bにおいては、ショットキー接合直下のN-層13a側に伸びた空乏層15がオートドーピング層13bに接する。ここで「接する」とは、空乏層15の端が、オートドーピング層13bとN-層13aとの界面に一致することを意味する。
構造B,Cのようなデバイス構造によれば、空乏層15はオートドーピング層13bに侵入することはないので、ショットキー接合はリーチスルーによる降伏電圧の制限を受けず、SBD10の逆電圧特性を損ねることがない。
【0036】
なお、アバランシェ降伏電圧が印加された時に、ショットキー接合に生じる最大電界から、ガードリング部のPN接合に生じる最大電界を差し引いた値(Em−SGとする。)が、0.20×105以上,0.25×105(V/cm)以下であるように設定することを推奨する。他の基準としては、アバランシェ降伏電圧印加時におけるガードリング部のPN接合の最大電界に対するEm−SGの比(Rm−SGとする。)が、0.075以上,0.1以下であるように設定することを推奨する。
Em−SGが0.20×105(V/cm)未満、又はRm−SGが0.075未満の場合は、ショットキー接合直下の空乏層15が伸びやすくなりオートドーピング層13bに侵入してSBD10の逆電圧特性を損ねるおそれがあるからである。
一方、Em−SGが0.25×105(V/cm)を超え、又はRm−SGが0.1を超える場合は、ショットキー接合の最大電界が大きくなりやすく、そのためショットキー接合部での破壊が起こりやすくなり、SBD10の耐量が低下し実用性が乏しくなるおそれがあるからである。
【0037】
【実施例】
次ぎに以上の第一の実施の形態に従い本願発明者が行った実施例につき説明する。本願発明者は、異なる5つの条件の100V系/5A型のSBDにつき、2次元の2キャリア(正孔と電子)数値シミュレーションによる設定を行い、そのシミュレーション結果に基づき各デバイス構造を試作し、完成デバイスの各種特性を実測した。また、本願発明者は各デバイス構造について単発EAS(Single Pulse Avalanche Energy)試験によりアバランシェ耐量を評価し、本発明の効果を確認した。
【0038】
【表1】
表1は5つの構造L,M,N、S,Tについての実験条件及び実験結果をまとめたものである。
表1において縦項目No.11はエピタキシャル層13の層厚d−Epである。縦項目No.12はN-層13aの比抵抗ρである。
縦項目No.13はN-層13aの不純物濃度Ndである。
縦項目No.21はP型ガードリング4の深さをX−jpであり、縦項目No.22はシミュレーション設計時のP型ガードリング4の深さX−jpである。
縦項目No.23はP型ガードリング4のボロンドーズ量である。
縦項目No.24はP型ガードリング4の不純物表面濃度Csである。
縦項目No.31はアバランシェ降伏電圧V−AVBの実測値であり、逆電流IR=400(μA),接合温度Tj=25℃の条件下における逆電圧である。
縦項目No.32はシミュレーション時のアバランシェ降伏電圧V−AVBである。
縦項目No.33は順方向電圧降下VFの実測値、縦項目No.34は逆方向リーク電流IRの実測値、縦項目No.35はそれらの積である。
縦項目No.36は逆回復時間trrの実測値である。
縦項目No.37は単発EAS試験によるアバランシェ耐量である。
縦項目No.41はアバランシェ降伏電圧V−AVBのうちP型ガードリング4の分担する電圧である。
縦項目No.42はアバランシェ降伏電圧V−AVBのうちN-層13aの分担する電圧である。
縦項目No.43は定格電圧100V印加時のガードリング部の最大電界である。
縦項目No.44はアバランシェ降伏電圧V−AVB印加時のガードリング部の最大電界である。
縦項目No.45はガードリング部の定格電圧100V印加時の最大電界とアバランシェ降伏電圧V−AVB印加時の最大電界との差である。
縦項目No.51はアバランシェ降伏電圧V−AVB印加時のショットキー接合部の最大電界である。
縦項目No.61,62はガードリング開口端11付近における正孔電流Jpの電流密度であり、No.61は定格電圧100V印加時の電流密度、No.62はアバランシェ降伏電圧V−AVB印加時の電流密度である。
【0039】
表1に記載されているように、すべての構造においてエピタキシャル層13の層厚d−Epを12(μm)とし、構造L,M,NについてはP型ガードリング4の深さX−jpを3.0(μm)、そのボロンドーズ量を4×1013(1/cm2)、その表面濃度を2×1017(1/cm3)として、比抵抗ρ=2.8,2.5,2.0(Ω・cm)と変化させた。構造S,TについてはP型ガードリング4の深さX−jpを2.5(μm)、そのボロンドーズ量を1×1013(1/cm2)、その表面濃度を5×1016(1/cm3)として、比抵抗ρ=2.5,2.0(Ω・cm)と変化させた。
【0040】
また、構造MについてSR(スプレッディング・レジスタンス:広がり抵抗)法によりガードリング部(図1におけるA1−A2線)の不純物濃度を測定したので、その測定値を図9に、グラフ化したものを図10に示す。
図10において曲線F1はN+型シリコン基板2にエピタキシャル層13が成膜された基板の不純物濃度曲線であり、エピタキシャル成長時の再分布によりオートドーピング層13b1が形成されている。曲線F2はデバイス完成後の不純物濃度曲線であり、P型ガードリング4が拡散形成されているとともに、熱処理を伴うデバイス形成プロセス時の再分布の影響を受けオートドーピング層13b1がシフトされ最終的なオートドーピング層13bが形成されている。
上記第1の実施の形態で述べたように、最終的なオートドーピング層13bを特定すると、その層厚は約3.5(μm)であった。
【0041】
次ぎに各構造L,M,N、S,Tについて行った単発EAS(Single Pulse Avalanche Energy)試験について説明する。図11(a)に単発EAS測定回路図を、図11(b)に試験デバイスに負荷される電圧の波形図を示す。
単発EAS試験は、高電圧パルス信号を単発的に試験デバイスに印加し、デバイスのアバランシェモードにおける耐量を評価する試験法の1つである。
図11に示すようにSBD71として各構造L,M,N、S,Tを接続する。
ON信号パルス72をMOSFET73のゲートに印加すると、MOSFET73はONし、電圧V−DDの電源74から電流I−DSが流れる。これによりコイル75にエネルギーが蓄えられ続ける。電流I−DSが上昇し所定のI−AVに達した時点でMOSFET73をOFFにすると、電流I−DSはMOSFET73を流れることができないため、SBD71の両端にはdv/dtの電圧上昇の後、ta期間持続する高電圧BV−DSSが発生する。この時、SBD71に負荷されるアバランシェエネルギーE−SAは次式(4)により表される。
【数4】
【0042】
式(4)に示すように、アバランシェエネルギーE−SAはコイル75のインダクタンスとエネルギー蓄積時間により制御することができる。高いアバランシェエネルギーを負荷すればSBD71は破壊し電流を阻止することができなくなる。SBD71が支えることのできるアバランシェエネルギーの大小により試験デバイス(SBD71)のアバランシェモードにおける耐量を評価することができる。
各構造L,M,N、S,Tの単発EAS試験によるアバランシェ耐量は前掲の表1(縦項目No.37)に示した通りであり、構造M,構造Sにおいて高いアバランシェ耐量が得られた。
【0043】
各構造の単発EAS試験によるアバランシェ耐量を比較するため図12にグラフを示した。横軸はN-層13aの不純物濃度である。図12のグラフ上、点L1,M1,N1,S1,T1はそれぞれ順に、構造L,M,N、S,Tの単発EAS試験によるアバランシェ耐量をプロットしたものであり、点L2,M2,N2,S2,T2はそれぞれ順に、構造L,M,N、S,TのVF・IR積をプロットしたものである。それらの値は表1に示される。
図12に示すように、点N1→M1の変化に着目すると、不純物濃度が低くなる、すなわち、空乏層の及ぶ範囲が広くなるにつれてアバランシェ耐量は大きくなる。点M1→L1の変化に着目すると、不純物濃度が低くなる、すなわち、空乏層の及ぶ範囲が広くなるにつれてアバランシェ耐量は小さくなる。
一方、VF・IR積は不純物濃度が高まるにつれて、上昇し、より大きな特性損失が生じる。その観点からは、構造Mが最適の比抵抗ρを有するとして、グラフ上、点M1の左側を選択した方がよい。
【0044】
図13に各構造の最大電界のグラフを示した。図13のグラフ上、点L3,M3,N3,S3,T3はそれぞれ順に、構造L,M,N、S,Tのアバランシェ降伏電圧V−AVB印加時のガードリング部の最大電界をプロットしたものであり、点L4,M4,N4,S4,T4はそれぞれ順に、構造L,M,N、S,Tの定格電圧100V印加時のガードリング部の最大電界をプロットしたものである。それらの値は表1に示される。
図13に示すように定格電圧100V印加時において、L4→M4→N4の順で最大電界は高い値となる。これは、構造Lより構造Mが、構造Mより構造Nの方が、空乏層15の拡大領域が狭い(=空乏層が広がり難い)分、電界強度の上昇を招いためである。
定格電圧100Vからアバランシェ降伏電圧に印加電圧が上昇すれば、リーチスルーによって空乏層15の広がりが制限されるため、構造Lの最大電界が最も大きく上昇し(点L4→点L3の変化)、次いで構造Mが大きく上昇している(点M4→点M3の変化)。これは、リーチスルーによって空乏層15の広がりが制限されるため、構造Nより構造Mが、構造Mより構造L方が空乏層が広がり難い分、印加電圧の上昇が電界強度の上昇に使われたからである。
その結果、アバランシェ降伏電圧印加時において構造Mの最大電界が最小となった。
構造Mはアバランシェ降伏電圧印加時の最大電界を最も低く抑えられる構造となり、アバランシェ耐量を大きくすることができたのである。
【0045】
上述したようにデバイス破壊の原因として正孔電流Jp(図18参照)の局所集中があげられる。構造L,M,NについてP型ガードリング4表面のコンタクト開口端付近の正孔電流Jpを測定した。その値は前掲の表1縦項目No.61,62に示したとおりである。縦項目No.62に示すアバランシェ降伏電圧V−AVB印加時の電流密度を図14にグラフ化した。これらの結果により構造Mが最も正孔電流Jpの電流密度が低いことが確認できる。
【0046】
以上の事実により、構造Mは、最大電界を最も低く抑えることができ、最大電界が低いので、正孔電流Jpの発生が抑えられ、正孔電流Jpの局所集中によるデバイス破壊の発生を抑えることができ、アバランシェ耐量が最も大きくなったといえる。
【0047】
以上説明したように、▲1▼P型ガードリング4とN-層13aとからなるPN接合にアバランシェ降伏電圧が印加された時に、前記PN接合の接合面からN-層13a側に伸びた空乏層15が、オートドーピング層13bに到達し、▲2▼空乏層15はN+型シリコン基板2には到達せず、空乏層15とN+型シリコン基板2との間にエピタキシャル層13の一部が介在するデバイス構造を選択することにより、最適値を含んだ耐性の高いデバイス構造を確実に選択することができる。
【0048】
〔第2の実施の形態〕
第1の実施の形態においては、本発明の半導体装置の例としてSBD10を挙げたが、本発明はこれに限らず、図15(a)に示すSBD20に適用しても良い。
【0049】
図15(a)に示すようにSBD20は、SBD10とはショットキー接合の構造が異なる。SBD20のショットキー接合は、N-層13aにトレンチ22が形成され、電極メタル21の一部が埋め込まれてなる。
かかるSBD20によれば、ショットキー接合から空乏層15の広がりは、シリコン最表面下の広がりW−N1より、トレンチ22下の広がりW−N2の方がN+型シリコン基板2に接近する。
SBD20の逆電圧特性を損ねないためには、アバランシェ降伏電圧印加時、広がりW−N2の最下端とオートドーピング層13bとの間にエピタキシャル層13の一部が介在するか、又は広がりW−N2の最下端がオートドーピング層13bに接するまでとし、広がりW−N2の最下端がオートドーピング層13bに侵入しないようにすることが好ましい。
【0050】
〔第3の実施の形態〕
第1の実施の形態においては、本発明の半導体装置の例としてSBD10を挙げたが、本発明はこれに限らず、図15(b)に示すSBD30に適用しても良い。
【0051】
図15(b)に示すようにSBD30は、SBD10とは異なりN-層13a表層部のショットキー接合範囲(P型ガードリング4内)にP型の島状半導体領域31が拡散形成されている。
かかるSBD30によれば、ショットキー接合から空乏層15の広がりは、シリコン最表面下の広がりW−N1より、島状半導体領域31下の広がりW−N2の方がN+型シリコン基板2に接近する。
SBD30の逆電圧特性を損ねないためには、アバランシェ降伏電圧印加時、広がりW−N2の最下端とオートドーピング層13bとの間にエピタキシャル層13の一部が介在するか、又は広がりW−N2の最下端がオートドーピング層13bに接するまでとし、広がりW−N2の最下端がオートドーピング層13bに侵入しないようにすることが好ましい。
【0052】
〔第4の実施の形態〕
上記の実施の形態についてはSBDを用いて説明したが、本発明はSBDに限定されるものではなく、高速ダイオード(以下FRD)等のダイオードにおいても、同様に適用可能であることは言うまでもない。
【0053】
本実施形態においては、図16(a)に示すFRD40を例に説明する。
図16(a)に示すようにFRD40は、SBD10とは異なりN-層13a上のショットキー接合範囲(P型ガードリング4内)において、N-層13a上にP型の半導体層41が拡散形成されている。半導体層41の不純物濃度はP型ガードリング4の不純物濃度より低く設定される。
かかるFRD40によれば、半導体層41下の広がりW−N2がN+型シリコン基板2に接近する。
FRD40の逆電圧特性を損ねないためには、アバランシェ降伏電圧印加時、広がりW−N2の最下端とオートドーピング層13bとの間にエピタキシャル層13の一部が介在するか、又は広がりW−N2の最下端がオートドーピング層13bに接するまでとし、広がりW−N2の最下端がオートドーピング層13bに侵入しないようにすることが好ましい。
【0054】
〔第5の実施の形態〕
上記の実施の形態についてはダイオードを用いて説明したが、本発明はダイオードに限定されるものではなく、高耐圧のMOSFETや、電源装置等の各種回路の電力用スイッチング素子として広く用いられているトランジスタ等においても、同様に適用可能であることは言うまでもない。
【0055】
本実施形態においては、図16(b)に示すMOSFET50を例に説明する。
図16(b)に示すようにMOSFET50は、N+型シリコン基板2、N-層13a、P型ガードリング4、酸化膜53、電極メタル55…とから概略構成されドレイン、ソース、ゲートの三つの電極を有する。MOSFET50に設けられたP型ガードリング4は、P型ガードリング4aとP型ガードリング4bとにより二重に形成される。
かかるMOSFET50によれば、シリコン最表面下の広がりW−N1より、島状半導体領域51下の広がりW−N2の方がN+型シリコン基板2に接近する。
MOSFET50の逆電圧特性を損ねないためには、アバランシェ降伏電圧印加時、広がりW−N2の最下端とオートドーピング層13bとの間にエピタキシャル層13の一部が介在するか、又は広がりW−N2の最下端がオートドーピング層13bに接するまでとし、広がりW−N2の最下端がオートドーピング層13bに侵入しないようにすることが好ましい。
【0056】
なお、以上の実施の形態においては、N型半導体基板を用いた半導体装置について説明したが、本発明はこれに限定されるものではなく、逆導電型であるP型半導体基板を用いた半導体装置にも適用することができる。この場合、ガードリングはリンイオン等のN型不純物を注入して形成する。
【0057】
【発明の効果】
以上説明したように本発明によれば、ガードリング構造を備えた半導体装置において、何らの工程増、材料の追加等のコストアップの原因が発生せず、定格特性を超えない範囲での使用における特性を何ら損なうことなく、空乏層の到達度の設定によってアバランシェ耐量が最大限引き出された高耐圧の半導体装置が得られるという効果がある。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の半導体装置を示す断面図である。
【図2】 本発明の第1の実施の形態における構造Aの濃度分布曲線である。
【図3】 本発明の第1の実施の形態における構造Bの濃度分布曲線である。
【図4】 本発明の第1の実施の形態における構造Cの濃度分布曲線である。
【図5】 本発明の第1の実施の形態におけるエピタキシャル層13の層厚d−Epを定める基準を示す表(a)及びグラフ(b)である。
【図6】 本発明の第1の実施の形態における構造A,B,Cのアバランシェ降伏電圧印加時における電界分布曲線である。
【図7】 本発明の第1の実施の形態における構造A,B,Cの定格電圧印加時印加時における電界分布曲線である。
【図8】 本発明の第1の実施の形態における構造A,B,Cのアバランシェ降伏電圧印加時におけるショットキー接合部(図1におけるC1−C2線)とガードリング部(図1におけるA1−A2線)の電界分布曲線である。
【図9】 本発明の実施例における構造Mのガードリング部(図1におけるA1−A2線)の不純物濃度の測定値である。
【図10】 本発明の実施例における構造Mのガードリング部(図1におけるA1−A2線)の不純物濃度曲線である。
【図11】 本発明の実施例において用いた、(a)は単発EAS測定回路図であり、(b)は試験デバイスに負荷される電圧の波形図である。
【図12】 本発明の実施例における構造L,M,Nの単発EAS試験によるアバランシェ耐量と、VF・IR積のグラフである。
【図13】 本発明の実施例における構造L,M,Nの最大電界のグラフである。
【図14】 本発明の実施例における構造L,M,Nの正孔電流密度を示すグラフである。
【図15】 (a)は本発明の第2の実施の形態の半導体装置を示す断面図であり、(b)は本発明の第3の実施の形態の半導体装置を示す断面図である。
【図16】 (a)は本発明の第4の実施の形態の半導体装置を示す断面図であり、(b)は本発明の第5の実施の形態の半導体装置を示す断面図である。
【図17】 従来の半導体装置を示す断面図である。
【図18】 正孔電流Jpの局所集中の様子を説明するための模式図である。
【符号の説明】
2…N+型シリコン基板
13…エピタキシャル層
13a…N-層
13b…オートドーピング層
4…P型ガードリング
5,15…空乏層
6…酸化膜
7,8…電極メタル
Claims (3)
- 比較的高不純物濃度の第一導電型の半導体基板上に比較的低不純物濃度の第一導電型のエピタキシャル層が積層され、前記エピタキシャル層の表層部に前記第一導電型と反対導電型の第二導電型領域が形成された半導体装置において、
前記第二導電型領域と前記エピタキシャル層の第一導電型領域とからなるPN接合にアバランシェ降伏電圧が印加された時に、
前記PN接合の接合面から前記第一導電型領域側に伸びた空乏層が、前記半導体基板から前記エピタキシャル層へ不純物が拡散してできたオートドーピング層に到達し、
かつ、前記空乏層と前記半導体基板との間に前記エピタキシャル層の一部が介在することを特徴とする半導体装置。 - 前記第二導電型領域が環状に形成され、これに包囲される位置に内部接合が形成され、
前記PN接合にアバランシェ降伏電圧が印加された時に、
前記内部接合から前記第一導電型領域側に伸びた空乏層と前記オートドーピング層との間に前記エピタキシャル層の一部が介在するか、又はこの空乏層が前記オートドーピング層に接することを特徴とする請求項1記載の半導体装置。 - 前記第二導電型領域表面の不純物濃度が、1×1017以上,1×1018(1/cm3)以下であることを特徴とする請求項1又は請求項2記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001035703A JP4614554B2 (ja) | 2001-02-13 | 2001-02-13 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001035703A JP4614554B2 (ja) | 2001-02-13 | 2001-02-13 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002246609A JP2002246609A (ja) | 2002-08-30 |
JP4614554B2 true JP4614554B2 (ja) | 2011-01-19 |
Family
ID=18899115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001035703A Expired - Fee Related JP4614554B2 (ja) | 2001-02-13 | 2001-02-13 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4614554B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4878739B2 (ja) * | 2004-05-12 | 2012-02-15 | 新電元工業株式会社 | 半導体装置の製造方法 |
JP4827386B2 (ja) * | 2004-06-17 | 2011-11-30 | 日本インター株式会社 | ショットキバリアダイオード |
JP4621043B2 (ja) * | 2005-03-02 | 2011-01-26 | 三菱電機株式会社 | 放電灯点灯装置 |
JP5149266B2 (ja) * | 2009-12-18 | 2013-02-20 | 日本インター株式会社 | ショットキーバリアダイオード |
CN102714226B (zh) | 2010-02-16 | 2015-02-11 | 株式会社三社电机制作所 | Pin二极管 |
US8860189B2 (en) | 2010-02-17 | 2014-10-14 | Sansha Electric Manufacturing Co., Ltd. | PIN diode |
JP6063629B2 (ja) | 2012-03-12 | 2017-01-18 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
KR101393080B1 (ko) * | 2013-01-11 | 2014-05-09 | 한국과학기술원 | 평면형 애벌랜치 포토다이오드 및 그 제조방법 |
CN106558543B (zh) * | 2016-08-11 | 2023-09-01 | 南京矽力微电子技术有限公司 | 静电释放保护器件的半导体结构以及制造方法 |
JP2018029150A (ja) * | 2016-08-19 | 2018-02-22 | サンケン電気株式会社 | 半導体装置 |
JP6856727B2 (ja) * | 2019-10-31 | 2021-04-07 | ローム株式会社 | 半導体装置 |
CN116759445B (zh) * | 2023-08-21 | 2023-10-20 | 捷捷半导体有限公司 | 低压降二极管及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10173205A (ja) * | 1996-12-10 | 1998-06-26 | Fuji Electric Co Ltd | ショットキーバリアダイオード |
JPH1140822A (ja) * | 1997-07-15 | 1999-02-12 | Nissan Motor Co Ltd | 半導体装置 |
JP2000261006A (ja) * | 1999-03-12 | 2000-09-22 | Nippon Inter Electronics Corp | ショットキー接合形成用半導体基板、それを使用した半導体素子、およびショットキーバリアダイオード |
JP2000323727A (ja) * | 1999-05-13 | 2000-11-24 | Matsushita Electronics Industry Corp | ショットキバリアダイオード |
-
2001
- 2001-02-13 JP JP2001035703A patent/JP4614554B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10173205A (ja) * | 1996-12-10 | 1998-06-26 | Fuji Electric Co Ltd | ショットキーバリアダイオード |
JPH1140822A (ja) * | 1997-07-15 | 1999-02-12 | Nissan Motor Co Ltd | 半導体装置 |
JP2000261006A (ja) * | 1999-03-12 | 2000-09-22 | Nippon Inter Electronics Corp | ショットキー接合形成用半導体基板、それを使用した半導体素子、およびショットキーバリアダイオード |
JP2000323727A (ja) * | 1999-05-13 | 2000-11-24 | Matsushita Electronics Industry Corp | ショットキバリアダイオード |
Also Published As
Publication number | Publication date |
---|---|
JP2002246609A (ja) | 2002-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10950717B2 (en) | Semiconductor device having semiconductor regions with an impurity concentration distribution which decreases from a respective peak toward different semiconductor layers | |
KR100628938B1 (ko) | 개선된 고주파 스위칭 특성 및 항복 특성을 갖는 전력용반도체 장치들 | |
US7932583B2 (en) | Reduced free-charge carrier lifetime device | |
KR101987009B1 (ko) | 개선된 쇼트키 정류기 | |
US20150014742A1 (en) | Semiconductor device and production method for semiconductor device | |
CN102318071B (zh) | 双极穿通半导体器件和制造这种半导体器件的方法 | |
JP2005317751A (ja) | 逆導通型半導体素子とその製造方法 | |
US9634131B2 (en) | Insulated gate bipolar device | |
WO2009088452A1 (en) | Improved sawtooth electric field drift region structure for power semiconductor devices | |
JP4614554B2 (ja) | 半導体装置 | |
US9006062B2 (en) | Method of manufacturing a semiconductor device including an edge area | |
US6734520B2 (en) | Semiconductor component and method of producing it | |
JP4108762B2 (ja) | 電界効果により制御可能の半導体デバイス | |
JP4123913B2 (ja) | 半導体装置の製造方法 | |
JPH04283968A (ja) | 絶縁ゲート型バイポーラトランジスタ | |
CN109686788B (zh) | 一种具有载流子存储层的槽栅igbt器件 | |
US7317252B2 (en) | Ohmic contact configuration | |
GB2612636A (en) | Semiconductor device | |
US10304971B2 (en) | High speed Schottky rectifier | |
CN108336129B (zh) | 超级结肖特基二极管与其制作方法 | |
US7126186B2 (en) | Compensation component and process for producing the component | |
US20040108567A1 (en) | Quasi-vertical semiconductor component | |
US20050230702A1 (en) | High-voltage diode with optimized turn-off method and corresponding optimization method | |
KR20120037972A (ko) | 기판 pn 다이오드를 구비한 쇼트키 다이오드 | |
CN106229342A (zh) | 一种多积累层的金属氧化物半导体二极管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4614554 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |