JP4605348B2 - Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device - Google Patents
Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device Download PDFInfo
- Publication number
- JP4605348B2 JP4605348B2 JP2004208842A JP2004208842A JP4605348B2 JP 4605348 B2 JP4605348 B2 JP 4605348B2 JP 2004208842 A JP2004208842 A JP 2004208842A JP 2004208842 A JP2004208842 A JP 2004208842A JP 4605348 B2 JP4605348 B2 JP 4605348B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- piezoelectric element
- buffer layer
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 58
- 238000010897 surface acoustic wave method Methods 0.000 title claims description 42
- 239000010408 film Substances 0.000 claims description 192
- 239000000758 substrate Substances 0.000 claims description 138
- 239000000872 buffer Substances 0.000 claims description 118
- 239000000463 material Substances 0.000 claims description 76
- 239000013078 crystal Substances 0.000 claims description 52
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 229910052715 tantalum Inorganic materials 0.000 claims description 14
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 143
- 239000000243 solution Substances 0.000 description 59
- 238000000034 method Methods 0.000 description 55
- 239000010936 titanium Substances 0.000 description 51
- 229910052751 metal Inorganic materials 0.000 description 48
- 239000002184 metal Substances 0.000 description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 33
- 239000012071 phase Substances 0.000 description 31
- 239000002994 raw material Substances 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- 239000010955 niobium Substances 0.000 description 26
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 24
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 24
- 238000007639 printing Methods 0.000 description 23
- 239000002904 solvent Substances 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 239000000470 constituent Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 238000002425 crystallisation Methods 0.000 description 13
- 230000008025 crystallization Effects 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- 229910052745 lead Inorganic materials 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- 238000006068 polycondensation reaction Methods 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 235000012239 silicon dioxide Nutrition 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 10
- 238000004891 communication Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 230000009471 action Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 229910052720 vanadium Inorganic materials 0.000 description 9
- 229910052726 zirconium Inorganic materials 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000000608 laser ablation Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 238000004151 rapid thermal annealing Methods 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- 229910004121 SrRuO Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229940046892 lead acetate Drugs 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- -1 organic acid salt Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910020231 Pb(Mg1/3Nb2/3)O3-xPbTiO3 Inorganic materials 0.000 description 1
- 229910020226 Pb(Mg1/3Nb2/3)O3−xPbTiO3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- SKWCWFYBFZIXHE-UHFFFAOYSA-K indium acetylacetonate Chemical compound CC(=O)C=C(C)O[In](OC(C)=CC(C)=O)OC(C)=CC(C)=O SKWCWFYBFZIXHE-UHFFFAOYSA-K 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- DBTMQFKUVICLQN-UHFFFAOYSA-K scandium(3+);triacetate Chemical compound [Sc+3].CC([O-])=O.CC([O-])=O.CC([O-])=O DBTMQFKUVICLQN-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Reciprocating Pumps (AREA)
Description
本発明は、圧電体膜を有する圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、および電子機器に関する。 The present invention relates to a piezoelectric element having a piezoelectric film, a piezoelectric actuator, a piezoelectric pump, an ink jet recording head, an ink jet printer, a surface acoustic wave element, a frequency filter, an oscillator, an electronic circuit, a thin film piezoelectric resonator, and an electronic apparatus.
高画質、高速印刷を可能にするプリンターとして、インクジェットプリンターが知られている。インクジェットプリンターは、内容積が変化するキャビティーを備えたインクジェット式記録ヘッドを備える。インクジェットプリンターは、インクジェット式記録ヘッドを走査させつつ、そのノズルからインク滴を吐出することにより、印刷を行うものである。このようなインクジェットプリンター用のインクジェット式記録ヘッドにおけるヘッドアクチュエーターとしては、従来、PZT(Pb(Zr,Ti)O3)に代表される圧電体膜を用いた圧電素子が用いられている(例えば、特許文献1)。 Inkjet printers are known as printers that enable high image quality and high-speed printing. The ink jet printer includes an ink jet recording head having a cavity whose internal volume changes. An ink jet printer performs printing by ejecting ink droplets from its nozzles while scanning an ink jet recording head. As a head actuator in an ink jet recording head for such an ink jet printer, a piezoelectric element using a piezoelectric film represented by PZT (Pb (Zr, Ti) O 3 ) has been conventionally used (for example, Patent Document 1).
また、表面弾性波素子や周波数フィルタ、発振器、電子回路などにおいても、その特性向上が望まれていることから、新たな圧電材料による良好な製品の提供が望まれている。
ところで、インクジェットプリンターにあっては、さらなる高画質化や高速化が要求されるようになってきている。このような要求に応えるためには、インクジェット式記録ヘッドにおけるノズルの高密度化が欠かせない技術となってきている。そのためには、キャビティー上に積層される圧電素子(ヘッドアクチュエーター)についても、特に圧電体膜の特性、すなわちその圧電定数を向上する必要がある。 By the way, in the ink jet printer, higher image quality and higher speed have been demanded. In order to meet such demands, it has become an indispensable technique to increase the density of nozzles in an ink jet recording head. For this purpose, it is necessary to improve the characteristics of the piezoelectric film, that is, the piezoelectric constant, particularly for the piezoelectric element (head actuator) laminated on the cavity.
本発明の目的は、良好な圧電特性を有する圧電素子を提供することにある。また本発明の他の目的は、上記圧電素子を用いた圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、および電子機器を提供することにある。 An object of the present invention is to provide a piezoelectric element having good piezoelectric characteristics. Another object of the present invention is to provide a piezoelectric actuator, a piezoelectric pump, an ink jet recording head, an ink jet printer, a surface acoustic wave element, a frequency filter, an oscillator, an electronic circuit, a thin film piezoelectric resonator, and an electronic apparatus using the piezoelectric element. Is to provide.
本発明に係る圧電素子は、
基体と、
前記基体の上方に形成されたバッファ層と、
前記バッファ層の上方に形成された圧電体膜と、を含み、
前記バッファ層は、ペロブスカイト型のPb((Zr1−aTia)1−bXb)O3からなり、
Xは、V、Nb、およびTaのうちの少なくとも二種からなり、
aは、0.15≦a≦0.8の範囲であり、
bは、0.05≦b≦0.4の範囲であり、
前記圧電体膜は、ペロブスカイト型のリラクサー材料からなる。
The piezoelectric element according to the present invention is
A substrate;
A buffer layer formed above the substrate;
A piezoelectric film formed above the buffer layer,
The buffer layer is made of perovskite Pb ((Zr 1-a Ti a) 1-b X b)
X consists of at least two of V, Nb, and Ta,
a is in the range of 0.15 ≦ a ≦ 0.8,
b is in the range of 0.05 ≦ b ≦ 0.4;
The piezoelectric film is made of a perovskite type relaxor material.
本発明において、基体とは、1つの層と、複数の層と、を含む。 In the present invention, the substrate includes one layer and a plurality of layers.
本発明において、特定のもの(以下、「A」という)の上方の他の特定のもの(以下、「B」という)とは、A上に直接形成されたBと、A上に、A上の他のものを介して形成されたBと、を含む。 In the present invention, other specific objects (hereinafter referred to as “B”) above a specific object (hereinafter referred to as “A”) are B formed directly on A, A on A, And B formed through the others.
この圧電素子によれば、前記基体の上方に形成されたPb((Zr1−aTia)1−bXb)O3(以下、「PZTX」ともいう)からなる前記バッファ層と、前記バッファ層の上方に形成されたリラクサー材料からなる圧電体膜とを含む。PZTXに関しては前記基体の上方に緻密な薄膜を、配向性をコントロールした上で形成することができる。さらに一旦形成された緻密なPZTXの上方には、リラクサー材料を緻密な薄膜として容易に積層することが可能になる。したがって、この圧電素子は、圧電特性の良好な圧電体膜を有することができる。言い換えるならば、この圧電素子は、圧電定数が高く、印加された電圧に対してより大きな変形をなすものとなる。 According to this piezoelectric element, the buffer layer made of Pb ((Zr 1 -a Ti a ) 1 -b X b ) O 3 (hereinafter also referred to as “PZTX”) formed above the base body, And a piezoelectric film made of a relaxor material formed above the buffer layer. With respect to PZTX, a dense thin film can be formed above the substrate while controlling the orientation. Furthermore, the relaxor material can be easily laminated as a dense thin film above the dense PZTX once formed. Therefore, this piezoelectric element can have a piezoelectric film with good piezoelectric characteristics. In other words, this piezoelectric element has a high piezoelectric constant and undergoes greater deformation with respect to the applied voltage.
本発明に係る圧電素子は、
基体と、
前記基体の上方に形成されたバッファ層と、
前記バッファ層の上方に形成された圧電体膜と、を含み、
前記バッファ層は、ペロブスカイト型のPb((Zr1−aTia)1−bXb)O3からなり、
Xは、VおよびTaのうちの少なくとも一種からなり、
aは、0.15≦a≦0.8の範囲であり、
bは、0.05≦b≦0.4の範囲であり、
前記圧電体膜は、ペロブスカイト型のリラクサー材料からなる。
The piezoelectric element according to the present invention is
A substrate;
A buffer layer formed above the substrate;
A piezoelectric film formed above the buffer layer,
The buffer layer is made of perovskite Pb ((Zr 1-a Ti a) 1-b X b)
X consists of at least one of V and Ta,
a is in the range of 0.15 ≦ a ≦ 0.8,
b is in the range of 0.05 ≦ b ≦ 0.4;
The piezoelectric film is made of a perovskite type relaxor material.
この圧電素子によれば、前記基体の上方に形成されたPZTXからなる前記バッファ層と、前記バッファ層の上方に形成されたリラクサー材料からなる圧電体膜とを含む。PZTXに関しては前記基体の上方に緻密な薄膜を、配向性をコントロールした上で形成することができる。さらに一旦形成された緻密なPZTXの上方には、リラクサー材料を緻密な薄膜として容易に積層することが可能になる。したがって、この圧電素子は、圧電特性の良好な圧電体膜を有することができる。言い換えるならば、この圧電素子は、圧電定数が高く、印加された電圧に対してより大きな変形をなすものとなる。 According to this piezoelectric element, the buffer layer made of PZTX formed above the substrate and the piezoelectric film made of a relaxor material formed above the buffer layer are included. With respect to PZTX, a dense thin film can be formed above the substrate while controlling the orientation. Furthermore, the relaxor material can be easily laminated as a dense thin film above the dense PZTX once formed. Therefore, this piezoelectric element can have a piezoelectric film with good piezoelectric characteristics. In other words, this piezoelectric element has a high piezoelectric constant and undergoes greater deformation with respect to the applied voltage.
本発明に係る圧電素子は、
基体と、
前記基体の上方に形成されたバッファ層と、
前記バッファ層の上方に形成された圧電体膜と、を含み、
前記バッファ層は、ペロブスカイト型のPb1−(b/2)((Zr1−aTia)1−bXb)O3からなり、
Xは、V、Nb、およびTaのうちの少なくとも一種からなり、
aは、0.15≦a≦0.8の範囲であり、
bは、0.05≦b≦0.4の範囲であり、
前記圧電体膜は、ペロブスカイト型のリラクサー材料からなる。
The piezoelectric element according to the present invention is
A substrate;
A buffer layer formed above the substrate;
A piezoelectric film formed above the buffer layer,
The buffer layer is made of perovskite type Pb 1- (b / 2) ((Zr 1−a Ti a ) 1−b X b ) O 3 ,
X consists of at least one of V, Nb, and Ta,
a is in the range of 0.15 ≦ a ≦ 0.8,
b is in the range of 0.05 ≦ b ≦ 0.4;
The piezoelectric film is made of a perovskite type relaxor material.
この圧電素子によれば、前記基体の上方に形成されたPb1−(b/2)((Zr1−aTia)1−bXb)O3(以下、「PZTX」ともいう)からなる前記バッファ層と、前記バッファ層の上方に形成されたリラクサー材料からなる圧電体膜とを含む。PZTXに関しては前記基体の上方に緻密な薄膜を、配向性をコントロールした上で形成することができる。さらに一旦形成された緻密なPZTXの上方には、リラクサー材料を緻密な薄膜として容易に積層することが可能になる。したがって、この圧電素子は、圧電特性の良好な圧電体膜を有することができる。言い換えるならば、この圧電素子は、圧電定数が高く、印加された電圧に対してより大きな変形をなすものとなる。 According to this piezoelectric element, from Pb 1- (b / 2) ((Zr 1-a Ti a ) 1-b X b ) O 3 (hereinafter also referred to as “PZTX”) formed above the substrate. The buffer layer, and a piezoelectric film made of a relaxor material formed above the buffer layer. With respect to PZTX, a dense thin film can be formed above the substrate while controlling the orientation. Furthermore, the relaxor material can be easily laminated as a dense thin film above the dense PZTX once formed. Therefore, this piezoelectric element can have a piezoelectric film with good piezoelectric characteristics. In other words, this piezoelectric element has a high piezoelectric constant and undergoes greater deformation with respect to the applied voltage.
本発明に係る圧電素子において、
aは、(aMPB−0.05)≦a≦aMPBの範囲であり、
aMPBは、前記バッファ層の結晶構造の相境界におけるaの値を示すことができる。
In the piezoelectric element according to the present invention,
a is in the range of (a MPB −0.05) ≦ a ≦ a MPB ,
a MPB can indicate the value of a at the phase boundary of the crystal structure of the buffer layer.
本発明に係る圧電素子において、
前記バッファ層は、該バッファ層の結晶構造の相境界におけるaを有することができる。
In the piezoelectric element according to the present invention,
The buffer layer may have a at the phase boundary of the crystal structure of the buffer layer.
本発明に係る圧電素子において、
前記バッファ層は、ロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向していることができる。
In the piezoelectric element according to the present invention,
The buffer layer may have a rhombohedral structure and be preferentially oriented to pseudo cubic (100).
本発明において、「優先配向」とは、100%の結晶が所望の配向である擬立方晶(100)になっている場合と、所望の配向である擬立方晶(100)にほとんどの結晶(例えば90%以上)が配向し、残りの結晶が他の配向(例えば(111)配向)となっている場合と、を含む。 In the present invention, the “preferential orientation” means that when 100% of crystals are pseudo-cubic crystals (100) having a desired orientation, and most crystals (pseudo-cubic crystals (100) having a desired orientation ( For example, 90% or more) are oriented and the remaining crystals are in other orientations (for example, (111) orientation).
本発明に係る圧電素子において、
前記バッファ層は、擬立方晶構造を有し、かつ擬立方晶(100)に優先配向していることができる。
In the piezoelectric element according to the present invention,
The buffer layer may have a pseudo cubic structure and be preferentially oriented to pseudo cubic (100).
本発明に係る圧電素子において、
前記圧電体膜は、ロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向していることができる。
In the piezoelectric element according to the present invention,
The piezoelectric film may have a rhombohedral structure and be preferentially oriented to pseudo cubic (100).
本発明に係る圧電素子において、
前記リラクサー材料は、以下の式(1)〜(9)で示される材料のうちの少なくとも一種からなることができる。
In the piezoelectric element according to the present invention,
The relaxor material can be made of at least one of materials represented by the following formulas (1) to (9).
(1−x)Pb(Sc1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(1)
(ただし、xは0.10<x<0.42、yは、0≦y≦1)
(1−x)Pb(In1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(2)
(ただし、xは0.10<x<0.37、yは、0≦y≦1)
(1−x)Pb(Ga1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(3)
(ただし、xは0.10<x<0.50、yは、0≦y≦1)
(1−x)Pb(Sc1/2Ta1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(4)
(ただし、xは0.10<x<0.45、yは、0≦y≦1)
(1−x)Pb(Mg1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(5)
(ただし、xは0.10<x<0.35、yは、0≦y≦1)
(1−x)Pb(Fe1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(6)
(ただし、xは0.01<x<0.10、yは、0≦y≦1)
(1−x)Pb(Zn1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(7)
(ただし、xは0.01<x<0.10、yは、0≦y≦1)
(1−x)Pb(Ni1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(8)
(ただし、xは0.10<x<0.38、yは、0≦y≦1)
(1−x)Pb(Co1/2W1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(9)
(ただし、xは0.10<x<0.42、yは、0≦y≦1)
(1-x) Pb (Sc 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.42, y is 0 ≦ y ≦ 1)
(1-x) Pb (In 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.37, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ga 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.50, y is 0 ≦ y ≦ 1)
(1-x) Pb (Sc 1/2 Ta 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.45, y is 0 ≦ y ≦ 1)
(1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (5)
(Where x is 0.10 <x <0.35, y is 0 ≦ y ≦ 1)
(1-x) Pb (Fe 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.01 <x <0.10, y is 0 ≦ y ≦ 1)
(1-x) Pb (Zn 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (7)
(Where x is 0.01 <x <0.10, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ni 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (8)
(Where x is 0.10 <x <0.38, y is 0 ≦ y ≦ 1)
(1-x) Pb (Co 1/2 W 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.42, y is 0 ≦ y ≦ 1)
本発明に係る圧電素子において、
前記バッファ層は、5モル%以下のSi、あるいは、SiおよびGeを含むことができる。
In the piezoelectric element according to the present invention,
The buffer layer may include 5 mol% or less of Si, or Si and Ge.
本発明に係る圧電素子において、
前記基体の上方に形成された下部電極と、
前記下部電極の上方に形成された前記バッファ層と、
前記圧電体膜の上方に形成された上部電極と、を含むことができる。
In the piezoelectric element according to the present invention,
A lower electrode formed above the substrate;
The buffer layer formed above the lower electrode;
And an upper electrode formed above the piezoelectric film.
本発明に係る圧電素子において、
前記下部電極および前記上部電極のうちの少なくとも一つは、Ptを主とする材料からなることができる。
In the piezoelectric element according to the present invention,
At least one of the lower electrode and the upper electrode may be made of a material mainly containing Pt.
本発明に係る圧電アクチュエーターは、上述の圧電素子を有することができる。 The piezoelectric actuator according to the present invention can have the above-described piezoelectric element.
本発明に係る圧電ポンプは、上述の圧電素子を有することができる。 The piezoelectric pump according to the present invention can have the above-described piezoelectric element.
本発明に係るインクジェット式記録ヘッドは、上述の圧電素子を有することができる。 The ink jet recording head according to the present invention can have the above-described piezoelectric element.
本発明に係るインクジェットプリンターは、上述のインクジェット式記録ヘッドを有することができる。 The ink jet printer according to the present invention can have the ink jet recording head described above.
本発明に係る表面弾性波素子は、上述の圧電素子が、基板の上方に形成されてなることができる。 The surface acoustic wave device according to the present invention may be formed by forming the above-described piezoelectric element above a substrate.
本発明に係る周波数フィルタは、上述の表面弾性波素子が有する前記圧電体膜の上方に形成された第1の電極と、
前記圧電体膜の上方に形成された第2の電極と、を含むことができる。
The frequency filter according to the present invention includes a first electrode formed above the piezoelectric film included in the surface acoustic wave element,
And a second electrode formed above the piezoelectric film.
本発明に係る発振器は、上述の表面弾性波素子が有する前記圧電体膜の上方に形成された第1の電極と、
前記圧電体膜の上方に形成された第2の電極と、
トランジスタを有する発振回路と、を含むことができる。
An oscillator according to the present invention includes a first electrode formed above the piezoelectric film included in the surface acoustic wave element,
A second electrode formed above the piezoelectric film;
And an oscillation circuit having a transistor.
本発明に係る電子回路は、上述の発振器を含むことができる。 The electronic circuit according to the present invention can include the oscillator described above.
本発明に係る薄膜圧電共振器は、上述の圧電素子を有する共振子が、基板の上方に形成されてなることができる。 The thin film piezoelectric resonator according to the present invention can be formed by forming a resonator having the above-described piezoelectric element above a substrate.
本発明に係る電子機器は、上述の圧電ポンプ、上述の周波数フィルタ、上述の発振器、上述の電子回路、上述の薄膜圧電共振器のうちの少なくとも1つを有することができる。 The electronic device according to the present invention can include at least one of the above-described piezoelectric pump, the above-described frequency filter, the above-described oscillator, the above-described electronic circuit, and the above-described thin film piezoelectric resonator.
以下、本発明に好適な実施の形態について、図面を参照しながら説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
1−1.圧電素子
図1は、本発明にかかる圧電素子を、特にインクジェット式記録ヘッド用のヘッドアクチュエーターとなる圧電素子1に適用した場合の一実施形態を示す図である。
1-1. Piezoelectric Element FIG. 1 is a view showing an embodiment in which the piezoelectric element according to the present invention is applied to a piezoelectric element 1 that is a head actuator for an ink jet recording head.
圧電素子1は、シリコン(Si)からなる基板2と、基板2上に形成された弾性膜3と、弾性膜3上に形成された下部電極4と、下部電極4上に形成されたバッファ層5と、バッファ層5上に形成された圧電体膜6と、圧電体膜6上に形成された上部電極7と、を含む。本実施の形態においては、基板2から下部電極4までを基体と称する。
The piezoelectric element 1 includes a
基板2としては、例えば、(100)配向の単結晶シリコン基板、(111)配向の単結晶シリコン基板、(110)配向のシリコン基板などを用いることができる。また、シリコン基板の表面に熱酸化膜や自然酸化膜などのアモルファスの酸化シリコン膜を形成したものを用いることもできる。
As the
弾性膜3は、インクジェット式記録ヘッド用のヘッドアクチュエーターとなる圧電素子において弾性板として機能する膜である。弾性膜3の厚さは、例えば1μm程度である。弾性膜3については、後述するように、基板2をエッチング処理してキャビティーを形成する際に、弾性膜3がエッチングストッパ層として機能するべく、基板2との間で十分な選択比がとれる材料で形成することができる。すなわち、例えば基板2がシリコンからなる場合に、弾性膜3は、例えば、SiO2やZrO2などからなることができる。弾性膜3については、後述するインクジェット式記録ヘッドにおけるインク室基板となる基板2上に複数の圧電素子1が形成される場合、複数の圧電素子1に共通な弾性板として形成することができる。
The
下部電極4は、圧電体膜6に電圧を印加するための一方の電極となるものである。下部電極4は、例えば圧電体膜6および上部電極7と同じ平面形状に形成することができる。下部電極4については、後述するインクジェット式記録ヘッドにおけるインク室基板となる基板2上に複数の圧電素子1が形成される場合、複数の圧電素子1に共通な電極として機能するよう、共通な弾性板としての弾性膜3と同じ平面形状に形成することができる。下部電極4は、例えば白金(Pt)、イリジウム(Ir)、酸化イリジウム(IrOx)、またはチタン(Ti)などからなることができる。下部電極4の厚さは、例えば100nm〜200nm程度に形成されている。
The
バッファ層5は、ペロブスカイト型のPb((Zr1−aTia)1−bXb)O3(以下、「PZTX」ともいう)からなることができる。Xは、V、Nb、およびTaのうちの少なくとも二種からなることができる。あるいは、Xは、VおよびTaのうちの少なくとも一種からなることができる。バッファ層5は、ロンボヘドラル構造または擬立方晶構造を有し、かつ擬立方晶(100)に優先配向していることができる。
The
ここで、「擬立方晶構造」とは、例えば、ロンボヘドラル構造、テトラゴナル構造、およびモノクリニック構造などを含む。バッファ層5は、下部電極4上に液相法や気相法によって成膜される。バッファ層5は、特に成膜時の温度条件(加熱条件)等を適宜に制御することにより、擬立方晶(100)に優先配向させることができる。ここで、「優先配向」とは、所望配向の擬立方晶(100)にすべての結晶が配向している場合と、所望配向の擬立方晶(100)にほとんどの結晶が配向しており、擬立方晶(100)に配向していない残りの結晶が他の配向となっている場合とを含むことができる。このように、ほとんどの結晶が所望配向の擬立方晶(100)に配向していれば、後述するようにバッファ層5の上に圧電体膜6を形成した際、圧電体膜6がバッファ層5の結晶構造を引き継いで同じ結晶構造、すなわち擬立方晶(100)に優先配向するようになる。
Here, the “pseudocubic structure” includes, for example, a rhombohedral structure, a tetragonal structure, and a monoclinic structure. The
Pb((Zr1−aTia)1−bXb)O3におけるaは、ある範囲を有する。aの上限値としては、バッファ層5の結晶構造の相境界(MPB:Morphotropic Phase Boundary)におけるaの値(以下、「aMPB」ともいう。)となる。相境界におけるaの値(aMPB)とは、ロンボヘドラル構造とテトラゴナル構造とが相転移するときのTiの組成比を示す値である。そして、aの範囲としては、相転移するときの組成比より小さく、これによりロンボヘドラル構造となる範囲とされる。ここで、圧電定数(d31)は、相境界付近で極大値をとる。したがって、aの下限値としては、相境界におけるaの値(aMPB)に近い値が選択される。よって、aの範囲としては、本発明を構成するうえでは比較的小さい値まで許容できるものの、より高い圧電定数(d31)を得るためには、好ましいaの値、すなわち相境界におけるaの値(aMPB)により近い値が選択される。したがって、aの範囲の下限値は、圧電素子1を動作させる際に、許容される圧電定数(d31)の下限値のときのaの値となる。上述の内容を式で示すと、例えば、aは、
(aMPB−0.05)≦a≦aMPB
の範囲であることができる。aMPBは、例えば、0.5程度である。なお、aMPBは、膜応力などによって変り得るため、特に限定されず、
0.2≦aMPB≦0.8
の範囲であることができる。したがって、aは、
0.15≦a≦0.8
の範囲であることができる。
A in Pb ((Zr 1-a Ti a ) 1-b X b ) O 3 has a certain range. The upper limit of a is the value of a at the phase boundary (MPB: Morphotropic Phase Boundary) of the crystal structure of the buffer layer 5 (hereinafter also referred to as “a MPB ”). The value of a (a MPB ) at the phase boundary is a value indicating the composition ratio of Ti when the rhombohedral structure and the tetragonal structure undergo phase transition. The range of “a” is smaller than the composition ratio at the time of phase transition, and thus the range becomes a rhombohedral structure. Here, the piezoelectric constant (d 31 ) takes a local maximum near the phase boundary. Therefore, a value close to the value of a (a MPB ) at the phase boundary is selected as the lower limit value of a. Therefore, as the range of a, although a relatively small value can be allowed in configuring the present invention, in order to obtain a higher piezoelectric constant (d 31 ), a preferable value of a, that is, a value at the phase boundary. A value closer to (a MPB ) is selected. Therefore, the lower limit value of the range of a is the value of a when the piezoelectric element 1 is operated and the lower limit value of the allowable piezoelectric constant (d 31 ). When the above-mentioned content is expressed by a formula, for example, a is
(A MPB −0.05) ≦ a ≦ a MPB
Can range. a MPB is about 0.5, for example. Note that a MPB is not particularly limited because it can change depending on the film stress, etc.
0.2 ≦ a MPB ≦ 0.8
Can range. Therefore, a
0.15 ≦ a ≦ 0.8
Can range.
aが上述の範囲内であれば、容易にバッファ層5をロンボヘドラル構造にコントロールすることができ、高い圧電特性を発現できる。バッファ層5は、バッファ層5の結晶構造の相境界におけるa(aMPB)を有することもできる。これにより、圧電定数(d31)を、極大値とすることができる。
If a is in the above-mentioned range, the
なお、aの範囲は、実際には測定誤差等が関係してくる。すなわち、例えばaは、測定誤差、例えば約2パーセントの測定誤差を考慮すると、
(aMPB−0.05)−0.02≦a≦aMPB+0.02
の範囲であることが好ましい。このことは、以下に述べるすべての数値範囲についても同様である。
Note that the range of a is actually related to measurement errors and the like. That is, for example, a takes into account a measurement error, for example a measurement error of about 2 percent,
(A MPB −0.05) −0.02 ≦ a ≦ a MPB +0.02
It is preferable that it is the range of these. The same applies to all numerical ranges described below.
Pb系のペロブスカイト型構造を有するもの、例えばPZTなどは、Pbの蒸気圧が高いために、ペロブスカイト型構造のAサイトに位置するPbが蒸発しやすい。上述のPZTXでは、組成式がPb((Zr1−aTia)1−bXb)O3で示される場合について説明したが、PZTXの組成式がPb1−(b/2)((Zr1−aTia)1−bXb)O3で示されることもできる。この場合、Xは、V、Nb、およびTaのうちの少なくとも一種からなることができる。PZTXの組成式において、(b/2)がPbの欠損量を表している。 A Pb-based perovskite structure, such as PZT, has a high vapor pressure of Pb, so that Pb located at the A site of the perovskite structure is likely to evaporate. In the above-described PZTX, the case where the composition formula is represented by Pb ((Zr 1−a Ti a ) 1−b X b ) O 3 has been described. However, the composition formula of PZTX is Pb 1− (b / 2) (( Zr 1-a Ti a) can also 1-b X b) be represented by O 3. In this case, X can be composed of at least one of V, Nb, and Ta. In the composition formula of PZTX, (b / 2) represents the amount of deficiency of Pb.
PbがAサイトから抜けると、電荷中性の原理によって同時に酸素が欠損する。この現象は、Schottoky欠陥と呼ばれる。例えば、PZTにおいて酸素が欠損すると、PZTのバンドギャップが低下する。このバンドギャップの低下によって、電極界面でのバンドオフセットが減少し、PZTからなる圧電体膜の絶縁性が低下する。 When Pb escapes from the A site, oxygen is simultaneously lost due to the principle of charge neutrality. This phenomenon is called a Schottky defect. For example, when oxygen is lost in PZT, the band gap of PZT decreases. Due to the reduction of the band gap, the band offset at the electrode interface is reduced, and the insulating property of the piezoelectric film made of PZT is reduced.
しかし、本実施の形態によれば、ZrおよびTiの価数(+4価)より価数の高いX(+5価)を、Bサイトの元素(Zr,Ti)と置換させることで、結晶構造全体としての中性を保持することができ、酸素の欠損を防止することができる。これによりバッファ層5の絶縁性は良好なものとなり、電流リークを防止することができる。
However, according to the present embodiment, the entire crystal structure is obtained by substituting X (+5 valence) higher in valence than Zr and Ti (+4 valence) with the element (Zr, Ti) at the B site. The neutrality can be maintained, and oxygen deficiency can be prevented. As a result, the insulating property of the
例えば、XがNbからなる場合に、NbはTiとサイズ(イオン半径が近く、原子半径は同一である。)がほぼ同じで、重さが2倍であるため、格子振動による原子間の衝突によっても格子から原子が抜けにくい。また、結晶化時に、Pb抜けが発生したとしても、サイズの大きなO(酸素)が抜けるより、サイズの小さなNbが入る方が容易である。したがって、O(酸素)抜けを効果的に防止することができる。更に、Nbは酸素との共有結合性が非常に強く系から抜け難くなっていると考えられる(H.Miyazawa,E.Natori,S.Miyashita;Jpn.J.Appl.Phys.39(2000)5679)。なお、ここではXがNbからなる例について述べたが、Xとして、VおよびTaのうち少なくとも一方を含む場合も同等あるいはそれに近い効果を有する。 For example, when X is made of Nb, Nb is almost the same size as Ti (the ionic radius is close and the atomic radius is the same) and the weight is twice, so collisions between atoms due to lattice vibrations. Makes it difficult for atoms to escape from the lattice. Also, even if Pb loss occurs during crystallization, it is easier to enter small Nb than large O (oxygen). Therefore, O (oxygen) escape can be effectively prevented. Furthermore, it is considered that Nb has a strong covalent bond with oxygen and is difficult to escape from the system (H. Miyazawa, E. Natori, S. Miyashita; Jpn. J. Appl. Phys. 39 (2000) 5679. ). Although an example in which X is Nb has been described here, the case where X includes at least one of V and Ta has the same or similar effect.
Pbの欠損量は、Xの添加量bのほぼ半分であることが好ましい。すなわち、Pbの欠損量は、b/2で示される。これにより、PZTXは、電気的に中性を保つことができる。そして、Xの添加量bは、
0.05≦b≦0.4
の範囲であることが好ましい。Xの添加量bが0.05未満では、Xの添加による電流リーク防止効果が良好とならず、一方、Xの添加量bが0.4を越えても、それ以上は電流リーク防止効果の向上があまり期待できない。
The deficiency of Pb is preferably approximately half of the addition amount b of X. That is, the loss amount of Pb is indicated by b / 2. Thereby, PZTX can maintain neutrality electrically. And the addition amount b of X is:
0.05 ≦ b ≦ 0.4
It is preferable that it is the range of these. If the added amount b of X is less than 0.05, the current leakage preventing effect due to the addition of X is not good. On the other hand, even if the added amount b of X exceeds 0.4, the current leak preventing effect is not exceeded. I cannot expect much improvement.
バッファ層5は、5モル%以下のケイ素(Si)、あるいは、ケイ素およびゲルマニウム(Ge)を含むことができる。詳細については、圧電素子の製造方法の項にて述べる。
The
バッファ層5は、圧電体材料であることから、後述する圧電体膜6の圧電特性に影響する(圧電特性を助ける)。バッファ層5は、後述するバッファ層としての作用・効果を奏することができる膜厚であれば特に限定されない。具体的には、バッファ層5の膜厚としては、例えば10nm〜1.0μm程度とすることができる。
Since the
なお、バッファ層5は複数の層から構成されていることもできる。例えば、バッファ層5が2層から構成されている場合、バッファ層5は、第1のPZTXと、第2のPZTXと、からなることができる。ここで、第1のPZTXと、第2のPZTXとは、X、組成比a、および組成比bのうちの少なくとも一つが異なる。
The
圧電体膜6は、ペロブスカイト型でロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向したリラクサー材料からなるもので、厚さが500nm〜1000nm程度に形成されたものである。なお、圧電体膜6の代表的な膜厚は300nmから3.0μmである。この厚みの上限値に関しては、薄膜としての緻密さ、結晶配向性を維持する範囲で厚くすることができ、10μm程度まで許容できる。
The
リラクサー材料としては、例えば以下の式(1)〜(9)で示される材料が挙げられる。これらのうちから選択された一種あるいは複数種が後述するように液相法または気相法で成膜されることにより、圧電体膜6が得られる。
As a relaxer material, the material shown by the following formula | equation (1)-(9) is mentioned, for example. One or a plurality of types selected from these are formed by a liquid phase method or a gas phase method as described later, whereby the
(1−x)Pb(Sc1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(1)
(ただし、xは0.10<x<0.42、好ましくは0.20<x<0.42、yは、0≦y≦1)
(1−x)Pb(In1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(2)
(ただし、xは0.10<x<0.37、好ましくは0.20<x<0.37、yは、0≦y≦1)
(1−x)Pb(Ga1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(3)
(ただし、xは0.10<x<0.50、好ましくは0.30<x<0.50、yは、0≦y≦1)
(1−x)Pb(Sc1/2Ta1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(4)
(ただし、xは0.10<x<0.45、好ましくは0.20<x<0.45、yは、0≦y≦1)
(1−x)Pb(Mg1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(5)
(ただし、xは0.10<x<0.35、好ましくは0.20<x<0.35、さらに好ましくは、X=0.3、yは、0≦y≦1)
(1−x)Pb(Fe1/2Nb1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(6)
(ただし、xは0.01<x<0.10、好ましくは0.03<x<0.10、yは、0≦y≦1)
(1−x)Pb(Zn1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(7)
(ただし、xは0.01<x<0.10、好ましくは0.03<x<0.09、さらに好ましくは、X=0.09、yは、0≦y≦1)
(1−x)Pb(Ni1/3Nb2/3)O3−xPb(Zr1−yTiy)O3 ・・・式(8)
(ただし、xは0.10<x<0.38、好ましくは0.20<x<0.38、さらに好ましくは、X=0.3、yは、0≦y≦1)
(1−x)Pb(Co1/2W1/2)O3−xPb(Zr1−yTiy)O3 ・・・式(9)
(ただし、xは0.10<x<0.42、好ましくは0.20<x<0.42、yは、0≦y≦1)
(1-x) Pb (Sc 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.42, preferably 0.20 <x <0.42, y is 0 ≦ y ≦ 1)
(1-x) Pb (In 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.37, preferably 0.20 <x <0.37, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ga 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.50, preferably 0.30 <x <0.50, y is 0 ≦ y ≦ 1)
(1-x) Pb (Sc 1/2 Ta 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.45, preferably 0.20 <x <0.45, y is 0 ≦ y ≦ 1)
(1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (5)
(Where x is 0.10 <x <0.35, preferably 0.20 <x <0.35, more preferably X = 0.3, y is 0 ≦ y ≦ 1)
(1-x) Pb (Fe 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.01 <x <0.10, preferably 0.03 <x <0.10, y is 0 ≦ y ≦ 1)
(1-x) Pb (Zn 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (7)
(Where x is 0.01 <x <0.10, preferably 0.03 <x <0.09, more preferably X = 0.09, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ni 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3 Formula (8)
(Where x is 0.10 <x <0.38, preferably 0.20 <x <0.38, more preferably X = 0.3, y is 0 ≦ y ≦ 1)
(1-x) Pb (Co 1/2 W 1/2) O 3 -xPb (Zr 1-y Ti y)
(Where x is 0.10 <x <0.42, preferably 0.20 <x <0.42, y is 0 ≦ y ≦ 1)
リラクサー材料とは、バルクの固体において図2に示すように誘電率の温度依存がブロードな(幅が広い)ピークを示す材料であって、誘電率が極大となる温度が周波数測定によりシフトする材料をいう。また、リラクサー材料は、圧電定数の温度依存がブロードな(幅が広い)ピークを示す材料である。これに対し、Pb(Zr,Ti)O3(以下、「PZT」ともいう)等の非リラクサー材料である圧電体材料は、図2に示すように誘電率、および圧電定数の温度依存が非常に鋭いピークを示すものである。したがって、圧電体膜6としてリラクサー材料を用いることにより、得られた圧電素子1は広い温度範囲で良好な圧電特性を発揮し、これにより信頼性が高く特性が安定したものとなる。ただしリラクサー材料の膜厚が100nm〜1μm程度においては、必ずしも図2に示す明瞭なピークを示すとは限らない。100nm〜1μm程度の膜厚を有するリラクサー材料は、室温から100℃の間で、よりなだらかな誘電率の変化を示すものもある。
A relaxor material is a material that shows a broad (wide) peak in the temperature dependence of the dielectric constant in a bulk solid as shown in FIG. 2, and the temperature at which the dielectric constant reaches a maximum is shifted by frequency measurement. Say. The relaxor material is a material that exhibits a broad (wide) peak in temperature dependence of the piezoelectric constant. On the other hand, a piezoelectric material which is a non-relaxer material such as Pb (Zr, Ti) O 3 (hereinafter also referred to as “PZT”) has a very high temperature dependence of dielectric constant and piezoelectric constant as shown in FIG. Shows a sharp peak. Therefore, by using a relaxor material as the
また、圧電体膜6は、ペロブスカイト型でロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向したもので、エンジニアードドメイン配置と呼ばれるものである。したがって、圧電体膜6は、高い圧電定数(d31)を有する。ここで、「優先配向」とは、前述したように、所望配向の擬立方晶(100)にすべての結晶が配向している場合と、所望配向の擬立方晶(100)にほとんどの結晶が配向しており、擬立方晶(100)に配向していない残りの結晶が他の配向となっている場合とを含むことができる。圧電体膜6は、同様に優先配向したバッファ層5上に形成され、バッファ層5の結晶構造を引き継いだ結晶構造となる。したがって、圧電体膜6もバッファ層5と同様に、擬立方晶(100)に優先配向したものとなっている。
The
圧電体膜6の形成材料(リラクサー材料)において、前述したように材料間におけるPb(Zr1−yTiy)O3(以下、「PZT」ともいう)側の組成比を表すxの範囲については、特にその上限値としては、圧電体膜6の結晶構造の相境界(MPB)におけるxの値(以下、「xMPB」ともいう。)となる。相境界におけるxの値(xMPB)とは、ロンボヘドラル構造とテトラゴナル構造とが相転移するときのPZT側の組成比を示す値である。そして、このxの範囲としては、相転移するときの組成比より小さく、これによりロンボヘドラル構造となる範囲とされる。ここで、圧電定数(d31)は、相境界付近で極大値をとる。したがって、xの下限値としては、相境界におけるxの値(xMPB)に近い値が選択される。よって、xの範囲としては、本発明を構成するうえでは比較的小さい値まで許容できるものの、より高い圧電定数(d31)を得るためには、好ましいxの値、すなわち相境界におけるxの値(xMPB)により近い値が選択される。したがって、xの範囲の下限値は、圧電素子1を動作させる際に、許容される圧電定数(d31)の下限値のときのxの値となる。上述の内容を式で示すと、例えば、xは、
(xMPB−0.05)≦x≦xMPB
の範囲であることができる。xが上述の範囲内であれば、容易に圧電体膜6をロンボヘドラル構造にコントロールすることができ、高い圧電特性を発現できる。圧電体膜6は、圧電体膜6の結晶構造の相境界におけるx(xMPB)を有することもできる。これにより、圧電定数(d31)を、極大値とすることができる。
In the material for forming the piezoelectric film 6 (relaxer material), as described above, the range of x representing the composition ratio on the Pb (Zr 1-y Ti y ) O 3 (hereinafter also referred to as “PZT”) side between the materials. In particular, the upper limit thereof is the value of x at the phase boundary (MPB) of the crystal structure of the piezoelectric film 6 (hereinafter also referred to as “x MPB ”). The value of x at the phase boundary (x MPB ) is a value indicating the composition ratio on the PZT side when the rhombohedral structure and the tetragonal structure undergo phase transition. The range of x is smaller than the composition ratio at the time of phase transition, and is thus a range in which a rhombohedral structure is obtained. Here, the piezoelectric constant (d 31 ) takes a local maximum near the phase boundary. Therefore, a value close to the value of x (x MPB ) at the phase boundary is selected as the lower limit value of x. Therefore, as a range of x, although a relatively small value can be allowed in constructing the present invention, in order to obtain a higher piezoelectric constant (d 31 ), a preferable value of x, that is, a value of x at the phase boundary. A value closer to (x MPB ) is selected. Therefore, the lower limit value of the range of x is the value of x when the piezoelectric constant (d 31 ) is allowed when the piezoelectric element 1 is operated. When the above content is expressed by an equation, for example, x is
(X MPB −0.05) ≦ x ≦ x MPB
Can range. If x is in the above-mentioned range, the
上部電極7は、圧電体膜6に電圧を印加するための他方の電極となるものである。上部電極7は、例えば白金(Pt)やイリジウム(Ir)、酸化イリジウム(IrOx)、チタン(Ti)、SrRuO3等からなることができる。上部電極7の厚さは、100nm程度とすることができる。
The
なお、上述した例では、圧電素子1をインクジェット式記録ヘッド用のヘッドアクチュエーターとして用いる場合について説明したが、圧電素子1は、インクジェット式記録ヘッド用のヘッドアクチュエーター以外の圧電アクチュエーターとして用いることができる。 In the above-described example, the case where the piezoelectric element 1 is used as a head actuator for an ink jet recording head has been described. However, the piezoelectric element 1 can be used as a piezoelectric actuator other than the head actuator for an ink jet recording head.
また、下部電極4に関しては、SrRuO3のようなペロブスカイト電極を用いても本発明の趣旨を逸脱するものではない。SrRuO3からなる下部電極4と、リラクサー材料からなる圧電体膜6との間に、PZTXのバッファ層5を挟むことによって、製造工程において圧電体膜6の擬立方晶(100)配向性がより容易に制御可能となる。
As for the
1−2.圧電素子の製造方法
次に、本実施の形態における圧電素子1の製造方法について説明する。
1-2. Next, a method for manufacturing the piezoelectric element 1 according to the present embodiment will be described.
(1)まず、基板2として、(110)または(100)配向の単結晶シリコン基板、(111)配向の単結晶シリコン基板、あるいは自然酸化膜であるアモルファスの酸化シリコン膜を形成した(100)または(110)配向のシリコン基板を用意する。 (1) First, a (110) or (100) oriented single crystal silicon substrate, a (111) oriented single crystal silicon substrate, or an amorphous silicon oxide film as a natural oxide film is formed as the substrate 2 (100). Alternatively, a (110) oriented silicon substrate is prepared.
(2)次に、図4に示すように、基板2上に弾性膜3を形成する。弾性膜3については、CVD法やスパッタ法、蒸着法などの気相法が、形成する材質に応じて適宜決定され、採用される。
(2) Next, as shown in FIG. 4, the
(3)次に、図5に示すように、弾性板3上に例えば白金(Pt)からなる下部電極4を形成する。白金は、比較的容易に(111)優先配向となるものである。したがって、例えばスパッタ法等の比較的簡易な方法を採用することで、弾性膜3上に容易に配向成長させることができる。
(3) Next, as shown in FIG. 5, the
(4)次に、図6に示すように、下部電極4上にバッファ層5を形成する。具体的には、Pb((Zr1−aTia)1−bXb)O3、または、Pb1−(b/2)((Zr1−aTia)1−bXb)O3(以下、「PZTX」ともいう)の前駆体溶液をスピンコート法や液滴吐出法等の塗布法で下部電極4上に配する。次に、焼成等の熱処理を行うことにより、バッファ層5を得る。より具体的には、例えば以下の通りである。
(4) Next, as shown in FIG. 6, the
バッファ層5は、Pb、Zr、Ti、およびXの少なくともいずれかを含む第1〜第3の原料溶液からなる混合溶液(前駆体溶液)を用意し、この混合溶液に含まれる酸化物を熱処理等により結晶化させて得ることができる。
The
バッファ層5の形成材料である原料溶液については、PZTXの構成金属をそれぞれ含んでなる有機金属を各金属が所望のモル比となるように混合し、さらにアルコールなどの有機溶媒を用いてこれらを溶解、または分散させることにより作製する。PZTXの構成金属をそれぞれ含んでなる有機金属としては、金属アルコキシドや有機酸塩といった有機金属を用いることができる。具体的には、PZTXの構成金属を含むカルボン酸塩またはアセチルアセトナート錯体として、例えば、以下のものが挙げられる。
About the raw material solution which is a forming material of the
鉛(Pb)を含む有機金属としては、例えば酢酸鉛などが挙げられる。ジルコニウム(Zr)を含む有機金属としては、例えばジルコニウムブトキシドなどが挙げられる。チタン(Ti)を含む有機金属としては、例えばチタンイソプロポキシドなどが挙げられる。バナジウム(V)を含む有機金属としては、例えば酸化バナジウムアセチルアセトナートなどが挙げられる。ニオブ(Nb)を含む有機金属としては、例えばニオブエトキシドなどが挙げられる。タンタル(Ta)を含む有機金属としては、例えばタンタルエトキシドなどが挙げられる。なお、PZTXの構成金属を含んでなる有機金属としては、これらに限定されるわけではない。 Examples of the organic metal containing lead (Pb) include lead acetate. Examples of the organic metal containing zirconium (Zr) include zirconium butoxide. Examples of the organic metal containing titanium (Ti) include titanium isopropoxide. Examples of the organic metal containing vanadium (V) include vanadium oxide acetylacetonate. Examples of the organic metal containing niobium (Nb) include niobium ethoxide. Examples of the organic metal containing tantalum (Ta) include tantalum ethoxide. Note that the organic metal containing the constituent metal of PZTX is not limited to these.
原料溶液には、必要に応じて安定化剤等の各種添加剤を添加することができる。さらに、原料溶液に加水分解・重縮合を起こさせる場合には、原料溶液に適当な量の水とともに、触媒として酸あるいは塩基を添加することができる。 Various additives such as a stabilizer can be added to the raw material solution as necessary. Furthermore, when hydrolysis / polycondensation is caused in the raw material solution, an acid or a base can be added as a catalyst together with an appropriate amount of water to the raw material solution.
例えば、第1の原料溶液としては、PZTXの構成金属元素のうち、PbおよびZrによるPbZrO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。 For example, as the first raw material solution, a solution in which a polycondensation polymer for forming a PbZrO 3 perovskite crystal composed of Pb and Zr among constituent metal elements of PZTX is dissolved in a solvent such as n-butanol in an anhydrous state is used. It can be illustrated.
例えば、第2の原料溶液としては、PZTXの構成金属元素のうち、PbおよびTiによるPbTiO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。 For example, as the second raw material solution, a solution obtained by dissolving a polycondensation polymer for forming a PbTiO 3 perovskite crystal of Pb and Ti among the constituent metal elements of PZTX in a solvent such as n-butanol in an anhydrous state. It can be illustrated.
例えば、第3の原料溶液としては、PZTXの構成金属元素のうち、PbおよびXによるPbXO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。なお、Xが二種以上の元素からなる場合は、第3の原料溶液は、複数の原料溶液からなることができる。例えば、Xが、V、Nb、およびTaの三種からなる場合、第3の原料溶液は、三種の原料溶液からなることができる。具体的には、例えば、第3の原料溶液は、PbおよびVによるPbVO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液と、PbおよびNbによるPbNbO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液と、PbおよびTaによるPbTaO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノール等の溶媒に無水状態で溶解した溶液と、からなることができる。 For example, as the third raw material solution, a solution obtained by dissolving a polycondensation product for forming a PbXO 3 perovskite crystal by Pb and X in a constituent metal element of PZTX in a solvent such as n-butanol in an anhydrous state. It can be illustrated. In addition, when X consists of 2 or more types of elements, the 3rd raw material solution can consist of a several raw material solution. For example, when X consists of three kinds of V, Nb, and Ta, the third raw material solution can consist of three kinds of raw material solutions. Specifically, for example, the third raw material solution includes a solution obtained by dissolving a polycondensation product for forming a PbVO 3 perovskite crystal with Pb and V in a solvent such as n-butanol in an anhydrous state, and Pb and Nb. A solution obtained by dissolving a polycondensation polymer for forming a PbNbO 3 perovskite crystal in an anhydrous state in a solvent such as n-butanol, and a polycondensation polymer for forming a PbTaO 3 perovskite crystal by Pb and Ta, And a solution dissolved in an anhydrous state in a solvent such as butanol.
上記第1、第2、および第3の原料溶液を用いて、バッファ層5が所望の組成比となるように、第1、第2、および第3の原料溶液を所望の比で混合する。この混合溶液に熱処理等を加えて結晶化させることにより、バッファ層5を形成することができる。
Using the first, second, and third raw material solutions, the first, second, and third raw material solutions are mixed at a desired ratio so that the
具体的には、混合溶液塗布工程、アルコール除去工程〜乾燥熱処理工程〜脱脂熱処理工程の一連の工程を所望の回数行い、その後に結晶化アニールにより焼成してバッファ層5を形成する。各工程における条件は、例えば以下のとおりである。
Specifically, the
混合溶液塗布工程は、混合液の塗布をスピンコートなどの塗布法で行う。まず、下部電極4上に混合溶液を滴下する。滴下された溶液を基板全面に行き渡らせる目的でスピンを行う。スピンの回転数は、例えば初期では500rpm程度とし、続いて塗布ムラが起こらないように回転数を2000rpm程度に上げて、塗布を完了させる。乾燥熱処理工程については、大気雰囲気下でホットプレート等を用い、前駆体溶液に用いた溶媒の沸点より例えば10℃程度高い温度で熱処理(乾燥)することで行う。脱脂熱処理工程については、前駆体溶液に用いた有機金属の配位子を分解/除去するべく、大気雰囲気下でホットプレートを用い、350℃〜400℃程度に加熱することで行う。結晶化アニール、すなわち結晶化のための焼成工程については、酸素雰囲気中でラピッドサーマルアニーリング(RTA)等を用いて、例えば600℃程度に加熱することで行う。
In the mixed solution coating step, the mixed solution is coated by a coating method such as spin coating. First, the mixed solution is dropped on the
焼結後のバッファ層5の膜厚は、例えば、10nm〜1.0μm程度とすることができる。バッファ層5は、例えばスパッタ法、分子線エピタキシー法、あるいはレーザーアブレーション法などを用いて形成することもできる。
The film thickness of the
バッファ層5を形成する際には、さらにPbSiO3シリケートを、例えば1〜5モル%の割合で添加することが好ましい。これによりPZTXの結晶化エネルギーを軽減させることができる。すなわち、バッファ層5としてPZTXを用いる場合、X添加とともに、PbSiO3シリケートとを添加することでPZTXの結晶化温度の低減を図ることができる。具体的には、上述した第1〜第3の原料溶液に加え、第4の原料溶液を用いることができる。第4の原料溶液としては、PbSiO3結晶を形成するため縮重合体をn−ブタノール等の溶媒に無水状態で溶解した溶液が例示できる。結晶化を促進する添加剤としては、ゲルマネートを用いることもできる。バッファ層5を形成する際に、PbSiO3シリケート、またはゲルマネートを添加することにより、バッファ層5は、5モル%以下のSi、あるいは、SiおよびGeを含むことができる。
When forming the
このようにして、(111)配向の白金(Pt)からなる下部電極4上にバッファ層5を形成することにより、ペロブスカイト型でロンボヘドラル構造または擬立方晶構造のPZTXが、擬立方晶(100)に優先配向した状態で形成される。
In this way, by forming the
(5)次に、図7に示すように、バッファ層5上に圧電体膜6を形成する。具体的には、まず、リラクサー材料の前駆体溶液をスピンコート法や液滴吐出法等の公知の塗布法でバッファ層5上に配する。次に、焼成等の熱処理を行うことにより、圧電体膜6を得る。
(5) Next, as shown in FIG. 7, the
より具体的には、まず、バッファ層5の形成と同様にして、前駆体溶液の塗布工程、溶媒除去工程〜乾燥熱処理工程〜脱脂熱処理工程の一連の工程を所望する膜厚に応じて適宜回数繰り返す。次に、結晶化アニールを行うことで圧電体膜6を形成する。各工程における条件は、バッファ層5の形成とほぼ同様である。
More specifically, first, in the same manner as the formation of the
圧電体膜6は、(100)に優先配向したバッファ層5上に形成されることにより、バッファ層5の結晶構造、すなわちその配向を引き継ぎ、同じ結晶構造、すなわち擬立方晶(100)に優先配向して形成される。
The
圧電体膜6の形成材料である前駆体溶液については、圧電体膜6となるリラクサー材料の構成金属をそれぞれ含んでなる有機金属を各金属が所望のモル比となるように混合し、さらにアルコールなどの有機溶媒を用いてこれらを溶解、または分散させることにより作製する。リラクサー材料の構成金属をそれぞれ含んでなる有機金属としては、金属アルコキシドや有機酸塩といった有機金属を用いることができる。具体的には、リラクサー材料の構成金属を含むカルボン酸塩またはアセチルアセトナート錯体として、例えば、以下のものが挙げられる。
For the precursor solution that is a material for forming the
鉛(Pb)を含む有機金属としては、例えば酢酸鉛などが挙げられる。ジルコニウム(Zr)を含む有機金属としては、例えばジルコニウムブトキシドなどが挙げられる。チタン(Ti)を含む有機金属としては、例えばチタンイソプロポキシドなどが挙げられる。マグネシウム(Mg)を含む有機金属としては、例えば酢酸マグネシウムなどが挙げられる。ニオブ(Nb)を含む有機金属としては、例えばニオブエトキシドなどが挙げられる。ニッケル(Ni)を含む有機金属としては、例えばニッケルアセチルアセトナートなどが挙げられる。スカンジウム(Sc)を含む有機金属としては、例えば酢酸スカンジウムなどが挙げられる。インジウム(In)を含む有機金属としては、例えばインジウムアセチルアセトナートなどが挙げられる。亜鉛(Zn)を含む有機金属としては、例えば酢酸亜鉛などが挙げられる。鉄(Fe)を含む有機金属としては、例えば酢酸鉄などが挙げられる。ガリウム(Ga)を含む有機金属としては、例えばガリウムイソプロポキシドなどが挙げられる。タンタル(Ta)を含む有機金属としては、例えばタンタルエトキシドなどが挙げられる。タングステン(W)を含む有機金属としては、例えばタングステンヘキサカルボニルなどが挙げられる。なお、リラクサー材料の構成金属を含んでなる有機金属としては、これらに限定されるわけではない。 Examples of the organic metal containing lead (Pb) include lead acetate. Examples of the organic metal containing zirconium (Zr) include zirconium butoxide. Examples of the organic metal containing titanium (Ti) include titanium isopropoxide. Examples of the organic metal containing magnesium (Mg) include magnesium acetate. Examples of the organic metal containing niobium (Nb) include niobium ethoxide. Examples of the organic metal containing nickel (Ni) include nickel acetylacetonate. Examples of the organic metal containing scandium (Sc) include scandium acetate. Examples of the organic metal containing indium (In) include indium acetylacetonate. Examples of the organic metal containing zinc (Zn) include zinc acetate. Examples of the organic metal containing iron (Fe) include iron acetate. Examples of the organic metal containing gallium (Ga) include gallium isopropoxide. Examples of the organic metal containing tantalum (Ta) include tantalum ethoxide. Examples of the organic metal containing tungsten (W) include tungsten hexacarbonyl. The organic metal containing the constituent metal of the relaxor material is not limited to these.
前駆体溶液には、必要に応じて安定化剤等の各種添加剤を添加することができる。さらに、前駆体溶液に加水分解・重縮合を起こさせる場合には、前駆体溶液に適当な量の水とともに、触媒として酸あるいは塩基を添加することができる。 Various additives such as a stabilizer can be added to the precursor solution as necessary. Furthermore, in the case where hydrolysis / polycondensation is caused in the precursor solution, an acid or a base can be added as a catalyst together with an appropriate amount of water to the precursor solution.
なお、本実施の形態ではバッファ層5、および圧電体膜6をともに液相法で形成する例について述べたが、レーザーアブレーション法やスパッタ法等の気相法を用いて、バッファ層5、および圧電体膜6を形成することもできる。
In the present embodiment, an example in which both the
(6)次に、図8に示すように、圧電体膜6上に、例えば白金(Pt)からなる上部電極7を形成する。上部電極7の形成については、下部電極4と同様に、スパッタ法等によって行うことができる。
(6) Next, as shown in FIG. 8, an
以上の工程によって、本実施の形態にかかる圧電素子1を製造することができる。 Through the above steps, the piezoelectric element 1 according to the present embodiment can be manufactured.
1−3.作用・効果
従来、ペロブスカイト型でロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向したリラクサー材料からなる圧電体膜を形成するには、複雑な手法が必要となっていた。具体的には、例えば、以下の通りである。
1-3. Action / Effect Conventionally, in order to form a piezoelectric film made of a relaxor material having a perovskite type and a rhombohedral structure and preferentially oriented to pseudo cubic (100), a complicated method has been required. Specifically, for example, it is as follows.
まず、レーザーアブレーション法を用い、かつイオンビームアシスト法などの複雑な手法を併用することでバッファ層を形成する。次に、バッファ層の上にペロブスカイト型の下部電極を形成することで下地を形成する。次に、下地の上に圧電体膜を形成する。このような複雑な手法をとる理由は、以下の通りである。 First, a buffer layer is formed by using a laser ablation method and a complicated method such as an ion beam assist method. Next, a base is formed by forming a perovskite-type lower electrode on the buffer layer. Next, a piezoelectric film is formed on the base. The reason for taking such a complicated method is as follows.
白金(Pt)やイリジウム(Ir)などの従来の電極材料上にリラクサー材料の緻密な薄膜を形成するための製造マージンは小さい。一方、SrRuO3などのペロブスカイト型電極上では比較的容易に緻密な薄膜が得られる。SrRuO3などのペロブスカイト型電極の配向性をコントロールするためには、レーザーアブレーション法やイオンビームアシスト法が必要とされる。その結果、複雑な手法となる。しかしながら、このような従来の方法では工程が複雑であり、したがってコストが高く、また、得られる圧電体膜の圧電特性も十分に安定しないといった課題があった。 The manufacturing margin for forming a dense thin film of relaxor material on a conventional electrode material such as platinum (Pt) or iridium (Ir) is small. On the other hand, a dense thin film can be obtained relatively easily on a perovskite electrode such as SrRuO 3 . In order to control the orientation of a perovskite electrode such as SrRuO 3 , a laser ablation method or an ion beam assist method is required. The result is a complex approach. However, in such a conventional method, there are problems that the process is complicated, the cost is high, and the piezoelectric characteristics of the obtained piezoelectric film are not sufficiently stable.
本実施の形態に係る圧電素子1によれば、基体の上に形成されたPZTXからなるバッファ層5と、バッファ層5の上に形成されたリラクサー材料からなる圧電体膜6とを含む。PZTXに関してはPtやIr電極上に緻密な薄膜を、配向性をコントロールした上で形成することができる。さらに一旦形成された緻密なPZTX上には、(1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3(以下、「PMN−PT」ともいう)などのリラクサー材料を緻密な薄膜として容易に積層することが可能になる。すなわち、本実施の形態に係る圧電素子1によれば、リラクサー材料からなる圧電体膜6が、擬立方晶(100)に優先配向したバッファ層5上に形成されているため、圧電体膜6も擬立方晶(100)に良好に優先配向したものとなる。したがって、本実施の形態に係る圧電素子1は、圧電特性の良好な圧電体膜6を有することができる。言い換えるならば、本実施の形態に係る圧電素子1は、圧電定数が高く、印加された電圧に対してより大きな変形をなすものとなる。
The piezoelectric element 1 according to the present embodiment includes the
また、本実施の形態に係る圧電素子1によれば、圧電体膜6として上述の各式で示されるリラクサー材料を用いることができる。その結果、本実施の形態に係る圧電素子1は、圧電定数が十分に高いものとなる。したがって、本実施の形態に係る圧電素子1、より具体的には圧電体膜6は、より良好な変形をなすものとなる。
In addition, according to the piezoelectric element 1 according to the present embodiment, the relaxor material represented by the above-described formulas can be used as the
また、本実施の形態に係る圧電素子1によれば、PZTXからなるバッファ層5を有する。仮に、バッファ層5を有しない場合、すなわち、下部電極と圧電体膜が接しているような場合には、圧電体膜における鉛(Pb)および酸素の抜けなどにより、圧電体膜と下部電極との界面部において材料劣化が生じる場合がある。そして、下部電極と圧電体膜との界面部に組成ずれが生じて、誘電率の低い領域が該界面部に形成される場合がある。その結果、圧電体膜自体に十分な電圧を印加することができない場合がある。
In addition, the piezoelectric element 1 according to the present embodiment has the
これに対し、本実施の形態に係る圧電素子1によれば、PZTXからなるバッファ層5を有する。PZTXにおけるPb原子は、高温条件下でも、下部電極4中に数十nm以下の深さで拡散するに止まる。このように、下部電極4へのPb原子の拡散が極めて少ない。言い換えるならば、バッファ層5を有しない場合に比べ、下部電極4へのPb原子の拡散はほとんどないといえる。また、PZTXは、Pb原子のほとんどすべてが本来あるべき格子位置にあり、かつPb原子の欠陥に起因する結晶格子の壊れがほとんど見られない。つまり、PZTXに含まれるPb原子は、ほとんどすべてがペロブスカイト構造のPb原子位置に存在するといえる。このことは、最も移動しやすいPb原子のみならず、他の元素、例えば酸素、Zr、Tiの拡散がしにくいことを意味し、PZTXの膜自体がバリア性、例えばPbバリア性、あるいは酸素バリア性を有する。
On the other hand, the piezoelectric element 1 according to the present embodiment has the
したがって、本実施の形態に係る圧電素子1によれば、下部電極4とPZTXからなるバッファ層5との界面部に組成ずれが生じて、誘電率の低い領域が該界面部に形成されることがほとんどない。その結果、圧電体膜6自体に十分な電圧を印加することができる。
Therefore, according to the piezoelectric element 1 according to the present embodiment, a composition shift occurs at the interface between the
また、本実施の形態に係る圧電素子1の製造方法によれば、気相法に比べ工程が簡易となる液相法によって容易に圧電体膜6を形成できる。
In addition, according to the method for manufacturing the piezoelectric element 1 according to the present embodiment, the
1−4.実験例
上述の圧電素子の製造方法に基づき、圧電素子1を以下のようにして作製した。
1-4. Experimental Example Based on the above-described method for manufacturing a piezoelectric element, the piezoelectric element 1 was manufactured as follows.
まず、基板2上に弾性膜3を介して(111)配向の白金(Pt)からなる下部電極4をスパッタ法で形成した。下部電極4の膜厚は、200nmとした。スパッタリング時の電力は、200Wとした。
First, the
次に、Pb(Zr0.3Ti0.5(Nb0.9Ta0.1)0.2)O3(以下、「PZTX」ともいう)の前駆体溶液を以下のようにして調製した。 Next, a precursor solution of Pb (Zr 0.3 Ti 0.5 (Nb 0.9 Ta 0.1 ) 0.2 ) O 3 (hereinafter also referred to as “PZTX”) was prepared as follows. .
Pb、Zr、Ti、Nb、およびTaの少なくともいずれかを含む第1〜第4の原料溶液からなる混合溶液を用意した。第1の原料溶液としては、PZTXの構成金属元素のうち、PbおよびZrによるPbZrO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノールの溶媒に無水状態で溶解した溶液を用いた。第2の原料溶液としは、PZTXの構成金属元素のうち、PbおよびTiによるPbTiO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノールの溶媒に無水状態で溶解した溶液を用いた。第3の原料溶液としては、PZTXの構成金属元素のうち、PbおよびNbによるPbNbO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノールの溶媒に無水状態で溶解した溶液を用いた。第4の原料溶液としては、PZTXの構成金属元素のうち、PbおよびTaによるPbTaO3ペロブスカイト結晶を形成するための縮重合体を、n−ブタノールの溶媒に無水状態で溶解した溶液を用いた。 A mixed solution composed of first to fourth raw material solutions containing at least one of Pb, Zr, Ti, Nb, and Ta was prepared. As the first raw material solution, a solution obtained by dissolving a condensation polymer for forming a PbZrO 3 perovskite crystal of Pb and Zr among the constituent metal elements of PZTX in an n-butanol solvent in an anhydrous state was used. As the second raw material solution, a solution in which a polycondensation polymer for forming a PbTiO 3 perovskite crystal of Pb and Ti among the constituent metal elements of PZTX was dissolved in an n-butanol solvent in an anhydrous state was used. As the third raw material solution, a solution obtained by dissolving a polycondensation polymer for forming PbNbO 3 perovskite crystals of Pb and Nb in an n-butanol solvent in an anhydrous state among the constituent metal elements of PZTX was used. As the fourth raw material solution, a solution obtained by dissolving a polycondensation polymer for forming a PbTaO 3 perovskite crystal of Pb and Ta among the constituent metal elements of PZTX in an n-butanol solvent in an anhydrous state was used.
バッファ層5を形成する際には、さらにPbSiO3シリケートを2モル%の割合で添加した。具体的には、上述した第1〜第4の原料溶液に加え、第5の原料溶液を用いた。第5の原料溶液としては、PbSiO3結晶を形成するため縮重合体をn−ブタノールの溶媒に無水状態で溶解した溶液を用いた。
When the
上記第1〜第5の原料溶液を用いて、バッファ層5が所望の組成比となるように、第1〜第5の原料溶液を所望の比で混合した。次に、混合溶液塗布工程、アルコール除去工程〜乾燥熱処理工程〜脱脂熱処理工程の一連の工程を所望の回数行い、その後に結晶化アニールにより焼成してバッファ層5を形成した。
Using the first to fifth raw material solutions, the first to fifth raw material solutions were mixed at a desired ratio so that the
混合溶液塗布工程は、混合液の塗布をスピンコートで行った。まず、下部電極4上に混合溶液を滴下した。滴下された溶液を基板全面に行き渡らせる目的でスピンを行った。スピンの回転数は、初期では500rpm程度とし、続いて塗布ムラが起こらないように回転数を2000rpm程度に上げて、塗布を完了させた。乾燥熱処理工程については、大気雰囲気下でホットプレート等を用い、前駆体溶液に用いた溶媒の沸点より10℃程度高い温度で熱処理(乾燥)することで行った。脱脂熱処理工程については、前駆体溶液に用いた有機金属の配位子を分解/除去するべく、大気雰囲気下でホットプレートを用い、400℃程度に加熱することで行った。結晶化アニール、すなわち結晶化のための焼成工程については、酸素雰囲気中でラピッドサーマルアニーリング(RTA)等を用いて、600℃程度に加熱することで行った。焼結後のバッファ層5の膜厚は、300nmとした。
In the mixed solution coating step, the mixed solution was applied by spin coating. First, the mixed solution was dropped on the
このようにして、(111)配向の白金(Pt)からなる下部電極4上にバッファ層5を形成することにより、ペロブスカイト型でロンボヘドラル構造または擬立方晶構造のPZTXが、擬立方晶(100)に優先配向した状態で形成された。
In this way, by forming the
次に、0.70Pb(Mg1/3Nb2/3)O3−0.30PbTiO3(以下、「PMN−PT」ともいう)の前駆体溶液を以下のようにして調製した。 Next, a precursor solution of 0.70 Pb (Mg 1/3 Nb 2/3 ) O 3 -0.30 PbTiO 3 (hereinafter also referred to as “PMN-PT”) was prepared as follows.
まず、酢酸鉛、チタンイソプロポキシド、酢酸マグネシウム、ニオブエトキシドの各金属試薬の金属試薬をそれぞれ用意した。次に、形成するPMN−PTに対応したモル比となるようにこれらを混合するとともに、これらをブチルセロソルブに溶解(分散)させた。さらに、この溶液の安定化剤としてジエタノールアミンを添加した。このようにして前駆体溶液を調整した。なお、ジエタノールアミンの代わりに酢酸を用いることもできる。 First, metal reagents of lead acetate, titanium isopropoxide, magnesium acetate, and niobium ethoxide were prepared. Next, while mixing these so that it might become a molar ratio corresponding to PMN-PT to form, these were melt | dissolved (dispersed) in the butyl cellosolve. Furthermore, diethanolamine was added as a stabilizer for this solution. In this way, a precursor solution was prepared. Acetic acid can also be used in place of diethanolamine.
そして、この前駆体溶液をスピンコート法によってバッファ層5上に塗布した(前駆体溶液の塗布工程)。次に、溶媒の沸点(ブチルセロソルブの場合、170℃程度)より約10℃高い温度で熱処理(乾燥)して溶媒を除去しゲル化させた(乾燥熱処理工程)。次に、さらに350℃程度に加熱することで膜中に残存している溶媒以外の有機成分を分解/除去し(脱脂熱処理工程)、アモルファス膜を形成した。次に、酸素雰囲気中でラピッドサーマルアニーリング(RTA)を用いて600℃程度に加熱し、結晶化を行うことで圧電体膜6を形成した。圧電体膜6の膜厚は、300nmとした。
And this precursor solution was apply | coated on the
次に、スパッタ法によって圧電体膜6上に白金(Pt)からなる上部電極7を形成し、圧電素子1を得た。
Next, the
このようにして得られた圧電素子1における、前記圧電体膜6をX線回折法(XRD)で調べたところ、擬立方晶(100)に優先配向していることが確認され、さらにロンボヘドラル構造であることも確認された。
When the
また、この圧電体膜6の圧電定数(d31)を測定したところ、絶対値で400pC/Nであった。また、リーク電流は、100kV/cmのとき、10−5A/cm2未満であった。さらに、圧電素子1の300kV/cm印加時における繰り返し耐久性を調べたところ、1×109回を保証できる耐久性を備えていた。
Further, when the piezoelectric constant (d 31 ) of the
なお、以下の表1に示す材料を用いてバッファ層5および圧電体膜6を作製し、圧電定数(d31)を調べたところ、いずれもd31は絶対値で400pC/N以上という高い圧電特性を示した。なお、表1にはd31の絶対値を示している。圧電定数の測定方法は以下のように行った。
In addition, when the
まず実際のキャビティーにおける電圧印加時の圧電体の変位量Sを、レーザー変位計を用いて実測する。この値Sと、有限要素法による圧電変位のシミュレーションで得られた変位量S’とを比較することで、有限要素法で仮定した圧電膜の圧電定数(d31)をあわせ込むことができる。ちなみに有限要素法による圧電変位シミュレーションで必要になる物理量は、各膜のヤング率、膜応力、および圧電膜の圧電定数(d31)である。 First, the displacement S of the piezoelectric body when a voltage is applied in an actual cavity is measured using a laser displacement meter. By comparing this value S with the displacement S ′ obtained by the piezoelectric displacement simulation by the finite element method, the piezoelectric constant (d 31 ) of the piezoelectric film assumed by the finite element method can be adjusted. Incidentally, the physical quantities required in the piezoelectric displacement simulation by the finite element method are the Young's modulus of each film, the film stress, and the piezoelectric constant (d 31 ) of the piezoelectric film.
また、リラクサー材料の組成において、PbTiO3に代えて、Pb(Zr1−yTiy)O3であってもよい。また、yの値は、0.7≦y≦1が好ましい。 Further, in the composition of the relaxor material, Pb (Zr 1-y Ti y ) O 3 may be used instead of PbTiO 3 . Further, the value of y is preferably 0.7 ≦ y ≦ 1.
2−1.インクジェット式記録ヘッド
次に、図1に示した圧電素子1を用いたインクジェット式記録ヘッドについて説明する。図9は、図1に示した圧電素子1を用いたインクジェット式記録ヘッドの概略構成を示す側断面図であり、図10は、このインクジェット式記録ヘッドの分解斜視図である。なお、図10は、通常使用される状態とは上下逆に示したものである。
2-1. Inkjet Recording Head Next, an inkjet recording head using the piezoelectric element 1 shown in FIG. 1 will be described. 9 is a side sectional view showing a schematic configuration of an ink jet recording head using the piezoelectric element 1 shown in FIG. 1, and FIG. 10 is an exploded perspective view of the ink jet recording head. In addition, FIG. 10 is shown upside down from the state normally used.
インクジェット式記録ヘッド(以下、「ヘッド」ともいう)50は、図9に示すように、ヘッド本体57と、ヘッド本体57の上に設けられた圧電素子54と、を備えて構成されたものである。なお、図9に示した圧電素子54は、図1に示した圧電素子1における下部電極4と、バッファ層5と、圧電体膜6と、上部電極7とからなるものである(図10参照)。また、図1に示した圧電素子1における弾性膜3は、図9において弾性板55となっている。また、基板2(図1参照)は後述するようにヘッド本体57の要部を構成するものとなっている。
As shown in FIG. 9, the ink jet recording head (hereinafter also referred to as “head”) 50 includes a head
すなわち、ヘッド50は、図10に示すようにノズル板51と、インク室基板52と、弾性板55と、弾性板55に接合された圧電素子(振動源)54とを備え、これらが基体56に収納されて構成されている。なお、このヘッド50は、オンデマンド形のピエゾジェット式ヘッドを構成している。
That is, the
ノズル板51は、例えばステンレス製の圧延プレート等で構成されたもので、インク滴を吐出するための多数のノズル511を一列に形成したものである。これらノズル511間のピッチは、印刷精度に応じて適宜に設定されている。
The
ノズル板51には、インク室基板52が固着(固定)されている。インク室基板52は、上述の基板2によって形成されたものである。インク室基板52は、ノズル板51、側壁(隔壁)522、および後述する弾性板55によって、複数のキャビティー(インクキャビティー)521と、リザーバ523と、供給口524と、を区画形成したものである。リザーバ523は、インクカートリッジ631(図15参照)から供給されるインクを一時的に貯留する。供給口524によって、リザーバ523から各キャビティー521にインクが供給される。
An
キャビティー521は、それぞれ短冊状に形成されている。キャビティー521の平面形状は、図11および図12に示すように、長軸と短軸とを有した矩形状(平行四辺形状)である。キャビティー521の長軸、短軸の代表的なスケールは、それぞれ2mm、60μmである。キャビティー521は、図9および図10に示すように、各ノズル511に対応して配設されている。キャビティー521は、後述する弾性板55の振動によってそれぞれ容積可変になっている。キャビティー521は、この容積変化によってインクを吐出するよう構成されている。
The
インク室基板52を得るための母材、すなわち上述の基板2としては、(110)配向のシリコン単結晶基板(Si基板)が用いられている。この(110)配向のシリコン単結晶基板は、異方性エッチングに適しているのでインク室基板52を、容易にかつ確実に形成することができる。なお、このようなシリコン単結晶基板は、図1に示した弾性膜3の形成面、すなわち弾性板55の形成面が(110)面となるようにして用いられている。
As a base material for obtaining the
インク室基板52の平均厚さ、すなわちキャビティー521を含む厚さとしては、特に限定されないが、10〜1000μm程度とするのが好ましく、100〜500μm程度とするのがより好ましい。また、キャビティー521の容積としては、特に限定されないが、0.1〜100nL程度とするのが好ましく、0.1〜10nL程度とするのがより好ましい。
The average thickness of the
インク室基板52のノズル板51と反対の側には弾性板55が配設されている。さらに弾性板55のインク室基板52と反対の側には複数の圧電素子54が設けられている。弾性板55は、前述したように図1に示した圧電素子1における弾性膜3によって形成されたものである。弾性板55の所定位置には、図10に示すように、弾性板55の厚さ方向に貫通して連通孔531が形成されている。連通孔531により、後述するインクカートリッジ631からリザーバ523へのインクの供給がなされる。
An
各圧電素子54は、前述したように下部電極4と上部電極7との間に圧電体膜6が介挿されて構成されている。各圧電素子54は、図12に示すように、各々が各キャビティー521のほぼ中央部に対応して配設された、平面視長方形状のものである。これら各圧電素子54は、後述する圧電素子駆動回路に電気的に接続され、圧電素子駆動回路の信号に基づいて作動(振動、変形)するよう構成されている。すなわち、各圧電素子54はそれぞれ振動源(ヘッドアクチュエーター)として機能する。弾性板55は、圧電素子54の振動(たわみ)によって振動し(たわみ)、キャビティー521の内部圧力を瞬間的に高めるよう機能する。
Each
基体56は、例えば各種樹脂材料、各種金属材料等で形成されている。図10に示すように、この基体56にインク室基板52が固定、支持されている。
The
2−2.インクジェット式記録ヘッドの動作
次に、本実施の形態におけるインクジェット式記録ヘッド50の動作について説明する。本実施の形態におけるヘッド50は、圧電素子駆動回路を介して所定の吐出信号が入力されていない状態、すなわち、圧電素子54の下部電極4と上部電極7との間に電圧が印加されていない状態では、図13に示すように圧電体膜6に変形が生じない。このため、弾性板55にも変形が生じず、キャビティー521には容積変化が生じない。したがって、ノズル511からインク滴は吐出されない。
2-2. Operation of Inkjet Recording Head Next, the operation of the
一方、圧電素子駆動回路を介して所定の吐出信号が入力された状態、すなわち、圧電素子54の下部電極4と上部電極7との間に一定電圧(例えば30V程度)が印加された状態では、図14に示すように圧電体膜6においてその短軸方向にたわみ変形が生じる。これにより、弾性板55が例えば500nm程度たわみ、キャビティー521の容積変化が生じる。このとき、キャビティー521内の圧力が瞬間的に高まり、ノズル511からインク滴が吐出される。
On the other hand, in a state where a predetermined ejection signal is input via the piezoelectric element driving circuit, that is, in a state where a constant voltage (for example, about 30 V) is applied between the
すなわち、電圧を印加すると、圧電体膜6の結晶格子は面に対して垂直な方向に引き伸ばされるが、同時に面に平行な方向には圧縮される。この状態では、圧電体膜6にとっては面内に引っ張り応力が働いていることになる。したがって、この応力によって弾性板55をそらせ、たわませることになる。キャビティー521の短軸方向での圧電体膜6の変位量(絶対値)が大きければ大きいほど、弾性板55のたわみ量が大きくなり、より効率的にインク滴を吐出することが可能になる。本実施の形態では、前述したように、圧電素子54(圧電素子1)の圧電体膜6の圧電定数(d31)が高く、印加された電圧に対してより大きな変形をなすものとなっている。これにより、弾性板55のたわみ量が大きくなり、インク滴をより効率的に吐出できる。
That is, when a voltage is applied, the crystal lattice of the
ここで、効率的とは、より少ない電圧で同じ量のインク滴を飛ばすことができることを意味する。すなわち、駆動回路を簡略化することができ、同時に消費電力を低減することができるため、ノズル511のピッチをより高密度に形成することができる。または、キャビティー521の長軸の長さを短くすることができるため、ヘッド全体を小型化することができる。
Here, “efficient” means that the same amount of ink droplets can be ejected with a smaller voltage. That is, the driver circuit can be simplified and the power consumption can be reduced at the same time, so that the pitch of the
1回のインクの吐出が終了すると、圧電素子駆動回路は、下部電極4と上部電極7との間への電圧の印加を停止する。これにより、圧電素子54は図13に示した元の形状に戻り、キャビティー521の容積が増大する。なお、このとき、インクには、後述するインクカートリッジ631からノズル511へ向かう圧力(正方向への圧力)が作用している。このため、空気がノズル511からキャビティー521へと入り込むことが防止され、インクの吐出量に見合った量のインクがインクカートリッジ631からリザーバ523を経てキャビティー521へ供給される。
When the ejection of one ink is completed, the piezoelectric element driving circuit stops applying the voltage between the
このように、インク滴の吐出を行わせたい位置の圧電素子54に対して、圧電素子駆動回路を介して吐出信号を順次入力することにより、任意の(所望の)文字や図形等を印刷することができる。
In this way, arbitrary (desired) characters and figures are printed by sequentially inputting ejection signals to the
2−3.インクジェット式記録ヘッドの製造方法
次に、本実施の形態におけるインクジェット式記録ヘッド50の製造方法の一例について説明する。
2-3. Method for Manufacturing Inkjet Recording Head Next, an example of a method for manufacturing the
まず、インク室基板52となる母材、すなわち(110)配向のシリコン単結晶基板(Si基板)からなる基板2を用意する。次に、図4〜図8に示すように、基板2上に弾性膜3を形成する。次に弾性膜3上に下部電極4、バッファ層5、圧電体膜6、上部電極7を順次形成する。なお、ここで形成した弾性膜3が、弾性板55となるのは前述した通りである。
First, a base material to be the
次いで、上部電極7、圧電体膜6、バッファ層5、および下部電極4を、図13および図14に示すように、個々のキャビティー521に対応させてパターニングし、図9に示すように、キャビティー521の数に対応した数の圧電素子54を形成する。
Next, the
次いで、インク室基板52となる母材(基板2)を加工(パターニング)し、圧電素子54に対応する位置にそれぞれキャビティー521となる凹部を、また、所定位置にリザーバ523および供給口524となる凹部を形成する。
Next, the base material (substrate 2) to be the
具体的には、キャビティー521、リザーバ523および供給口524を形成すべき位置に合せてマスク層を形成する。次に、例えば平行平板型反応性イオンエッチング、誘導結合型方式、エレクトロンサイクロトロン共鳴方式、ヘリコン波励起方式、マグネトロン方式、プラズマエッチング方式、イオンビームエッチング方式などのドライエッチング、あるいは5重量%〜40重量%程度の水酸化カリウム、テトラメチルアンモニウムハイドロオキサイドなどの高濃度アルカリ水溶液によるウェットエッチングを行う。
Specifically, a mask layer is formed in accordance with positions where the
本実施の形態では、母材(基板2)として(110)配向のシリコン基板を用いているので、高濃度アルカリ水溶液を用いたウェットエッチング(異方性エッチング)が好適に採用される。高濃度アルカリ水溶液によるウェットエッチングの際には、前述したように弾性膜3をエッチングストッパとして機能させることができる。したがって、インク室基板52の形成をより容易に行うことができる。
In the present embodiment, since a (110) -oriented silicon substrate is used as the base material (substrate 2), wet etching (anisotropic etching) using a high-concentration alkaline aqueous solution is suitably employed. In wet etching with a high-concentration alkaline aqueous solution, the
このようにして母材(基板2)を、その厚さ方向に弾性板55(弾性膜3)が露出するまでエッチング除去することにより、インク室基板52を形成する。このときエッチングされずに残った部分が側壁522となる。露出した弾性膜3(弾性板55)は、弾性板55としての機能を発揮し得る状態となる。
Thus, the
次に、複数のノズル511が形成されたノズル板51を、各ノズル511が各キャビティー521となる凹部に対応するように位置合わせし、その状態で接合する。これにより、複数のキャビティー521、リザーバ523および複数の供給口524が形成される。ノズル板51の接合については、例えば接着剤による接着法や、融着法などを用いることができる。次に、インク室基板52を基体56に取り付ける。
Next, the
以上の工程によって、本実施の形態にかかるインクジェット式記録ヘッド50を製造することができる。
Through the above steps, the ink
2−4.作用・効果
本実施の形態にかかるインクジェット式記録ヘッド50によれば、前述したように、圧電素子54(圧電素子1)が良好な圧電特性を有することで効率的なインクの吐出が可能となっていることから、ノズル511の高密度化などが可能となる。したがって、高密度印刷や高速印刷が可能となる。さらには、ヘッド全体の小型化を図ることができる。
2-4. Action / Effect According to the ink
3−1.インクジェットプリンター
次に、上述のインクジェット式記録ヘッド50を備えたインクジェットプリンターについて説明する。図15は、本発明のインクジェットプリンター600を、紙等に印刷する一般的なプリンターに適用した場合の一実施形態を示す概略構成図である。なお、以下の説明では、図15中の上側を「上部」、下側を「下部」と言う。
3-1. Inkjet Printer Next, an inkjet printer provided with the above-described
インクジェットプリンター600は、装置本体620を備えており、上部後方に記録用紙Pを設置するトレイ621を有し、下部前方に記録用紙Pを排出する排出口622を有し、上部面に操作パネル670を有する。
The
操作パネル670は、例えば液晶ディスプレイ、有機ELディスプレイ、LEDランプなどで構成されたもので、エラーメッセージなどを表示する表示部(図示せず)と、各種スイッチなどで構成される操作部(図示せず)とを備えている。
The
装置本体620の内部には、主に、往復動するヘッドユニット630を備えた印刷装置640と、記録用紙Pを1枚ずつ印刷装置640に送り込む給紙装置650と、印刷装置640および給紙装置650を制御する制御部660とが設けられている。
Inside the apparatus
制御部660の制御により、給紙装置650は、記録用紙Pを一枚ずつ間欠送りするようになっている。間欠送りされる記録用紙Pは、ヘッドユニット630の下部近傍を通過する。このとき、ヘッドユニット630が記録用紙Pの送り方向とほぼ直交する方向に往復移動し、記録用紙Pへの印刷を行うようになっている。すなわち、ヘッドユニット630の往復動と、記録用紙Pの間欠送りとが、印刷における主走査および副走査となり、インクジェット方式の印刷が行なわれるようになっている。
Under the control of the
印刷装置640は、ヘッドユニット630と、ヘッドユニット630の駆動源となるキャリッジモータ641と、キャリッジモータ641の回転を受けて、ヘッドユニット630を往復動させる往復動機構642とを備えている。
The printing apparatus 640 includes a
ヘッドユニット630は、その下部に、上述の多数のノズル511を備えるインクジェット式記録ヘッド50と、このインクジェット式記録ヘッド50にインクを供給するインクカートリッジ631と、インクジェット式記録ヘッド50およびインクカートリッジ631を搭載したキャリッジ632とを有する。
The
インクカートリッジ631として、イエロー、シアン、マゼンタ、ブラック(黒)の4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。この場合、ヘッドユニット630には、各色にそれぞれ対応したインクジェット式記録ヘッド50が設けられることになる。
By using an
往復動機構642は、その両端がフレーム(図示せず)に支持されたキャリッジガイド軸643と、キャリッジガイド軸643と平行に延在するタイミングベルト644とを有する。キャリッジ632は、キャリッジガイド軸643に往復動自在に支持されるとともに、タイミングベルト644の一部に固定されている。キャリッジモータ641の作動により、プーリを介してタイミングベルト644を正逆走行させると、キャリッジガイド軸643に案内されて、ヘッドユニット630が往復動する。この往復動の際に、インクジェット式記録ヘッド50から適宜インクが吐出され、記録用紙Pへの印刷が行われる。
The
給紙装置650は、その駆動源となる給紙モータ651と、給紙モータ651の作動により回転する給紙ローラ652とを有する。給紙ローラ652は、記録用紙Pの送り経路(記録用紙P)を挟んで上下に対向する従動ローラ652aと、駆動ローラ652bとで構成されており、駆動ローラ652bは、給紙モータ651に連結されている。このような構成によって給紙ローラ652は、トレイ621に設置した多数枚の記録用紙Pを、印刷装置6400に向かって1枚ずつ送り込むことができる。なお、トレイ621に代えて、記録用紙Pを収容する給紙カセットを着脱自在に装着し得るような構成とすることもできる。
The
制御部660は、例えばパーソナルコンピュータやディジタルカメラなどのホストコンピュータから入力された印刷データに基づいて、印刷装置640や給紙装置650などを制御することにより印刷を行うものである。
The
制御部660には、いずれも図示しないものの、主に各部を制御する制御プログラムなどを記憶するメモリ、圧電素子(振動源)54を駆動してインクの吐出タイミングを制御する圧電素子駆動回路、印刷装置640(キャリッジモータ641)を駆動する駆動回路、給紙装置650(給紙モータ651)を駆動する駆動回路、およびホストコンピュータからの印刷データを入手する通信回路と、これらに電気的に接続され、各部での各種制御を行うCPUとが備えられている。
Although not shown in the figure, the
CPUには、例えば、インクカートリッジ631のインク残量、ヘッドユニット630の位置、温度、湿度などの印刷環境などを検出可能な各種センサが、それぞれ電気的に接続されている。制御部660は、通信回路を介して印刷データを入手してメモリに格納する。CPUは、この印刷データを処理し、この処理データおよび各種センサからの入力データに基づき、各駆動回路に駆動信号を出力する。この駆動信号により圧電素子54、印刷装置640および給紙装置650は、それぞれ作動する。これにより、記録用紙Pに所望の印刷がなされる。
For example, various sensors that can detect, for example, the remaining amount of ink in the
3−2.作用・効果
本実施の形態にかかるインクジェットプリンター600によれば、前述したように、高性能でノズルの高密度化が可能なインクジェット式記録ヘッド50を備えているので、高密度印刷や高速印刷が可能となる。
3-2. Action / Effect According to the
なお、本発明のインクジェットプリンター600は、工業的に用いられる液滴吐出装置として用いることもできる。その場合に、吐出するインク(液状材料)としては、各種の機能性材料を溶媒や分散媒によって適当な粘度に調整して使用することができる。
The
4−1.圧電ポンプ
次に、本実施の形態に係る圧電ポンプについて図面を参照しながら説明する。図16および図17は、図1に示す圧電素子1を用いた圧電ポンプ20の概略断面図である。図16および図17に示す圧電素子22は、図1に示した圧電素子1における下部電極4と、バッファ層5と、圧電体膜6と、上部電極7とからなるものであり、図1に示した圧電素子1における弾性膜3は、図16および図17において振動板24となっている。また、基板2(図1参照)は、圧電ポンプ20の要部を構成する基体21となっている。圧電ポンプ20は、基体21と、圧電素子22と、ポンプ室23と、振動板24と、吸入側逆止弁26aと、吐出側逆止弁26bと、吸入口28aと、吐出口28bとを含む。
4-1. Next, the piezoelectric pump according to the present embodiment will be described with reference to the drawings. 16 and 17 are schematic sectional views of the
4−2.圧電ポンプの動作
次に、上述の圧電ポンプの動作について説明する。まず、圧電素子22に電圧が供給されると、圧電体膜6(図1参照)の膜厚方向に電圧が印加される。そして、図16に示すように、圧電素子22は、ポンプ室23が広がる方向(図16に示す矢印aの方向)にたわむ。また、圧電素子22と共に振動板24もポンプ室23が広がる方向にたわむ。このため、ポンプ室23内の圧力が変化し、逆止弁26a、26bの働きによって流体が吸入口28aからポンプ室23内に流れる(図16に示す矢印bの方向)。
4-2. Next, the operation of the above-described piezoelectric pump will be described. First, when a voltage is supplied to the
次に、圧電素子22への電圧の供給を停止すると、圧電体膜6(図1参照)の膜厚方向への電圧の印加が停止される。そして、図17に示すように、圧電素子22は、ポンプ室23が狭まる方向(図17に示す矢印aの方向)にたわむ。また、圧電素子22と共に振動板24もポンプ室23が狭まる方向にたわむ。このため、ポンプ室23内の圧力が変化し、逆止弁26a、26bの働きによって流体が吐出口28bから外部に吐出される(図17に示す矢印bの方向)。
Next, when the supply of voltage to the
圧電ポンプ20の駆動電圧は、例えば100V(AC)程度とすることができる。また、圧電ポンプ20の駆動周波数は、例えば、数十Hz〜数十kHz程度とすることができる。
The drive voltage of the
圧電ポンプ20は、電子機器、例えばパソコン用、好ましくはノートパソコン用の水冷モジュールとして用いることができる。水冷モジュールは、冷却液の駆動に上述の圧電ポンプ20を用い、圧電ポンプ20と循環水路等とを含む構造を有する。
The
4−3.作用・効果
本実施の形態に係る圧電ポンプ20によれば、前述したように、圧電素子22(圧電素子1)が良好な圧電特性を有することによって、流体の吸入・吐出を効率的に行うことができる。したがって、本実施の形態に係る圧電ポンプ20によれば、大きな吐出圧および吐出量を有することができる。また、圧電ポンプ20の高速動作が可能となる。さらには、圧電ポンプ20の全体の小型化を図ることができる。
4-3. Action / Effect According to the
5−1.表面弾性波素子
次に、本実施の形態に係る表面弾性波素子について、図面を参照しながら説明する。表面弾性波素子は、図18に示すように、単結晶シリコン基板11と、酸化物薄膜層12と、バッファ層13と、圧電体膜14と、保護膜としての酸化物または窒化物からなる保護層15と、電極16とから構成されている。電極16は、インターディジタル型電極(Inter−Digital Transducer:以下、「IDT電極」という)であり、上部から観察すると、例えば後述する図19および図20に示すインターディジタル型電極141、142、151、152、153のような形状を有する。
5-1. Surface Acoustic Wave Element Next, the surface acoustic wave element according to the present embodiment will be described with reference to the drawings. As shown in FIG. 18, the surface acoustic wave device includes a single
5−2.表面弾性波素子の製造方法
次に、本発明を適用した表面弾性波素子の製造方法の一例について説明する。
5-2. Method for Manufacturing Surface Acoustic Wave Element Next, an example of a method for manufacturing a surface acoustic wave element to which the present invention is applied will be described.
まず、単結晶シリコン基板11として、(100)単結晶シリコン基板を用意する。ここで用意する単結晶シリコン基板11としては、予め薄膜トランジスタ(TFT)等の半導体素子を作製しておいたものとしてもよく、その場合には、得られる表面弾性波素子はこの半導体素子との集積化がなされたものとなる。
First, a (100) single crystal silicon substrate is prepared as the single
次に、この単結晶シリコン基板11上に、酸化物薄膜層12を形成する。酸化物薄膜層12は、例えば、レーザーアブレーション法等を用いて形成することができる。酸化物薄膜層12としては、例えばIrO2やTiO2の薄膜を用いることができる。
Next, an oxide
次に、酸化物薄膜層12上に、図1に示す圧電素子1のバッファ層5の形成の場合と同様にして、液相法でバッファ層13を形成する。次に、バッファ層13上に、図1に示す圧電体膜6の形成の場合と同様にして、液相法で圧電体膜14を形成する。
Next, the
次に、圧電体膜14上に、保護層15として酸化シリコン膜を例えばレーザーアブレーション法によって形成する。この保護層15は、圧電体膜14を雰囲気から保護して、例えば雰囲気中の水分や不純物による影響を防ぐと同時に、圧電体膜14の温度特性をコントロールする役割も果たす。なお、このような目的を満たす限り、保護膜の材質としては酸化シリコンに限定されるものではない。
Next, a silicon oxide film is formed as a
次に、保護層15上に、例えばアルミニウム薄膜を成膜し、続いてこれをパターニングすることにより、IDTと呼ばれる所望の形状の電極16を形成し、図18に示した表面弾性波素子を得る。
Next, for example, an aluminum thin film is formed on the
5−3.作用・効果
本実施の形態にかかる表面弾性波素子によれば、圧電体膜14が良好な圧電特性を有していることにより、表面弾性波素子自体も高性能なものとなる。
5-3. Action / Effect According to the surface acoustic wave device according to the present embodiment, the surface acoustic wave device itself has high performance because the
6−1.周波数フィルタ
次に、本実施の形態に係る周波数フィルタについて、図面を参照しながら説明する。図19に、本発明の周波数フィルタの一実施形態を示す。
6-1. Frequency Filter Next, the frequency filter according to the present embodiment will be described with reference to the drawings. FIG. 19 shows an embodiment of the frequency filter of the present invention.
図19に示すように、周波数フィルタは基板140を有する。この基板140としては、例えば図18に示した表面弾性波素子を形成した基板が用いられる。すなわち、(100)単結晶シリコン基板11上に酸化物薄膜層12、バッファ層13、圧電体膜14、保護層15をこの順に積層して形成された基板である。保護層15は、保護膜としての酸化物または窒化物からなる。
As shown in FIG. 19, the frequency filter has a
基板140の上面には、IDT電極141、142が形成されている。IDT電極141、142は、例えばAlまたはAl合金によって形成されており、その厚みはIDT電極141、142のピッチの100分の1程度に設定されている。また、IDT電極141、142を挟むように、基板140の上面には吸音部143、144が形成されている。吸音部143、144は、基板140の表面を伝播する表面弾性波を吸収するものである。基板140上に形成されたIDT電極141には高周波信号源145が接続されており、IDT電極142には信号線が接続されている。
6−2.周波数フィルタの動作
次に、上述の周波数フィルタの動作について説明する。前記構成において、高周波信号源145から高周波信号が出力されると、この高周波信号はIDT電極141に印加され、これによって基板140の上面に表面弾性波が発生する。この表面弾性波は、約5000m/s程度の速度で基板140上面を伝播する。IDT電極141から吸音部143側へ伝播した表面弾性波は、吸音部143で吸収されるが、IDT電極142側へ伝播した表面弾性波のうち、IDT電極142のピッチ等に応じて定まる特定の周波数または特定の帯域の周波数の表面弾性波は電気信号に変換されて、信号線を介して端子146a、146bに取り出される。なお、前記特定の周波数または特定の帯域の周波数以外の周波数成分は、大部分がIDT電極142を通過して吸音部144に吸収される。このようにして、本実施形態の周波数フィルタが備えるIDT電極141に供給した電気信号のうち、特定の周波数または特定の帯域の周波数の表面弾性波のみを得る(フィルタリングする)ことができる。
6-2. Operation of Frequency Filter Next, the operation of the above frequency filter will be described. In the above configuration, when a high frequency signal is output from the high
7−1.発振器
次に、本実施の形態に係る発振器ついて、図面を参照しながら説明する。図20に、本発明の発振器の一実施形態を示す。
7-1. Oscillator Next, an oscillator according to the present embodiment will be described with reference to the drawings. FIG. 20 shows an embodiment of the oscillator of the present invention.
図20に示すように、発振器は基板150を有する。この基板150としては、先の周波数フィルタと同様に、例えば図18に示した表面弾性波素子を形成した基板が用いられている。すなわち、(100)単結晶シリコン基板11上に酸化物薄膜層12、バッファ層13、圧電体膜14、保護層15をこの順に積層して形成された基板である。保護層15は、保護膜としての酸化物または窒化物からなる。
As shown in FIG. 20, the oscillator has a
基板150の上面には、IDT電極151が形成されており、さらに、IDT電極151を挟むように、IDT電極152、153が形成されている。IDT電極151〜153は、例えばAlまたはAl合金によって形成されたもので、それぞれの厚みはIDT電極151〜153各々のピッチの100分の1程度に設定されている。IDT電極151を構成する一方の櫛歯状電極151aには、高周波信号源154が接続されており、他方の櫛歯状電極151bには、信号線が接続されている。なお、IDT電極151は、電気信号印加用電極に相当し、IDT電極152、153は、IDT電極151によって発生される表面弾性波の特定の周波数成分または特定の帯域の周波数成分を共振させる共振用電極に相当する。
An
7−2.発振器の動作
次に、上述の発振器の動作について説明する。前記構成において、高周波信号源154から高周波信号が出力されると、この高周波信号は、IDT電極151の一方の櫛歯状電極151aに印加され、これによって基板150の上面にIDT電極152側に伝播する表面弾性波およびIDT電極153側に伝播する表面弾性波が発生する。なお、この表面弾性波の速度は5000m/s程度である。これらの表面弾性波のうちの特定の周波数成分の表面弾性波は、IDT電極152およびIDT電極153で反射され、IDT電極152とIDT電極153との間には定在波が発生する。この特定の周波数成分の表面弾性波がIDT電極152、153で反射を繰り返すことにより、特定の周波数成分または特定の帯域の周波数成分が共振して、振幅が増大する。この特定の周波数成分または特定の帯域の周波数成分の表面弾性波の一部は、IDT電極151の他方の櫛歯状電極151bから取り出され、IDT電極152とIDT電極153との共振周波数に応じた周波数(または、ある程度の帯域を有する周波数)の電気信号が端子155aと端子155bに取り出すことができる。
7-2. Next, the operation of the above-described oscillator will be described. In the above configuration, when a high-frequency signal is output from the high-
7−3.電圧制御SAW発振器
図21および図22は、本発明の発振器(表面弾性波素子)をVCSO(Voltage Controlled SAW Oscillator:電圧制御SAW発振器)に応用した場合の一例を示す図であり、図21は側面透視図であり、図22は上面透視図である。
7-3. FIG. 21 and FIG. 22 are diagrams showing an example in which the oscillator (surface acoustic wave device) of the present invention is applied to a VCSO (Voltage Controlled SAW Oscillator). FIG. 22 is a perspective view, and FIG. 22 is a top perspective view.
VCSOは、金属製(Alまたはステンレススチール製)の筐体60内部に実装されて構成されている。基板61上には、IC(Integrated Circuit)62および発振器63が実装されている。この場合、IC62は、外部の回路(不図示)から入力される電圧値に応じて、発振器63に印加する周波数を制御する発振回路である。
The VCSO is configured to be mounted inside a metal (Al or stainless steel)
発振器63は、基板64上に、IDT電極65a〜65cが形成されており、その構成は、図20に示した発振器とほぼ同様である。なお、基板64は、先の例と同様で図18に示したように、(100)単結晶シリコン基板11上に酸化物薄膜層12、バッファ層13、圧電体膜14、保護層15をこの順に積層して形成されている。保護層15は、保護膜としての酸化物または窒化物からなる。
In the
基板61上には、IC62と発振器63とを電気的に接続するための配線66がパターニングされている。IC62および配線66が、例えば金線等のワイヤー線67によって接続され、発振器63および配線66が金線等のワイヤー線68によって接続されることにより、IC62と発振器63とが配線66を介して電気的に接続されている。
A
また、VCSOは、IC62と発振器(表面弾性波素子)63を同一基板上に集積させて形成することも可能である。
The VCSO can also be formed by integrating the
図23に、IC62と発振器63とを集積させたVCSOの概略図を示す。なお、図23中において発振器63は、図18に示した表面弾性波素子において酸化物薄膜層12の形成を省略した構造を有している。
FIG. 23 shows a schematic diagram of a VCSO in which an
図23に示すように、VCSOは、IC62と発振器63とにおいて、単結晶シリコン基板61(単結晶シリコン基板11)を共有させて形成されている。IC62と、発振器63に備えられた電極65a(電極16)とは、図示しないものの電気的に接続されている。本実施の形態では、IC62を構成するトランジスタとして、特に、TFT(薄膜トランジスタ)を採用している。
As shown in FIG. 23, the VCSO is formed by sharing the single crystal silicon substrate 61 (single crystal silicon substrate 11) in the
IC62を構成するトランジスタとしてTFTを採用することにより、本実施の形態では、まず、単結晶シリコン基板61上に発振器(表面弾性波素子)63を形成し、その後、単結晶シリコン基板61とは別の第2の基板上で形成したTFTを、単結晶シリコン基板61上に転写させて、TFTと発振器63を集積させることができる。したがって、基板上にTFTを直接形成させることが困難か、あるいは形成させることが適さない材料であっても、転写により好適に形成させることが可能となる。転写方法については、種々の方法が採用可能であるが、特に、特開平11−26733号公報に記載の転写方法が好適に採用できる。
In this embodiment, an oscillator (surface acoustic wave element) 63 is first formed on a single
図21〜図23に示すVCSOは、例えば、図24に示すPLL回路のVCO(Voltage Controlled Oscillator)として用いられる。ここで、PLL回路について簡単に説明する。 The VCSO shown in FIGS. 21 to 23 is used as a VCO (Voltage Controlled Oscillator) of the PLL circuit shown in FIG. 24, for example. Here, the PLL circuit will be briefly described.
図24はPLL回路の基本構成を示すブロック図であり、この図24に示すようにPLL回路は、位相比較器71、低域フィルタ72、増幅器73、およびVCO74から構成されている。位相比較器71は、入力端子70から入力される信号の位相(または周波数)と、VCO74から出力される信号の位相(または周波数)とを比較し、その差に応じて値が設定される誤差電圧信号を出力するものである。低域フィルタ72は、位相比較器71から出力される誤差電圧信号の位置の低周波成分のみを通過させるものであり、増幅器73は、低域フィルタ72から出力される信号を増幅するものである。VCO74は、入力された電圧値に応じて発振する周波数が、ある範囲で連続的に変化する発振回路である。
FIG. 24 is a block diagram showing a basic configuration of the PLL circuit. As shown in FIG. 24, the PLL circuit includes a
このような構成のもとにPLL回路は、入力端子70から入力される位相(または周波数)と、VCO74から出力される信号の位相(または周波数)との差が減少するように動作し、VCO74から出力される信号の周波数を入力端子70から入力される信号の周波数に同期させる。VCO74から出力される信号の周波数が入力端子70から入力される信号の周波数に同期すると、その後は一定の位相差を除いて入力端子70から入力される信号に一致し、また、入力信号の変化に追従するような信号を出力するようになる。
Under such a configuration, the PLL circuit operates so that the difference between the phase (or frequency) input from the
8.電子回路および電子機器
次に、本実施の形態に係る電子回路および電子機器について、図面を参照しながら説明する。図25に、本発明の電子回路の一実施形態として、その電気的構成をブロック図で示す。なお、図25に示す電子回路は、例えば、図26に示す携帯電話機100の内部に設けられる回路である。ここで、図26に示した携帯電話機100は、本発明の電子機器の一例としてのもので、アンテナ101、受話器102、送話器103、液晶表示部104、及び操作釦部105などを備えて構成されている。
8). Electronic Circuit and Electronic Device Next, an electronic circuit and an electronic device according to the present embodiment will be described with reference to the drawings. FIG. 25 is a block diagram showing an electrical configuration as an embodiment of the electronic circuit of the present invention. Note that the electronic circuit illustrated in FIG. 25 is, for example, a circuit provided inside the
図25に示す電子回路は、携帯電話機100内に設けられる電子回路の基本構成を有したもので、送話器80、送信信号処理回路81、送信ミキサ82、送信フィルタ83、送信電力増幅器84、送受分波器85、アンテナ86a,86b、低雑音増幅器87、受信フィルタ88、受信ミキサ89、受信信号処理回路90、受話器91、周波数シンセサイザ92、制御回路93、および入力/表示回路94を備えて構成されたものである。なお、現在実用化されている携帯電話機は、周波数変換処理を複数回行っているため、その回路構成はより複雑となっている。
The electronic circuit shown in FIG. 25 has a basic configuration of an electronic circuit provided in the
送話器80は、例えば音波信号を電気信号に変換するマイクロフォン等で実現されるもので、図26に示す携帯電話機100中の送話器103に相当するものである。送信信号処理回路81は、送話器80から出力される電気信号に対して、例えばD/A変換処理、変調処理等の処理を施す回路である。送信ミキサ82は、周波数シンセサイザ92から出力される信号を用いて送信信号処理回路81から出力される信号をミキシングするものである。なお、送信ミキサ82に供給される信号の周波数は、例えば380MHz程度である。送信フィルタ83は、中間周波数(以下、「IF」と表記する)の必要となる周波数の信号のみを通過させ、不要となる周波数の信号をカットするものである。なお、送信フィルタ83から出力される信号は、図示しない変換回路によってRF信号に変換されるようになっている。このRF信号の周波数は、例えば1.9GHz程度である。送信電力増幅器84は、送信フィルタ83から出力されるRF信号の電力を増幅し、送受分波器85へ出力するものである。
The
送受分波器85は、送信電力増幅器84から出力されるRF信号をアンテナ86a,86bへ出力し、アンテナ86a,86bから電波の形で送信するものである。また、送受分波器85は、アンテナ86a,86bで受信した受信信号を分波して、低雑音増幅器87へ出力するものである。なお、送受分波器85から出力される受信信号の周波数は、例えば2.1GHz程度である。低雑音増幅器87は、送受分波器85からの受信信号を増幅するものである。なお、低雑音増幅器87から出力される信号は、図示しない変換回路によってIFに変換されるようになっている。
The transmitter /
受信フィルタ88は、図示しない変換回路によって変換されたIFの必要となる周波数の信号のみを通過させ、不要となる周波数の信号をカットするものである。受信ミキサ89は、周波数シンセサイザ92から出力される信号を用いて、送信信号処理回路81から出力される信号をミキシングするものである。なお、受信ミキサ89に供給される中間周波数は、例えば190MHz程度である。受信信号処理回路90は、受信ミキサ89から出力される信号に対して、例えばA/D変換処理、復調処理等の処理を施す回路である。受話器91は、例えば電気信号を音波に変換する小型スピーカ等で実現されるもので、図26に示した携帯電話機100中の受話器102に相当するものである。
The
周波数シンセサイザ92は、送信ミキサ82へ供給する信号(例えば、周波数380MHz程度)および受信ミキサ89へ供給する信号(例えば、周波数190MHz)を生成する回路である。なお、周波数シンセサイザ92は、例えば760MHzの発振周波数で発信するPLL回路を備え、このPLL回路から出力される信号を分周して周波数が380MHzの信号を生成し、さらに分周して周波数が190MHzの信号を生成するようになっている。制御回路93は、送信信号処理回路81、受信信号処理回路90、周波数シンセサイザ92、および入力/表示回路94を制御することにより、携帯電話機の全体動作を制御するものである。入力/表示回路94は、図26に示す携帯電話機100の使用者に対して機器の状態を表示したり、操作者の指示を入力したりするためのものであり、例えばこの携帯電話機100の液晶表示部104および操作釦部105に相当するものである。
The
以上の構成の電子回路において、送信フィルタ83および受信フィルタ88として、図19に示した周波数フィルタが用いられている。フィルタリングする周波数(通過させる周波数)は、送信ミキサ82から出力される信号のうちの必要となる周波数、および、受信ミキサ89で必要となる周波数に応じて送信フィルタ83および受信フィルタ88で個別に設定されている。また、周波数シンセサイザ92内に設けられるPLL回路は、図24に示すPLL回路のVCO74として、図20に示す発振器、または図21〜図23に示す発振器(VCSO)を設けている。
In the electronic circuit having the above configuration, the frequency filter shown in FIG. 19 is used as the
9−1.第1の薄膜圧電共振器
次に、本実施の形態に係る薄膜圧電共振器について、図面を参照しながら説明する。図27に、本実施の形態に係る第1の薄膜圧電共振器を示す。図27に示す薄膜圧電共振器30は、特に通信用素子や通信用フィルタとして用いられるダイアフラム型の薄膜圧電共振器30である。薄膜圧電共振器30は、単結晶シリコン基板からなる基体31上に、弾性板32を介して共振子33を形成したものである。
9-1. First Thin Film Piezoelectric Resonator Next, a thin film piezoelectric resonator according to the present embodiment will be described with reference to the drawings. FIG. 27 shows a first thin film piezoelectric resonator according to the present embodiment. A thin
基体31は、(110)配向した厚さ200μm程度の単結晶シリコン基板からなる。基体31の底面側(弾性板32と反対の側)には、基体31の底面側から上面側にまで貫通するビアホール34が形成されている。
The
弾性板32は、本実施の形態では図1に示した圧電素子1における弾性膜3によって形成されたもので、基体31の(110)面上に形成されたものである。また、共振子33は、図1に示した圧電素子1における下部電極4、バッファ層5、圧電体膜6、上部電極7によって形成されている。このような構成のもとに薄膜圧電共振器30は、基体31上に図1に示した圧電素子1の主部(基板2を除く部分)をそのまま形成した構成のものとなっている。
In this embodiment, the elastic plate 32 is formed by the
弾性板32については、例えば基体31上に窒化シリコン(SiN)を厚さ200nm程度に形成し、さらにその上に二酸化シリコン(SiO2)を厚さ400nm〜3μm程度に形成しておき、これらの上に弾性膜3を形成して、これら窒化シリコンと二酸化シリコンと弾性膜3との積層膜を弾性板32とすることもできる。また、このように基体31上に窒化シリコンと二酸化シリコンとを形成する場合、弾性膜3を形成せず、これら積層膜のみから弾性板32を形成することもできる。
For the elastic plate 32, for example, silicon nitride (SiN) is formed on the
下部電極4は、例えば(111)配向したPtからなる。下部電極4の厚さは、例えば200nm程度である。
The
バッファ層5は、ペロブスカイト型のロンボヘドラル構造または擬立方晶構造の圧電体材料からなり、かつ擬立方晶(100)に優先配向したPZTXからなる。バッファ層5の厚さは、例えば0.1μm以下である。
The
圧電体膜6は、ペロブスカイト型でロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向したリラクサー材料からなる。圧電体膜6の厚さは、例えば0.9μm程度である。
The
上部電極7は、下部電極4と同様に、Ptからなる。上部電極7は、本実施の形態では厚さ700nm程度に厚く形成されている。なお、この上部電極7には、弾性板32上に形成された電極35に電気的に接続するための、金などからなる配線37がパッド36を介して設けられている。
Similar to the
9−2.第1の薄膜圧電共振器の製造方法
次に、上述の薄膜圧電共振器30の製造方法について説明する。まず、基体31となる母材、すなわち前述した(110)配向の単結晶シリコン基板(Si基板)を用意する。そして、このSi基板上に弾性膜3を形成し、さらにその上に下部電極4、バッファ層5、圧電体膜6、上部電極7を順次形成する。なお、弾性板32として窒化シリコンと二酸化シリコンと弾性膜3との積層膜を採用する場合には、弾性膜3の形成に先立ってシリコン基板上に窒化シリコンと二酸化シリコンとをこの順に形成しておく。
9-2. Method for Manufacturing First Thin Film Piezoelectric Resonator Next, a method for manufacturing the above-described thin
次いで、上部電極7、圧電体膜6、バッファ層5、下部電極4を、ビアホール34に対応させてそれぞれパターニングし、共振子33を形成する。なお、特に下部電極4のパターニングに際しては、図27に示したように下部電極4とは別に、電極35も同時に形成しておく。
Next, the
次いで、単結晶シリコン基板をその底面側からエッチング等によって加工(パターニング)し、これを貫通するビアホール34を形成する。次に、上部電極7と電極35との間を接続するパッド36及び配線37を形成する。
Next, the single crystal silicon substrate is processed (patterned) from the bottom side by etching or the like to form a via
以上の工程によって、本実施の形態にかかる第1の薄膜圧電共振器30を製造することができる。
Through the above steps, the first thin
9−3.作用・効果
本実施の形態に係る第1の薄膜圧電共振器30によれば、共振子33の圧電体膜6の圧電特性が良好であり、したがって高い電気機械結合係数を有する。これにより、例えばGHz帯などの高周波数領域で使用可能なものとなる。また、小型(薄型)であるにもかかわらず良好に機能するものとなる。
9-3. Action / Effect According to the first thin
9−4.第2の薄膜圧電共振器
図28は、本実施の形態に係る第2の薄膜圧電共振器を示す図である。薄膜圧電共振器40が図27に示した薄膜圧電共振器30と主に異なるところは、ビアホールを形成せず、基体41と共振子42との間にエアギャップ43を形成した点にある。
9-4. Second Thin Film Piezoelectric Resonator FIG. 28 is a diagram showing a second thin film piezoelectric resonator according to the present embodiment. The main difference between the thin
すなわち、この薄膜圧電共振器40は、(110)配向した単結晶シリコン基板からなる基体41上に、共振子42を形成している。この共振子42は、下部電極44と、圧電材料層45と、上部電極46とによって形成されている。なお、下部電極44は、前述した下部電極4と同じ材質からなる。圧電材料層45は、前述したバッファ層5と同じ材質からなるバッファ層と、前述した圧電体膜6と同じ材質からなる圧電体膜とからなる。上部電極46は、前述した上部電極7と同じ材質からなる。共振子42は、特にエアギャップ43上にて、下部電極44、圧電材料層45、上部電極46が積層されて形成されている。
That is, the thin
ここで、本実施の形態では、下部電極44の下側に前記エアギャップ43を覆った状態で弾性膜3(図1参照)が形成されており、この弾性膜3が先の例と同様に弾性板47となっている。なお、この弾性板47についても、先の例と同様に基体41上に窒化シリコンと二酸化シリコンとを形成しておき、あるいは二酸化シリコンのみを形成しておき、これの上に弾性膜3を形成してこれらの積層膜を弾性板47とすることができる。また、弾性膜3を形成せず、窒化シリコンと二酸化シリコンとの積層膜、あるいは二酸化シリコンのみから弾性板47を形成することができる。
Here, in the present embodiment, the elastic film 3 (see FIG. 1) is formed under the
9−5.第2の薄膜圧電共振器40の製造方法
第2の薄膜圧電共振器40を形成するには、まず、基体41上に例えばゲルマニウム(Ge)を蒸着等によって成膜し、さらにこれを形成するエアギャップの形状と同じ形状にパターニングすることにより、犠牲層を形成する。
9-5. Method for Manufacturing Second Thin
次に、この犠牲層を覆って弾性板47を形成する。なお、これに先だって窒化シリコンと二酸化シリコンとを形成しておき、あるいは二酸化シリコンのみを形成しておくことができる。続いて、これらバッファ層を所望形状にパターニングする。
Next, an
次いで、弾性板47を覆って下部電極44となる層を形成し、さらにこれをドライエッチング等でパターニングすることにより、下部電極44を形成する。次いで、下部電極44を覆ってバッファ層および圧電体膜をこの順に形成する。すなわち、これら積層膜から圧電材料層45となる層を形成する。さらにこれをドライエッチング等でパターニングすることにより、圧電材料層45を形成する。
Next, a layer to be the
次いで、圧電材料層45を覆って上部電極46となる層を形成し、さらにこれをドライエッチング等でパターニングすることにより、上部電極46を形成する。なお、このようにして犠牲層の上に、弾性板47、下部電極44、圧電材料層45、上部電極46をそれぞれパターニングして形成することにより、犠牲層はその一部が外側露出したものとなる。次に、前記犠牲層を例えば過酸化水素水(H2O2)でエッチングすることで基体41上から除去し、これによってエアギャップ43を形成する。
Next, a layer to be the
以上の工程によって、本実施の形態にかかる薄膜圧電共振器40を製造することができる。
Through the above steps, the thin
9−6.作用・効果
本実施の形態にかかる第2の薄膜圧電共振器40によれば、共振子42の圧電体膜の圧電特性が良好であり、したがって高い電気機械結合係数を有する。これにより、例えばGHz帯などの高周波数領域で使用可能なものとなる。また、小型(薄型)であるにもかかわらず良好に機能するものとなる。
9-6. Action / Effect According to the second thin
また、前述した薄膜圧電共振器30、40にあっては、インダクタンスやコンデンサなどの回路構成要素と適宜に組み合わされることにより、良好な誘導フィルタを構成するものとなる。
Further, in the above-described thin film
以上、本実施の形態に係る圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、圧電ポンプ、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器及び電子機器(携帯電話機100)について説明したが、本発明は、前記実施の形態に制限されず、本発明の範囲内で自由に変更が可能である。本発明に係る圧電素子は、前述したデバイスに適用されるだけでなく、種々のデバイスに適用可能である。 As described above, the piezoelectric element, the piezoelectric actuator, the ink jet recording head, the ink jet printer, the piezoelectric pump, the surface acoustic wave element, the frequency filter, the oscillator, the electronic circuit, the thin film piezoelectric resonator, and the electronic apparatus (mobile phone 100) according to the present embodiment. However, the present invention is not limited to the above embodiment, and can be freely changed within the scope of the present invention. The piezoelectric element according to the present invention is applicable not only to the devices described above but also to various devices.
例えば、前記実施の形態においては電子機器として携帯電話機を、電子回路として携帯電話機内に設けられる電子回路をその一例として挙げ、説明したが、本発明は携帯電話機に限定されることなく、種々の移動体通信機器およびその内部に設けられる電子回路に適用することができる。 For example, in the above-described embodiment, a mobile phone has been described as an example of an electronic device, and an electronic circuit provided in the mobile phone as an electronic circuit has been described as an example. However, the present invention is not limited to a mobile phone, and various The present invention can be applied to a mobile communication device and an electronic circuit provided therein.
さらに、移動体通信機器のみならずBSおよびCS放送を受信するチューナなどの据置状態で使用される通信機器、およびその内部に設けられる電子回路にも適用することができる。さらには、通信キャリアとして空中を伝播する電波を使用する通信機器のみならず、同軸ケーブル中を伝播する高周波信号または光ケーブル中を伝播する光信号を用いるHUBなどの電子機器およびその内部に設けられる電子回路にも適用することができる。 Furthermore, the present invention can be applied not only to mobile communication devices but also to communication devices used in a stationary state such as tuners that receive BS and CS broadcasts, and electronic circuits provided therein. Furthermore, not only communication devices that use radio waves propagating in the air as communication carriers, but also electronic devices such as HUBs that use high-frequency signals propagating in coaxial cables or optical signals propagating in optical cables, and the electronics provided therein It can also be applied to circuits.
1 圧電素子、2 基板、3 弾性膜、4 下部電極、5 バッファ層、6 圧電体膜、7 上部電極、11 単結晶シリコン基板、12 酸化物薄膜層、13 バッファ層、14 圧電体膜、15 保護層、16 電極、20 圧電ポンプ、21 基体、22 圧電素子、23 ポンプ室、24 振動板、30 第1の薄膜圧電共振器、31 基体、32 弾性板、33 共振子、34 ビアホール、35 電極、36 パッド、37 配線、40 第2の薄膜圧電共振器、41 基体、42 共振子、43 エアギャップ、44 下部電極、45 圧電材料層、46 上部電極、47 弾性板、50 インクジェット式記録ヘッド、51 ノズル板、52 インク室基板、54 圧電素子、55 弾性板、56 基体、57 ヘッド本体、61 単結晶シリコン基板、63 発振器、64 基板、66 配線、67 ワイヤー線、68 ワイヤー線、70 入力端子、71 位相比較器、72 低域フィルタ、73 増幅器、80 送話器、81 送信信号処理回路、82 送信ミキサ、83 送信フィルタ、84 送信電力増幅器、85 送受分波器、87 低雑音増幅器、88 受信フィルタ、89 受信ミキサ、90 受信信号処理回路、91 受話器、92 周波数シンセサイザ、93 制御回路、94 表示回路、100 携帯電話機、102 受話器、103 送話器、104 液晶表示部、105 操作釦部、140 基板、141 電極、142 電極、143 吸音部、144 吸音部、145 高周波信号源、150 基板、151 電極、152 電極、153 電極、154 高周波信号源、511 ノズル、521 キャビティー、522 側壁、523 リザーバ、524 供給口、531 連通孔、600 インクジェットプリンター、620 装置本体、621 トレイ、622 排出口、630 ヘッドユニット、631 インクカートリッジ、632 キャリッジ、640 印刷装置、641 キャリッジモータ、642 往復動機構、643 キャリッジガイド軸、644 タイミングベルト、650 給紙装置、651 給紙モータ、652 給紙ローラ、660 制御部、670 操作パネル DESCRIPTION OF SYMBOLS 1 Piezoelectric element, 2 Substrate, 3 Elastic film, 4 Lower electrode, 5 Buffer layer, 6 Piezoelectric film, 7 Upper electrode, 11 Single crystal silicon substrate, 12 Oxide thin film layer, 13 Buffer layer, 14 Piezoelectric film, 15 Protective layer, 16 electrodes, 20 piezoelectric pump, 21 substrate, 22 piezoelectric element, 23 pump chamber, 24 diaphragm, 30 first thin film piezoelectric resonator, 31 substrate, 32 elastic plate, 33 resonator, 34 via hole, 35 electrode , 36 pad, 37 wiring, 40 second thin film piezoelectric resonator, 41 substrate, 42 resonator, 43 air gap, 44 lower electrode, 45 piezoelectric material layer, 46 upper electrode, 47 elastic plate, 50 ink jet recording head, 51 nozzle plate, 52 ink chamber substrate, 54 piezoelectric element, 55 elastic plate, 56 base, 57 head body, 61 single crystal silicon substrate, 3 oscillator, 64 substrate, 66 wiring, 67 wire line, 68 wire line, 70 input terminal, 71 phase comparator, 72 low-pass filter, 73 amplifier, 80 transmitter, 81 transmission signal processing circuit, 82 transmission mixer, 83 Transmission filter, 84 Transmission power amplifier, 85 Transmitter / receiver demultiplexer, 87 Low noise amplifier, 88 Reception filter, 89 Reception mixer, 90 Reception signal processing circuit, 91 Handset, 92 Frequency synthesizer, 93 Control circuit, 94 Display circuit, 100 Mobile Telephone, 102 Handset, 103 Transmitter, 104 Liquid crystal display, 105 Operation button, 140 Substrate, 141 electrode, 142 electrode, 143 Sound absorber, 144 Sound absorber, 145 High frequency signal source, 150 substrate, 151 electrode, 152 electrode , 153 electrode, 154 high frequency signal source, 511 nozzle, 5 21 Cavity, 522 Side wall, 523 Reservoir, 524 Supply port, 531 Communication hole, 600 Inkjet printer, 620 Device main body, 621 Tray, 622 Discharge port, 630 Head unit, 631 Ink cartridge, 632 Carriage, 640 Printing device, 641 Carriage Motor, 642 Reciprocating mechanism, 643 Carriage guide shaft, 644 Timing belt, 650 Paper feed device, 651 Paper feed motor, 652 Paper feed roller, 660 Control unit, 670 Operation panel
Claims (19)
前記基体の上方に形成されたバッファ層と、
前記バッファ層の上方に形成された圧電体膜と、を含み、
前記バッファ層は、ペロブスカイト型のPb((Zr1−aTia)1−b (Nb,Ta) b)O3からなり、
aは、0.15≦a≦0.8の範囲であり、
bは、0.05≦b≦0.4の範囲であり、
前記圧電体膜は、ペロブスカイト型のリラクサー材料からなり、
前記リラクサー材料は、以下の式(1)〜(9)で示される材料のうちの少なくとも一種からなる、圧電素子。
(1−x)Pb(Sc 1/2 Nb 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(1)
(ただし、xは0.10<x<0.42、yは、0≦y≦1)
(1−x)Pb(In 1/2 Nb 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(2)
(ただし、xは0.10<x<0.37、yは、0≦y≦1)
(1−x)Pb(Ga 1/2 Nb 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(3)
(ただし、xは0.10<x<0.50、yは、0≦y≦1)
(1−x)Pb(Sc 1/2 Ta 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(4)
(ただし、xは0.10<x<0.45、yは、0≦y≦1)
(1−x)Pb(Mg 1/3 Nb 2/3 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(5)
(ただし、xは0.10<x<0.35、yは、0≦y≦1)
(1−x)Pb(Fe 1/2 Nb 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(6)
(ただし、xは0.01<x<0.10、yは、0≦y≦1)
(1−x)Pb(Zn 1/3 Nb 2/3 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(7)
(ただし、xは0.01<x<0.10、yは、0≦y≦1)
(1−x)Pb(Ni 1/3 Nb 2/3 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(8)
(ただし、xは0.10<x<0.38、yは、0≦y≦1)
(1−x)Pb(Co 1/2 W 1/2 )O 3 −xPb(Zr 1−y Ti y )O 3
・・・式(9)
(ただし、xは0.10<x<0.42、yは、0≦y≦1) A substrate;
A buffer layer formed above the substrate;
A piezoelectric film formed above the buffer layer,
The buffer layer is made of perovskite Pb ((Zr 1−a Ti a ) 1−b (Nb, Ta) b ) O 3 ,
a is in the range of 0.15 ≦ a ≦ 0.8,
b is in the range of 0.05 ≦ b ≦ 0.4;
The piezoelectric film is Ri Do a relaxor material of a perovskite-type,
The relaxor material is a piezoelectric element made of at least one of materials represented by the following formulas (1) to (9).
(1-x) Pb (Sc 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (1)
(Where x is 0.10 <x <0.42, y is 0 ≦ y ≦ 1)
(1-x) Pb (In 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (2)
(Where x is 0.10 <x <0.37, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ga 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (3)
(Where x is 0.10 <x <0.50, y is 0 ≦ y ≦ 1)
(1-x) Pb (Sc 1/2 Ta 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (4)
(Where x is 0.10 <x <0.45, y is 0 ≦ y ≦ 1)
(1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 —xPb (Zr 1-y Ti y ) O 3
... Formula (5)
(Where x is 0.10 <x <0.35, y is 0 ≦ y ≦ 1)
(1-x) Pb (Fe 1/2 Nb 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (6)
(Where x is 0.01 <x <0.10, y is 0 ≦ y ≦ 1)
(1-x) Pb (Zn 1/3 Nb 2/3 ) O 3 -xPb (Zr 1-y Ti y ) O 3
... Formula (7)
(Where x is 0.01 <x <0.10, y is 0 ≦ y ≦ 1)
(1-x) Pb (Ni 1/3 Nb 2/3 ) O 3 —xPb (Zr 1-y Ti y ) O 3
... Formula (8)
(Where x is 0.10 <x <0.38, y is 0 ≦ y ≦ 1)
(1-x) Pb (Co 1/2 W 1/2) O 3 -xPb (Zr 1-y Ti y) O 3
... Formula (9)
(Where x is 0.10 <x <0.42, y is 0 ≦ y ≦ 1)
aは、(aMPB−0.05)≦a≦aMPBの範囲であり、
aMPBは、前記バッファ層の結晶構造の相境界におけるaの値を示す、圧電素子。 In claim 1 ,
a is in the range of (a MPB −0.05) ≦ a ≦ a MPB ,
a MPB is a piezoelectric element showing the value of a at the phase boundary of the crystal structure of the buffer layer.
前記バッファ層は、該バッファ層の結晶構造の相境界におけるaを有する、圧電素子。 In claim 1 or 2 ,
The said buffer layer is a piezoelectric element which has a in the phase boundary of the crystal structure of this buffer layer.
前記バッファ層は、ロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向している、圧電素子。 In any one of claims 1 to 3,
The buffer layer is a piezoelectric element having a rhombohedral structure and preferentially oriented to pseudo cubic (100).
前記バッファ層は、擬立方晶構造を有し、かつ擬立方晶(100)に優先配向している、圧電素子。 In any one of Claims 1-3 ,
The buffer layer has a pseudo cubic structure and is preferentially oriented to pseudo cubic (100).
前記圧電体膜は、ロンボヘドラル構造を有し、かつ擬立方晶(100)に優先配向している、圧電素子。 In any one of Claims 1-5 ,
The piezoelectric element has a rhombohedral structure and is preferentially oriented to pseudo cubic (100).
前記バッファ層は、5モル%以下のSi、あるいは、SiおよびGeを含む、圧電素子。 In any one of Claims 1-6 ,
The buffer layer is a piezoelectric element containing 5 mol% or less of Si, or Si and Ge.
前記基体の上方に形成された下部電極と、
前記下部電極の上方に形成された前記バッファ層と、
前記圧電体膜の上方に形成された上部電極と、を含む、圧電素子。 In any of the claims 1-7,
A lower electrode formed above the substrate;
The buffer layer formed above the lower electrode;
A piezoelectric element including an upper electrode formed above the piezoelectric film.
前記下部電極および前記上部電極のうちの少なくとも一つは、Ptを主とする材料からなる、圧電素子。 In claim 8 ,
A piezoelectric element in which at least one of the lower electrode and the upper electrode is made of a material mainly containing Pt.
前記圧電体膜の上方に形成された第2の電極と、を含む、周波数フィルタ。 A first electrode formed above the piezoelectric film included in the surface acoustic wave device according to claim 14 ;
A frequency filter comprising: a second electrode formed above the piezoelectric film.
前記圧電体膜の上方に形成された第2の電極と、
トランジスタを有する発振回路と、を含む、発振器。 A first electrode formed above the piezoelectric film included in the surface acoustic wave device according to claim 14 ;
A second electrode formed above the piezoelectric film;
An oscillator comprising: an oscillation circuit having a transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004208842A JP4605348B2 (en) | 2004-07-15 | 2004-07-15 | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004208842A JP4605348B2 (en) | 2004-07-15 | 2004-07-15 | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006032627A JP2006032627A (en) | 2006-02-02 |
JP4605348B2 true JP4605348B2 (en) | 2011-01-05 |
Family
ID=35898605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004208842A Expired - Fee Related JP4605348B2 (en) | 2004-07-15 | 2004-07-15 | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4605348B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008218879A (en) * | 2007-03-07 | 2008-09-18 | Seiko Epson Corp | Piezoelectric element and manufacturing method thereof, liquid injection head, and printer |
JP5196105B2 (en) * | 2007-03-07 | 2013-05-15 | セイコーエプソン株式会社 | Piezoelectric element, liquid ejecting head, and printer |
JP5382319B2 (en) * | 2009-03-25 | 2014-01-08 | セイコーエプソン株式会社 | Liquid ejecting head, liquid ejecting apparatus, and actuator |
JP7346845B2 (en) * | 2019-02-26 | 2023-09-20 | セイコーエプソン株式会社 | Piezoelectric elements, liquid ejection heads, and printers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133369A (en) * | 1990-09-25 | 1992-05-07 | Mitsubishi Materials Corp | Dielectric thin-film, thin-film device and manufacture thereof |
JPH10139594A (en) * | 1996-10-30 | 1998-05-26 | Seiko Epson Corp | Piezoelectric thin film, its production and ink jet recording head using the same |
JPH10287468A (en) * | 1997-04-09 | 1998-10-27 | Seiko Epson Corp | Piezoelectric thin film, its production, piezoelectric element, and ink jet printer head |
JP2001144341A (en) * | 1999-11-15 | 2001-05-25 | Seiko Epson Corp | Piezoelectric film and piezoelectric actuator |
JP2003163566A (en) * | 2001-11-22 | 2003-06-06 | Toshiba Corp | Thin film piezoelectric resonator and its manufacturing method |
JP2003273706A (en) * | 2002-03-18 | 2003-09-26 | Seiko Epson Corp | Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic equipment |
-
2004
- 2004-07-15 JP JP2004208842A patent/JP4605348B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133369A (en) * | 1990-09-25 | 1992-05-07 | Mitsubishi Materials Corp | Dielectric thin-film, thin-film device and manufacture thereof |
JPH10139594A (en) * | 1996-10-30 | 1998-05-26 | Seiko Epson Corp | Piezoelectric thin film, its production and ink jet recording head using the same |
JPH10287468A (en) * | 1997-04-09 | 1998-10-27 | Seiko Epson Corp | Piezoelectric thin film, its production, piezoelectric element, and ink jet printer head |
JP2001144341A (en) * | 1999-11-15 | 2001-05-25 | Seiko Epson Corp | Piezoelectric film and piezoelectric actuator |
JP2003163566A (en) * | 2001-11-22 | 2003-06-06 | Toshiba Corp | Thin film piezoelectric resonator and its manufacturing method |
JP2003273706A (en) * | 2002-03-18 | 2003-09-26 | Seiko Epson Corp | Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2006032627A (en) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4192794B2 (en) | Piezoelectric element, piezoelectric actuator, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP4224710B2 (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP4344942B2 (en) | Inkjet recording head and piezoelectric actuator | |
JP4431891B2 (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic equipment | |
JP4224709B2 (en) | Piezoelectric element, piezoelectric actuator, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP4165347B2 (en) | Method for manufacturing piezoelectric element | |
JP4600650B2 (en) | Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic equipment | |
JP2005150694A (en) | Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus | |
JP4224708B2 (en) | Piezoelectric element, piezoelectric actuator, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP4605349B2 (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP2006114562A (en) | Piezoelectric substance film, piezoelectric element, piezoelectric actuator, piezoelectric pump, inkjet type recording head, inkjet printer, surface acoustic wave device, thin-film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic device | |
JP2006086368A (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet type recording head, ink-jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic appliance | |
JP2006069837A (en) | Piezoelectric layer, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet type recording head, ink-jet printer, surface elastic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic appliance | |
JP4605348B2 (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP2005302933A (en) | Piezoelectric element, piezoelectric actuator, ink jet recording head, ink jet printer, surface acoustic wave device, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic apparatus | |
JP4600647B2 (en) | Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device | |
JP2005166912A (en) | Method of manufacturing thin ferroelectric film, ferroelectric memory device, ferroelectric element, ink-jet recording head, ink-jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic equipment | |
JP2005353756A (en) | Piezoelectric element, piezoelectric actuator, piezoelectric pump, inkjet-type recording head, inkjet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060112 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4605348 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |