Nothing Special   »   [go: up one dir, main page]

JP4686269B2 - Ultrasonic therapy device - Google Patents

Ultrasonic therapy device Download PDF

Info

Publication number
JP4686269B2
JP4686269B2 JP2005181401A JP2005181401A JP4686269B2 JP 4686269 B2 JP4686269 B2 JP 4686269B2 JP 2005181401 A JP2005181401 A JP 2005181401A JP 2005181401 A JP2005181401 A JP 2005181401A JP 4686269 B2 JP4686269 B2 JP 4686269B2
Authority
JP
Japan
Prior art keywords
ultrasonic
blood vessel
therapeutic
imaging
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005181401A
Other languages
Japanese (ja)
Other versions
JP2007000218A5 (en
JP2007000218A (en
Inventor
一昭 佐々木
隆 東
晋一郎 梅村
健一 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005181401A priority Critical patent/JP4686269B2/en
Publication of JP2007000218A publication Critical patent/JP2007000218A/en
Publication of JP2007000218A5 publication Critical patent/JP2007000218A5/ja
Application granted granted Critical
Publication of JP4686269B2 publication Critical patent/JP4686269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、血管に超音波を照射し、血流を減弱あるいは途絶させ、腫瘍の成長抑制などの医学的な治療効果を得ることを目的とする超音波血管照射装置に関する。   The present invention relates to an ultrasonic blood vessel irradiation device intended to obtain medical treatment effects such as tumor growth suppression by irradiating blood vessels with ultrasonic waves to attenuate or disrupt blood flow.

超音波は、短波長において生体深部まで伝播し、任意の場所に収束させることができるという、レーザ光やマイクロ波等の電磁波にはない特徴を有している。この特徴を生かした超音波治療の研究開発が進められている。治療に生かすことのできる超音波の生体作用は、加熱作用と音響化学作用に大別される。前者の加熱作用は、組織が超音波を吸収して熱を発生することに起因している。この加熱作用を医学応用した療法は、患部を40°C〜50°C程度に持続加温することにより腫瘍等を治療する「温熱療法」と、強力な収束超音波(High Intensity Focused Ultrasound,HIFU)を用い患部の微少領域を短時間に70°C〜100°Cといった組織変性を来す温度まで上げる「加熱凝固療法」に大別できる。   Ultrasonic waves have characteristics that are not found in electromagnetic waves such as laser light and microwaves, which can propagate to a deep part of a living body at a short wavelength and can be converged to an arbitrary place. Research and development of ultrasonic therapy taking advantage of this feature is underway. The biological action of ultrasound that can be utilized for treatment is roughly divided into a heating action and a sonochemical action. The former heating action is attributed to the fact that the tissue absorbs ultrasonic waves and generates heat. Therapies that apply this heating effect to medical treatment include “hyperthermia” that treats tumors by continuously heating the affected area to about 40 ° C. to 50 ° C., and powerful focused ultrasound (High Intensity Focused Ultrasound, HIFU). ) Can be broadly classified into “heat coagulation therapy” in which a minute region of an affected area is raised in a short time to a temperature causing tissue degeneration such as 70 ° C. to 100 ° C.

腫瘍に対する「温熱療法」は、腫瘍細胞が正常細胞に比べて、持続的な高温(43°C程度)に弱い性質を利用した治療法であるが、腫瘍の成長を鈍化させることは可能であるが直接的に腫瘍細胞を急激に壊死させる能力は低く、また患部の温度上昇は周辺組織の血流と熱伝導に支配されるため治療に必要な温度を保つことが容易ではないこと、及び温度上昇領域の限局性が十分でないため、治療効果と生体へのストレス(副作用)とのバランスが良くないといった点から満足できるレベルにはいたっておらず、実際の臨床の場では放射線療法との併用療法として使われることが多い。   “Hyperthermia” for tumors is a treatment that uses the property that tumor cells are vulnerable to persistent high temperatures (about 43 ° C.) compared to normal cells, but it is possible to slow the growth of tumors. Has a low ability to directly necrotize tumor cells, and the temperature rise in the affected area is governed by the blood flow and heat conduction of the surrounding tissue, and it is not easy to maintain the temperature necessary for treatment, and the temperature Because the ascending region is not sufficiently localized, the level of treatment and the stress (side effects) on the living body are not balanced, and the level is not satisfactory. In combination with radiotherapy in actual clinical settings Often used as

一方、HIFUを用いた加熱凝固治療では、ミリメートル単位の微小な領域に強力超音波を集め、瞬時に組織変性を来す温度に上昇させる。HIFUを用いた加熱凝固治療は、上述の温熱療法とは治療対象部位で上昇する温度及びそれに起因する組織の変化が異なる。組織に生じた熱は、熱伝導と血流により運び去られるが、加熱凝固療法の場合は、これらの熱輸送と超音波による発熱とが平衡状態に達するのに要する時間(約1分程度)よりはるかに短時間のうちに、大強度の超音波により焦域の温度を蛋白凝固温度以上に上げ、凝固させる。焦点以外の部位では超音波密度が低いため、熱変性の温度には到達せず、焦点付近のみが組織変性する。現在、HIFUによる治療は、前立腺肥大、前立腺癌、子宮筋腫の治療へ応用されている。   On the other hand, in the heat coagulation treatment using HIFU, intense ultrasonic waves are collected in a minute area of a millimeter unit, and the temperature is instantaneously raised to a temperature that causes tissue degeneration. The heat coagulation treatment using HIFU differs from the above-described thermotherapy in the temperature rising at the site to be treated and the tissue change resulting therefrom. The heat generated in the tissue is carried away by heat conduction and blood flow, but in the case of heat coagulation therapy, the time required for these heat transport and ultrasonic fever to reach an equilibrium state (about 1 minute) In a much shorter time, the focal zone temperature is raised to the protein coagulation temperature or higher by high-intensity ultrasonic waves and solidified. Since the ultrasonic density is low at a portion other than the focal point, the temperature of heat denaturation is not reached, and only the vicinity of the focal point is denatured. Currently, treatment with HIFU is applied to the treatment of prostatic hypertrophy, prostate cancer, and uterine fibroids.

従来技術の加熱凝固治療において、収束超音波の照射により不可逆的な組織の熱変性を生じる領域は、焦点付近の非常に小さい体積である。一回で治療できる領域が少ないため腫瘍全体を治療する場合に焦点を移動させて照射を繰り返す必要がある。   In the prior art heat coagulation treatment, the region that causes irreversible tissue thermal denaturation by irradiation of focused ultrasound is a very small volume near the focal point. Since there are few areas that can be treated at a time, it is necessary to move the focal point and repeat irradiation when treating the entire tumor.

更に、複数回の照射を行う場合、前回の照射により上昇した治療対象以外の組織の温度が血流等の冷却作用により十分下がってから次回の照射を行わねばならず、照射間に待ち時間が必要となる。   Furthermore, when performing multiple irradiations, the next irradiation must be performed after the temperature of the tissue other than the treatment target that has been raised by the previous irradiation is sufficiently lowered by the cooling action such as blood flow, and there is a waiting time between irradiations. Necessary.

従って、数センチの大きさの腫瘍を治療する場合、治療時間が数時間におよぶことがある。このように、現在の加熱凝固治療には、治療時間が長くなるという大きな課題がある。現状では、例えば、子宮筋腫の様に特に体積の大きな腫瘍に対する治療効率は著しく低いという問題がある。   Thus, when treating a tumor that is several centimeters in size, the treatment time may take several hours. Thus, the current heat coagulation treatment has a big problem that the treatment time becomes long. At present, for example, there is a problem that the treatment efficiency is particularly low for a tumor having a particularly large volume, such as uterine fibroids.

子宮筋腫や肝臓癌等の治療方法として、動脈塞栓治療が最近試みられてきている。この治療方法では、腫瘍の栄養血管にまでカテーテルを挿入し塞栓物質を血管内に注入する。導入された塞栓物質が腫瘍を還流する栄養血管に詰まり、血流を遮断することで腫瘍への栄養補給を絶ち、腫瘍治療の目的を達するという方法である。一般に、子宮筋腫のような、血流に乏しい腫瘍であればあるほど、血流遮断による腫瘍退縮効果が強く見られることが知られている。しかし、この治療法では、局所的あるいは全身麻酔下において、患者の大腿付け根等の大きな動脈からカテーテルを挿入し、X線透視下で、目的領域の血管まで、カテーテルを導く操作が必要で、患者に対する被爆及びカテーテル挿入による苦痛が少なくない。   Arterial embolization treatment has recently been attempted as a treatment method for uterine fibroids, liver cancer and the like. In this treatment method, a catheter is inserted into a tumor blood vessel and an embolic material is injected into the blood vessel. The introduced embolic material is clogged in the feeding blood vessels that circulate through the tumor, and the blood flow is blocked to stop feeding the tumor and achieve the purpose of tumor treatment. In general, it is known that a tumor with poor blood flow, such as uterine fibroids, shows a stronger tumor regression effect due to blood flow blockage. However, in this treatment method, it is necessary to insert a catheter from a large artery such as the base of the patient's thigh under local or general anesthesia, and to guide the catheter to a target blood vessel under fluoroscopy. There are many pains caused by exposure to and exposure to catheters.

ここで、このような腫瘍に対する治療方法の一つとして、体外から腫瘍に栄養を供給する血管を狙って収束超音波を照射することにより、血管を梗塞させ、非観血的かつ低侵襲に腫瘍への栄養供給を遮断する治療方法が考えられる。前述の血流遮断により治療効果が認められる子宮筋腫等の腫瘍に対しては、腫瘍全体をカバーするように集束超音波によって治療することに比べて、はるかに短時間の照射で、腫瘍治療の目的が達成できると考えられる。   Here, as one of the treatment methods for such a tumor, a focused ultrasound is applied to a blood vessel that supplies nutrients to the tumor from outside the body, thereby infarcting the blood vessel and making the tumor noninvasive and less invasive. Treatment methods that block nutrition supply to the child are conceivable. Tumors such as uterine fibroids that have a therapeutic effect due to the above-mentioned blood flow blockage can be treated with much shorter exposure time than focused ultrasound to cover the entire tumor. It is considered that the objective can be achieved.

また、強力な超音波を治療目的で、血管などに照射する方法に関する従来提案がなされている(たとえば、特許文献1、2を参照)。   Conventional proposals have also been made regarding methods of irradiating blood vessels or the like with powerful ultrasonic waves for therapeutic purposes (see, for example, Patent Documents 1 and 2).

特開2000-037393JP2000-037393

特開2003-199760JP2003-199760

しかし、HIFUにより形成される焦点領域は、針のように細長い形状をしており、特に中心部の音圧が高強度である。そのため血管の中心部に高強度な超音波焦点が位置する場合、血管壁がその衝撃を受け、破綻あるいは破裂して、出血を惹起する危険がある。また、高齢者や疾病患者などの血管は健常者より脆弱化を来たしている可能性があり、さらに腫瘍成長に伴い形成された栄養血管は、正常組織の血管より脆弱である。すなわち、高齢者や腫瘍患者に対して血管中心部にお強力なHIFU照射を行うことは、血管破綻の可能性がある。   However, the focal region formed by HIFU has an elongated shape like a needle, and the sound pressure at the center is particularly high. For this reason, when a high-intensity ultrasonic focal point is located at the center of the blood vessel, the blood vessel wall is subjected to the impact, and there is a risk of causing bleeding or rupture. In addition, blood vessels such as elderly people and diseased patients may be more vulnerable than healthy individuals, and nutritional blood vessels formed with tumor growth are more fragile than normal tissue blood vessels. That is, if HIFU irradiation is applied to the center of blood vessels for elderly people or tumor patients, there is a possibility of blood vessel failure.

本発明の目的は、血管の破綻による出血リスクを低減しながら、血管を変性させ、従来より高確率で血流を途絶させることのできる超音波血管照射装置を提供することにある。   An object of the present invention is to provide an ultrasonic blood vessel irradiation apparatus capable of degenerating blood vessels and disrupting blood flow with higher probability than before while reducing the risk of bleeding due to blood vessel failure.

本発明の超音波血管照射装置は、上記の課題を解決するため、被検体患部の超音波断層像の撮像を行なう撮像用超音波探触子と、前記超音波断層像を表示する表示手段と、前記撮像用超音波探触子で得られた前記患部の情報から血管位置を検出する血管位置検出手段と、収束された治療用超音波を照射する一または複数の治療用超音波発生器と、前記治療用超音波発生器から照射された前記治療用超音波を前記血管の血管壁近傍に収束させる治療用超音波制御手段を具備する。   In order to solve the above-described problem, an ultrasonic blood vessel irradiation apparatus according to the present invention includes an imaging ultrasonic probe for imaging an ultrasonic tomographic image of an affected part of a subject, and display means for displaying the ultrasonic tomographic image. A blood vessel position detecting means for detecting a blood vessel position from information on the affected part obtained by the imaging ultrasonic probe, and one or a plurality of therapeutic ultrasonic generators for irradiating the focused therapeutic ultrasonic waves, And a therapeutic ultrasonic control means for converging the therapeutic ultrasonic wave irradiated from the therapeutic ultrasonic generator near the blood vessel wall of the blood vessel.

本発明の超音波血管照射装置では、対象血管の位置を検知し、血管中心部を避け、血管壁周辺へ1つ以上の治療用超音波焦点を形成させることで、血管の中心部に強力な音圧変動を与えることによる血管壁破綻に起因する出血を抑え、血管壁の組織あるいはその周辺組織をも変性させ、血管機能を低下させ、血流を減弱あるいは途絶させることが可能となる。   The ultrasonic blood vessel irradiation device of the present invention detects the position of the target blood vessel, avoids the blood vessel center, and forms one or more therapeutic ultrasonic focal points around the blood vessel wall, thereby strengthening the center of the blood vessel. It is possible to suppress bleeding caused by rupture of the blood vessel wall due to the change in sound pressure, denature the tissue of the blood vessel wall or its surrounding tissue, reduce the blood vessel function, and attenuate or disrupt the blood flow.

以下、本発明の超音波治療装置の実施形態について、図を参照しながら説明する。   Hereinafter, embodiments of the ultrasonic therapy apparatus of the present invention will be described with reference to the drawings.

図1は、本発明の実施例の超音波治療装置の概略構成を示す図である。
治療用アプリケータ1は、治療用強力超音波を照射する1つ又は複数の球面状の治療用超音波素子4により構成された治療用超音波トランスデューサ2と、強力超音波を患者の皮膚へ導く媒体5と、媒体をアプリケータに密着保持する水袋6と、患部を超音波観察するための撮像用探触子3により構成される。
FIG. 1 is a diagram showing a schematic configuration of an ultrasonic therapy apparatus according to an embodiment of the present invention.
The therapeutic applicator 1 is a therapeutic ultrasonic transducer 2 constituted by one or a plurality of spherical therapeutic ultrasonic elements 4 for irradiating therapeutic high-power ultrasonic waves, and guides high-power ultrasonic waves to the patient's skin. A medium 5, a water bag 6 that holds the medium in close contact with the applicator, and an imaging probe 3 for ultrasonically observing the affected area.

ここで、媒体5は、生体と超音波振動子との整合性を良好にするため音響インピーダンスが生体に近い物質として通常は水が使用され、強力超音波の照射により水中で気泡が生成し超音波の伝達を阻害しないように脱気されている。   Here, the medium 5 usually uses water as a substance having an acoustic impedance close to that of the living body in order to improve the consistency between the living body and the ultrasonic transducer. Degassed so as not to interfere with the transmission of sound waves.

治療用超音波トランスデューサ2は、超音波素子駆動部23により、強力超音波を照射できるように駆動制御され、圧電素子等の複数の超音波振動子から構成されている治療用超音波用トランスデューサ2の各素子に印加する高周波電力の振幅と位相は素子毎に独立に制御される。   The therapeutic ultrasonic transducer 2 is driven and controlled by the ultrasonic element driving unit 23 so as to be able to irradiate high-power ultrasonic waves, and is composed of a plurality of ultrasonic transducers such as piezoelectric elements. The amplitude and phase of the high-frequency power applied to each element are controlled independently for each element.

入力部21の操作により、あるいはシステムコントロール部19から、超音波照射に関する情報が治療用超音波制御ユニット22に入力され、それに基づき、選択された周波数に応じた照射音場それぞれの焦点位置及び音圧分布形状を規定する照射コード信号が、超音波素子駆動部23へ与えられる。それによって、超音波素子駆動部23は、治療用超音波用トランスデューサ2の各素子を駆動して強力超音波を照射し、焦点と一致した部位を加熱凝固させ、血管を狭窄又は梗塞させる。   Information on ultrasonic irradiation is input to the therapeutic ultrasonic control unit 22 by the operation of the input unit 21 or from the system control unit 19, and based on the information, the focal position and sound of each irradiation sound field corresponding to the selected frequency are input. An irradiation code signal defining the pressure distribution shape is given to the ultrasonic element driving unit 23. As a result, the ultrasonic element driving unit 23 drives each element of the therapeutic ultrasonic transducer 2 to irradiate high-power ultrasonic waves, heat and coagulate a portion coincident with the focal point, and narrow or infarct the blood vessel.

撮像用探触子3により生体内から受信された超音波の受信信号は、送信・受信ユニット14にて、増幅および位相を調整し、生体内の任意の部位からの受信信号を強調した信号に変換される。その受信信号に基づいて、信号処理部15で超音波断層像が生成され、メモリ17に記憶され、ディスプレ20に表示される。   The ultrasonic reception signal received from the living body by the imaging probe 3 is adjusted to a signal in which the amplification and phase are adjusted by the transmission / reception unit 14 and the reception signal from any part in the living body is emphasized. Converted. Based on the received signal, an ultrasonic tomogram is generated by the signal processing unit 15, stored in the memory 17, and displayed on the display 20.

そして、血管位置検出部16により血管位置を抽出することで術者は、表示された画像を見ることにより、患部9の血管10の観察ができ、治療計画を立案できる。   Then, by extracting the blood vessel position by the blood vessel position detection unit 16, the surgeon can observe the blood vessel 10 of the affected part 9 by looking at the displayed image, and can make a treatment plan.

血管位置の検出方法の例を以下に示す。通常、血管壁は血液が充満した血管内腔と違い、高強度の受信信号を反射する。血管周辺の軟組織に比べても、血管壁は反射強度が高い。すなわち、治療血管10を含む関心域11内において、あらかじめ設定した強度以上の受信信号を有する構造体を血管位置検出部16にて血管壁として検出して、ディスプレ20に表示できる。ここで、血管壁の超音波反射強度の設定は、あらかじめ典型的な血管壁構造を示す反射強度を指標に装置側に設定したものを使うことができる。あるいは、術者は、入力部21からの指令により、断層像の任意点の受信信号強度をメモリに残しディスプレ20に表示させることができる。これにより、血管壁以外の標準的な組織(たとえば、肝臓実質や筋肉組織)の超音波反射強度を計測できる。術者が、治療直前に、たとえば肝臓実質組織や筋肉組織の超音波反射輝度を測定して、その輝度を基準に血管壁として検出反射強度の閾値を設定することもできる。すなわち、患者の個体差により、肝臓組織や筋肉組織の超音波反射強度は異なる場合でも、治療対象の患者の組織を基準に血管壁検出の閾値を設定できることになる。ここで、血管壁の検出にあたって、特に、血管壁の外膜の輝度最大値の点より内側の内膜の輝度極大点を認識するようにしてもよい。   An example of a blood vessel position detection method is shown below. Usually, unlike the blood vessel lumen filled with blood, the blood vessel wall reflects a high-intensity received signal. Compared with the soft tissue around the blood vessel, the blood vessel wall has high reflection intensity. In other words, in the region of interest 11 including the treatment blood vessel 10, a structure having a received signal with a predetermined intensity or more can be detected as a blood vessel wall by the blood vessel position detection unit 16 and displayed on the display 20. Here, the ultrasonic wave reflection intensity of the blood vessel wall can be set in advance on the apparatus side using the reflection intensity indicating a typical blood vessel wall structure as an index. Alternatively, the surgeon can leave the received signal intensity at an arbitrary point of the tomographic image in the memory and display it on the display 20 according to a command from the input unit 21. Thereby, the ultrasonic reflection intensity of standard tissues (for example, liver parenchyma or muscle tissue) other than the blood vessel wall can be measured. The surgeon can measure the ultrasonic reflection luminance of, for example, liver parenchyma or muscle tissue immediately before treatment, and set a threshold value of detected reflection intensity as a blood vessel wall based on the luminance. That is, even when the ultrasonic reflection intensity of the liver tissue or muscle tissue differs due to individual differences among patients, the threshold value for detecting the blood vessel wall can be set based on the tissue of the patient to be treated. Here, in detecting the blood vessel wall, in particular, the luminance maximum point of the intima inside the outer wall of the blood vessel wall may be recognized.

また、血管壁の認識にあたって、反射輝度を基準とするのでなく、あらかじめ例えば血管形状(円形など)のパターンをメモリーに認識させておき、撮像結果とこれの近似度、相関などを判定することにより、血管壁を認識してもよい。   In addition, when recognizing a blood vessel wall, instead of using the reflected luminance as a reference, for example, a blood vessel shape (such as a circle) pattern is recognized in advance in a memory, and the imaging result and the degree of approximation, correlation, and the like are determined. The blood vessel wall may be recognized.

また血管位置の検出方法として、造影剤を用いた方法も挙げられる。以下にその方法を示す。超音波造影剤とは、直径数ミクロンの微小気泡を主成分とした薬剤であり、近年臨床に使われるようになってきたものである。ガスの種類としては、以前は空気、二酸化炭素、窒素が使われてきたが、最近は、水に難溶性であるフルオロカーボンなどのガスが使われるようになってきた。さらに、人や動物の毛細血管内を通過できるために、主要な気泡直径を1から数ミクロンに制御するためにガスをリン脂質や蛋白質などで安定化させている。この超音波造影剤を通常は、超音波で患部を観察する直前に静脈内から投与する。微小気泡を主成分とする造影剤は、通常では人や動物の血管内にとどまるため、患部の血液の流れ、すなわち血流そのものを見ることができる。   In addition, as a method for detecting a blood vessel position, a method using a contrast agent is also included. The method is shown below. An ultrasound contrast agent is a drug mainly composed of microbubbles having a diameter of several microns, and has recently been used clinically. As the type of gas, air, carbon dioxide and nitrogen have been used before, but recently, gas such as fluorocarbon which is hardly soluble in water has been used. Furthermore, in order to be able to pass through capillaries of humans and animals, the gas is stabilized with phospholipids and proteins in order to control the main bubble diameter from 1 to several microns. This ultrasound contrast agent is usually administered intravenously immediately before observing the affected area with ultrasound. Since the contrast agent mainly composed of microbubbles usually stays in the blood vessels of humans and animals, the blood flow in the affected area, that is, the blood flow itself can be seen.

たとえば、患者の静脈から造影剤を投与して、患部9の超音波観察を行う。造影剤は、前述のように血管の内部にとどまることから、患部9の血管10には、造影剤投与後数秒後には造影剤が流入する。   For example, a contrast agent is administered from a patient's vein and the affected part 9 is observed with ultrasound. Since the contrast agent remains inside the blood vessel as described above, the contrast agent flows into the blood vessel 10 of the affected part 9 several seconds after the administration of the contrast agent.

気泡を主成分とする造影剤は、送信超音波に対して強力な反射体になるため、撮像用探触子3から得た、超音波受信信号強度は強くなる。すなわち、造影剤投与により、エコー強度が低い血管内部から高エコーを受信できる。
さらに、気泡は非線形振動をする性質があることから、送信超音波に対するたとえば2倍の高調波などの成分を気泡からの受信信号の一部として、撮像用探触子3にて受信できる。受信した高調波成分は、信号処理部15にて、たとえば送信周波数の2倍の周波数成分の信号のみをメモリ17に記憶させ、ディスプレ20に表示させることができる。あるいは、前期の超音波断層像上に、重畳することもできる。
Since the contrast agent mainly composed of bubbles becomes a strong reflector with respect to transmission ultrasonic waves, the intensity of ultrasonic reception signals obtained from the imaging probe 3 is increased. That is, a high echo can be received from inside a blood vessel having a low echo intensity by administration of a contrast agent.
Furthermore, since the bubble has a property of nonlinear vibration, the imaging probe 3 can receive a component such as a harmonic twice as high as that of the transmission ultrasonic wave as a part of a reception signal from the bubble. For the received harmonic component, the signal processing unit 15 can store, for example, only a signal having a frequency component twice the transmission frequency in the memory 17 and display it on the display 20. Alternatively, it can be superimposed on the previous ultrasonic tomogram.

このように、送信周波数の2倍の周波数信号が検出される部位は、造影剤が存在する場所、すなわち血管内部からであり、造影剤の存在しない組織からは高調波成分はほとんど検知しないため、高精度に、血管の位置を描画させることが可能となる。   In this way, the part where the frequency signal twice the transmission frequency is detected is from the place where the contrast agent exists, that is, from the inside of the blood vessel, and since the harmonic component is hardly detected from the tissue where the contrast agent does not exist, It is possible to draw the position of the blood vessel with high accuracy.

血管位置の検出の仕方として、例えば以下のような方法を用いることで、より高精度で血管位置を検出することもできる。撮像用探触子3から得た、超音波の受信信号のうち、生体内の血流から反射してくる周波数偏位した信号は、信号処理部15で処理された後、血流速度演算解析部18で周波数分析され血流速度が算出される。算出された血流速度をメモリ17に記憶する。ここで、前記の患部の超音波断層像に、算出された血流速度に応じた情報を、たとえばカラー表示して、前記の超音波断層像上に、ディスプレ20に重畳表示することで、血流が検出できた血管部位を術者に明示することができる。即ち、メモリ17に記憶された撮像画像データ及び血流速度データを読み出して、患部9の断層像と、速度に応じてカラー表示される血流とを重畳して、ディスプレ20に表示できる。   As a method of detecting the blood vessel position, for example, the following method can be used to detect the blood vessel position with higher accuracy. Among the ultrasonic reception signals obtained from the imaging probe 3, the frequency-shifted signal reflected from the blood flow in the living body is processed by the signal processing unit 15 and then analyzed for blood flow velocity calculation. The frequency analysis is performed by the unit 18 to calculate the blood flow velocity. The calculated blood flow velocity is stored in the memory 17. Here, information corresponding to the calculated blood flow velocity is displayed in color on the ultrasonic tomographic image of the affected area, for example, and displayed on the display 20 in a superimposed manner on the ultrasonic tomographic image. The blood vessel site where the flow was detected can be clearly shown to the operator. That is, the captured image data and blood flow velocity data stored in the memory 17 can be read, and the tomographic image of the affected area 9 and the blood flow displayed in color according to the velocity can be superimposed and displayed on the display 20.

治療用超音波制御ユニット22は、システムコントロール部19の指令により制御される。システムコントロール部19は、例えば、コンピュータにより形成される。また、術者が、入力部21からシステムコントロール部19に実行命令を入力することにより、任意に患部の超音波撮像条件及び治療条件を設定できるよう構成されている。   The therapeutic ultrasonic control unit 22 is controlled by a command from the system control unit 19. The system control unit 19 is formed by a computer, for example. The surgeon inputs an execution command from the input unit 21 to the system control unit 19 so that the ultrasonic imaging condition and the treatment condition of the affected part can be arbitrarily set.

上記のように構成される超音波治療装置を用いて、腫瘍等の血管を梗塞させ、腫瘍の治療を行う場合について、以下説明する。   A case where a tumor such as a tumor is infarcted by using the ultrasonic therapy apparatus configured as described above to treat the tumor will be described below.

本実施例の超音波治療装置は、例えば、治療を行うために、生体内の患部を撮像して、患部の断層像を取得する撮像モードと、この撮像モードで取得された断層画像の患部に治療用超音波を照射して、治療を行う治療モードを有している。   The ultrasonic therapy apparatus according to the present embodiment, for example, images an affected part in a living body and performs tomography on an affected part of a tomographic image acquired in this imaging mode. It has a treatment mode for performing treatment by irradiating therapeutic ultrasonic waves.

例えば、医師等の術者は、まず、撮像モードにより、患者8の患部9を観察する。例えば子宮筋腫等の腹部内腫瘍を治療する場合は、アプリケータ1を患者体表面7に乗せ、超音波ゼリー等を用いて患者体表面7と水袋6とを密着させる。次に、術者は、患者体表面7に密着させたアプリケータ1を手動あるいは器械補助にて、患者体表面7との密着度を維持しながら移動させ、術者は、アプリケータ1に一体して内蔵される撮像用探触子3による患者体内の超音波断層の観察を行なう。   For example, an operator such as a doctor first observes the affected area 9 of the patient 8 in the imaging mode. For example, when treating a tumor in the abdomen such as a uterine fibroid, the applicator 1 is placed on the patient body surface 7 and the patient body surface 7 and the water bag 6 are brought into close contact with each other using an ultrasonic jelly or the like. Next, the surgeon moves the applicator 1 in close contact with the patient body surface 7 manually or by instrument assistance while maintaining the degree of close contact with the patient body surface 7, and the surgeon integrates with the applicator 1. Then, an ultrasonic tomography inside the patient is observed with the imaging probe 3 incorporated therein.

術者が、入力部21により撮像開始の実行命令を入力すると、これに応答してシステムコントロール部19は、送信・受信ユニット14に指令を出力する。これにより、撮像用探触子3から患部へ撮像用超音波ビームが送信される。この撮像用超音波ビームは、撮像用探触子3の配列方向に沿って走査され、患部の扇形の断層面に沿った領域に撮像用超音波ビーム13が照射される。   When the surgeon inputs an execution instruction to start imaging using the input unit 21, the system control unit 19 outputs a command to the transmission / reception unit 14 in response to this. As a result, the imaging ultrasonic beam is transmitted from the imaging probe 3 to the affected area. The imaging ultrasonic beam is scanned along the arrangement direction of the imaging probe 3, and the imaging ultrasonic beam 13 is irradiated onto a region along the fan-shaped tomographic plane of the affected part.

撮像用超音波が照射された領域から反射される撮像用超音波の反射エコーは、撮像用探触子3により受信信号として受信される。受信信号は、送信・受信ユニット14で撮像用超音波ビーム毎に整相処理され、信号処理部(デジタルスキャンコンバータを含む)15により、断層面の2次元超音波画像が生成される。断層画像は、メモリ17に記憶され、ディスプレ20に表示される。また、術者は、入力部21からの指令により、断層像の任意点の受信信号強度をメモリに残しディスプレ20に表示させることができる。これにより、血管壁以外の標準的な組織(たとえば、肝臓実質や筋肉組織)の超音波反射強度を計測できる。
そして、血管位置検出部により血管位置を検出し、治療計画を立案することができる。
The reflected echo of the imaging ultrasound reflected from the region irradiated with the imaging ultrasound is received as a reception signal by the imaging probe 3. The received signal is subjected to phasing processing for each imaging ultrasonic beam by the transmission / reception unit 14, and a two-dimensional ultrasonic image of the tomographic plane is generated by a signal processing unit (including a digital scan converter) 15. The tomographic image is stored in the memory 17 and displayed on the display 20. Further, the surgeon can leave the received signal intensity at an arbitrary point of the tomographic image in the memory and display it on the display 20 according to a command from the input unit 21. Thereby, the ultrasonic reflection intensity of standard tissues (for example, liver parenchyma or muscle tissue) other than the blood vessel wall can be measured.
Then, the blood vessel position is detected by the blood vessel position detection unit, and a treatment plan can be made.

図2は、本発明の実施例において、治療用超音波を照射する前にディスプレイに表示される画像の模式図である。図2は、アプリケータが備える撮像用探触子3を用いて得られた患部9を含む断層像を示す。術者は、ディスプレ20に表示される画像を見ながら、入力部21を操作できる。すなわち、図2のように、患部内に存在する、血管10および血管13といった複数の血管を観察でき、治療方針を立てることができる。ここで、術者は、当面の治療対象の血管10を含み、当面の治療対象でない血管13を含まない関心域11を設定することができる。   FIG. 2 is a schematic diagram of an image displayed on the display before irradiating therapeutic ultrasonic waves in the embodiment of the present invention. FIG. 2 shows a tomographic image including the affected part 9 obtained using the imaging probe 3 provided in the applicator. The surgeon can operate the input unit 21 while viewing the image displayed on the display 20. That is, as shown in FIG. 2, a plurality of blood vessels such as the blood vessel 10 and the blood vessel 13 existing in the affected area can be observed, and a treatment policy can be established. Here, the surgeon can set the region of interest 11 that includes the blood vessel 10 to be treated for the time being and does not include the blood vessel 13 that is not to be treated for the time being.

血管壁に治療用収束超音波の焦点25が重なるように照射を行うことで、血管壁を加熱凝固させることが可能となる。血管壁を変性させることで、血管の機能が減退し、血管は狭窄し血流減少が期待できる。   By irradiating the blood vessel wall so that the focal point 25 of the focused ultrasound for treatment overlaps, the blood vessel wall can be heated and coagulated. By modifying the blood vessel wall, the function of the blood vessel is reduced, the blood vessel is narrowed, and a reduction in blood flow can be expected.

ここで、血管壁に対する収束超音波焦点の位置関係が重要となる。図3に、動物実験結果を参考にその重要性を説明する。麻酔下のラットを開腹手術し、腹腔内底部に位置する下大静脈を露出させて、脱気生理食塩水を満たした水槽内にラットを固定した。下大静脈の近傍にHIFU用トランスデューサを設置し、静脈壁に強力収束超音波の焦点が照準されるように微調整した。図3の血管10がラット下大静脈の断面を示している。焦点25は通常、細長いラグビーボール様の楕円形状をしている。ここで、焦点の長軸線と、焦点と血管壁の交点から血管の中心への線のなす角度を0、30、45、60、90°になるようにラット下大静脈と焦点位置を微調整して実験した。適用したHIFUの周波数は、3.25MHzであり、焦点のピーク強度は、3.0kW/cmで、5秒間の連続照射をした。前記の角度になるような血管と焦点の位置関係で、ラット下大静脈へHIFU照射を行った。各角度5例づつ実験を行い、照射後の血管破綻あるいは破裂の有無を検討した。その結果、角度0°の場合は、5例中5例が血管壁破綻を示したのに対して、角度30°では、1例のみの破綻であった。45°以上では、血管の破綻は認められなかった。静脈壁は動脈壁より薄いため強力なHIFUにより破綻することがあるが、上記のように血管壁に対する収束超音波の入射角度を選択することで破綻を回避できることを示している。一方で、動脈の壁は、静脈のそれと比べ、弾性繊維などが豊富で丈夫な構造体であるが、腫瘍周辺の動脈や、あるいは動脈に疾患を有する患者のそれは、健常者の動脈に比べて脆弱である可能性がある。このような脆弱動脈にHIFUを照射して血管を変性させる場合には、前記のラットの大静脈での検討結果のように、血管壁に対する収束超音波の入射角度を選択することで破綻の危険性を回避し、かつ動脈壁周辺にHIFUのエネルギーを投入でき、結果として、血管壁組織あるいは、それと隣接する周辺組織を加熱変性させ、血管の機能を減退させることが可能となる。 Here, the positional relationship of the focused ultrasound focus with respect to the blood vessel wall is important. FIG. 3 explains the importance of the results with reference to the results of animal experiments. The anesthetized rat was subjected to laparotomy, the inferior vena cava located at the bottom of the abdominal cavity was exposed, and the rat was fixed in a water tank filled with degassed physiological saline. A HIFU transducer was installed in the vicinity of the inferior vena cava and finely adjusted so that the focal point of the intensely focused ultrasound was aimed at the vein wall. The blood vessel 10 of FIG. 3 shows a cross section of the rat inferior vena cava. The focal point 25 usually has an elliptical shape like an elongated rugby ball. Here, the rat inferior vena cava and the focal position are finely adjusted so that the angle between the long axis of the focal point and the line from the intersection of the focal point and the vascular wall to the center of the blood vessel becomes 0, 30, 45, 60, 90 °. And experimented. The frequency of the applied HIFU was 3.25 MHz, the peak intensity of the focus was 3.0 kW / cm 2 , and continuous irradiation was performed for 5 seconds. HIFU irradiation was performed on the inferior vena cava of the rat in the positional relationship between the blood vessel and the focal point so that the above angle was obtained. Experiments were performed at five angles, and the presence or absence of vascular failure or rupture after irradiation was examined. As a result, when the angle was 0 °, 5 out of 5 cases showed vascular wall failure, whereas at an angle of 30 °, only 1 case was broken. Above 45 °, no vascular failure was observed. Since the vein wall is thinner than the artery wall, it may break down due to strong HIFU, but it is shown that the failure can be avoided by selecting the incident angle of the convergent ultrasonic wave with respect to the blood vessel wall as described above. On the other hand, the arterial wall is a strong structure rich in elastic fibers, etc., compared to that of veins, but the arteries around the tumor or those of patients with disease in the arteries are compared to the arteries of healthy individuals. It may be vulnerable. When degenerating blood vessels by irradiating fragile arteries with such HIFU, the risk of failure can be determined by selecting the incident angle of convergent ultrasound with respect to the blood vessel wall, as shown in the results of the study on the vena cava of the rat. HIFU energy can be input to the periphery of the artery wall, and as a result, the blood vessel wall tissue or the adjacent tissue adjacent thereto can be denatured to reduce the function of the blood vessel.

図4は、治療対象血管の断面を示している。前述のように、通常、動脈の壁は、内部の血液成分や周囲の軟部組織に比べて、エコー上高輝度に描出される。しかしながら、血管10の断面すべてが同程度のエコー輝度として描画できない場合もある。その場合、対象としている血管は通常の超音波Bモード像では、図4のAのように、血管断面全体が描画されず、その血管の一部が高輝度域24として描画されることがある。このような場合は、ディスプレ20上にて、術者が、図4のBのように高輝度域に沿って軸線26を記述することが可能である。メモリ17に取り込まれた軸線26と、あらかじめ設定してある、治療用超音波ビームの軸線27とのなす角度α28がシステムコントロール部19にて計測され、図4のCのようにその角度が例えば45°以上の場合は、治療可能である血管壁部分を術者が選択していることを、ディスプレ20上に表示することができる。したがって、術者は、治療可能である血管壁部分に収束超音波の焦点25を図4のDのように設定することができる。   FIG. 4 shows a cross section of the blood vessel to be treated. As described above, the arterial wall is usually depicted with high brightness on echo compared to the internal blood components and the surrounding soft tissue. However, there are cases where all the cross-sections of the blood vessel 10 cannot be drawn with the same echo intensity. In that case, in the normal ultrasound B-mode image, the target blood vessel may not be drawn as a whole blood vessel cross section as shown in FIG. . In such a case, the operator can describe the axis 26 along the high-intensity region on the display 20 as shown in FIG. An angle α28 formed by the axis 26 taken into the memory 17 and the axis 27 of the therapeutic ultrasound beam set in advance is measured by the system control unit 19, and the angle is, for example, as shown in FIG. In the case of 45 ° or more, it can be displayed on the display 20 that the surgeon has selected a blood vessel wall portion that can be treated. Accordingly, the surgeon can set the focal point 25 of the focused ultrasound as shown in FIG. 4D on the blood vessel wall portion that can be treated.

次に、本発明の第2の実施例について、図5を参照して説明する。本構成では、治療用トランスデューサを2つ有している。図1で説明した1つの焦点を血管壁に照射するのと同様のプロセスにて、探触子3にて受信した信号を元に、描画した血管10に対して、その血管の両対側の血管壁に2つの治療用トランスデューサ2の焦点25を2つ同時に照準することが本構成では、可能となる。治療用トランスデューサ2の各々は、機械的に変位することで、幾何学的焦点の位置を変えることも可能となる。   Next, a second embodiment of the present invention will be described with reference to FIG. This configuration has two therapeutic transducers. In the same process as irradiating the blood vessel wall with one focal point described in FIG. 1, based on the signal received by the probe 3, with respect to the drawn blood vessel 10, In this configuration, two focal points 25 of the two therapeutic transducers 2 can be simultaneously aimed at the blood vessel wall. Each of the therapeutic transducers 2 can be mechanically displaced to change the position of the geometric focus.

図6は、生体組織に収束超音波を照射した際の焦点短軸面上での、温度上昇をシミュレーションした結果(相対温度上昇を等高線にして表示)である。3MHzの収束超音波を焦点1個の状態で照射した場合、照射1秒後(図6中29)には小さな温度上昇点であったものが、照射5秒後(図6中30)には、周辺部にも温度上昇が波及しているのがわかる。一方、同時に焦点2つをちょうど直径1mmの血管の対側に照準して、同時に照射した場合を想定した温度上昇結果では、1秒後(図6中31)には、1mm間隔を置いた2点から温度上昇が始まっているのがわかる。5秒後(図6中32)には、広範囲に温度上昇域が広がり、2点の間も熱伝導により温度上昇が見られることがわかる。すなわち、2点同時照射により、血管壁周辺組織を広範囲に加熱することができる。さらに、血管周囲に3つ以上の焦点を同時に形成することで、このような加熱効果はさらに強まる。この様に複数焦点を形成することにより、1焦点と比べて、血管破綻リスクを低減しつつ、血流遮断を促進できるという効果がある。   FIG. 6 shows the result of simulating the temperature rise on the focal short axis surface when the living tissue is irradiated with convergent ultrasonic waves (displayed with the relative temperature rise as a contour line). When 3 MHz convergent ultrasound was irradiated in a single focus state, a small temperature rise point was 1 second after irradiation (29 in FIG. 6), but 5 seconds after irradiation (30 in FIG. 6). It can be seen that the temperature rise also spreads around the periphery. On the other hand, in the temperature rise result assuming that two focal points are simultaneously aimed at the opposite side of a blood vessel with a diameter of 1 mm and irradiated at the same time, a 1 mm interval is placed 2 seconds later (31 in FIG. 6) 2 It can be seen that the temperature starts to rise from the point. After 5 seconds (32 in FIG. 6), it can be seen that the temperature rise area spreads over a wide area, and the temperature rise is also observed between the two points due to heat conduction. That is, the tissue around the blood vessel wall can be heated over a wide range by two-point simultaneous irradiation. Furthermore, such a heating effect is further enhanced by simultaneously forming three or more focal points around the blood vessel. By forming a plurality of focal points in this way, there is an effect that blood flow blockage can be promoted while reducing the risk of blood vessel failure as compared with a single focal point.

強力な圧力変動が生じる超音波焦点は、血管壁に照準されていることから、血管中央部には、強力な音圧変動は及ばない。したがって、万が一の血管破綻は回避できる。一方で、複数焦点を血管壁に同時に照射することで、血管壁周辺組織は加熱することが可能となり、血管壁およびその周辺組織を変性させ、血管機能を減退させることができる。   Since the ultrasonic focus in which strong pressure fluctuation occurs is aimed at the blood vessel wall, strong sound pressure fluctuation does not reach the central part of the blood vessel. Therefore, in the unlikely event of a blood vessel failure, it can be avoided. On the other hand, by simultaneously irradiating the blood vessel wall with a plurality of focal points, the tissue around the blood vessel wall can be heated, the blood vessel wall and the surrounding tissue can be denatured, and the blood vessel function can be reduced.

図7は、本発明の実施例において、ラット大腿動脈に対して、HIFUを照射した際の、血流速度計測結果を示す図である。図7の横軸は、HIFUの照射回数36を示し、図7の縦軸は、照射直後の収縮期血流速度( cm/sec )35を示す。使用したHIFUトランスデューサの周波数は、3MHzであり、一回の照射時間は5秒間であった。ラットの大腿動脈に対して、血管中央に1つの焦点を照準して照射した直後の血流速度を白丸34に示した。一方、大腿動脈の血管直径を計測し、その血管の両対側の血管壁に2つの焦点を照準して、同時に照射した直後の血流速度を黒丸33として示した。1焦点、2焦点とも、焦点のピーク強度は、およそ3.0kW/cmであった。 FIG. 7 is a diagram showing a blood flow velocity measurement result when HIFU is irradiated to a rat femoral artery in an example of the present invention. The horizontal axis in FIG. 7 indicates the number of irradiations 36 of HIFU, and the vertical axis in FIG. 7 indicates the systolic blood flow velocity (cm / sec) 35 immediately after irradiation. The frequency of the used HIFU transducer was 3 MHz, and the irradiation time for one time was 5 seconds. The white blood circle 34 shows the blood flow velocity immediately after irradiating the femoral artery of the rat with one focal point at the center of the blood vessel. On the other hand, the diameter of the blood vessel of the femoral artery was measured, the two blood foci were aimed at the opposite blood vessel walls, and the blood flow velocity immediately after the simultaneous irradiation was shown as a black circle 33. The peak intensity of the focus was approximately 3.0 kW / cm 2 for both the 1 focus and 2 focus.

図7中の白丸34のラットの例では、収束超音波照射前の血流速度は約20cm/秒であり、1回目の照射により、血流速度は約30cm/秒に上昇し血管狭窄が生じていることがわかる。2、3、4、5回の照射により、血流速度は、それぞれ約40、50、60、85cm/秒と上昇していき、血管狭窄が進行していると考えられる。さらに6回目の照射を行うと、血流速度計測結果は、0cm/秒であり、血流が途絶したことがわかる。すなわち、焦点1個にてラット大腿動脈を照射した場合は、6回照射を繰り返すことで、血流が途絶した。   In the example of the rat of the white circle 34 in FIG. 7, the blood flow velocity before the focused ultrasound irradiation is about 20 cm / second, and the blood flow velocity is increased to about 30 cm / second by the first irradiation, resulting in vascular stenosis. You can see that The blood flow velocity increases to about 40, 50, 60, and 85 cm / second by irradiation of 2, 3, 4, and 5 times, respectively, and it is considered that vascular stenosis is progressing. Further, when the sixth irradiation is performed, the blood flow velocity measurement result is 0 cm / second, which indicates that the blood flow is interrupted. That is, when the rat femoral artery was irradiated with one focal point, blood flow was interrupted by repeating irradiation six times.

同様に、黒丸33のラットの例についいて説明する。1回目の照射により、血流速度は、20cm/秒から、約40cm/秒に上昇し、2回目の照射により、約40cm/秒に上昇し、3回目の照射により、約100cm/秒に上昇した。そして、4回目の照射により、血流速度は0cm/秒となり、血流が途絶したことがわかる。   Similarly, an example of a black circle 33 rat will be described. The blood flow velocity increases from 20 cm / second to about 40 cm / second by the first irradiation, increases to about 40 cm / second by the second irradiation, and increases to about 100 cm / second by the third irradiation. did. And it turns out by the 4th irradiation that the blood flow velocity became 0 cm / sec and the blood flow was interrupted.

血管中央部に1つの焦点を照準する場合は、適応する強度を強くすることで、血流遮断に必要な回数は減らせる可能性はあるが、血管遮断のリスクも高くなる。血管の対側の血管壁に2つの焦点を照準して同時に照射することで、血管破綻リスクを低減しつつ、血流遮断を促進できる。   When aiming at one focal point in the center of the blood vessel, increasing the strength of adaptation may reduce the number of times necessary for blood flow blockage, but also increases the risk of blood vessel blockage. By aiming at the two focal points and simultaneously irradiating the blood vessel wall on the opposite side of the blood vessel, the blood flow blockage can be promoted while reducing the risk of blood vessel failure.

なお、複数焦点を照準する場合でも、1つの焦点を照準するときと同様、血管壁に対する収束超音波の入射角度を選択(例えば、焦点の長軸線と、焦点と血管壁の交点から血管の中心への線のなす角度が45°以上)することが望ましい。   Even when aiming at multiple focal points, the incident angle of the convergent ultrasonic wave with respect to the blood vessel wall is selected in the same manner as when aiming at one focal point (for example, the center of the blood vessel from the focal axis and the intersection of the focal point and the blood vessel wall It is desirable that the angle formed by the line to be 45 ° or more.

本発明の実施例の超音波血管照射装置の構成を示す図。The figure which shows the structure of the ultrasonic blood vessel irradiation apparatus of the Example of this invention. 本発明の実施例において、治療用超音波を照射する前にディスプレイに表示される画像の模式図。In the Example of this invention, before irradiating a therapeutic ultrasonic wave, the schematic diagram of the image displayed on a display. 本発明の実施例において、ラットの腹部大静脈への照射した収束超音波の焦点位置を示す模式図。In the Example of this invention, the schematic diagram which shows the focus position of the convergent ultrasonic wave irradiated to the abdominal vena cava of a rat. 本発明の実施例において、描画された血管の一部である高輝度領域への焦点照準手順を示す模式図。The schematic diagram which shows the focus aiming procedure to the high-intensity area | region which is a part of drawn blood vessel in the Example of this invention. 本発明の実施例の超音波治療用トランスデューサの構成を示す図。The figure which shows the structure of the transducer for ultrasonic therapy of the Example of this invention. 本発明の実施例の組織内温度上昇シミュレーション結果。The tissue temperature rise simulation result of the Example of this invention. 本発明の実施例において、収束超音波照射前後のラット大腿動脈の血流速度計測結果を示す図。The figure which shows the blood flow velocity measurement result of the rat femoral artery before and behind convergent ultrasound irradiation in the Example of this invention.

符号の説明Explanation of symbols

1…治療用アプリケータ、2…治療用超音波トランスデューサ、3…撮像用探触子、4…治療用超音波素子、5…媒体、6…水袋、7…患者体表面、8…患者、9…患部、10…血管、11…関心域、12…治療用超音波ビーム、13…撮像用超音波ビーム、14…送信・受信ユニット、15…信号処理部、16…血管位置検出部、17…メモリ、18…血流速度演算解析部、19…システムコントロール部、20…ディスプレ、21…入力部、22…治療用超音波席制御ユニット、23…超音波素子駆動部、24…高輝度域、25…焦点、26…軸線、27…治療用超音波ビームの軸線、28…対血管角度、29…1焦点照射1秒後の温度上昇、30…1焦点照射4秒後の温度上昇、31…2焦点照射1秒後の温度上昇、32…2焦点照射4秒後の温度上昇、33…2焦点にて照射したラットの血流速度を示す黒丸、34…1焦点にて照射したラットの血流速度を示す白丸、35…照射直後の収縮期血流速度、36…HIFU照射回数。
DESCRIPTION OF SYMBOLS 1 ... Treatment applicator, 2 ... Treatment ultrasonic transducer, 3 ... Imaging probe, 4 ... Treatment ultrasonic element, 5 ... Medium, 6 ... Water bag, 7 ... Patient body surface, 8 ... Patient, DESCRIPTION OF SYMBOLS 9 ... Affected part, 10 ... Blood vessel, 11 ... Area of interest, 12 ... Ultrasound beam for treatment, 13 ... Ultrasound beam for imaging, 14 ... Transmission / reception unit, 15 ... Signal processing part, 16 ... Blood vessel position detection part, 17 ... Memory, 18 ... Blood flow velocity calculation analysis unit, 19 ... System control unit, 20 ... Display, 21 ... Input unit, 22 ... Treatment ultrasonic seat control unit, 23 ... Ultrasonic element drive unit, 24 ... High luminance range 25 ... Focus, 26 ... Axis, 27 ... Axis of therapeutic ultrasonic beam, 28 ... Anti-angular angle, 29 ... Temperature increase after 1 second of 1 focus irradiation, 30 ... Temperature increase after 4 seconds of 1 focus irradiation, 31 ... Temperature increase 1 second after bifocal irradiation, 32 ... bifocal irradiation Temperature increase after 2 seconds, 33 ... black circle indicating blood flow velocity of rat irradiated with 2 focal points, 34 ... white circle indicating blood flow velocity of rat irradiated with 1 focal point, 35 ... systolic blood flow velocity immediately after irradiation 36 ... HIFU irradiation frequency.

Claims (5)

被検体患部の超音波断層像の撮像を行なう撮像用超音波探触子と、An imaging ultrasound probe for imaging an ultrasonic tomogram of the affected area of the subject;
前記超音波断層像を表示する表示手段と、  Display means for displaying the ultrasonic tomogram;
前記撮像用超音波探触子で得られた前記患部の情報から血管位置を検出する血管位置検出手段と、  A blood vessel position detecting means for detecting a blood vessel position from information on the affected part obtained by the imaging ultrasonic probe;
収束された治療用超音波を照射する第1の治療用超音波発生器と、収束された治療用超音波を照射する第2の治療用超音波発生器と、  A first therapeutic ultrasound generator for irradiating the focused therapeutic ultrasound; a second therapeutic ultrasound generator for irradiating the focused therapeutic ultrasound;
前記第1の治療用超音波発生器と前記第2の治療用超音波発生器から照射された前記治療用超音波を前記血管の血管壁の両側に同時に収束させる治療用超音波制御手段とを有することを特徴とする超音波治療装置。  A therapeutic ultrasonic control means for simultaneously converging the therapeutic ultrasonic waves irradiated from the first therapeutic ultrasonic generator and the second therapeutic ultrasonic generator to both sides of a blood vessel wall of the blood vessel; An ultrasonic therapy apparatus comprising:
前記治療用超音波制御手段は、前記血管壁に対する前記治療用超音波の入射角を制御することを特徴とする請求項1に記載の超音波治療装置。The ultrasonic therapeutic apparatus according to claim 1, wherein the therapeutic ultrasonic control unit controls an incident angle of the therapeutic ultrasonic wave with respect to the blood vessel wall. 前記治療用超音波が収束する焦点は楕円形状であり、The focal point on which the therapeutic ultrasound converges is elliptical,
前記治療用超音波制御手段は、前記楕円の長軸線と、前記焦点と前記血管壁の交点から前記血管の中心へ引いた線とがなす角度が所定の角度となるように制御を行うことを特徴とする請求項1に記載の超音波治療装置。  The therapeutic ultrasonic control means performs control so that an angle formed by the long axis of the ellipse and a line drawn from an intersection of the focal point and the blood vessel wall to the center of the blood vessel becomes a predetermined angle. The ultrasonic therapy apparatus according to claim 1, wherein the apparatus is an ultrasonic therapy apparatus.
前記血管位置検出手段は、前記撮像用超音波探触子により検出された信号強度が所定値以上である位置を血管位置として検出することを特徴とする請求項1に記載の超音波治療装置。2. The ultrasonic therapy apparatus according to claim 1, wherein the blood vessel position detecting means detects a position where the signal intensity detected by the imaging ultrasonic probe is a predetermined value or more as a blood vessel position. 前記撮像用超音波探触子により検出された信号から血流速度を演算する血流速度演算手段を有することを特徴とする請求項1に記載の超音波治療装置。The ultrasonic therapy apparatus according to claim 1, further comprising blood flow velocity calculating means for calculating a blood flow velocity from a signal detected by the imaging ultrasonic probe.
JP2005181401A 2005-06-22 2005-06-22 Ultrasonic therapy device Expired - Fee Related JP4686269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181401A JP4686269B2 (en) 2005-06-22 2005-06-22 Ultrasonic therapy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181401A JP4686269B2 (en) 2005-06-22 2005-06-22 Ultrasonic therapy device

Publications (3)

Publication Number Publication Date
JP2007000218A JP2007000218A (en) 2007-01-11
JP2007000218A5 JP2007000218A5 (en) 2008-05-22
JP4686269B2 true JP4686269B2 (en) 2011-05-25

Family

ID=37686365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181401A Expired - Fee Related JP4686269B2 (en) 2005-06-22 2005-06-22 Ultrasonic therapy device

Country Status (1)

Country Link
JP (1) JP4686269B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2214785B1 (en) * 2007-06-25 2017-01-11 International Cardio Corporation Image guided plaque ablation
CA2706563C (en) * 2007-11-21 2018-08-21 Focus Surgery, Inc. Method of diagnosis and treatment of tumors using high intensity focused ultrasound
WO2010070551A1 (en) * 2008-12-15 2010-06-24 Koninklijke Philips Electronics N.V. Ultrasound apparatus with humidity protection
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
AU2010307029B2 (en) * 2009-10-12 2014-07-31 Otsuka Medical Devices Co., Ltd. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
JP4734448B2 (en) 2009-12-04 2011-07-27 株式会社日立製作所 Ultrasonic therapy device
CA2787528C (en) 2010-01-19 2014-12-16 Christopher C. Capelli Apparatuses and systems for generating high-frequency shockwaves, and methods of use
AR087170A1 (en) 2011-07-15 2014-02-26 Univ Texas APPARATUS FOR GENERATING THERAPEUTIC SHOCK WAVES AND ITS APPLICATIONS
JP5882071B2 (en) * 2012-01-31 2016-03-09 株式会社日立メディコ Ultrasound treatment support system
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
JP6297411B2 (en) * 2014-05-21 2018-03-20 株式会社日立製作所 Ultrasonic therapy apparatus and ultrasonic therapy system
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
WO2016183307A1 (en) 2015-05-12 2016-11-17 Soliton, Inc. Methods of treating cellulite and subcutaneous adipose tissue
TWI838078B (en) 2016-07-21 2024-04-01 美商席利通公司 Capacitor-array apparatus for use in generating therapeutic shock waves and apparatus for generating therapeutic shock waves
CN118285905A (en) 2017-02-19 2024-07-05 索里顿有限责任公司 Selective laser-induced optical breakdown in biological media
EP3556296A1 (en) 2018-04-20 2019-10-23 Theraclion SA Method and device for localizing a vein within a limb
EP3946086A1 (en) 2019-04-03 2022-02-09 Soliton, Inc. Systems, devices, and methods of treating tissue and cellulite by non-invasive acoustic subcision

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747079A (en) * 1993-08-05 1995-02-21 Toshiba Corp Ultrasonic therapeutic system
JPH09103434A (en) * 1995-03-31 1997-04-22 Toshiba Corp Ultrasonic treatment device
JP2003513691A (en) * 1999-10-25 2003-04-15 シーラス、コーポレイション Use of focused ultrasound to seal blood vessels
JP2004147719A (en) * 2002-10-29 2004-05-27 Toshiba Corp Ultrasonic wave irradiation apparatus
WO2004100811A1 (en) * 2003-05-19 2004-11-25 Hitachi, Ltd. Ultrasonic treatment equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747079A (en) * 1993-08-05 1995-02-21 Toshiba Corp Ultrasonic therapeutic system
JPH09103434A (en) * 1995-03-31 1997-04-22 Toshiba Corp Ultrasonic treatment device
JP2003513691A (en) * 1999-10-25 2003-04-15 シーラス、コーポレイション Use of focused ultrasound to seal blood vessels
JP2004147719A (en) * 2002-10-29 2004-05-27 Toshiba Corp Ultrasonic wave irradiation apparatus
WO2004100811A1 (en) * 2003-05-19 2004-11-25 Hitachi, Ltd. Ultrasonic treatment equipment

Also Published As

Publication number Publication date
JP2007000218A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4686269B2 (en) Ultrasonic therapy device
US7722539B2 (en) Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
EP1711109B1 (en) Localized production of microbubbles and control of cavitational and heating effects by use of enhanced ultrasound
JP5943441B2 (en) Nerve regulation by energy
US5882302A (en) Methods and devices for providing acoustic hemostasis
JP4401354B2 (en) Ultrasonic therapy device
US9198635B2 (en) Method and apparatus for preparing organs and tissues for laparoscopic surgery
Ter Haar Acoustic surgery
CA2253664C (en) Methods and devices for providing acoustic hemostasis
US7686763B2 (en) Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy
JP4630127B2 (en) Ultrasound diagnostic treatment device
US20080154132A1 (en) Method and Apparatus for the Visualization of the Focus Generated Using Focused Ultrasound
US20040030227A1 (en) Method and apparatus for combined diagnostic and therapeutic ultrasound system incorporating noninvasive thermometry, ablation control and automation
HÄCker et al. Extracorporeally induced ablation of renal tissue by high‐intensity focused ultrasound
US20030018256A1 (en) Therapeutic ultrasound system
JPH07184907A (en) Ultrasonic treating device
JP2008507310A (en) Ultrasonic therapy apparatus and ultrasonic therapy method
PT2009002492W (en) Image guided plaque ablation
Held et al. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids
EP2698183A2 (en) Apparatus for ultrasonic therapeutic treatment, and method for driving the apparatus
JP4387947B2 (en) Ultrasonic therapy device
Chauhan et al. High-intensity-focused-ultrasound (HIFU) induced homeostasis and tissue ablation
JPH10216142A (en) Ultrasonic therapeutic apparatus
Izadifar VISUALIZATION OF ULTRASOUND INDUCED CAVITATION BUBBLES USING SYNCHROTRON ANALYZER BASED IMAGING

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees