JP4610500B2 - Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same - Google Patents
Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same Download PDFInfo
- Publication number
- JP4610500B2 JP4610500B2 JP2006064646A JP2006064646A JP4610500B2 JP 4610500 B2 JP4610500 B2 JP 4610500B2 JP 2006064646 A JP2006064646 A JP 2006064646A JP 2006064646 A JP2006064646 A JP 2006064646A JP 4610500 B2 JP4610500 B2 JP 4610500B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- delayed fracture
- quenching
- fracture resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、加工性および耐遅れ破壊特性に優れた超高強度鋼に関し、詳細には、約1200MPa以上の引張強度を有しているにもかかわらず延性とのバランスに優れ、しかも、耐遅れ破壊特性も良好な超高強度鋼に関するものである。本発明の超高強度鋼は、例えば、建築材料や、自動車の構造用部品や補強部材などに好適に用いられる。 The present invention relates to an ultra-high strength steel excellent in workability and delayed fracture resistance, and in particular, has an excellent balance with ductility despite having a tensile strength of about 1200 MPa or more, and is also resistant to delay. It relates to ultra high strength steel with good fracture characteristics. The ultra high strength steel of the present invention is suitably used for, for example, building materials, automobile structural parts, reinforcing members, and the like.
近年、建築物の耐震性能や、自動車の軽量化、衝突安全性などに対する要求が益々強まるにつれ、例えば、引張強度780MPaを超える超高強度鋼板の適用が拡大している。また、リサイクル事業の普及に伴い、これまでは除去不能であったCuを再利用して高強度鋼を開発する試みも活発に行われている。 In recent years, as demands for earthquake resistance performance of buildings, weight reduction of automobiles, collision safety, and the like have increased, for example, the application of ultra-high strength steel sheets exceeding a tensile strength of 780 MPa has been expanded. In addition, with the widespread use of the recycling business, attempts have been actively made to develop high-strength steel by reusing Cu, which has been impossible to remove until now.
このような背景のもと、本願出願人は、先に、Cu添加高強度鋼に関する技術を提案している(特許文献1)。ここでは、高転位密度のマルテンサイト組織(焼戻マルテンサイト)中にナノメートルレベルのCu(ナノCu)を分散、析出させることにより、強度と延性とのバランスに著しく優れた高強度鋼を開示している。特許文献1によれば、引張強度が約1000MPa以上で、延性(全伸び特性)とのバランスに優れた鋼が得られる。
引張強度に対する要求は益々高くなり、例えば、約1200MPa級の引張強度においても延性とのバランスに優れた超高強度鋼の提供が求められている。一方、強度が高くなると、遅れ破壊が生じ易くなる。遅れ破壊は、高強度鋼において、腐食環境または雰囲気から発生した水素が、転位、空孔、粒界などの欠陥部へ拡散して材料を脆化させ、応力が付与された状態で破壊を生じる現象であり、破壊までの時間(遅れ破壊時間)は応力が大きいほど、また水素量が多いほど、短くなる。 There is an increasing demand for tensile strength, and for example, there is a need to provide ultra-high strength steel that is excellent in balance with ductility even at a tensile strength of about 1200 MPa class. On the other hand, when the strength increases, delayed fracture tends to occur. Delayed fracture is a high-strength steel in which hydrogen generated from a corrosive environment or atmosphere diffuses into defects such as dislocations, vacancies, and grain boundaries, embrittles the material, and breaks when stress is applied. It is a phenomenon, and the time to failure (delayed failure time) becomes shorter as the stress is larger and the amount of hydrogen is larger.
しかしながら、前述した特許文献1では、遅れ破壊の防止については何も考慮されていない。
However, in
本発明は、上記事情に鑑みてなされたものであり、その目的は、約1200MPa級の引張強度を有しているにもかかわらず、延性とのバランスに優れ、しかも、耐遅れ破壊特性も高められた超高強度鋼、およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and the object thereof is excellent in balance with ductility in spite of having a tensile strength of about 1200 MPa class, and also has improved delayed fracture resistance. It is an object of the present invention to provide an ultrahigh strength steel and a method for producing the same.
上記課題を解決することのできた本発明に係る加工性および耐遅れ破壊特性に優れた超高強度鋼は、鋼中成分は、質量%で、C:0.1〜1.0%、Si:2%以下(0%を含まない)、Mn:0.5〜3%、Cu:1.5〜5%、残部:Feおよび不可避不純物を満足し、旧オーステナイトの平均粒径は7μm以下であり、組織は、焼戻マルテンサイトを主体として含有し、前記組織中に、平均粒径1.5〜50nmのCu粒子が分散していると共に、XAFS(X−ray absorption Fine Structure)法により測定された蛍光X線スペクトルK吸収端近傍の8.98keVのピーク高さは、規格化した蛍光収量で0.340〜0.38の範囲内にあることに要旨を有している。 The ultra-high-strength steel excellent in workability and delayed fracture resistance according to the present invention, which has been able to solve the above-described problems, is composed of steel in mass%, C: 0.1 to 1.0%, Si: 2% or less (excluding 0%), Mn: 0.5 to 3%, Cu: 1.5 to 5%, balance: Fe and inevitable impurities are satisfied, and the average grain size of the prior austenite is 7 μm or less The structure contains tempered martensite as a main component, Cu particles having an average particle diameter of 1.5 to 50 nm are dispersed in the structure, and is measured by an XAFS (X-ray absorption Fine Structure) method. The peak height of 8.98 keV in the vicinity of the fluorescent X-ray spectrum K absorption edge is summarized in the range of 0.340 to 0.38 in normalized fluorescence yield.
上記課題を解決することのできた本発明に係る加工性および耐遅れ破壊特性に優れた他の超高強度鋼は、鋼中成分は、質量%で、C:0.3%超〜1.0%、Si:2%以下(0%を含まない)、Mn:0.5〜3%、Cu:1.5〜5%、残部:Feおよび不可避不純物を満足し、旧オーステナイトの平均粒径は10μm以下であり、組織は、焼戻マルテンサイトを主体として含有し、前記組織中に、平均粒径1.5〜50nmのCu粒子が分散していると共に、XAFS法によりCuの蛍光X線スペクトルを測定したとき、K吸収端近傍の8.98keVのピーク高さは、規格化した蛍光収量で0.340〜0.38の範囲内にあることに要旨を有している。 The other ultra-high strength steel excellent in workability and delayed fracture resistance according to the present invention that has solved the above-mentioned problems, the component in the steel is mass%, C: more than 0.3% to 1.0 %, Si: 2% or less (excluding 0%), Mn: 0.5 to 3%, Cu: 1.5 to 5%, balance: Fe and inevitable impurities are satisfied, and the average grain size of the prior austenite is 10 μm or less, the structure mainly contains tempered martensite, Cu particles having an average particle diameter of 1.5 to 50 nm are dispersed in the structure, and a fluorescent X-ray spectrum of Cu by the XAFS method. Has a gist that the peak height of 8.98 keV in the vicinity of the K absorption edge is in the range of 0.340 to 0.38 in normalized fluorescence yield.
また、上記課題を解決することのできた本発明に係る加工性および耐遅れ破壊特性に優れた超高強度鋼の製造方法は、上記の超高強度鋼を製造する方法であって、前記鋼中成分を満足する鋼を圧延する工程(a)と、圧延後に焼入れする工程(b)と、焼入れ後に時効する工程(c)と、を包含し、前記工程(b)は、825℃以上850℃未満の加熱温度で焼入れする工程(b−1)、または850℃以上900℃以下の加熱温度で焼入れする工程を2回以上行う工程(b−2)を含み、前記工程(c)は、400〜600℃の温度を下式(1)によって定められる時間の範囲で時効する工程を含むことに要旨を有している。
{(768-20.3×[Cu])-T}/(4.9×[Cu]+46.2)≦ln(t)≦{(705-7×[Cu])-T}/(1.1×[Cu]+35.5)・・・(1)
式中、[Cu]は、Cuの含有量(質量%)、
tは、時効時間(min)、
Tは、時効温度(℃)である。
Further, a method for producing an ultra-high strength steel excellent in workability and delayed fracture resistance according to the present invention that has solved the above problems is a method for producing the ultra-high strength steel, wherein It includes a step (a) of rolling steel that satisfies the components, a step (b) of quenching after rolling, and a step (c) of aging after quenching, and the step (b) is 825 ° C. or higher and 850 ° C. Including the step (b-1) of quenching at a heating temperature of less than 850 ° C. or less and a step of quenching at a heating temperature of 850 ° C. or more and 900 ° C. or less (b-2), wherein the step (c) is 400 It has a gist that it includes a step of aging a temperature of ˜600 ° C. within a time range defined by the following formula (1).
{(768-20.3 × [Cu])-T} / (4.9 × [Cu] +46.2) ≦ ln (t) ≦ {(705-7 × [Cu])-T} / (1.1 × [Cu] + 35.5) ... (1)
In the formula, [Cu] is the Cu content (% by mass),
t is the aging time (min),
T is an aging temperature (° C.).
本発明の超高強度鋼は、上記のように構成されているため、約1200MPa級の引張強度を有しているにもかかわらず、延性とのバランスに優れ、しかも、耐遅れ破壊特性も高められた超高強度鋼を提供することができた。 Since the ultra high strength steel of the present invention is configured as described above, it has an excellent balance with ductility in spite of having a tensile strength of about 1200 MPa class, and also has improved delayed fracture resistance. It was possible to provide the ultra-high strength steel obtained.
本発明者は、引張強度と延性とのバランスに優れ、耐遅れ破壊特性も高められた超高強度鋼を開発するため、前述した特許文献1に記載のナノCu技術をベースに検討を重ねてきた。具体的には、所望の耐遅れ破壊特性を確保するためには、ナノCuの構造を、遅れ破壊の原因である水素のトラップサイトが充分高められるような構造(面心立法格子、fcc)に制御して非整合界面(鉄マトリックスおよびナノCu粒子の結晶格子の連続性が全くない界面)の割合を多くし、且つ、旧オーステナイト(旧γ)の平均粒径を微細化すれば良いという考えに基づき、検討をした。その結果、特に、圧延後の焼入れ処理の加熱工程、および焼入れ後の時効工程を所定範囲に制御すれば、耐遅れ破壊特性に適した鋼が得られること、このような鋼は、XAFS法によりCuの蛍光X線スペクトルを測定したとき、K吸収端近傍の8.98keVのピーク高さが所定範囲を満足していることを見出し、本発明を完成した。
The present inventor has repeatedly studied on the basis of the nano Cu technology described in
本明細書において、「超高強度」とは、引張強度(TS)が約1200MPa以上(好ましくは1300MPa以上、より好ましくは1350MPa以上)であることを意味する。 In this specification, “ultra high strength” means that the tensile strength (TS) is about 1200 MPa or more (preferably 1300 MPa or more, more preferably 1350 MPa or more).
また、「加工性」の指標は、TSとEl(全伸びのこと)との積(TS×El)とし、TSが約1200〜1350MPaのレベルでは、TS×Elが17000以上(好ましくは18000以上)を満足していること、一方、TSが約1350MPa以上のレベルでは、TS×Elが15000以上(好ましくは15500以上)を満足していることを意味する。 The index of “workability” is the product (TS × El) of TS and El (total elongation), and TS × El is 17000 or more (preferably 18000 or more) when TS is a level of about 1200 to 1350 MPa. On the other hand, when TS is at a level of about 1350 MPa or more, it means that TS × El is 15000 or more (preferably 15500 or more).
また、本明細書において、「耐遅れ破壊特性に優れた」とは、後記する実施例に記載の方法によって測定された遅れ破壊水素量が約0.20ppm以上(好ましくは0.30ppm以上)であることを意味する。 Further, in this specification, “excellent in delayed fracture resistance” means that the amount of delayed fracture hydrogen measured by the method described in Examples below is about 0.20 ppm or more (preferably 0.30 ppm or more). It means that there is.
以下、本発明の超高強度鋼について説明する。 Hereinafter, the ultra high strength steel of the present invention will be described.
前述したように、本発明では、焼戻マルテンサイト中にナノメートルレベルのCu(ナノCu)を分散、析出させることによって強度と延性とのバランスを図ると共に、XAFS法により測定された蛍光X線スペクトルK吸収端近傍の8.98keVのピーク高さを所定範囲に制御し、且つ、旧オーステナイトの平均粒径を所定範囲に制御することによって耐遅れ破壊特性の向上を図っている。 As described above, in the present invention, the balance between strength and ductility is achieved by dispersing and precipitating nanometer-level Cu (nano Cu) in tempered martensite, and fluorescent X-rays measured by the XAFS method. The delayed fracture resistance is improved by controlling the peak height of 8.98 keV in the vicinity of the spectrum K absorption edge to a predetermined range and controlling the average grain size of the prior austenite to a predetermined range.
本発明において、組織は、焼戻マルテンサイトを主体として含有している。 In the present invention, the structure mainly contains tempered martensite.
ここで、「焼戻マルテンサイトを主体とする」とは、全組織に対する焼戻マルテンサイトの比率(面積率)が約85%以上であり、初析フェライトを実質的に含まないことを意味する。転位密度の高い焼戻マルテンサイトを母相組織とし、この母相組織中に後記するナノCuを分散、析出させることにより、焼戻マルテンサイト組織による強度向上(炭化物による強化および転位強化)とナノCuによる強度向上とが有効に発揮され、強度と延性とのバランスが著しく高められる。更に、本発明では、耐遅れ破壊特性の向上を図るため、初析フェライトの生成が抑制されている。初析フェライトが生成すると、応力負荷時の変形が初析フェライトに集中しやすいため、遅れ破壊が生じ易くなるためである。初析フェライトは、できるだけ少ない方が良く、最大でも、5面積%であることが好ましく、0面積%であることが最も好ましい。焼戻マルテンサイトの面積比率は高ければ高いほど良く、例えば、90%以上であることが好ましく、95%以上であることがより好ましい。焼戻マルテンサイト以外の組織(残部)としては、例えば、ベイナイト、残留オーステナイトなどが挙げられる。 Here, “consisting mainly of tempered martensite” means that the ratio (area ratio) of tempered martensite to the entire structure is about 85% or more and substantially does not contain pro-eutectoid ferrite. . By using tempered martensite with a high dislocation density as the parent phase structure, and dispersing and precipitating nano Cu, which will be described later, in the parent phase structure, strength improvement (reinforcement by carbide and dislocation strengthening) and nano Strength improvement by Cu is effectively exhibited, and the balance between strength and ductility is remarkably increased. Furthermore, in the present invention, the generation of pro-eutectoid ferrite is suppressed in order to improve delayed fracture resistance. This is because when pro-eutectoid ferrite is generated, deformation during stress loading tends to concentrate on pro-eutectoid ferrite, so that delayed fracture is likely to occur. The amount of pro-eutectoid ferrite is preferably as small as possible, and is preferably 5 area% at most, and most preferably 0 area%. The higher the area ratio of tempered martensite, the better. For example, it is preferably 90% or more, and more preferably 95% or more. Examples of the structure (remainder) other than tempered martensite include bainite and retained austenite.
本発明では、上記の組織中に、平均粒径1.5〜50nmのCu粒子が分散しており、これにより、ナノCuによる強度向上作用が有効に発揮される。Cu粒子の平均粒径が上記範囲を外れると、所望とする強度と延性とのバランスを確保することができない。Cu粒子の平均粒径の下限は2.0nmが好ましく、その上限は40nmが好ましく、30nm以下であることがより好ましい。特に、耐遅れ破壊特性の向上を考慮すると、2.5nm以上20nm以下であることが推奨される。 In the present invention, Cu particles having an average particle diameter of 1.5 to 50 nm are dispersed in the above-described structure, and thereby, the strength improving action by nano Cu is effectively exhibited. If the average particle size of the Cu particles is out of the above range, the desired balance between strength and ductility cannot be ensured. The lower limit of the average particle diameter of the Cu particles is preferably 2.0 nm, and the upper limit thereof is preferably 40 nm, and more preferably 30 nm or less. In particular, in consideration of improvement in delayed fracture resistance, it is recommended that the thickness is 2.5 nm or more and 20 nm or less.
Cu粒子の平均粒径は、3次元アトムプローブ電界イオン顕微鏡(3DAP、CAMECA社製OTAP)を用い、鋼の断面形状に応じて以下のように測定する。 The average particle diameter of Cu particles is measured as follows using a three-dimensional atom probe field ion microscope (3DAP, manufactured by CAMECA) according to the cross-sectional shape of the steel.
板材の場合はt/4(t=板厚)、線材や棒鋼の場合は4/D(D=直径)の位置から針状サンプル(先端の曲率半径<100nm)を作製し、約10nm×10nm×100nmの領域からイオンを採取し、Cuイオンの空間分布マップを作成する。上記の分布マップにおいて、Cuが濃化した領域(Cuイオンに相当するドットの密度が高い領域)をCu粒子とみなしてCu粒子の粒径を観察し、その平均値を「Cu粒子の平均粒径」とする。上記Cu粒子の測定方法は、例えば、M.K.Miller著「Atom Probe Tomography」(Kluwer Academic社,2000年)の文献などに記載されている。 A needle-like sample (tip radius of curvature <100 nm) is prepared from a position of t / 4 (t = plate thickness) in the case of a plate material, and 4 / D (D = diameter) in the case of a wire rod or steel bar, and is about 10 nm × 10 nm. Ions are collected from a region of × 100 nm, and a spatial distribution map of Cu ions is created. In the above distribution map, an area where Cu is concentrated (area where the density of dots corresponding to Cu ions is high) is regarded as Cu particles, and the particle diameter of Cu particles is observed. Diameter ”. The method for measuring the Cu particles is, for example, M.M. K. It is described in documents such as “Atom Probe Tomography” by Miller (Kluwer Academic, 2000).
本明細書において、「Cu粒子が分散している」とは、例えば、観察視野9×10−23m3中に、上記粒径のCu粒子が、おおむね、20〜200個程度存在していることを意味する。 In this specification, “Cu particles are dispersed” means that, for example, about 20 to 200 Cu particles having the above particle diameter exist in the observation field of view 9 × 10 −23 m 3 . Means that.
本発明の超高強度鋼において、旧オーステナイトの平均粒径は、7μm以下(Cを0.1〜1.0%含有する場合)または10μm以下(Cを0.3%超〜1.0%含有する場合)に抑制されている。遅れ破壊は、旧オーステナイトの粒界から発生することが多いため、旧オーステナイトの粒径を上記のように微細化することにより耐遅れ破壊特性が高められる。ここで、鋼中に含まれるC量の範囲によって旧オーステナイトの平均粒径の上限が異なるのは、旧オーステナイトの平均粒径のバラツキを考慮したためである。遅れ破壊は、組織的に最も弱いところから起こるため、旧オーステナイトの粒径にバラツキがある場合、本来ならば、旧オーステナイトの最大粒径を規定することが好ましい。しかし、旧オーステナイトの最大粒径を測定することは困難であるため、ここでは、便宜的に、旧オーステナイトの平均粒径によって耐遅れ破壊特性を制御することとし、旧オーステナイトの粒径のバラツキが生じ易い低C量(おおむね、C:0.3%以下)を含む鋼(C:0.1〜1.0%)の場合は、旧オーステナイトの平均粒径の上限を7μm以下と小さくし、粗大な旧オーステナイトの比率をできるだけ抑えるようにした。 In the ultra high strength steel of the present invention, the average grain size of prior austenite is 7 μm or less (when C is contained in an amount of 0.1 to 1.0%) or 10 μm or less (C is contained in an amount of more than 0.3% to 1.0%). In the case of containing). Delayed fracture often occurs from the grain boundaries of the prior austenite. Therefore, the delayed fracture resistance can be improved by reducing the grain size of the prior austenite as described above. Here, the reason why the upper limit of the average grain size of the prior austenite differs depending on the range of the amount of C contained in the steel is that variation in the average grain size of the prior austenite is taken into consideration. Since the delayed fracture occurs from the weakest part of the structure, if there is a variation in the grain size of the prior austenite, it is preferable to define the maximum grain size of the prior austenite. However, since it is difficult to measure the maximum grain size of prior austenite, for convenience, the delayed fracture resistance is controlled by the average grain size of prior austenite. In the case of steel (C: 0.1 to 1.0%) containing a low C content (generally, C: 0.3% or less) that is likely to occur, the upper limit of the average grain size of prior austenite is reduced to 7 μm or less, The ratio of coarse old austenite was suppressed as much as possible.
旧オーステナイトの平均粒径は小さいほど良い。Cを0.1〜1.0%含有する場合は、5.0μm以下であることが好ましく、3.0μm以下であることがより好ましい。一方、Cを0.3%超〜1.0%含有する場合は、7μm以下であることが好ましく、5.0μm以下であることがより好ましく、3.0μm以下であることが更に好ましい。 The smaller the average particle size of the prior austenite, the better. When it contains 0.1 to 1.0% of C, it is preferably 5.0 μm or less, and more preferably 3.0 μm or less. On the other hand, when it contains more than 0.3% to 1.0% of C, it is preferably 7 μm or less, more preferably 5.0 μm or less, and further preferably 3.0 μm or less.
旧オーステナイトの平均粒径は、以下のようにして測定される。 The average particle size of prior austenite is measured as follows.
JIS G0551に規定された方法に基づいて焼入れおよび時効処理を行った後、表面を研磨仕上げし、ピクリン酸のアルコール溶液で腐食した試験片(サイズ:被顕面積約10mm×10mm)を、光学顕微鏡を用いて倍率400倍で観察して写真撮影を行う。観察視野10視野(1.35mm×1.80mm/視野)について、Media Cybernetics社製「Image−Pro Plus」を用いて画像解析を行い、視野中に観察される旧オーステナイトの粒径を測定し、観察視野10視野の平均値を「旧オーステナイトの平均粒径」とする。 After performing quenching and aging treatment based on the method specified in JIS G0551, a test piece (size: exposed area of about 10 mm × 10 mm) whose surface was polished and corroded with an alcoholic solution of picric acid was subjected to an optical microscope. A photograph is taken while observing at a magnification of 400 times using the. For 10 visual fields (1.35 mm × 1.80 mm / field), perform image analysis using “Image-Pro Plus” manufactured by Media Cybernetics, and measure the particle size of the prior austenite observed in the visual field. The average value of 10 observation fields is defined as “average grain size of prior austenite”.
更に、本発明の超高強度鋼において、XAFS法によりCuの蛍光X線スペクトルを測定したとき、K吸収端近傍の8.98keVのピーク高さは、規格化した蛍光収量で0.340〜0.38の範囲内にある。これにより、強度と延性とのバランスに優れ、且つ、耐遅れ破壊特性も高められた超高強度鋼が得られる。 Furthermore, in the ultra-high strength steel of the present invention, when the fluorescent X-ray spectrum of Cu is measured by the XAFS method, the peak height of 8.98 keV in the vicinity of the K absorption edge is 0.340-0 in terms of the normalized fluorescence yield. Within the range of .38. As a result, an ultra-high strength steel having an excellent balance between strength and ductility and enhanced delayed fracture resistance can be obtained.
ここで、XAFS法について説明する。 Here, the XAFS method will be described.
XAFSとは、X−ray Absorption Fine Structure(X線吸収微細構造)の略であり、X線吸収分光法による状態解析の一種である。一般に、分光結晶を用いてステップスキャンによりX線のエネルギーを増加させながら材料の吸収係数を測定すると、材料の吸収係数は、X線のエネルギーの増加に対応して減少するが、相互作用の大きい領域では急激に増加する。このX線のエネルギー領域はX線吸収端と呼ばれている。ここでは、X線の吸収によって発生した光電子の一部が隣接する原子と衝突し、散乱された光電子の一部と干渉を起こすなどの現象が見られ、X線の吸収係数に変調を及ぼし、微細構造として現われる。このため、この領域に現れる吸収係数上の微細構造を分光することにより、原子の微視的構造に関する情報が得られることが知られている。X線の吸収端付近±50eV程度の領域をXANES(X−ray absorption Near Edge Structure、X線吸収端微細構造)と呼び、それよりも高エネルギー側1000eV程度にわたるゆっくりと振動する構造が存在する領域をEXAFS(Extend X−ray absorption Fine Structure)と呼ぶ。XANESからは、原子の配置の対称性や電子状態などに関する情報が、EXAFSからは、原子の周りの動径分布や配位数などの情報が得られる。 XAFS is an abbreviation for X-ray Absorption Fine Structure (X-ray absorption fine structure), and is a kind of state analysis by X-ray absorption spectroscopy. In general, when the absorption coefficient of a material is measured while increasing the X-ray energy by step scanning using a spectroscopic crystal, the absorption coefficient of the material decreases corresponding to the increase of the X-ray energy, but the interaction is large. It increases rapidly in the region. This X-ray energy region is called an X-ray absorption edge. Here, a phenomenon such as a part of photoelectrons generated by X-ray absorption colliding with adjacent atoms and causing interference with a part of scattered photoelectrons is observed, and the X-ray absorption coefficient is modulated. Appears as a fine structure. For this reason, it is known that information on the microscopic structure of atoms can be obtained by dispersing the fine structure on the absorption coefficient appearing in this region. A region around ± 50 eV in the vicinity of the X-ray absorption edge is called XANES (X-ray absorption near edge structure, X-ray absorption edge fine structure), and a region where there is a structure that slowly vibrates over about 1000 eV on the higher energy side. Is called EXAFS (Extended X-ray abstraction Fine Structure). From XANES, information on the symmetry of the arrangement of atoms and the electronic state is obtained, and from EXAFS, information on the radial distribution and coordination number around the atoms is obtained.
本発明者は、耐遅れ破壊特性の指標である水素トラップ能力は、Cu粒子のfcc構造の増加に伴って増加することに着目し、Cu粒子のfcc構造を上記XAFS法に基づいて測定することにした。前述したように、水素トラップ能力は、鉄マトリックスとナノCu粒子との非整合界面の増加に伴って上昇するが、この非整合界面の割合は、Cu粒子の結晶構造が安定なfcc構造の増加に伴って増加するからである。 The present inventor pays attention to the fact that the hydrogen trapping capacity, which is an index of delayed fracture resistance, increases with the increase in the fcc structure of the Cu particles, and measures the fcc structure of the Cu particles based on the XAFS method. I made it. As described above, the hydrogen trapping capability increases with an increase in the non-matching interface between the iron matrix and the nano Cu particles. The ratio of the non-matching interface increases the fcc structure in which the crystal structure of the Cu particles is stable. This is because it increases with this.
図1を参照しながら、XAFS法による測定方法の詳細を説明する。ここでは、後記する実施例の表2のNo.1(本発明例)を用いて説明する。 Details of the measurement method by the XAFS method will be described with reference to FIG. Here, No. of Table 2 of the Example mentioned later is shown. 1 (example of the present invention).
まず、(財)高輝度光科学研究センター大型放射光実験施設SPring−8の産業用専用ビームライン(SUNBEAM)のBL38B1XAFS実験測定装置を用い、蛍光法により、常温にて、CuのK吸収端近傍(XANES部分)の蛍光X線(Kα線)スペクトルを測定した。測定には、Si(III)結晶分光器を用いた。CuのK吸収端前後でステップスキャンによりエネルギーをずらしながら、各エネルギー点で発生するCuのKα蛍光線を7素子のSDD検出器により検出した。 First, using the BL38B1XAFS experimental measuring device of the industrial dedicated beamline (SUNBEAM) of the SPring-8 Large Synchrotron Radiation Research Center, High Brightness Optical Science Research Center, near the K absorption edge of Cu at room temperature by fluorescence method A fluorescent X-ray (Kα-ray) spectrum of (XANES portion) was measured. For the measurement, a Si (III) crystal spectrometer was used. While the energy was shifted by step scanning before and after the K absorption edge of Cu, Cu Kα fluorescent lines generated at each energy point were detected by a 7-element SDD detector.
次に、XANES部分のうち8.98keVのスペクトル強度(ピーク高さ)を算出するために、「規格化した蛍光収量」に補正した。補正は、CuのK吸収端の前後でバックグラウンド吸収に相当する部分を多項式関数でそれぞれフィットし、生スペクトルから差し引いた後、吸収端全体のジャンプ量(エッジジャンプ)を1に規格化して行った。 Next, in order to calculate the spectral intensity (peak height) of 8.98 keV in the XANES portion, it was corrected to “normalized fluorescence yield”. The correction is performed by fitting portions corresponding to background absorption before and after the K absorption edge of Cu with a polynomial function, subtracting them from the raw spectrum, and then normalizing the jump amount (edge jump) of the entire absorption edge to 1. It was.
その結果を図1に示す。 The result is shown in FIG.
図1に示すように、No.1の「規格化した蛍光収量」は0.365であり、本発明の範囲(0.340〜0.38)を満足しているため、耐遅れ破壊特性に極めて優れている(後記する実施例の表2を参照)。 As shown in FIG. The “standardized fluorescence yield” of No. 1 is 0.365, which satisfies the range of the present invention (0.340 to 0.38), and therefore has excellent delayed fracture resistance (Examples described later) See Table 2).
所望とする耐遅れ破壊特性および強度を確保するためには、上記のようにして算出された規格化した蛍光収量は、0.340〜0.38の範囲内にあることが必要である。0.340未満では、水素トラップ能力が小さいため、耐遅れ破壊特性が低下し、一方、0.38を超えると、ナノCu粒子の平均粒径が大きくなり、強度が低下する(後記する実施例を参照)。規格化した蛍光収量は、0.345以上0.370以下であることが好ましく、0.350以上0.360以下であることがより好ましい。 In order to ensure the desired delayed fracture resistance and strength, the normalized fluorescence yield calculated as described above needs to be in the range of 0.340 to 0.38. If it is less than 0.340, since the hydrogen trapping ability is small, the delayed fracture resistance is deteriorated. On the other hand, if it exceeds 0.38, the average particle diameter of the nano Cu particles is increased and the strength is lowered (Examples described later). See). The normalized fluorescence yield is preferably 0.345 or more and 0.370 or less, and more preferably 0.350 or more and 0.360 or less.
次に、本発明鋼の鋼中成分を説明する。鋼中成分は、すべて、質量%で表される。 Next, components in the steel of the steel of the present invention will be described. All the components in steel are expressed in mass%.
C:0.1〜1.0%
Cは、マルテンサイト変態時に高密度の転位を導入して焼戻マルテンサイトを生成させ、時効過程においてナノCu粒子を均一に分散させることによって所望の強度を確保するために必要な元素である。このような作用を有効に発揮させるため、Cを0.1%以上添加する。ただし、過剰に添加しても上記作用が飽和し、経済的に無駄であるため、Cの上限を1.0%とした。Cは、0.13%以上0.80%以下であることが好ましく、0.15%以上0.60%以下であることがより好ましい。なお、約1300〜1400MPa程度の極めて高い超高強度鋼を得るためには、Cを0.3%超とすることが好ましい。
C: 0.1 to 1.0%
C is an element necessary for ensuring a desired strength by introducing high-density dislocations during martensite transformation to produce tempered martensite and uniformly dispersing nano Cu particles in the aging process. In order to exhibit such an action effectively, 0.1% or more of C is added. However, even if added excessively, the above action is saturated and economically useless, so the upper limit of C was made 1.0%. C is preferably 0.13% or more and 0.80% or less, and more preferably 0.15% or more and 0.60% or less. In order to obtain an extremely high strength steel of about 1300 to 1400 MPa, it is preferable that C is more than 0.3%.
Si:2%以下(0%を含まない)
Siは、脱酸および固溶強化に有効な元素である。このような作用を有効に発揮させるため、Siを0.01%以上添加することが好ましく、0.02%以上添加することがより好ましい。ただし、Siを過剰に添加すると、靭性が劣化するため、上限を2%とする。Siの上限は1.8%であることが好ましく、1.5%であることがより好ましい。
Si: 2% or less (excluding 0%)
Si is an element effective for deoxidation and solid solution strengthening. In order to effectively exhibit such an action, it is preferable to add 0.01% or more of Si, and more preferably 0.02% or more. However, if Si is added excessively, the toughness deteriorates, so the upper limit is made 2%. The upper limit of Si is preferably 1.8%, and more preferably 1.5%.
Mn:0.5〜3%
Mnは、鋼の焼入れ性を確保してマルテンサイト組織を得るために必須の元素である。このような作用を有効に発揮させるため、Mnを0.5%以上添加する。ただし、Mnを、3%を超えて過剰に添加しても、上記作用が飽和してしまい、経済的に無駄であるため、その上限を3%とした。Mnは、0.6%以上2.0%以下であることが好ましく、0.7%以上1.5%以下であることがより好ましい。
Mn: 0.5 to 3%
Mn is an essential element for securing the hardenability of steel and obtaining a martensite structure. In order to effectively exhibit such an action, 0.5% or more of Mn is added. However, even if Mn is added in excess of 3%, the above action is saturated and it is economically wasteful, so the upper limit was made 3%. Mn is preferably 0.6% or more and 2.0% or less, and more preferably 0.7% or more and 1.5% or less.
Cu:1.5〜5%
Cuは、所望とするナノCu粒子を分散させるために極めて重要な元素である。Cuの添加量が1.5%未満の場合、析出するナノCuの量が不十分となり、所望の効果が得られない。一方、Cuを、5%を超えて過剰に添加してもナノCuによる作用が飽和し、経済的に無駄であるため、Cuの上限を5%とする。Cuは、1.8%以上4%以下であることが好ましく、2.0%以上3.5%以下であることがより好ましい。
Cu: 1.5 to 5%
Cu is an extremely important element for dispersing desired nano Cu particles. When the addition amount of Cu is less than 1.5%, the amount of deposited nano Cu becomes insufficient, and a desired effect cannot be obtained. On the other hand, even if Cu is added excessively in excess of 5%, the action of nano-Cu is saturated and economically useless, so the upper limit of Cu is set to 5%. Cu is preferably 1.8% or more and 4% or less, and more preferably 2.0% or more and 3.5% or less.
本発明の鋼は、上記成分を含有し、残部:Feおよび不可避不純物である。 The steel of the present invention contains the above components, and the balance: Fe and inevitable impurities.
例えば、不可避不純物であるPおよびSは、いずれも、含有量が多くなると靭性や加工性が劣化するため、Pを0.08%以下、Sを0.01%以下に抑制することが好ましい。 For example, it is preferable to suppress P to 0.08% or less and S to 0.01% or less because the toughness and workability of P and S, which are unavoidable impurities, deteriorate as the content increases.
また、不可避的不純物であるsol.AlおよびNは、それぞれ、0.1%以下、0.007%以下に抑制することが好ましい。 Further, sol.Al and N, which are inevitable impurities, are preferably suppressed to 0.1% or less and 0.007% or less, respectively.
次に、前述した本発明の超高強度鋼を製造する方法を説明する。 Next, a method for producing the above-described ultra high strength steel of the present invention will be described.
本発明の製造方法は、前述した鋼中成分を満足する鋼を圧延する工程(a)と、圧延後に焼入れする工程(b)と、焼入れ後に時効する工程(c)と、を包含し、前記工程(a)は、Ar3変態点以上の温度で仕上圧延を行う工程を含み、前記工程(b)は、825℃以上850℃未満の加熱温度で焼入れする工程(b−1)、または850℃以上900℃以下の加熱温度で焼入れする工程を2回以上行う工程(b−2)を含み、前記工程(c)は、400〜600℃の温度を下式(1)によって定められる時間の範囲で時効する工程を含むことを特徴とする。
{(768-20.3×[Cu])-T}/(4.9×[Cu]+46.2)≦ln(t)≦{(705-7×[Cu])-T}/(1.1×[Cu]+35.5)・・・(1)
式中、[Cu]は、Cuの含有量(質量%)、
tは、時効時間(min)、
Tは、時効温度(℃)である。
The production method of the present invention includes a step (a) of rolling the steel satisfying the above-mentioned components in steel, a step (b) of quenching after rolling, and a step (c) of aging after quenching, The step (a) includes a step of performing finish rolling at a temperature equal to or higher than the Ar3 transformation point, and the step (b) is a step (b-1) of quenching at a heating temperature of 825 ° C. or higher and lower than 850 ° C., or 850 Including a step (b-2) of performing a step of quenching twice or more at a heating temperature of not less than 900 ° C. and not more than 900 ° C., wherein the step (c) is performed at a temperature of 400 to 600 ° C. for a time determined by the following equation (1): The method includes a step of aging in the range.
{(768-20.3 × [Cu])-T} / (4.9 × [Cu] +46.2) ≦ ln (t) ≦ {(705-7 × [Cu])-T} / (1.1 × [Cu] + 35.5) ... (1)
In the formula, [Cu] is the Cu content (% by mass),
t is the aging time (min),
T is an aging temperature (° C.).
まず、所定の成分を含有する鋼を鋳造した後、熱間圧延を行う(工程(a))。 First, after steel containing a predetermined component is cast, hot rolling is performed (step (a)).
加熱温度は、特に限定されず、例えば、約1100〜1300℃の範囲内とする。 The heating temperature is not particularly limited and is, for example, in the range of about 1100 to 1300 ° C.
仕上げ圧延工程は、所望とする加工性や耐遅れ破壊特性などを確保するために重要であり、Ar3変態点以上の温度で仕上圧延を行うことが好ましい。 The finish rolling step is important for securing desired workability and delayed fracture resistance, and it is preferable to perform finish rolling at a temperature equal to or higher than the Ar 3 transformation point.
仕上げ圧延後に冷却する。本発明では、後に詳しく説明するように、主に、熱間圧延後の焼入れ工程(工程(b))および時効工程(工程(c))において、所望とするマルテンサイトを確保しているため、熱間圧延後の熱履歴(冷却速度や冷却停止温度など)は、特に限定されないが、例えば、約200℃までの温度(冷却停止温度)を、約0.5℃/sec以上の平均冷却速度で冷却することが好ましい。 Cool after finish rolling. In the present invention, as will be described in detail later, mainly in the quenching step (step (b)) and aging step (step (c)) after hot rolling, to ensure the desired martensite, The heat history (cooling rate, cooling stop temperature, etc.) after hot rolling is not particularly limited. For example, a temperature up to about 200 ° C. (cooling stop temperature) is an average cooling rate of about 0.5 ° C./sec or more. It is preferable to cool with.
上記の熱間圧延後に、必要に応じて、酸洗または冷間圧延を行っても良い。冷延率は、特に限定されないが、例えば、約20〜70%の範囲内であることが好ましい。 After the above hot rolling, pickling or cold rolling may be performed as necessary. Although a cold rolling rate is not specifically limited, For example, it is preferable to exist in the range of about 20 to 70%.
次に、焼入れ工程を行う(工程(b))。 Next, a quenching process is performed (process (b)).
焼入れ工程(b)では、下記(b−1)または(b−2)に示す工程(オーステナイト化処理)を行う。これにより、旧オーステナイトの平均粒径を微細化することができ、所望とする焼戻マルテンサイトが多く生成するため、耐遅れ破壊特性が向上する。(b−1)工程と(b−2)工程とは、主に、オーステナイト化処理の加熱温度(焼入れ温度)の範囲が相違しており、設定される加熱温度に応じて、いずれかのパターンを選択することができるが、作業効率などを考慮すると、(b−1)工程を選択することが好ましい。 In the quenching step (b), the step (austenite treatment) shown in the following (b-1) or (b-2) is performed. As a result, the average grain size of the prior austenite can be refined, and a large amount of desired tempered martensite is generated, so that the delayed fracture resistance is improved. The range of the heating temperature (quenching temperature) of the austenitizing treatment is mainly different between the step (b-1) and the step (b-2), and any pattern is formed according to the set heating temperature. However, in consideration of work efficiency and the like, it is preferable to select the step (b-1).
(b−1):825℃以上850℃未満の加熱温度で焼入れする方法
上記の加熱温度が825℃未満の場合、初析フェライトが生成し、耐遅れ破壊特性が低下し、一方、850℃以上の場合、旧オーステナイトの平均粒径が粗大化してしまう(後記する実施例を参照)。加熱温度は、830℃以上845℃以下であることが好ましい。また加熱時間は、おおむね、10分間以上2時間以下であることが好ましい。
(B-1): Method of quenching at a heating temperature of 825 ° C. or more and less than 850 ° C. When the above heating temperature is less than 825 ° C., pro-eutectoid ferrite is formed and delayed fracture resistance is lowered, while 850 ° C. or more. In this case, the average grain size of the prior austenite becomes coarse (see the examples described later). The heating temperature is preferably 830 ° C. or higher and 845 ° C. or lower. The heating time is preferably about 10 minutes to 2 hours.
加熱後の冷却条件は、特に、所定面積のマルテンサイトを確保するという観点から、約250℃までの温度を約10〜200℃/secの平均冷却速度で急冷することが好ましい。 As for the cooling condition after heating, it is preferable to rapidly cool the temperature up to about 250 ° C. at an average cooling rate of about 10 to 200 ° C./sec from the viewpoint of securing martensite of a predetermined area.
(b−2):850℃以上900℃以下の加熱温度で焼入れする工程を2回以上行う方法
オーステナイト化処理の加熱温度を前記(b−1)工程よりも高く設定する場合は、主に、旧オーステナイトの結晶粒を微細化するという観点から、焼入れする工程を2回以上行う。具体的には、850℃以上900℃以下(好ましくは850℃以上880℃以下)の加熱温度で、おおむね、1〜10分間保持した後、約250℃までの温度を約10〜200℃/secの平均冷却速度で急冷する焼入れ処理を2回以上行うことが好ましい。加熱温度が850℃未満の場合、均一に加熱されない恐れがあり、一方、加熱温度が900℃を超えると、旧オーステナイトの結晶粒が微細化されない恐れがある。また、上記の焼入れ処理を2回以上繰り返さないと、旧オーステナイトの結晶粒が微細化されないなどの問題がある。焼入れ処理の回数は多い程良く、例えば、3回以上であることが好ましい。その上限は、特に限定されないが、実操業上、5回であることが好ましい。
(B-2): Method of performing the step of quenching at a heating temperature of 850 ° C. or more and 900 ° C. or less twice or more When the heating temperature of the austenitizing treatment is set higher than the step (b-1), From the viewpoint of refining the prior austenite crystal grains, the quenching step is performed twice or more. Specifically, at a heating temperature of 850 ° C. or higher and 900 ° C. or lower (preferably 850 ° C. or higher and 880 ° C. or lower), after holding for about 1 to 10 minutes, the temperature up to about 250 ° C. is about 10 to 200 ° C./sec. It is preferable to perform the quenching process of rapidly cooling at an average cooling rate of 2 times or more. When the heating temperature is less than 850 ° C., there is a possibility that the heating will not be performed uniformly. On the other hand, when the heating temperature exceeds 900 ° C., the crystal grains of the prior austenite may not be refined. Further, if the above quenching treatment is not repeated twice or more, there is a problem that crystal grains of the prior austenite are not refined. The higher the number of quenching treatments, the better. The upper limit is not particularly limited, but is preferably 5 times in actual operation.
なお、各焼入れ処理における加熱温度は、上記の範囲を満足する限り、同じであっても良いし、異なっていても良い。例えば、後記する実施例に示すように、1回目の焼入れ処理時の加熱温度を880℃と高くし、2回目の焼入れ処理時の加熱温度を850℃と低くしてもよい。 The heating temperature in each quenching process may be the same or different as long as the above range is satisfied. For example, as shown in the examples described later, the heating temperature during the first quenching process may be as high as 880 ° C., and the heating temperature during the second quenching process may be as low as 850 ° C.
次に、時効処理を行う(工程(c))。時効処理を行う前に、必要に応じて、冷間圧延などの冷間加工を行ってもよい。 Next, an aging treatment is performed (step (c)). Before performing the aging treatment, cold working such as cold rolling may be performed as necessary.
具体的には、時効処理は、400〜600℃の温度を下式(1)によって定められる時間の範囲で行う。
{(768-20.3×[Cu])-T}/(4.9×[Cu]+46.2)≦ln(t)≦{(705-7×[Cu])-T}/(1.1×[Cu]+35.5)・・・(1)
式中、[Cu]は、Cuの含有量(質量%)、
tは、時効時間(min)、
Tは、時効温度(℃)である。
Specifically, the aging treatment is performed at a temperature of 400 to 600 ° C. within a time range determined by the following expression (1).
{(768-20.3 × [Cu])-T} / (4.9 × [Cu] +46.2) ≦ ln (t) ≦ {(705-7 × [Cu])-T} / (1.1 × [Cu] + 35.5) ... (1)
In the formula, [Cu] is the Cu content (% by mass),
t is the aging time (min),
T is an aging temperature (° C.).
ここでは、前述した方法によって得られたマルテンサイト組織中に、Cu粒子を均一にナノメートルレベルで微細に分散させると共に、マルテンサイト組織を適度に焼戻して焼戻マルテンサイトを得るため、所定の時効処理を行っている。 Here, the Cu particles are uniformly and finely dispersed at the nanometer level in the martensite structure obtained by the above-described method, and the martensite structure is appropriately tempered to obtain tempered martensite. Processing is in progress.
時効温度(T)は400〜600℃とする。400℃未満では、ナノCuの析出が不十分となり、良好な強度−延性のバランスが得られない。一方、600℃を超えて時効を行うと、析出するCu粒子が極端に粗大化すると共に、マルテンサイト組織も過剰に焼戻され、強度の低下が著しくなる。時効温度の下限は420℃が好ましく、一方、その上限は550℃が好ましく、520℃以下がより好ましい。 The aging temperature (T) is 400 to 600 ° C. If it is less than 400 degreeC, precipitation of nano Cu will become inadequate and a favorable balance of strength-ductility will not be obtained. On the other hand, when aging is performed at over 600 ° C., the precipitated Cu particles are extremely coarsened, and the martensite structure is excessively tempered, resulting in a significant decrease in strength. The lower limit of the aging temperature is preferably 420 ° C., while the upper limit thereof is preferably 550 ° C. and more preferably 520 ° C. or less.
時効時間(t)は、上式(1)で表される範囲内で行う。上式(1)は、Cu粒子の析出速度を制御して粗大化を防止すると共に、水素トラップ能力を高めて耐遅れ破壊特性を改善するための最適な時効時間(t)を、時効温度(T)とCuの含有量([Cu])との関係で表したものであり、本発明者による多くの基礎実験を通じて設定されたものである。 The aging time (t) is performed within the range represented by the above formula (1). The above formula (1) is to control the precipitation rate of Cu particles to prevent coarsening, and to increase the hydrogen trapping capability and improve the delayed fracture resistance, so that the optimum aging time (t) is expressed as the aging temperature ( T) and the Cu content ([Cu]), which are set through many basic experiments by the present inventors.
時効時間が上式(1)の下限を下回ると水素トラップ能力が低下し、上記のようにして算出される蛍光収量も所定範囲を下回り、耐遅れ破壊特性が劣化する。一方、上式(1)の上限を超えるとCu粒子が粗大化し、所望の強度が得られないほか、蛍光収量も所定範囲を超えてしまう。時効時間は、下式(2)を満足することが好ましく、下式(3)を満足することがより好ましい。
{(768-20.3×[Cu])-T}/(3.9×[Cu]+43.2)≦ln(t)≦{(705-7×[Cu])-T}/(1.1×[Cu]+35.5)・・・(2)
{(768-20.3×[Cu])-T}/(3.9×[Cu]+43.2)≦ln(t)≦{(715-7×[Cu])-T}/(1.1×[Cu]+45.5)・・・(3)
When the aging time is less than the lower limit of the above formula (1), the hydrogen trap ability is lowered, the fluorescence yield calculated as described above is also below the predetermined range, and the delayed fracture resistance is deteriorated. On the other hand, when the upper limit of the above formula (1) is exceeded, the Cu particles become coarse, a desired intensity cannot be obtained, and the fluorescence yield also exceeds a predetermined range. The aging time preferably satisfies the following formula (2), and more preferably satisfies the following formula (3).
{(768-20.3 × [Cu])-T} / (3.9 × [Cu] +43.2) ≦ ln (t) ≦ {(705-7 × [Cu])-T} / (1.1 × [Cu] + 35.5) ... (2)
{(768-20.3 × [Cu])-T} / (3.9 × [Cu] +43.2) ≦ ln (t) ≦ {(715-7 × [Cu])-T} / (1.1 × [Cu] + 45.5) ... (3)
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
まず、表1に示す組成の鋼材A〜E(残部はFeおよび不可避不純物である。)を溶製した後、1200℃に加熱し、仕上圧延温度950℃で熱間圧延を行った。上記の鋼材A〜Eのうち、A、B、Eは、本発明で規定する鋼中成分を満足する例であり、CはCu量が低い比較例、DはCuを含まない比較例である。 First, steel materials A to E having the composition shown in Table 1 (the balance is Fe and inevitable impurities) were melted, heated to 1200 ° C., and hot-rolled at a finish rolling temperature of 950 ° C. Among the steel materials A to E, A, B and E are examples satisfying the components in steel defined in the present invention, C is a comparative example having a low Cu content, and D is a comparative example not containing Cu. .
次に、表2に示す条件で焼入れおよび時効処理を行った。 Next, quenching and aging treatment were performed under the conditions shown in Table 2.
詳細な焼入れ条件は、以下のとおりである。 Detailed quenching conditions are as follows.
(表2のNo.1〜2、4、6〜16)
これらは、前述した工程(b−1)で焼入れを行った例であり、表2に示す種々の温度で加熱し、30分間時間保持した後、水冷した。
(Nos. 1-2, 4, 6-16 in Table 2)
These are examples in which quenching was performed in the above-described step (b-1). The samples were heated at various temperatures shown in Table 2, held for 30 minutes, and then cooled with water.
(表2のNo.5)
No.5は、前述した工程(b−2)で焼入れを行った例である。まず、表2に示すように880℃に加熱し、30分間保持した後、水冷した(1回目の焼入れ処理)。次に、表2に示すように850℃に加熱し、1回目の焼入れ処理と同様に30分間保持した後、水冷した(2回目の焼入れ処理)。
(No. 5 in Table 2)
No. 5 is an example in which quenching was performed in the step (b-2) described above. First, as shown in Table 2, it was heated to 880 ° C., held for 30 minutes, and then cooled with water (first quenching treatment). Next, as shown in Table 2, it was heated to 850 ° C., held for 30 minutes in the same manner as the first quenching process, and then cooled with water (second quenching process).
(表2のNo.3)
No.3は、焼入れ工程を行わなかった例であり、熱間圧延後、直ちに時効処理を行った。
(No. 3 in Table 2)
No. No. 3 was an example in which the quenching process was not performed, and an aging treatment was performed immediately after hot rolling.
このようにして得られた各供試材を用い、前述した方法に基づいてCu粒子の平均粒径、旧オーステナイトの平均粒径、および規格化した蛍光収量を測定すると共に、以下のようにして、組織および各特性を測定した。 Using each specimen thus obtained, the average particle size of Cu particles, the average particle size of prior austenite, and the normalized fluorescence yield were measured based on the above-described method, and as follows. The tissue and each property were measured.
(1)組織の観察方法
フェライト組織を除く組織について、板材の場合はt/4(t=板厚)、線材や棒鋼の場合はD/4(断面の直径)の位置で圧延方向と平行な面の組織を光学顕微鏡観察(倍率1500倍)で観察し、その面積率を測定した。
(1) Method for observing the structure The structure excluding the ferrite structure is parallel to the rolling direction at a position of t / 4 (t = plate thickness) in the case of a plate material and D / 4 (diameter of the cross section) in the case of a wire rod or steel bar. The surface structure was observed with an optical microscope (magnification 1500 times), and the area ratio was measured.
フェライト組織については、上記面を研磨仕上げし、ナイタール溶液でエッチングした後、光学顕微鏡観察(倍率1500倍)で観察し、その面積率を測定した。 For the ferrite structure, the above surface was polished and etched with a nital solution, and then observed with an optical microscope (a magnification of 1500 times), and the area ratio was measured.
(2)引張強度および伸び
圧延方向に垂直な横断面からJIS5号試験片を採取して引張試験を行い、引張強度(TS)および伸び[全伸びのこと(El)]を測定した。引張試験のクロスヘッドスピードは1mm/secとした。
(2) Tensile strength and elongation A JIS No. 5 test piece was sampled from a cross section perpendicular to the rolling direction and subjected to a tensile test, and the tensile strength (TS) and elongation [total elongation (El)] were measured. The crosshead speed in the tensile test was 1 mm / sec.
ここでは、TS≧1200MPa、El≧10.0%を合格とする。加工性の指標である「TS×El」は、TSのレベルに応じて、以下のように判定する。
TSが1200〜1350MPaの場合、TS×El≧17000を合格。
TSが1350MPa以上の場合、TS×El≧15000を合格。
Here, TS ≧ 1200 MPa and El ≧ 10.0% are regarded as acceptable. “TS × El”, which is an index of workability, is determined as follows according to the level of TS.
When TS is 1200 to 1350 MPa, TS × El ≧ 17000 is passed.
When TS is 1350 MPa or more, TS × El ≧ 15000 is passed.
(3)耐遅れ破壊特性
図2に示す試験片を用意し、以下に示す水素チャージ条件下でSSRT試験(Slow Strain Rate Test、低歪速度引張試験)を行い、そのときに侵入する水素量を以下のようにして測定した。
(3) Delayed fracture resistance The test piece shown in Fig. 2 is prepared, and the SSRT test (Slow Strain Rate Test) is performed under the following hydrogen charge conditions. Measurement was performed as follows.
(水素チャージ条件)
電解液:H2SO4水溶液(KSCNを0.01mol/L含有、pH=3)
電解電流密度:4〜10mA/cm2
プレチャージ時間:16時間
SSRT中連続チャージ
(Hydrogen charge condition)
Electrolytic solution: H 2 SO 4 aqueous solution (containing 0.01 mol / L of KSCN, pH = 3)
Electrolytic current density: 4 to 10 mA / cm 2
Precharge time: 16 hours Continuous charge during SSRT
(SSRT条件)
クロスヘッドスピード:2μm/min
(歪み速度:1×10-6s-1)
(SSRT condition)
Crosshead speed: 2 μm / min
(Strain rate: 1 × 10 −6 s −1 )
(水素量の測定)
水素チャージ後の水素量は、日立東京エレクトロン(株)製超高感度ガス分析装置UG−240APNに、試料の昇温機構として真空理工(株)製E410−7101型赤外線イメージ炉を組付けた大気圧イオン化質量分析(Atmospheric Pressure Ionization Mass Spectrometer、API−MS)を用いて測定した。具体的には、キャリガスとして流量8000mL/minのArガスを使用し、12℃/minの昇温速度で室温〜200℃まで加熱し、その間に検出される水素量(積算放出量)を求めた。
(Measurement of hydrogen content)
The amount of hydrogen after the hydrogen charge was large when an ultra-sensitive gas analyzer UG-240APN manufactured by Hitachi Tokyo Electron Co., Ltd. was assembled with an E410-7101 type infrared image furnace manufactured by Vacuum Riko Co., Ltd. as a temperature raising mechanism for the sample. It measured using atmospheric pressure ionization mass spectrometry (Atmospheric Pressure Ionization Mass Spectrometer, API-MS). Specifically, Ar gas having a flow rate of 8000 mL / min was used as a carrier gas, and the mixture was heated from room temperature to 200 ° C. at a rate of temperature increase of 12 ° C./min. .
(遅れ破壊水素量の測定)
次に、電解電流密度を変えることによって水素量(水素チャージ量)を種々変化させ、水素チャージ前の引張強度(TS0)と水素チャージ後の引張強度(TS1)の比(TS1/TS0)が0.6になる水素量を求め、この水素量を遅れ破壊水素量と定義した。
(Measurement of delayed fracture hydrogen content)
Next, the amount of hydrogen (hydrogen charge amount) is variously changed by changing the electrolytic current density, and the ratio (TS1 / TS0) of the tensile strength (TS0) before hydrogen charging and the tensile strength (TS1) after hydrogen charging is 0. The amount of hydrogen that was .6 was determined, and this amount of hydrogen was defined as the amount of delayed fracture hydrogen.
遅れ破壊水素量が多い試験片は、耐遅れ破壊特性に有害な水素を吸収しやすいことを意味する。ここでは、遅れ破壊水素量が0.20ppm以上の試験片を本発明例(合格)とした。 A test piece with a large amount of delayed fracture hydrogen means that it easily absorbs hydrogen harmful to delayed fracture resistance. Here, a test piece having a delayed fracture hydrogen amount of 0.20 ppm or more was defined as an example of the present invention (pass).
これらの結果を表2に併記する。表2の母材の欄において、Mは焼戻マルテンサイト組織、Fはフェライト組織、Pはパーライト組織を、それぞれ、意味する。例えば、表2中、「M」は、焼戻マルテンサイトが100面積%で、フェライトは0%であることを意味する。表2において、本発明に規定する要件を外れる例に下線を付した。 These results are also shown in Table 2. In the column of the base material in Table 2, M means a tempered martensite structure, F means a ferrite structure, and P means a pearlite structure. For example, in Table 2, “M” means that tempered martensite is 100% by area and ferrite is 0%. In Table 2, examples that deviate from the requirements defined in the present invention are underlined.
表2中、No.1、5、6、8、13、16、および17は、いずれも、本発明で規定する要件を満足する本発明例であり、高強度を有し、加工性および耐遅れ破壊特性に優れている。 In Table 2, No. 1, 5, 6, 8, 13, 16, and 17 are all examples of the present invention that satisfy the requirements defined in the present invention, have high strength, and excellent workability and delayed fracture resistance. Yes.
これに対し、以下の比較例は、それぞれ、以下の理由により、耐遅れ破壊特性が低下した。なお、TSが著しく低下したNo.3、7、10、11、14、TSは高いがEl及びTS×Elが低いNo.15では、遅れ破壊試験を行わなかった。 On the other hand, in the following comparative examples, the delayed fracture resistance decreased for the following reasons. In addition, No. in which TS significantly decreased. Nos. 3, 7, 10, 11, 14, and TS are high but El and TS × El are low. No. 15 did not perform a delayed fracture test.
No.2は焼入れ温度が高いため、旧オーステナイトの粒径が粗大化した。 No. Since No. 2 had a high quenching temperature, the grain size of the prior austenite became coarse.
No.3は、焼入れ処理を行わなかったため、熱間圧延後の組織(フェライト+パーライトの混合組織)がそのまま残り、所望とする焼戻マルテンサイト組織が得られなかった。その結果、引張強度も著しく低下した。 No. In No. 3, since no quenching treatment was performed, the structure after hot rolling (mixed structure of ferrite and pearlite) remained as it was, and the desired tempered martensite structure was not obtained. As a result, the tensile strength was also significantly reduced.
No.4は焼入れ温度が低いため、焼戻マルテンサイトのほかに約10%のフェライトが鋼中に生成した。 No. Since No. 4 had a low quenching temperature, about 10% of ferrite was generated in the steel in addition to tempered martensite.
No.7は、低い温度で時効処理を短時間行ったため、Cu粒子が微細化し、所望とする蛍光収量が得られなかった。また、引張強度も著しく低下した。 No. In No. 7, since the aging treatment was performed at a low temperature for a short time, the Cu particles were refined and the desired fluorescence yield was not obtained. Also, the tensile strength was significantly reduced.
No.9は、時効時間が短いため、Cu粒子が微細化し、所望とする蛍光収量が得られなかった。 No. In No. 9, since the aging time was short, the Cu particles were refined and the desired fluorescence yield was not obtained.
No.10は、時効処理を長時間行ったため、Cu粒子が粗大化し、所望とする蛍光収量が得られなかった。また、引張強度も著しく低下した。 No. In No. 10, since the aging treatment was performed for a long time, the Cu particles were coarsened, and the desired fluorescence yield was not obtained. Also, the tensile strength was significantly reduced.
No.11は、高温で時効処理を長時間行ったため、Cu粒子が粗大化し、所望とする蛍光収量が得られなかった。また、引張強度も著しく低下した。 No. No. 11 was subjected to an aging treatment at a high temperature for a long time, so that the Cu particles were coarsened and a desired fluorescence yield could not be obtained. Also, the tensile strength was significantly reduced.
No.12は焼入れ温度が高いため、旧オーステナイト粒径が粗大化し、耐遅れ破壊特性が低下した。また、加工性も低下した。 No. Since No. 12 had a high quenching temperature, the prior austenite grain size became coarse and the delayed fracture resistance deteriorated. Moreover, the workability also decreased.
No.14は、Cu含有量が少ない鋼材Cを用い、短時間の時効処理しか行わなかった例であり、Cu粒子が微細化し過ぎると共に、旧オーステナイトの平均粒径が粗大化し、所望とする蛍光収量が得られなかった。また、引張強度も著しく低下した。 No. 14 is an example in which the steel material C having a low Cu content was used, and only a short-term aging treatment was performed. The Cu particles were excessively refined, the average grain size of the prior austenite was coarsened, and the desired fluorescence yield was obtained. It was not obtained. Also, the tensile strength was significantly reduced.
No.15は、Cuを添加しない鋼材Dを用いた例である。ここでは、低い温度で時効処理を行ったため、所望とする焼戻マルテンサイトが生成して所定の強度は確保できたものの、伸びが著しく低下した。そのため、蛍光収量の測定、および遅れ破壊試験は行わなかった。 No. 15 is an example using a steel material D to which no Cu is added. Here, since the aging treatment was performed at a low temperature, the desired tempered martensite was generated and a predetermined strength was ensured, but the elongation was significantly reduced. Therefore, measurement of fluorescence yield and delayed destruction test were not performed.
No.18は、焼入れ温度が高い例であり、旧オーステナイトの平均粒径が大きくなった。 No. No. 18 is an example in which the quenching temperature is high, and the average grain size of the prior austenite has increased.
No.19は、時効処理を短時間しか行わなかったため、所望とする蛍光収量が得られなかった。 No. In No. 19, since the aging treatment was performed only for a short time, the desired fluorescence yield could not be obtained.
Claims (3)
C :0.1〜1.0%、
Si:2%以下(0%を含まない)、
Mn:0.5〜3%、
Cu:1.5〜5%、
残部:Feおよび不可避不純物
を満足し、
旧オーステナイトの平均粒径は7μm以下であり、
組織は、全組織に対する焼戻マルテンサイトの比率を85面積%以上含有すると共に、初析フェライトを5面積%以下(0面積%を含む)に制限し、
前記組織中に、平均粒径1.5〜50nmのCu粒子が分散していると共に、
XAFS(X−ray absorption Fine Structure)法によりCuの蛍光X線スペクトルを測定したとき、K吸収端近傍の8.98keVのピーク高さは、規格化した蛍光収量で0.340〜0.38の範囲内にあることを特徴とする加工性および耐遅れ破壊特性に優れた超高強度鋼。 The component in steel is mass%,
C: 0.1 to 1.0%
Si: 2% or less (excluding 0%),
Mn: 0.5-3%,
Cu: 1.5 to 5%,
Balance: Fe and inevitable impurities are satisfied,
The average particle size of the prior austenite is 7 μm or less,
The structure contains a ratio of tempered martensite to the entire structure of 85 area% or more, and restricts pro-eutectoid ferrite to 5 area% or less (including 0 area%) ,
In the structure, Cu particles having an average particle size of 1.5 to 50 nm are dispersed,
When the X-ray absorption fine structure (XAFS) method was used to measure the fluorescent X-ray spectrum of Cu, the peak height of 8.98 keV near the K absorption edge was 0.340 to 0.38 in terms of normalized fluorescence yield. Ultra high strength steel with excellent workability and delayed fracture resistance, characterized by being in the range.
C :0.3%超〜1.0%、
Si:2%以下(0%を含まない)、
Mn:0.5〜3%、
Cu:1.5〜5%、
残部:Feおよび不可避不純物
を満足し、
旧オーステナイトの平均粒径は10μm以下であり、
組織は、全組織に対する焼戻マルテンサイトの比率を85面積%以上含有すると共に、初析フェライトを5面積%以下(0面積%を含む)に制限し、
前記組織中に、平均粒径1.5〜50nmのCu粒子が分散していると共に、
XAFS(X−ray absorption Fine Structure)法によりCuの蛍光X線スペクトルを測定したとき、K吸収端近傍の8.98keVのピーク高さは、規格化した蛍光収量で0.340〜0.38の範囲内にあることを特徴とする加工性および耐遅れ破壊特性に優れた超高強度鋼。 The component in steel is mass%,
C: more than 0.3% to 1.0%,
Si: 2% or less (excluding 0%),
Mn: 0.5-3%,
Cu: 1.5 to 5%,
Balance: Fe and inevitable impurities are satisfied,
The average particle size of the prior austenite is 10 μm or less,
The structure contains a ratio of tempered martensite to the entire structure of 85 area% or more, and restricts pro-eutectoid ferrite to 5 area% or less (including 0 area%) ,
In the structure, Cu particles having an average particle size of 1.5 to 50 nm are dispersed,
When the X-ray absorption fine structure (XAFS) method was used to measure the fluorescent X-ray spectrum of Cu, the peak height of 8.98 keV near the K absorption edge was 0.340 to 0.38 in terms of normalized fluorescence yield. Ultra high strength steel with excellent workability and delayed fracture resistance, characterized by being in the range.
前記鋼中成分を満足する鋼を圧延する工程(a)と、
圧延後に焼入れする工程(b)と、
焼入れ後に時効する工程(c)と、を包含し、
前記工程(b)は、825℃以上850℃未満の加熱温度で焼入れする工程(b−1)、または850℃以上900℃以下の加熱温度で焼入れする工程を2回以上行う工程(b−2)を含み、
前記工程(c)は、400〜600℃の温度を下式(1)によって定められる時間の範囲で時効する工程を含むことを特徴とする、加工性および耐遅れ破壊特性に優れた超高強度鋼の製造方法。
{(768-20.3×[Cu])-T}/(4.9×[Cu]+46.2)≦ln(t)≦{(705-7×[Cu])-T}/(1.1×[Cu]+35.5)
・・・(1)
式中、[Cu]は、Cuの含有量(質量%)、
tは、時効時間(min)、
Tは、時効温度(℃)である。 A method for producing the ultra high strength steel according to claim 1 or 2,
Rolling the steel satisfying the components in the steel (a),
A step (b) of quenching after rolling;
And (c) aging after quenching,
In the step (b), the step (b-1) of quenching at a heating temperature of 825 ° C. or more and less than 850 ° C. or the step of quenching at a heating temperature of 850 ° C. or more and 900 ° C. or less (b-2) )
The step (c) includes a step of aging a temperature of 400 to 600 ° C. within a time range defined by the following formula (1), and has an ultrahigh strength excellent in workability and delayed fracture resistance Steel manufacturing method.
{(768-20.3 × [Cu])-T} / (4.9 × [Cu] +46.2) ≦ ln (t) ≦ {(705-7 × [Cu])-T} / (1.1 × [Cu] + 35.5)
... (1)
In the formula, [Cu] is the Cu content (% by mass),
t is the aging time (min),
T is an aging temperature (° C.).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006064646A JP4610500B2 (en) | 2006-03-09 | 2006-03-09 | Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006064646A JP4610500B2 (en) | 2006-03-09 | 2006-03-09 | Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007239051A JP2007239051A (en) | 2007-09-20 |
JP4610500B2 true JP4610500B2 (en) | 2011-01-12 |
Family
ID=38584873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006064646A Expired - Fee Related JP4610500B2 (en) | 2006-03-09 | 2006-03-09 | Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4610500B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005035878B3 (en) | 2005-07-30 | 2006-08-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Magnetically operatable valve has valve seat which is magnetized and along with walls of magnetic circuit whereby magnetic flux from wall proceeds over valve body and valve seat |
CN106544579A (en) * | 2016-12-16 | 2017-03-29 | 广西大学 | A kind of antiacid cast iron circulator and preparation method thereof |
CN106636873A (en) * | 2016-12-16 | 2017-05-10 | 广西大学 | Thermal treatment method for anti-acid cast iron circulator |
JP7163639B2 (en) * | 2018-07-02 | 2022-11-01 | 日本製鉄株式会社 | Steel bars or steel products and their manufacturing methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073064A (en) * | 1999-09-01 | 2001-03-21 | Natl Res Inst For Metals | Steel material excellent in delayed fracture resistance |
JP2005264176A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | High-strength steel having adequate workability and manufacturing method therefor |
JP2005274513A (en) * | 2004-03-26 | 2005-10-06 | Kobe Steel Ltd | Aging state evaluation method for cu-containing steel product and aging treatment method using it |
JP2006009098A (en) * | 2004-06-25 | 2006-01-12 | Daido Steel Co Ltd | Cu-CONTAINING STEEL AND ITS PRODUCTION METHOD |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306543A (en) * | 1993-04-15 | 1994-11-01 | Nippon Steel Corp | High strength pc wire rod excellent in delayed fracture resistance and its production |
JPH101740A (en) * | 1996-06-12 | 1998-01-06 | Kobe Steel Ltd | Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production |
JP3694383B2 (en) * | 1997-02-24 | 2005-09-14 | 新日本製鐵株式会社 | High strength steel with excellent uniform elongation |
-
2006
- 2006-03-09 JP JP2006064646A patent/JP4610500B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073064A (en) * | 1999-09-01 | 2001-03-21 | Natl Res Inst For Metals | Steel material excellent in delayed fracture resistance |
JP2005264176A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | High-strength steel having adequate workability and manufacturing method therefor |
JP2005274513A (en) * | 2004-03-26 | 2005-10-06 | Kobe Steel Ltd | Aging state evaluation method for cu-containing steel product and aging treatment method using it |
JP2006009098A (en) * | 2004-06-25 | 2006-01-12 | Daido Steel Co Ltd | Cu-CONTAINING STEEL AND ITS PRODUCTION METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP2007239051A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4712882B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability | |
KR102544884B1 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4412727B2 (en) | Super high strength steel sheet with excellent hydrogen embrittlement resistance and method for producing the same | |
JP5503346B2 (en) | Ultra-high strength thin steel sheet with excellent hydrogen embrittlement resistance | |
EP2843075B1 (en) | High-strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same | |
JP4324225B1 (en) | High strength cold-rolled steel sheet with excellent stretch flangeability | |
WO2013024860A1 (en) | High-strength hot-rolled steel plate | |
JP2010126787A (en) | Ultrahigh-strength steel sheet having excellent hydrogen embrittlement resistance and workability, and method for producing the same | |
JP6875915B2 (en) | High-strength steel plate and its manufacturing method | |
US11578391B2 (en) | Nickel-containing steel for low temperature | |
JP4610500B2 (en) | Ultra high strength steel excellent in workability and delayed fracture resistance and method for producing the same | |
JP6760056B2 (en) | Ni steel for liquid hydrogen | |
KR20200062303A (en) | Low-temperature nickel-containing steel | |
JP4868771B2 (en) | Ultra high strength thin steel sheet with excellent hydrogen embrittlement resistance | |
EP4265771A1 (en) | High strength steel sheet having excellent workability and method for manufacturing same | |
JP4618682B2 (en) | High strength spring steel with excellent hydrogen embrittlement resistance | |
WO2022070636A1 (en) | Steel plate and method for manufacturing steel plate | |
JP6620661B2 (en) | Ni steel for liquid hydrogen | |
JP6699711B2 (en) | High-strength steel strip manufacturing method | |
JP4923982B2 (en) | High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing | |
JP4553372B2 (en) | Ultra high strength thin steel sheet with excellent hydrogen embrittlement resistance | |
JP4551815B2 (en) | Super high strength thin steel sheet with excellent hydrogen embrittlement resistance and workability | |
JP4853304B2 (en) | High strength hot rolled steel sheet | |
EP4119690A1 (en) | Hot-rolled steel sheet | |
JP7522979B1 (en) | High strength hot rolled steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4610500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |