JP4606961B2 - Coffee sterilization method - Google Patents
Coffee sterilization method Download PDFInfo
- Publication number
- JP4606961B2 JP4606961B2 JP2005218070A JP2005218070A JP4606961B2 JP 4606961 B2 JP4606961 B2 JP 4606961B2 JP 2005218070 A JP2005218070 A JP 2005218070A JP 2005218070 A JP2005218070 A JP 2005218070A JP 4606961 B2 JP4606961 B2 JP 4606961B2
- Authority
- JP
- Japan
- Prior art keywords
- coffee
- sterilization
- filtration
- electric field
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001954 sterilising effect Effects 0.000 title claims description 75
- 238000004659 sterilization and disinfection Methods 0.000 title claims description 69
- 235000013353 coffee beverage Nutrition 0.000 title claims description 54
- 235000016213 coffee Nutrition 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 40
- 240000007154 Coffea arabica Species 0.000 claims description 52
- 230000005684 electric field Effects 0.000 claims description 34
- 238000001914 filtration Methods 0.000 claims description 33
- 235000021056 liquid food Nutrition 0.000 claims description 31
- 244000005700 microbiome Species 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 235000013361 beverage Nutrition 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 3
- 238000001471 micro-filtration Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims 1
- 238000006392 deoxygenation reaction Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 17
- 241000894006 Bacteria Species 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 235000019634 flavors Nutrition 0.000 description 6
- 239000003205 fragrance Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 241000533293 Sesbania emerus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004853 microextraction Methods 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 235000021251 pulses Nutrition 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002470 solid-phase micro-extraction Methods 0.000 description 2
- 241001147780 Alicyclobacillus Species 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000626621 Geobacillus Species 0.000 description 1
- 244000061457 Solanum nigrum Species 0.000 description 1
- 241000186339 Thermoanaerobacter Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 244000170226 Voandzeia subterranea Species 0.000 description 1
- 235000013030 Voandzeia subterranea Nutrition 0.000 description 1
- -1 acidulants Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 235000007924 ground bean Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 235000021539 instant coffee Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Tea And Coffee (AREA)
Description
本発明は、コーヒーの殺菌方法に関するものである。本発明によれば、従来簡単には殺菌することができなかった耐熱性芽胞菌も容易に殺菌することが可能となったので、本発明はコーヒー(以下、液体食品ということもある)の安全性及び保存性を更に高めるのに特に有用である。 The present invention relates to a method for sterilizing coffee. According to the present invention, since heat-resistant spore bacteria that could not be sterilized conventionally can be easily sterilized, the present invention is safe for coffee (hereinafter also referred to as liquid food). It is particularly useful for further enhancing the properties and storage stability.
従来より、当業界においては、微生物の殺菌を行うには、被処理物を加熱し殺菌を行うのが一般的である。また、微生物制御という観点から抗菌剤・静菌剤などを使用したり、又はpHを調整することにより微生物制御を行っている。また、食品添加物の使用が好まれない昨今にあっては、物理的ないし電気的殺菌方法への関心も高まり、例えば高電圧のパルスを用いる方法が提案されている(非特許文献1参照)。 Conventionally, in the industry, in order to sterilize microorganisms, it is common to sterilize by heating an object to be processed. From the viewpoint of controlling microorganisms, microorganisms are controlled by using antibacterial agents, bacteriostatic agents, etc., or adjusting pH. Moreover, in recent years when the use of food additives is not preferred, interest in physical or electrical sterilization methods has increased, and for example, a method using a high voltage pulse has been proposed (see Non-Patent Document 1). .
たしかにこの高電圧パルス法はすぐれた方法であるが、殺菌対象物を一旦槽内に貯留する必要があるためバッチ式処理であって、連続処理ができないし、殺菌時間も長く、そのため殺菌対象物の風味や品質の劣化は避けられず、充分に満足できるものとはいい難い。
本発明は、液体食品中で腐敗や変敗などの問題となる微生物(耐熱性芽胞菌を含む)を効果的に殺菌して、液体食品の保存性を向上させ、微生物制御のために使用する添加物量の削減や加熱殺菌に伴う加熱劣化の防止や抑制、例えば香気成分等の有効成分の分解などの防止や抑制を目的とするものである。更に殺菌の効率化を目的とするものである。 The present invention effectively sterilizes microorganisms (including heat-resistant spore bacteria) that cause problems such as spoilage and deterioration in liquid foods, improves the storage stability of liquid foods, and is used for controlling microorganisms. The purpose is to reduce or reduce the amount of additives and prevent or suppress heat deterioration associated with heat sterilization, for example, to prevent or suppress decomposition of active ingredients such as aroma components. Furthermore, it aims at the efficiency improvement of sterilization.
本発明は、上記目的を達成するためになされたものであって、各方面から検討の結果、化学的方法ではなく電気的方法に着目するに至り、食品の加熱に伴う有効成分の変化の防止や制御、香気成分の変化の防止や制御、微生物制御の為の各種添加物の削減を目指し、交流電源を用いて電圧を印加する事により電界を発生させたところ上記有用成分の変化や香気成分の変化を制御し、更に効果的に微生物を連続的に殺菌することができ、しかも通常の方法では簡単に殺菌することのできない耐熱性芽胞菌も短時間に効率的に連続殺菌できることをはじめて見出し、この有効新知見に基づき、交流高電界殺菌処理システムに関する発明を完成し、その成果を先に特願2005−61139として特許出願したところである。 The present invention has been made to achieve the above object, and as a result of examination from various directions, attention has been paid to an electrical method, not a chemical method, and prevention of changes in active ingredients associated with heating of food. When the electric field is generated by applying a voltage using an AC power source with the aim of reducing or reducing various additives for controlling or controlling fragrance components and controlling microorganisms, changes in the above useful components and fragrance components For the first time, it has been found that heat-resistant spore bacteria that can effectively sterilize microorganisms more effectively and can be sterilized more effectively in a short time can be sterilized more effectively. And based on this effective new knowledge, the invention regarding an alternating current high electric field sterilization processing system was completed, and the result was previously applied for a patent as Japanese Patent Application No. 2005-61139.
この交流高電界殺菌処理システムは非常にすぐれたシステムであるが、本発明者らは、これに満足することなく、更に改良することとし、そしてその際、その需要が近年になって急上昇しているコーヒーに特に注目し、特にコーヒーの殺菌に適合したシステムを開発するという目的を新たに設定した。 This AC high electric field sterilization treatment system is a very good system, but the present inventors are not satisfied with this, and intend to improve it further. At that time, the demand has rapidly increased in recent years. With a particular focus on coffee, the goal was to develop a system specifically adapted for coffee sterilization.
そこで各方面から検討を行い、濾過処理に着目した。そこで交流高電界殺菌処理前の工程に濾過工程(不溶性固形物を除去する工程)を設けてコーヒーを殺菌処理したところ、パイプや電極へのスケールの付着が防止、抑制されて、電圧が一定し、その結果、殺菌が安定的に行われること、及び、長期保存してもオイル浮上の発生が抑制され、更に、コーヒー中の香気成分等有用成分の変質や分解が防止、抑制されるという著効、しかもコーヒーに特に有用な著効が奏されることをはじめて発見した。なお、通常、完全に「抑制」された場合が「防止」となるが、本明細書においては、「防止」が不完全な「抑制」を意味する場合もある。なお、本発明においては、コーヒーにはコーヒー含有飲料も包含される。 Therefore, we examined from various directions and focused on filtration. Therefore, when the coffee was sterilized by providing a filtration step (step for removing insoluble solids) in the process before AC high electric field sterilization treatment, adhesion of scale to pipes and electrodes was prevented and suppressed, and the voltage was constant. As a result, the sterilization is stably performed, the occurrence of oil floating is suppressed even after long-term storage, and further, alteration and decomposition of useful components such as aroma components in coffee are prevented and suppressed. It was discovered for the first time that it was effective especially for coffee. Normally, the case of “suppressed” completely is “prevented”, but in this specification, “prevented” may mean incomplete “suppressed”. In the present invention, coffee includes a coffee-containing beverage.
本発明は、これらの有用新知見に基づいてなされたものであって、交流高電界殺菌を実施する前に濾過工程を1回以上実施することを特徴とするコーヒーの殺菌方法を基本的技術思想とするものである。交流高電界殺菌は、先に出願した特願2005−61139(2005年3月4日出願)にしたがって行う。 The present invention has been made on the basis of these useful new findings, and has a basic technical idea of a coffee sterilization method characterized in that the filtration step is performed one or more times before the AC high electric field sterilization is performed. It is what. The AC high electric field sterilization is performed in accordance with the previously filed Japanese Patent Application No. 2005-61139 (filed on Mar. 4, 2005).
すなわち本発明は、1対以上の金属製の電極に挟まれた通電ユニットを用いて電気伝導性を有する液体食品であるコーヒーを殺菌する方法であって、通電ユニットは密閉系にするとともに、通電ユニットの電極には交流電源を接続し、電圧を印加した通電ユニットに未殺菌コーヒーを連続的に通液することによって微生物を殺菌すること、且つ、この交流高電界殺菌処理に先立ち、未殺菌コーヒーを1又はそれ以上の回数濾過処理すること、を特徴とするコーヒーの殺菌方法を提供するものである。 That is, the present invention is a method for sterilizing coffee, which is a liquid food having electrical conductivity, using an energization unit sandwiched between one or more pairs of metal electrodes. An AC power source is connected to the electrode of the unit, and microorganisms are sterilized by continuously passing unsterilized coffee through an energized unit to which voltage is applied, and prior to this AC high electric field sterilization treatment, unsterilized coffee The method for sterilizing coffee is characterized in that it is filtered one or more times.
更に好適には、交流高電界殺菌を実施する前で、ポンプに通液する前に濾過工程を実施すること、そして、濾過の種類は、濾布、80メッシュ以上の金属フィルタ、遠心分離、精密濾過の少なくともひとつであり、濾過サイズは200μm以上の粒子を除去することが実施態様のひとつとして包含される。 More preferably, the filtration step is performed before the AC high electric field sterilization and before passing through the pump, and the type of filtration is filter cloth, metal filter of 80 mesh or more, centrifugal separation, precision It is at least one of filtration, and removal of particles having a filtration size of 200 μm or more is included as one embodiment.
そして、時間当たり60L高電界処理した場合に、電極に1.5kV/cm以上電圧を印加し、品温を120℃以上となることも実施態様のひとつとして包含され、また、印加電界時間を1秒以内とすることも実施態様のひとつとして包含される。 In addition, when a high electric field treatment of 60 L per hour is applied, a voltage of 1.5 kV / cm or higher is applied to the electrode, and the product temperature is 120 ° C. or higher. Within one second is also included as one embodiment.
また、本発明は、コーヒーの中に含まれる香気成分といった有効成分の分解を防止ないし抑制することを特徴とする殺菌方法、及び、脱酸素条件下における殺菌方法も提供するものである。 The present invention also provides a sterilization method characterized by preventing or suppressing decomposition of an active ingredient such as an aroma component contained in coffee, and a sterilization method under deoxidation conditions.
更に本発明は、コーヒーのほか、コーヒー液やコーヒーを含有する各種コーヒー飲料を殺菌する方法を提供するものである。 Furthermore, this invention provides the method of disinfecting various coffee drinks containing coffee liquid and coffee other than coffee.
本発明によれば、通電ユニット内の電界中に液体食品を通過させることにより、液体食品を連続的に殺菌することができる。しかもその際、少なくとも通電ユニットの内部を加圧することによって、通常の微生物はもとより耐熱性微生物、特に耐熱性芽胞菌等も1秒以内というきわめて短い時間で殺菌でき、そのため、液体食品の風味、品質の劣化や有効成分の減少や変質も防止でき、液体食品の殺菌システムとして特に好適である。 According to the present invention, the liquid food can be sterilized continuously by passing the liquid food through the electric field in the energization unit. In addition, at least the inside of the current-carrying unit can be pressurized to sterilize not only ordinary microorganisms but also heat-resistant microorganisms, especially heat-resistant spore bacteria within 1 second, so that the flavor and quality of liquid foods can be reduced. It is possible to prevent the deterioration of the active ingredient, the decrease in the active ingredient, and the alteration, and it is particularly suitable as a liquid food sterilization system.
また、装置の面からは、通電ユニットのほか各装置や手段はパイプで連結し且つ密閉系となすことにより、これらの内部はポンプによって送液される液体食品自体の圧力によって加圧されるため、装置全体を圧力容器内に収容する必要がなく、装置はコンパクトとなり、操作は格段に簡素化され、きわめて効率的に殺菌処理を達成することができる。 In addition, from the standpoint of the device, each device and means in addition to the current-carrying unit are connected by pipes and become a sealed system, so that their interior is pressurized by the pressure of the liquid food itself fed by the pump. It is not necessary to house the entire apparatus in a pressure vessel, the apparatus is compact, the operation is greatly simplified, and sterilization can be achieved very efficiently.
液体食品、特に缶コーヒーといった容器入り液体食品は、自動販売機で販売されることが多く、その際は製造から一定期間経過後に消費されることになるが、殺菌処理しても、耐熱性芽胞菌が残っていると、その間にこれが繁殖して腐敗や品質の劣化を生じる。しかしながら、このような微生物を完全に殺菌するには、高温、且つ高圧でしかも長時間処理せざるを得ず、コストアップや液体食品の風味、品質の劣化は避けられない。 Liquid foods, especially liquid foods in containers such as canned coffee, are often sold in vending machines and are consumed after a certain period of time since manufacture. If the fungus remains, it propagates in the meantime, causing rot and quality degradation. However, in order to completely sterilize such microorganisms, they must be treated at a high temperature and a high pressure for a long time, and an increase in cost, flavor of liquid food, and deterioration of quality are inevitable.
本発明はこれらの点を一挙に解決するのにはじめて成功したものであって、特に飲食品の技術分野に適合した殺菌方法である。しかも、大型で複雑な加圧装置を使用する必要がないので、コスト面、操作面及び作業安全性の面からもすぐれており、小さな装置で非常に高い殺菌効果が得られる点においても、液体飲食品の殺菌システムとして特に卓越している。 The present invention has been successful for the first time to solve these problems all at once, and is a sterilization method particularly suited to the technical field of food and drink. In addition, since it is not necessary to use a large and complicated pressurizing device, it is excellent in terms of cost, operation and work safety, and it is liquid in that a very high sterilizing effect can be obtained with a small device. It is particularly outstanding as a food and beverage sterilization system.
そして更に本発明においては、濾過処理を交流高電界殺菌処理に有機的に組み合わせたため、上記した交流高電界殺菌処理による著効のほか、次のような著効、特にコーヒーに特有にして且つ顕著な効果が奏される。 In addition, in the present invention, the filtration treatment is organically combined with the alternating current high electric field sterilization treatment. Therefore, in addition to the above-described remarkable effects due to the alternating current high electric field sterilization treatment, the following remarkable effects, particularly, and particularly remarkable for coffee. The effect is played.
すなわち、パイプ、電極、装置の器壁等にスケールが発生、付着するのを防止ないし抑制できるため、電圧が一定し、殺菌が安定して行われる。また、電極にスケールが付着するのが防止ないし抑制されるため、電極の交換頻度ないし洗浄頻度が低下し、風味が損なわれない範囲で効率化が図られる。 That is, since scale can be prevented or adhered to pipes, electrodes, device walls, etc., the voltage is constant and sterilization is performed stably. In addition, since the scale is prevented or suppressed from adhering to the electrode, the electrode replacement frequency or cleaning frequency is reduced, and the efficiency can be improved within a range where the flavor is not impaired.
また、長期保存する場合、オイル浮上が発生するが、本発明によればこのオイル浮上の発生が抑制される。そのうえ更に、本発明に係る殺菌方法によれば、コーヒーの変色及び/又は成分変化(品質劣化)が防止ないし抑制され、UHT殺菌よりも、未処理に近い色を保持することができ、香気成分等有用成分の変化(劣化)が防止ないし抑制できるという著効も奏される。 In addition, when the oil is stored for a long period of time, oil floating occurs. However, according to the present invention, the oil floating is suppressed. Furthermore, according to the sterilization method according to the present invention, discoloration and / or component change (quality deterioration) of coffee is prevented or suppressed, and it is possible to retain a color closer to untreated than UHT sterilization, and an aroma component The remarkable effect that change (deterioration) of such useful components can be prevented or suppressed is also exhibited.
本発明は、電圧を印加した通電ユニットに濾過処理後の液体食品を通液させることによって電極間で電界が発生し、微生物を連続的に殺菌するものであるが、その際、通電ユニットを密閉系とし、所望に応じて通電ユニット内を更に加圧することにより、液体殺菌するのが困難であった耐熱性芽胞菌もごく短時間で殺菌することができ、コーヒー本来の風味、品質を損なうことなく、大幅な効率化が達成される。 In the present invention, an electric field is generated between electrodes by passing liquid food after filtration through an energization unit to which a voltage is applied, and microorganisms are continuously sterilized. By applying further pressure inside the energizing unit as required, heat-resistant spore bacteria that were difficult to sterilize in liquid can be sterilized in a very short time, and the original flavor and quality of coffee are impaired. And significant efficiency is achieved.
本発明を実施するには、濾過処理後の液体食品(未殺菌コーヒー)を先願に係る交流高電界殺菌システムによって処理すればよい。濾過処理は別途行ってもよいし、図1に示したように、ポンプの前に濾過工程を設けて連続的に殺菌処理することも可能である。 In order to carry out the present invention, the liquid food after filtration (unsterilized coffee) may be processed by the AC high electric field sterilization system according to the prior application. The filtration treatment may be performed separately, or as shown in FIG. 1, it is possible to provide a filtration step before the pump and continuously sterilize.
濾過処理するにあたり、濾過の種類としては、濾布、網目が80メッシュ以上、好ましくは100〜300メッシュの金属フィルタ、網目が80メッシュをこえてフルイ目の開きが狭いタイラー標準フルイ、遠心分離、精密濾過の少なくともひとつが使用される。また、濾過サイズとしては、200μm以下、好ましくは150μm以下であって、好適な範囲は50〜100μmである。 In the filtration process, the types of filtration include filter cloth, mesh metal mesh of 80 mesh or more, preferably 100 to 300 mesh, Tyler standard sieve with a mesh opening of more than 80 mesh and narrow opening, centrifugal separation, At least one of microfiltration is used. Moreover, as a filtration size, it is 200 micrometers or less, Preferably it is 150 micrometers or less, Comprising: The suitable range is 50-100 micrometers.
濾過処理は、1回でもよいし、2回以上、又は3回以上、必要あれば4回以上行ってもよい。その際、濾過の種類及び濾過サイズは同種のものを使用してもよいし異種のものを組み合わせて実施してもよい。 The filtration treatment may be performed once, or may be performed twice or more, or three or more times, or four or more times if necessary. In that case, the same kind of filtration and the filtration size may be used, or different kinds of filtration may be combined.
濾過処理を終了した未殺菌液(未殺菌のコーヒー)は、先願に係る交流高電界殺菌システムにて処理すればよい。
すなわち、濾過処理後の未殺菌液は、以下に例示されるような装置を用いて連続的に殺菌することができる。
What is necessary is just to process the unsterilized liquid (unsterilized coffee) which complete | finished the filtration process in the alternating current high electric field sterilization system which concerns on a prior application.
That is, the unsterilized liquid after the filtration treatment can be continuously sterilized using an apparatus as exemplified below.
液体の供給口と取り出し口を通電ユニットに接続し、通電ユニットには1対以上の金属製の電極を配し、且つ、これらの電極には交流電源を接続して電極間で電界を発生するようにしてなり、しかも通電ユニット内は加圧可能としてなること、を特徴とする液体食品の連続殺菌装置。 The liquid supply port and the liquid discharge port are connected to an energization unit, and a pair of metal electrodes are arranged on the energization unit, and an AC power source is connected to these electrodes to generate an electric field between the electrodes. A continuous sterilization apparatus for liquid food, characterized in that the inside of the energizing unit can be pressurized.
通電ユニット内は、開放系としてもよいが、密閉系とすることにより、通電ユニット内を加圧可能とすることができる。通電ユニット内は、それ自体を密閉系とすることにより、通電ユニットを加圧容器に収容することなく加圧することができる。例えば、通電ユニットは密閉されているため、その中に加圧ガスを供給してもよいし、通電ユニット内をポンプで通液する液体の圧力だけでも加圧状態とすることができる。 The inside of the energizing unit may be an open system, but the inside of the energizing unit can be pressurized by using a sealed system. The energization unit can be pressurized without accommodating the energization unit in a pressurized container by making itself a sealed system. For example, since the energization unit is hermetically sealed, a pressurized gas may be supplied into the energization unit, or the pressurized state can be achieved only by the pressure of the liquid that is passed through the energization unit by a pump.
以下に本発明を添付図面を参照しながら更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
図1は、本発明に係る液体食品殺菌装置の実施例を図示したものであり、上段が第1実施例、中段が第2実施例、下段が第3実施例である。なお、図1において、濾過工程を除いた装置が先願に係る液体食品の連続殺菌装置、つまり交流高電界殺菌装置である。なお、本発明は全体又は一部を、脱酸素状態(不活性ガス雰囲気下、不活性ガス置換等)で実施することも可能である。 FIG. 1 illustrates an embodiment of a liquid food sterilization apparatus according to the present invention. The upper part is a first example, the middle part is a second example, and the lower part is a third example. In FIG. 1, the apparatus excluding the filtration step is a liquid food continuous sterilization apparatus according to the prior application, that is, an AC high electric field sterilization apparatus. Note that the present invention can be implemented in whole or in part in a deoxygenated state (in an inert gas atmosphere, inert gas replacement, etc.).
図1に図示したように、本発明に係る液体食品の連続殺菌装置は、濾過手段のほか、送液手段、(予備加熱装置)、通電ユニット、冷却装置、保圧弁を備え、通電ユニットには1対以上の金属製の電極を配し、且つ、これらの電極には交流電源を接続し、少なくとも予備加熱装置、通電ユニット、冷却装置、保圧弁は接続して内部を密閉系としてなるものである。殺菌するために予め加熱が必要な場合は、予備加熱装置を使用すればよい。 As shown in FIG. 1, the liquid food continuous sterilization apparatus according to the present invention includes a liquid feeding means, a (preheating device), an energizing unit, a cooling device, and a pressure holding valve in addition to the filtering means. One or more pairs of metal electrodes are arranged, and an AC power supply is connected to these electrodes, and at least a preheating device, a power supply unit, a cooling device, and a pressure holding valve are connected to form an internal closed system. is there. When heating is necessary in advance for sterilization, a preheating device may be used.
具体的には、濾過手段については既述した通りであるが、更に具体的には、例えば、送液手段としてはポンプが使用され、通常使用されるプランジャーポンプ、シリンダーポンプ、ロータリーポンプなどから適宜選択して使用し、予備加熱装置としては熱交換プレート(加熱用)が使用されるほか(第2実施例:中段)、第3実施例(下段)のように、通電ユニットを設けてそのジュール熱を利用してもよい。なお、上段は第1実施例であって、予備加熱をしない場合である。 Specifically, the filtering means is as described above. More specifically, for example, a pump is used as the liquid feeding means, and from a commonly used plunger pump, cylinder pump, rotary pump, etc. In addition to using a heat exchange plate (for heating) as a preheating device (second embodiment: middle stage), as in the third embodiment (lower stage), an energization unit is provided and used as a preheating device. Joule heat may be used. The upper stage is the first embodiment, in which no preheating is performed.
通電ユニット(図面においては、高電界電極と表示)には、液体の供給口から供給される液体が流れる流路が形成され、この流路には交流電源(高周波交流電源)に接続される少なくとも一対の電極が臨んだ構成となっている。具体的には、この通電ユニットの電極には交流電源が接続され、接続される電極は、絶縁体に覆われた金属の電極を最低1対以上臨んだ構成にする事により殺菌できる。更に、電極を覆う絶縁体は、加圧出来る様に密閉状態である。 The energization unit (indicated as a high electric field electrode in the drawing) is formed with a channel through which the liquid supplied from the liquid supply port flows, and this channel is at least connected to an AC power source (high frequency AC power source). It has a configuration with a pair of electrodes facing it. Specifically, an AC power source is connected to the electrodes of the energization unit, and the electrodes to be connected can be sterilized by adopting a configuration in which at least one pair of metal electrodes covered with an insulator is faced. Further, the insulator covering the electrode is in a sealed state so that it can be pressurized.
電極の種類としては、電気伝導性を有する金属であれば問題無いが、電極の腐食など劣化防止の為には、チタン製、白金製もしくはステンレス製が望ましい。また、通電ユニットの電極は絶縁体を複数枚重ねる事により、電極を何枚も積層させる事が出来る。 As the type of electrode, there is no problem as long as it is a metal having electrical conductivity, but in order to prevent deterioration such as corrosion of the electrode, titanium, platinum or stainless steel is desirable. In addition, a plurality of electrodes can be stacked by stacking a plurality of insulators on the electrodes of the energization unit.
通電ユニットにおいて通電処理することによって、ジュール熱により液体食品が加熱されるため、風味や品質劣化が生じるのでそれを希望しない場合には、冷却手段を設ければよく、例えば、熱交換プレート(冷却用)を使用することができる。 Since the liquid food is heated by the Joule heat by performing the energization process in the energization unit, flavor and quality deterioration occur. Therefore, if it is not desired, a cooling means may be provided, for example, a heat exchange plate (cooling plate) Can be used.
このようにして殺菌処理された液体食品は、保圧弁(調圧弁)を介して系外に取り出される。圧力調整は送液手段と保圧弁とで調節し、通電ユニット内を適切な状態を維持する。 The liquid food sterilized in this way is taken out of the system through a pressure holding valve (pressure regulating valve). The pressure adjustment is adjusted by the liquid feeding means and the pressure holding valve to maintain an appropriate state in the energizing unit.
本発明に係る連続殺菌装置は、このように濾過工程、及び、ポンプ〜保圧弁に至るまで配管(パイプ:図中、黒い矢印で示す)で接続されて、それ自体密閉系を構成している。したがって、予備加熱手段〜保圧弁、少なくとも通電ユニットは、加圧容器内に配設することなく、それ自体でその内部は加圧可能とすることができるので、本装置はオープンスペース内に設置しておいても、加圧交流高電界殺菌処理が可能となる点で、きわめて特徴的であり、効率的である。すなわち、通電ユニットを加圧容器に収容して通電ユニットを外部から加圧する場合とは根本的に相違するのである。 The continuous sterilization apparatus according to the present invention is thus connected by piping (pipe: indicated by a black arrow in the figure) from the filtration step and the pump to the pressure holding valve, and constitutes a sealed system itself. . Therefore, the preheating means to the pressure holding valve, at least the energizing unit, can be pressurized by itself without being arranged in the pressurized container, so this apparatus is installed in an open space. However, it is very characteristic and efficient in that the high pressure electric field sterilization treatment under pressure can be performed. That is, this is fundamentally different from the case where the energization unit is housed in the pressurization container and the energization unit is pressurized from the outside.
本装置は、このような構成を新規に採用したことにより、加圧容器内に収容した場合とは異なり、各装置、手段はパイプで接続しているため、圧力のコントロールが容易であって、微調整も可能となる。なお、加圧手段としては、加圧ガスを使用してもよいし、液体食品自体の水圧(液圧)も利用可能であるので、ポンプ(及び必要あれば保圧弁)をコントロールすることによって格別な加圧手段を別途設けることなく、液体食品の水圧を利用することによって加圧状態とすることができ、本装置は自己完結型の装置ということができる。加圧手段として好ましくは水圧(液圧)であり、加圧ガスを利用する場合には、処理時の圧力を一定に保持できるようにする。 Unlike the case where this device is newly housed in a pressurized container by adopting such a configuration, each device and means are connected by a pipe, so that pressure control is easy. Fine adjustment is also possible. As the pressurizing means, pressurized gas may be used, and the water pressure (hydraulic pressure) of the liquid food itself can be used. Therefore, by controlling the pump (and holding valve if necessary), it is exceptional. Without providing a separate pressurizing means, the pressurized state can be obtained by utilizing the water pressure of the liquid food, and this apparatus can be said to be a self-contained apparatus. The pressurizing means is preferably water pressure (hydraulic pressure), and when a pressurized gas is used, the pressure during the treatment can be kept constant.
液体食品を殺菌するには、まず、液体食品(未殺菌物)を濾過工程にて濾過処理した後、ポンプを介して通液し、予備加熱した後、通電ユニットにて処理した後に冷却し、保圧弁を介して殺菌物として系外に取り出せばよいが、以下において、内部を加圧した場合を例にとって本発明を詳しく説明する。 In order to sterilize liquid food, first, liquid food (unsterilized product) is filtered in a filtration step, then passed through a pump, preheated, cooled in a current-carrying unit, and then cooled. Although it may be taken out of the system as a sterilized product through a pressure holding valve, the present invention will be described in detail below with an example in which the inside is pressurized.
液体食品は(必要あれば、予備加熱処理した後)、通電ユニットにて加圧下において通電処理するが、その際、通電ユニット内の圧力が、液体食品へ電圧を印加したときの品温に40℃加算したときの飽和水蒸気圧以上の圧力であるのが望ましい。その理由として、電極側でのスパーク(一時的に放電が発生する現象)を抑制し効率的に微生物殺菌を達成させること及び微小スパークを防止することにより電極の劣化を防止するためである。圧力としては、120℃で、0.6MPa以上、好ましくは0.8MPa以上、更に好ましくは0.9MPa以上であるので、これにしたがって加算値をきめればよい。 The liquid food (after preheating if necessary) is energized under pressure in the energizing unit. At this time, the pressure in the energizing unit is adjusted to 40 when the voltage is applied to the liquid food. It is desirable that the pressure be equal to or higher than the saturated water vapor pressure when added in ° C. The reason for this is to prevent the deterioration of the electrode by suppressing sparks (a phenomenon in which discharge is temporarily generated) on the electrode side, efficiently achieving microbial sterilization, and preventing minute sparks. The pressure is 0.6 MPa or more, preferably 0.8 MPa or more, and more preferably 0.9 MPa or more at 120 ° C., and the addition value may be determined according to this.
通電ユニット内の電極の電圧印加時間は、きわめて短かく、1秒以内とするのがよい。電圧の印加時間が長すぎると十分な印加電圧を確保することができないからである。このように、印加時間は、1秒以内、好ましくは0.5秒以内であり、実施例においては、0.006〜0.044秒のように0.05秒以内も例示されている。このように、本発明においては、電圧印加時間が1秒以内、例えば0.1秒以内であって、きわめて短かい点でも非常に特徴的である。 The voltage application time of the electrodes in the energization unit is very short and is preferably within 1 second. This is because if the voltage application time is too long, a sufficient applied voltage cannot be secured. Thus, the application time is within 1 second, preferably within 0.5 seconds, and in the examples, it is exemplified within 0.05 seconds, such as 0.006 to 0.044 seconds. Thus, in the present invention, the voltage application time is within 1 second, for example, within 0.1 second, which is very characteristic in that it is extremely short.
また、電極間の距離と印加電圧と電圧印加時間との関係については、電極間距離1cmあたりの電極への印加電圧(V/cm)と液体食品への電圧印加時間(液体食品の通過時間)(秒)の積算係数が50以上となるのが望ましい。この関係は係数が50以上となると通常の加熱のみの殺菌(UHT殺菌やレトルト殺菌など)以上に微生物の殺菌を達成できるからである。この係数は、50以上であればよく、格別の限界はないが、通常、60〜200までが例示される。これらの関係を数式で表わすと、次のとおりである。 Regarding the relationship between the distance between electrodes, applied voltage, and voltage application time, the applied voltage (V / cm) to the electrode per 1 cm distance between the electrodes and the voltage application time to the liquid food (the passage time of the liquid food) It is desirable that the integration coefficient of (seconds) is 50 or more. This relationship is because when the coefficient is 50 or more, sterilization of microorganisms can be achieved more than normal heat sterilization (such as UHT sterilization and retort sterilization). This coefficient may be 50 or more, and there is no particular limit, but usually 60 to 200 is exemplified. These relationships are represented by mathematical formulas as follows.
電極間距離あたりの印加電圧(V/cm)×印加時間(秒)≧50
(式中、Vは電圧、cmは電極間の距離を表わす。)
Applied voltage per electrode distance (V / cm) × application time (seconds) ≧ 50
(In the formula, V represents voltage, and cm represents the distance between the electrodes.)
また、本発明においては、更に、通電ユニットを2回以上通液したり、予め熱交換プレート等を用い予備加熱を行ったものを通電ユニットに通液しても問題無い。なお、図1には本発明装置は横型のものを図示したが、竪型のものも使用可能である。 Further, in the present invention, there is no problem even if the energization unit is passed through the energization unit twice or more, or a preheated plate using a heat exchange plate or the like is passed through the energization unit. In FIG. 1, the apparatus of the present invention is shown as a horizontal type, but a saddle type can also be used.
電源の周波数としては、エネルギー効率の面と電極に対する耐腐食性の面から、50kHz以下、好ましくは20kHz以下がよく、10〜20kHzの範囲が好適であり、5kHzあるいはそれ以下も使用可能である。 The frequency of the power source is 50 kHz or less, preferably 20 kHz or less, preferably 10 to 20 kHz from the viewpoint of energy efficiency and corrosion resistance with respect to the electrode, and 5 kHz or less can also be used.
本発明で殺菌できる微生物としては、加熱殺菌を必要とする微生物であり、特に変敗や腐敗を引き起こすような微生物に好適である。更に、通常加熱殺菌でも十分な殺菌を要するような耐熱性微生物や芽胞形成する微生物には当該発明の方法による殺菌が効果的である。たとえば、グラム陽性菌を中心とするBacillus属、Geobacillus属、Alicyclobacillus属、Morella属、Clostridium属、Thermoanaerobacter属などが例示される。 The microorganisms that can be sterilized by the present invention are microorganisms that require heat sterilization, and are particularly suitable for microorganisms that cause deterioration or decay. Furthermore, sterilization by the method of the present invention is effective for heat-resistant microorganisms that require sufficient sterilization even by heat sterilization and microorganisms that form spores. For example, Bacillus genus, Geobacillus genus, Alicyclobacillus genus, Morella genus, Clostridium genus, Thermoanaerobacter genus and the like centering on Gram-positive bacteria are exemplified.
更に、通電することで抵抗加熱(ジュール熱)が発生することにより液体食品が加熱される為、必要以上の熱が加わらないように、通電ユニットに液体食品を通液させた後、直ちに液体食品が冷却されるような構造であることが望ましい。 Furthermore, since the liquid food is heated by generating resistance heating (Joule heat) when energized, the liquid food is immediately passed through the energizing unit so that excessive heat is not applied. It is desirable that the structure be cooled.
本発明は、コーヒーを広くその処理対象とし、例えば次のようなコーヒー液が例示される。
(処理するコーヒー液)
コーヒー豆: アラビカ、ロブスタ種等、一般的にコーヒーに使用されるコーヒー豆であれば問題無い。豆を焙煎し、粉砕したものを利用する。
抽出方法: 一般的な抽出条件であれば問題無い。
シャワー式抽出、多塔式抽出、ニーダー式抽出、浸漬抽出など適宜選択できる。
抽出条件: 一般的な抽出条件であれば問題無い。
温水、熱水、蒸気を利用するのが好ましい。
抽出温度は60〜150℃が適温であるが、これに限定しなくても良い。
副原料: 牛乳などの乳原料、糖質、酸味料、香料及び乳化剤、pH調整剤などの添加物が使用可能である。
また、コーヒー抽出液の代替として、市販のコーヒーエキスやインスタントコーヒーも利用することが可能。コーヒー、コーヒー含有飲料に適用できる。
In the present invention, coffee is widely treated, and the following coffee liquid is exemplified.
(Coffee liquid to be processed)
Coffee beans: Arabica, Robusta and other coffee beans that are commonly used for coffee are not a problem. Use roasted and ground beans.
Extraction method: No problem if it is a general extraction condition.
Shower type extraction, multi-column type extraction, kneader type extraction, immersion extraction, and the like can be selected as appropriate.
Extraction condition: No problem if it is a general extraction condition.
Hot water, hot water and steam are preferably used.
60-150 degreeC is suitable temperature for extraction, but it does not need to be limited to this.
Auxiliary raw materials: Additives such as milk raw materials such as milk, sugars, acidulants, fragrances and emulsifiers, and pH adjusters can be used.
Commercial coffee extracts and instant coffee can also be used as an alternative to the coffee extract. Applicable to coffee and coffee-containing beverages.
以下、本発明の実施例について述べるが、本発明はこれらの実施例のみに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
微生物調整
耐熱性微生物胞子Bacillus subtilis JCM2477を用い栄研器材社製 普通ブイヨン培地にて芽胞形成を行い、形成した芽胞を10%グリセロールを含む0.85%生理食塩水中に保存し、−85℃にて凍結保存した物を微生物として用いた。
Example 1
Preparation of microorganisms Spore formation was performed in a normal bouillon medium manufactured by Eiken Equipment Co., Ltd. using thermostable microorganism spores Bacillus subtilis JCM2477, and the formed spores were stored in 0.85% physiological saline containing 10% glycerol, and kept at −85 ° C. The frozen product was used as a microorganism.
圧力の影響
図1の装置を用いて(但し、濾過工程を除く)上記微生物を用い通電ユニット内を0.4、0.6、0.8、0.95MPaに加圧し、電気伝導性を付与する為に0.01%食塩水中に微生物をケン濁した物を通液した。使用した電極は6mm(幅)×32mm(高さ)×電極間間隔1mm及び6mm(幅)×16mm(高さ)×電極間間隔1mmを用い、ポンプを使用して、流速1L/分で通液した。それぞれの電極の交流電界印加時間は、0.011秒及び0.006秒で印加電界は8000V/cm及び8500V/cmで処理(周波数20kHz)を行った。そのときの品温は、115℃であった。処理後1秒以内に常温まで冷却を行い、生残菌数(対数)−初期芽胞菌数(対数)にて示す(図2)。この数値の正数値が死滅菌数を示す。
Effect of pressure Using the device shown in Fig. 1 (excluding the filtration step), pressurize the inside of the current-carrying unit to 0.4, 0.6, 0.8, 0.95 MPa using the above microorganisms to give electrical conductivity. For this purpose, a suspension of microorganisms in 0.01% saline was passed through. The electrodes used were 6 mm (width) x 32 mm (height) x 1 mm gap between electrodes and 6 mm (width) x 16 mm (height) x 1 mm gap between electrodes, and using a pump, the flow rate was 1 L / min. Liquid. The AC electric field application time of each electrode was 0.011 seconds and 0.006 seconds, and the applied electric field was 8000 V / cm and 8500 V / cm (frequency 20 kHz). The product temperature at that time was 115 ° C. It cools to normal temperature within 1 second after a process, and it shows by the number of surviving bacteria (logarithm)-initial spore bacteria number (logarithm) (FIG. 2). The positive value of this value indicates the number of dead sterilizations.
残存した微生物芽胞数の測定は、栄研器材製の標準寒天培地にてコロニー数をカウントする事により行った。上記結果から、115℃(蒸気圧0.7MPa)に対して40℃を加算した蒸気圧0.45MPa以上に加圧する事によりB.subtilisの胞子を効率的に殺菌できる事が明らかになった。 The number of remaining microbial spores was measured by counting the number of colonies on a standard agar medium made by Eiken Equipment. From the above results, it is possible to increase the pressure by adding 40 ° C. to 115 ° C. (vapor pressure 0.7 MPa) to 0.45 MPa or higher. It has been found that subtilis spores can be efficiently sterilized.
(実施例2)
印加電界時間及び印加電圧の影響
実施例1で用いた微生物を用い通電ユニット内を0.9MPaに加圧し、使用した電極は6mm(幅)×32mm(高さ)×電極間間隔1mm、2mm及び4mmび及び6mm(幅)×24mm(高さ)×電極間間隔2mm及び4mmを用い、周波数20kHz、流速1L/分にて通液した。それぞれの電極の交流電界印加時間を下記表1に示す。
(Example 2)
Effect of applied electric field time and applied voltage The inside of the energizing unit was pressurized to 0.9 MPa using the microorganism used in Example 1, and the electrodes used were 6 mm (width) × 32 mm (height) × interelectrode spacing 1 mm, 2 mm, and The liquid was passed at a frequency of 20 kHz and a flow rate of 1 L / min using 4 mm and 6 mm (width) × 24 mm (height) × interelectrode spacing of 2 mm and 4 mm. The AC electric field application time for each electrode is shown in Table 1 below.
※ 印加電圧 ( )外の数値は1mm当たりの印加電圧(V/mm)、
( )内の数値は実際のテスト時の印加電圧(V)
* Applied voltage () indicates the applied voltage (V / mm) per mm
Figures in parentheses are applied voltages (V) during actual testing.
また、印加電界強度を変更するために通液するときの食塩水濃度を0.01〜0.2%に変化させながら処理を行った。そのときの品温は、115℃であった。処理後1秒以内に常温まで冷却を行い、生残菌数から初期芽胞菌数を差し引いた数値にて示す(図3)。表1と図3において丸数字はそれぞれ対応している。 Moreover, in order to change the applied electric field strength, the treatment was performed while changing the saline concentration when passing through the solution to 0.01 to 0.2%. The product temperature at that time was 115 ° C. It cools to normal temperature within 1 second after a process, and shows by the numerical value which deducted the number of initial spore bacteria from the number of survival bacteria (FIG. 3). In Table 1 and FIG. 3, the circled numbers correspond to each other.
残存した微生物芽胞数の測定は、栄研器材製の標準寒天培地にてコロニー数をカウントする事により行った。また、用いたB.subtilisの温浴中でのD115℃=0.029(すなわち、115℃でのDeath Value(D値)が0.029分)である事から一秒での殺菌できる菌数(対数)が0.57である事から係数50以上にすることによりB.subtilisの胞子を効果的に殺菌できる事が明らかになった。 The number of remaining microbial spores was measured by counting the number of colonies on a standard agar medium made by Eiken Equipment. In addition, the B. Since D115 ° C. = 0.029 in a subtilis bath (ie, Death Value (D value) at 115 ° C. is 0.029 minutes), the number of bacteria that can be sterilized in 1 second (logarithm) is 0.57. Therefore, by setting the coefficient to 50 or more, It has been found that subtilis spores can be effectively sterilized.
(実施例3)
図4に示したコーヒー製造フローにしたがってコーヒーを製造し、得られた濾過処理済のコーヒーについて、手法の違いによる殺菌効果の比較、香りの成分の比較を行った。
(Example 3)
Coffee was produced according to the coffee production flow shown in FIG. 4, and the resulting filtered coffee was compared for bactericidal effects and differences in scent components.
(1)殺菌効果の比較
高電界殺菌(実施例)とUHT殺菌(比較例)の手法による殺菌効果の比較を行った。殺菌手法及び結果を、それぞれ、表2及び表3に示す。なお、指標細菌としては、バチルス・ズブチリス(Bacillus subtilis)JCM2744を用いた。UHT機種としては、Micro Thermics社製のModel 25HV Hybrid UHT/LTST殺菌機を使用した。
(1) Comparison of bactericidal effect The bactericidal effect was compared by the method of high electric field sterilization (Example) and UHT sterilization (comparative example). The sterilization techniques and results are shown in Table 2 and Table 3, respectively. As the indicator bacterium, Bacillus subtilis JCM2744 was used. As the UHT model, a Model 25HV Hybrid UHT / LTST sterilizer manufactured by Micro Thermics was used.
上記結果から明らかなように、高電界殺菌効果は丸数字の1>2>3>4の順であり、UHT殺菌効果は丸数字の5>6>7>8の順である。
As is clear from the above results, the high electric field sterilization effect is in the order of
高電界殺菌とUHT殺菌と比較した結果、高電界1とUHT5が同程度の殺菌効率であること、及び、高電界2とUHT6が近似した殺菌効率であることがいずれも判明した(なお、各数字は丸数字を表わす)。
As a result of comparison between high electric field sterilization and UHT sterilization, it was found that both high
(2)香り成分の比較
同等レベルの殺菌効果において、殺菌条件、殺菌手法の違いが及ぼす香りの変化を比較した。香りの分析フローは次のとおりとした。
(2) Comparison of fragrance components In the same level of sterilization effect, changes in fragrance caused by differences in sterilization conditions and sterilization methods were compared. The fragrance analysis flow was as follows.
(香りの分析フロー)
GC−MS(HEWLETT PACKARD社製GCsystem HP6890Series)を使用し、固層マイクロ抽出(SPME)樹脂にコーヒーの各種成分を吸着させて固層マイクロ抽出法(SPME法)にて分析した。
分析条件としては、スプリット方式で注入、キャピラリー(DB−WAX)60mカラムを使用。ヘリウムガスを1.0ml/分にて流しながら40℃で3分ホールド→5℃/分で240℃まで昇温→240℃で5分ホールドで香気成分の分離・定量を実施した。
解析は、未殺菌(未処理)品の各ピーク面積から10%以上変化(増加もしくは減少)したピークを変化成分として変化率を求めた。
(Aroma analysis flow)
Using GC-MS (GCsystem HP6890Series manufactured by HEWLETT PACKARD), various components of coffee were adsorbed on a solid-layer microextraction (SPME) resin and analyzed by a solid-layer microextraction method (SPME method).
As analysis conditions, injection by a split method and a capillary (DB-WAX) 60m column are used. While flowing helium gas at 1.0 ml / min, hold and hold at 40 ° C. for 3 minutes → heat up to 240 ° C. at 5 ° C./minute→separate and determine the aroma components by holding at 240 ° C. for 5 minutes.
In the analysis, the rate of change was determined using a peak that changed (increased or decreased) by 10% or more from each peak area of an unsterilized (untreated) product as a change component.
得られた結果を表4に示した。香り変化率は、未殺菌と比較したときのGC−MS分析のピーク面積が10%以上変化した割合を示したものである。得られた結果から明らかなように、UHT殺菌より高電界殺菌のほうが、香りの変化率が抑制されているのが判る。 The results obtained are shown in Table 4. The scent change rate indicates a rate at which the peak area of the GC-MS analysis when compared with unsterilized is changed by 10% or more. As is apparent from the obtained results, it can be seen that the high electric field sterilization suppresses the scent change rate more than the UHT sterilization.
(実施例4)
図5に示したコーヒー製造フロー(実施例)及び図6に示したコーヒー製造フロー(比較例)にしたがって、それぞれ、コーヒーを製造し、得られた濾過処理済のコーヒーについて、濾過工程の違いによる高電界殺菌効果の比較を行った。
Example 4
According to the coffee production flow shown in FIG. 5 (Example) and the coffee production flow shown in FIG. 6 (Comparative Example), coffee is produced, and the obtained filtered coffee is different depending on the filtration process. The high electric field sterilization effect was compared.
殺菌手法及び結果を表5に示した。なお、指標細菌としては、Bacillus subtilis JCM2744を使用した。 The sterilization technique and results are shown in Table 5. In addition, Bacillus subtilis JCM2744 was used as the indicator bacteria.
上記結果から明らかなように、殺菌効率という面から検討した結果、比較例においては、次のような欠点があることが判った。すなわち、
電流が低下し、電圧を高めに設定しないと殺菌が効率的にできない。
スケーリングの発生が原因で、電極に負荷がかかっている。高電界処理の条件を良くしても殺菌が不十分になる。
温度を120℃から117℃に下げているにも関わらず、殺菌効率を上げるために、電圧を上げなくてはならない。
As is clear from the above results, as a result of examination from the aspect of sterilization efficiency, it was found that the comparative example has the following drawbacks. That is,
If the current decreases and the voltage is not set high, sterilization cannot be performed efficiently.
The electrode is loaded due to scaling. Even if the conditions of the high electric field treatment are improved, the sterilization becomes insufficient.
Despite the temperature being lowered from 120 ° C. to 117 ° C., the voltage must be increased to increase the sterilization efficiency.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005218070A JP4606961B2 (en) | 2005-07-27 | 2005-07-27 | Coffee sterilization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005218070A JP4606961B2 (en) | 2005-07-27 | 2005-07-27 | Coffee sterilization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007029013A JP2007029013A (en) | 2007-02-08 |
JP4606961B2 true JP4606961B2 (en) | 2011-01-05 |
Family
ID=37789009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005218070A Expired - Fee Related JP4606961B2 (en) | 2005-07-27 | 2005-07-27 | Coffee sterilization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4606961B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5317344B2 (en) * | 2009-05-22 | 2013-10-16 | ポッカサッポロフード&ビバレッジ株式会社 | Sterilization method to prevent precipitation of liquid food containing milk protein |
JP2015104382A (en) * | 2013-12-03 | 2015-06-08 | オアシス珈琲有限会社 | Coffee extraction method |
JP7114122B1 (en) | 2021-07-08 | 2022-08-08 | 株式会社Giant | Process for producing modified coffee |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250760A (en) * | 1994-03-16 | 1995-10-03 | Frontier Eng:Kk | Joule heating unit, and heating device using it |
JPH10304823A (en) * | 1997-05-02 | 1998-11-17 | Asahi Inriyou Kk | Milk-containing coffee beverage and its production |
JP2000107261A (en) * | 1998-10-09 | 2000-04-18 | Natl Food Res Inst | Continuous sterilization device for liquid and continuous sterilization method for liquid |
JP2001169733A (en) * | 1999-12-17 | 2001-06-26 | Frontier Engineering:Kk | Continuous heater for fluid food material |
JP2001275569A (en) * | 2000-03-30 | 2001-10-09 | Pokka Corp | Method for producing tea beverage |
JP2002065165A (en) * | 2000-09-01 | 2002-03-05 | Toyo Seikan Kaisha Ltd | Method for producing black coffee beverage, or the like |
JP2003018960A (en) * | 2001-07-05 | 2003-01-21 | Pokka Corp | Method for producing coffee beverage |
JP2003018956A (en) * | 2001-07-05 | 2003-01-21 | Pokka Corp | Method for producing milk-containing beverage |
JP2003219848A (en) * | 2002-01-31 | 2003-08-05 | Toyo Seikan Kaisha Ltd | Method for producing packed roasted drink |
JP2003310224A (en) * | 2002-04-26 | 2003-11-05 | Frontier Engineering:Kk | Method for continuously electrically heating highly viscous flowable food material |
JP2006238827A (en) * | 2005-03-04 | 2006-09-14 | Pokka Corp | Method and apparatus for sterilizing liquid food |
-
2005
- 2005-07-27 JP JP2005218070A patent/JP4606961B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250760A (en) * | 1994-03-16 | 1995-10-03 | Frontier Eng:Kk | Joule heating unit, and heating device using it |
JPH10304823A (en) * | 1997-05-02 | 1998-11-17 | Asahi Inriyou Kk | Milk-containing coffee beverage and its production |
JP2000107261A (en) * | 1998-10-09 | 2000-04-18 | Natl Food Res Inst | Continuous sterilization device for liquid and continuous sterilization method for liquid |
JP2001169733A (en) * | 1999-12-17 | 2001-06-26 | Frontier Engineering:Kk | Continuous heater for fluid food material |
JP2001275569A (en) * | 2000-03-30 | 2001-10-09 | Pokka Corp | Method for producing tea beverage |
JP2002065165A (en) * | 2000-09-01 | 2002-03-05 | Toyo Seikan Kaisha Ltd | Method for producing black coffee beverage, or the like |
JP2003018960A (en) * | 2001-07-05 | 2003-01-21 | Pokka Corp | Method for producing coffee beverage |
JP2003018956A (en) * | 2001-07-05 | 2003-01-21 | Pokka Corp | Method for producing milk-containing beverage |
JP2003219848A (en) * | 2002-01-31 | 2003-08-05 | Toyo Seikan Kaisha Ltd | Method for producing packed roasted drink |
JP2003310224A (en) * | 2002-04-26 | 2003-11-05 | Frontier Engineering:Kk | Method for continuously electrically heating highly viscous flowable food material |
JP2006238827A (en) * | 2005-03-04 | 2006-09-14 | Pokka Corp | Method and apparatus for sterilizing liquid food |
Also Published As
Publication number | Publication date |
---|---|
JP2007029013A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shabbir et al. | Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products | |
Min et al. | Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf life extension of foods | |
US20140010930A1 (en) | Apparatus and process for pasteurization of sap and product thereof | |
Geveke | UV inactivation of bacteria in apple cider | |
Walkling-Ribeiro et al. | Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer | |
Lasekan et al. | Effect of pulsed electric field processing on flavor and color of liquid foods | |
Yuk et al. | Nonthermal processing of orange juice using a pilot‐plant scale supercritical carbon dioxide system with a gas–liquid metal contactor | |
JP2018086021A (en) | Sterilization method | |
JP4516860B2 (en) | Liquid food sterilization apparatus and sterilization method | |
JP5912662B2 (en) | Sterilization method of liquid food | |
JP5317344B2 (en) | Sterilization method to prevent precipitation of liquid food containing milk protein | |
JP4606961B2 (en) | Coffee sterilization method | |
JP4495647B2 (en) | Fruit juice sterilization method | |
Kobayashi et al. | Inactivation of Lactobacillus fructivorans in physiological saline and unpasteurised sake using CO2 microbubbles at ambient temperature and low pressure | |
JP4606960B2 (en) | Tea beverage sterilization method | |
Tanino et al. | Sake pasteurization using a novel continuous flow pulsed electric reactor with cooling system | |
JP2000093130A (en) | Production of beverage | |
CN101496626A (en) | Method of sterilizing liquid and liquid food | |
KR101978432B1 (en) | Manufacturing method of citrus concentrate using centrifugal thin film evaporator and pulsed electric field, and citrus concentrate manufactured thereby | |
Woldemariam et al. | Recent trends in cold pasteurization of fruit juices using pulsed electric fields: a review. | |
JP2015104323A (en) | Lemon juice-containing beverage packed in container, and manufacturing method thereof | |
Griffiths et al. | Implementation of microbially safe foods with pulsed electric fields | |
JP3756790B2 (en) | Method for producing coffee beverage | |
WO2009096416A1 (en) | Method of sterilizing liquid and liquid food | |
McGinnis | Nonthermal food processing is heating up |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080331 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080724 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4606961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |