Nothing Special   »   [go: up one dir, main page]

JP4682905B2 - 予混合圧縮自着火式内燃機関の制御装置 - Google Patents

予混合圧縮自着火式内燃機関の制御装置 Download PDF

Info

Publication number
JP4682905B2
JP4682905B2 JP2006110587A JP2006110587A JP4682905B2 JP 4682905 B2 JP4682905 B2 JP 4682905B2 JP 2006110587 A JP2006110587 A JP 2006110587A JP 2006110587 A JP2006110587 A JP 2006110587A JP 4682905 B2 JP4682905 B2 JP 4682905B2
Authority
JP
Japan
Prior art keywords
self
ignition timing
combustion
timing
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006110587A
Other languages
English (en)
Other versions
JP2007285140A (ja
Inventor
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006110587A priority Critical patent/JP4682905B2/ja
Publication of JP2007285140A publication Critical patent/JP2007285140A/ja
Application granted granted Critical
Publication of JP4682905B2 publication Critical patent/JP4682905B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、燃焼室内に空気と、燃料と、燃焼ガス(既燃ガス又は排ガス)と、を含む混合ガスを形成するとともに同形成された混合ガスをピストンの圧縮動作により圧縮して自着火により燃焼させる方式により運転される予混合圧縮自着火式内燃機関の制御装置に関する。
従来から、内燃機関の運転方式として、燃焼室内に形成された混合ガスを圧縮することにより自着火させて極めて短い期間内に燃焼させる予混合圧縮自着火方式が知られている。この予混合圧縮自着火方式により運転される内燃機関においては、混合ガスがピストンにより圧縮されている期間において同混合ガスの温度が所定の閾値温度(自着火温度)を超えたとき、同混合ガスの燃焼が開始する。
この自着火温度は、大気の温度と比較して極めて高い温度である。従って、空気と燃料とからなる混合ガスの温度をピストンによる圧縮のみによって自着火温度まで上昇させることは困難である。そこで、従来の制御装置の一つは、排気行程から吸気行程へ移行する際に排気弁及び吸気弁が両方とも閉弁されている期間である負のオーバーラップ期間を設けることにより、直前の燃焼サイクルにおける混合ガスの燃焼により生成された燃焼ガスを燃焼室内に残留させるようになっている(例えば、特許文献1を参照。)。
この従来の制御装置によれば、燃焼室内に残留させられた高温の燃焼ガスが新たに形成される混合ガスに含められるので、形成された混合ガスの圧縮が開始する時点における混合ガスの温度(圧縮開始温度)は十分に高められる。その結果、ピストンの圧縮により混合ガスの温度を上記自着火温度に確実に到達させることができるので、同混合ガスを確実に自着火させることができる。
特開平11−264319号公報
ところで、上記従来の制御装置は、負のオーバーラップ期間を内燃機関の運転状態に応じて決定するようになっている。従って、少なくとも内燃機関の運転状態が変化しない運転状態一定時においては、一定量の燃焼ガスを燃焼室内に残留させることができるので、混合ガスが自着火するタイミング(自着火タイミング)を運転状態に応じて予定されたタイミング(予定自着火タイミング)に常に一致させることができると考えられる。
一方、運転状態一定時であっても、何らかの理由により圧縮開始温度が予定された温度と比較的大きく異なる温度となることによって、自着火タイミングが予定自着火タイミングと比較的大きく異なるタイミングとなる場合がある。以下、このような場合の一例について図1を参照しながら説明する。
図1の例においては、実線L1により示したように、運転状態一定時、燃焼サイクルN1まで自着火タイミングSが予定自着火タイミングSepと一致するとともに燃焼サイクルN2にて自着火タイミングSが予定自着火タイミングSepから比較的大きく遅角されたタイミングとなった場合を想定している。
この場合、燃焼サイクルN2においては、混合ガスの燃焼により燃焼ガスが生成された後、同燃焼ガスがピストンを押し下げることにより同ピストンに対して仕事を行う期間が予定された期間よりも短くなる。従って、燃焼ガスがピストンに対して行う仕事の総量が小さくなるので、膨張行程が終了しても燃焼ガスの温度はそれほど低くならない。更に、燃焼ガスの熱が燃焼室を構成する壁面へ伝達される期間も予定された期間より短くなるので、伝達される熱の総量が小さくなって燃焼ガスの温度の低下は一層抑制される。従って、一点鎖線L2により示したように、燃焼サイクルが終了する時点における燃焼ガスの温度Tが予定された温度(予定燃焼ガス温度)Tepよりも高くなる。
そして、次の燃焼サイクルN3になると、予定燃焼ガス温度Tepよりも高い温度を有する燃焼ガスが混合ガスに含められるので、圧縮開始温度が予定された温度よりも高くなる。その結果、混合ガスの温度が自着火温度に到達するタイミングが早くなるので、自着火タイミングは予定自着火タイミングSepよりも進角する。その結果、燃焼ガスがピストンに対して行う仕事の総量が大きくなるとともに、燃焼ガスから燃焼室を構成する壁面へ伝達される熱の総量が大きくなるので、燃焼サイクルが終了する時点における燃焼ガスの温度が予定燃焼ガス温度Tepよりも低くなる。
その後、次の燃焼サイクルN4になると、予定燃焼ガス温度Tepよりも低い温度を有する燃焼ガスが混合ガスに含められるので、圧縮開始温度が予定された温度よりも低くなる。その結果、混合ガスの温度が自着火温度に到達するタイミングが遅くなり、自着火タイミングは予定自着火タイミングSepよりも遅角する。その結果、燃焼サイクルが終了する時点における燃焼ガスの温度Tが予定燃焼ガス温度Tepよりも高くなる。
以上のように、一旦、自着火タイミングSが予定自着火タイミングSepと異なるタイミングとなると、自着火タイミングSは、燃焼サイクル毎に予定自着火タイミングSepよりも遅角側と進角側とに交互に変化しやすくなる。また、自着火タイミングSが変化すると出力軸トルクが変化する。従って、上記従来の制御装置によれば、燃焼サイクルの経過に伴って出力軸トルクが比較的大きく変動する状態が継続しやすいという問題があった。
本発明は上述した課題に対処するためになされたものであって、その目的の一つは、出力軸トルクが比較的大きく変動する状態が継続することを防止することが可能な予混合圧縮自着火式内燃機関の制御装置を提供することにある。
かかる目的を達成するため本発明による予混合圧縮自着火式内燃機関の制御装置は、燃焼室内に空気と、燃料と、燃焼ガスと、を含む混合ガスを形成するとともに同形成された混合ガスをピストンの圧縮動作により圧縮して自着火により燃焼させる方式により運転される予混合圧縮自着火式内燃機関に適用される。
本発明による予混合圧縮自着火式内燃機関の制御装置は、
前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
該自着火タイミング取得手段によって取得された今回の燃焼サイクルにおける自着火タイミングが早いタイミングであるほど次回の燃焼サイクルにおける混合ガスに含まれる燃焼ガスの量が多くなるように今回までの燃焼サイクルにおいて生成された燃焼ガスを次回の燃焼サイクルにおける混合ガスに供給する燃焼ガス供給手段と、
を備える。
これによれば、今回の燃焼サイクルの自着火タイミングが比較的大きく進角した場合、即ち、今回の燃焼サイクルが終了する時点における燃焼ガスの温度が予定された温度よりも低くなった場合、比較的多い量の燃焼ガスが次回の燃焼サイクルの混合ガスに含められる。これにより、圧縮開始温度が過度に低くなることを防止することができるので、次回の燃焼サイクルの自着火タイミングが過度に遅角することを防止することができる。
一方、今回の燃焼サイクルの自着火タイミングが比較的大きく遅角した場合、即ち、今回の燃焼サイクルが終了する時点における燃焼ガスの温度が予定された温度よりも高くなった場合、比較的少ない量の燃焼ガスが次回の燃焼サイクルの混合ガスに含められる。これにより、圧縮開始温度が過度に高くなることを防止することができるので、次回の燃焼サイクルの自着火タイミングが過度に進角することを防止することができる。
従って、本発明によれば、燃焼サイクルの経過に伴う自着火タイミングの変動の大きさを、今回の燃焼サイクルの自着火タイミングにかかわらず一定量の燃焼ガスが次回の燃焼サイクルに対して供給される場合と比較して小さくすることができる。即ち、出力軸トルクが比較的大きく変動する状態が継続することを防止することができる。
この場合、上記内燃機関が4サイクル方式により運転される内燃機関(4サイクル予混合圧縮自着火式内燃機関)であれば、上記燃焼ガス供給手段を「負のオーバーラップ期間を調整する手段」により構成することができる。
ここで、負のオーバーラップ期間は、排気を行うために開弁させられた排気弁を閉弁するタイミング(排気弁閉弁タイミング)から、その後、吸気を行うために吸気弁を開弁するタイミング(吸気弁開弁タイミング)までの期間(即ち、排気行程から吸気行程へ移行する際に排気弁及び吸気弁の両方が閉弁されている期間)である。従って、負のオーバーラップ期間は、負のオーバーラップ期間を開始するための排気弁開弁タイミング及び/又は負のオーバーラップ期間を終了するための吸気弁の開弁タイミングを変更することにより調整される。
また、上記内燃機関が2サイクル方式により運転される内燃機関(2サイクル予混合圧縮自着火式内燃機関)であれば、上記燃焼ガス供給手段を「掃気期間を調整する手段」により構成することができる。
ここで、掃気期間は、排気を行うために排気弁が開弁されている状態において掃気を行うために吸気弁を開弁するタイミング(吸気弁開弁タイミング)から、その後、掃気を終了して吸気のみを行うために排気弁を閉弁するタイミング(排気弁閉弁タイミング)までの期間(即ち、燃焼発生後において排気弁及び吸気弁の両方が開弁されている期間)である。従って、掃気期間は、掃気期間を開始するための吸気弁開弁タイミング及び/又は掃気行程を終了するための排気弁閉弁タイミングを変更することにより調整される。
また、本発明による予混合圧縮自着火式内燃機関の制御装置は、上述した予混合圧縮自着火式内燃機関に適用され、
前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
次回の燃焼サイクルの自着火タイミングが前記内燃機関により出力されるトルクを最大とする最大出力自着火タイミングに一致するように前記取得された今回の燃焼サイクルの自着火タイミング又は前記取得された現時点までの所定の複数の燃焼サイクルの自着火タイミングの平均値である平均自着火タイミングに基づいて燃焼ガス供給量を決定するとともに、今回までの燃焼サイクルにおいて生成された燃焼ガスを同決定された燃焼ガス供給量だけ同次回の燃焼サイクルにおける前記混合ガスに含まれる前記燃焼ガスとして供給する燃焼ガス供給手段と、
を備える。
これによれば、次回の燃焼サイクルの自着火タイミングが最大出力自着火タイミングに一致するように燃焼ガス供給量が決定され、決定された燃焼ガス供給量の燃焼ガスが次回の燃焼サイクルに対して供給される。これにより、実際の自着火タイミングが最大出力自着火タイミングに一致するので、内燃機関により出力されるトルクは、あらゆる自着火タイミングの中で最大となる。この結果、内燃機関を良好な燃費にて運転することができる。
また、本発明による予混合圧縮自着火式内燃機関の制御装置は、上述した予混合圧縮自着火式内燃機関に適用され、
前記内燃機関の運転状態を取得する運転状態取得手段と、
前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
前記取得された運転状態が所定の運転状態である場合、次回の燃焼サイクルの自着火タイミングが前記内燃機関により出力されるトルクを最大とする最大出力自着火タイミングよりも進角側の早期自着火タイミングに一致するように前記取得された今回の燃焼サイクルの自着火タイミング又は前記取得された現時点までの所定の複数の燃焼サイクルの自着火タイミングの平均値である平均自着火タイミングに基づいて燃焼ガス供給量を決定するとともに、今回までの燃焼サイクルにおいて生成された燃焼ガスを同決定された燃焼ガス供給量だけ同次回の燃焼サイクルにおける前記混合ガスに含まれる前記燃焼ガスとして供給する燃焼ガス供給手段と、
を備える。
これによれば、取得された運転状態が所定の運転状態である場合、次回の燃焼サイクルの自着火タイミングが早期自着火タイミングに一致するように燃焼ガス供給量が決定され、決定された燃焼ガス供給量の燃焼ガスが次回の燃焼サイクルに対して供給される。
これにより、実際の自着火タイミングが最大出力自着火タイミングよりも進角側の早期自着火タイミングに一致するので、混合ガスの温度は、実際の自着火タイミングが最大出力自着火タイミングに一致する場合よりも早期に、同混合ガスを自着火させるために必要な温度(自着火温度)に到達する。この結果、例えば、混合ガスが自着火しにくい低負荷運転状態等の所定の運転状態においても、混合ガスをより確実に自着火させることができる。
<第1実施形態>
以下、本発明による予混合圧縮自着火式内燃機関の制御装置の各実施形態について図面を参照しながら説明する。第1実施形態に係る制御装置は、4サイクル予混合圧縮自着火方式により運転される多気筒(本例では、4気筒)内燃機関に適用される。
4サイクル予混合圧縮自着火方式は、排気上死点から吸気下死点までの吸気行程、吸気下死点から圧縮上死点までの圧縮行程、圧縮上死点から膨張下死点までの膨張行程及び膨張下死点から排気上死点までの排気行程からなる4つの行程をクランク角が720度回転する毎に繰り返す運転方式である。
図2は、第1実施形態に係る制御装置を上述した内燃機関に適用したシステムの概略構成を示している。なお、図2は、特定気筒の断面のみを示しているが、他の気筒も同様な構成を備えている。
この内燃機関10は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20に空気を供給するための吸気系統40と、シリンダブロック部20からの排ガスを外部に放出するための排気系統50と、を含んでいる。
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21とピストン22のヘッドとは、シリンダヘッド部30とともに燃焼室25を形成している。
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動する吸気弁駆動手段としての吸気弁駆動機構32a、燃焼室25に連通した排気ポート33、排気ポート33を開閉する排気弁34、排気弁34を駆動する排気弁駆動手段としての排気弁駆動機構34a、点火プラグ35、点火プラグ35に与える高電圧を発生させるイグニッションコイルを含むイグナイタ36、燃料を燃焼室25内に噴射するインジェクタ(燃料噴射弁)37、インジェクタ37に高圧燃料を供給する蓄圧室37a及び燃料を蓄圧室37aへ圧送する燃料ポンプ37bを備えている。吸気弁駆動機構32a及び排気弁駆動機構34aは、駆動回路38に接続されている。
吸気系統40は、吸気ポート31に連通したインテークマニホールド41、インテークマニホールド41に連通したサージタンク42、サージタンク42に一端が接続されインテークマニホールド41及びサージタンク42とともに吸気通路を形成する吸気ダクト43、吸気ダクト43の他端部から下流(サージタンク42)に向けて順に吸気ダクト43に配設されたエアフィルタ(AF)44、機械式過給機(SC)45、バイパス流量調整弁(ABV)46、インタークーラ(IC)47及びスロットル弁48を備えている。
機械式過給機45は、機械式過給機用クラッチ45aを備えている。機械式過給機用クラッチ45aは、駆動信号に応答して、機械式過給機45を内燃機関10によって機械的に駆動する状態(作動状態、即ち、過給状態)と、機械式過給機45を内燃機関10によって駆動しない状態(非作動状態、即ち、非過給状態)と、に切り替えるようになっている。
インタークーラ47は水冷式であって、吸気ダクト43を通過する空気を冷却するようになっている。インタークーラ47は、インタークーラ47内の冷却水の熱を大気中に放出するラジエタ47aと、インタークーラ47とラジエタ47aとの間で冷却水を循環させる循環ポンプ47bと、に接続されている。
スロットル弁48は吸気ダクト43に回転可能に支持され、スロットル弁アクチュエータ48aにより駆動されることにより吸気ダクト43の開口断面積を可変とするようになっている。
吸気系統40は、更に、バイパス通路49を備えている。
バイパス通路49の一端はバイパス流量調整弁46と接続され、他端はインタークーラ47とスロットル弁48との間の位置にて吸気ダクト43に接続されている。バイパス流量調整弁46は、駆動信号に応答して図示しないバルブ開度を変更することにより、インタークーラ47へ流入する空気量とインタークーラ47をバイパスする空気量(バイパス通路49へ流入する空気量)とを調整するようになっている。
排気系統50は、排気ポート33に連通し同排気ポート33とともに排気通路を形成するエキゾーストマニホールドを含む排気管51及び排気管51に配設された三元触媒装置52を備えている。
一方、このシステムは、エアフローメータ61、クランクポジションセンサ62、筒内圧力検出手段としての筒内圧力センサ63、アクセル開度センサ64及び電気制御装置70を備えている。エアフローメータ61は吸気ダクト43内を通流する空気の量を表す信号を出力するようになっている。クランクポジションセンサ62は、クランク軸24が1°回転する毎に生じる幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に生じる幅広のパルスを有する信号を出力するようになっている。この信号は、エンジン回転速度NEを表す。筒内圧力センサ63は、燃焼室25内の圧力(筒内圧力)Pcを表す信号を出力するようになっている。なお、筒内圧力センサ63は燃焼室25上部のシリンダヘッド部30に設けてもよい。アクセル開度センサ64は、運転者によって操作されるアクセルペダル65の操作量(アクセルペダル操作量)Accpを表す信号を出力するようになっている。
電気制御装置70は、互いにバスで接続されたCPU71、CPU71が実行するプログラム、テーブル(ルックアップテーブル、マップ)、定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、電源が投入された状態でデータを格納するとともに同格納されたデータを電源が遮断されている間も保持するバックアップRAM74及びADコンバータを含むインターフェース75等からなるマイクロコンピュータである。インターフェース75は、上記センサ61〜64と接続され、CPU71にセンサ61〜64からの信号を供給するとともに、同CPU71の指示に応じてイグナイタ36、インジェクタ37、燃料ポンプ37b、駆動回路38、機械式過給機用クラッチ45a、バイパス流量調整弁46及びスロットル弁アクチュエータ48aに駆動信号を送出するようになっている。
<作動の概要>
次に、上記のように構成された制御装置の作動の概要について説明する。この制御装置は、排気行程から吸気行程へ移行する際に吸気弁32及び排気弁34が両方とも閉弁されている期間である負のオーバーラップ期間が設けられるように、吸気弁32を開弁するタイミング(吸気弁開弁タイミング)IO及び排気弁34を閉弁するタイミング(排気弁閉弁タイミング)ECを決定する。
更に、制御装置は、混合ガスが自着火するタイミングである自着火タイミングを筒内圧力センサ63の出力に基づいて推定(取得)し、推定された自着火タイミング(推定自着火タイミング)Sestが進角するほど次回の燃焼サイクルにおける負のオーバーラップ期間が長くなるように、次回の燃焼サイクルに対して決定された吸気弁開弁タイミングIO及び排気弁閉弁タイミングECを補正する。
これにより、推定自着火タイミングSestが進角するほど多くなる量の燃焼ガスが次回の燃焼サイクルに対して供給されるので、実際の自着火タイミングが変動した場合であっても圧縮開始温度の変動を抑制することができ、燃焼サイクルの経過に伴う自着火タイミングの変動の大きさを小さくすることができる。
<作動の詳細>
(制御量及び制御時期決定)
より具体的に述べると、CPU71は、図3にフローチャートにより示した吸気弁32及び排気弁34を制御するタイミングと、インジェクタ37を制御するタイミングと、インジェクタ37に噴射させる燃料の量と、を決定するための制御量及び制御時期決定ルーチンを、第n気筒(nは、1、2、3及び4)のクランク角が第n気筒の圧縮上死点より45°だけ後(遅角側)の制御量決定クランク角(ATDC45°)に一致する毎に第n気筒専用に実行するようになっている。
従って、第n気筒のクランク角が上記制御量決定クランク角に一致すると、CPU71は、ステップ300から処理を開始してステップ305に進み、アクセル開度センサ64により検出されたアクセルペダル操作量Accp(機関の負荷)を読み込むとともに、続くステップ310にてクランクポジションセンサ62により検出されたエンジン回転速度NEを読み込む。
そして、CPU71は、ステップ315に進み現時点のアクセルペダル操作量Accp及びエンジン回転速度NEと、アクセルペダル操作量Accp及びエンジン回転速度NEと内燃機関10に対して要求される出力軸トルク(要求出力軸トルク)TQとの関係を規定するテーブルMapTQと、に基づいて要求出力軸トルクTQ(=MapTQ(Accp,NE))を決定する。なお、要求出力軸トルクTQ及びエンジン回転速度NEは、内燃機関10の運転状態を表す。
なお、以下の説明において、MapX(a,b)と表記されるテーブルは、変数a及び変数bと値Xとの関係を規定するテーブルを意味することとする。また、値XをテーブルMapX(a,b)に基づいて求めるとは、値Xを現時点の変数a及び現時点の変数bと、テーブルMapX(a,b)と、に基づいて求める(決定する)ことを意味することとする。なお、変数は1つのみでもよく、3つ以上でもよい。
また、ステップ305、ステップ310及びステップ315の処理が実行されることは、運転状態取得手段の機能が達成されることに対応している。
次いで、CPU71は、ステップ320に進み排気弁開弁タイミングEOをテーブルMapEO(TQ,NE)に基づいて求める。ここで、テーブルMapEOは、求められる排気弁開弁タイミングEOが膨張下死点より前(進角側)の所定のタイミングとなるように予め設定されている。ここで、排気弁開弁タイミングEOは、圧縮上死点(TDC)を原点としクランク軸24の回転方向を正の向きとするクランク角であるATDCにより表される。以下、本明細書においては、すべてのタイミングがATDCにより表されているものとする。
そして、CPU71は、ステップ325に進んで排気弁閉弁タイミングECをテーブルMapEC(TQ,NE)に基づいて求める。ここで、テーブルMapECは、求められる排気弁閉弁タイミングECが排気上死点より前の所定のタイミングとなるように予め設定されている。
次に、CPU71は、ステップ330に進んで吸気弁開弁タイミングIOをテーブルMapIO(TQ,NE)に基づいて求める。ここで、テーブルMapIOは、任意の運転状態のときに、同テーブルMapIOに基づいて求められる吸気弁開弁タイミングIOがテーブルMapECに基づいて求められる排気弁閉弁タイミングECより後(遅角側)の所定のタイミングとなるように予め設定されている。
後述するように、排気弁閉弁タイミングECにて排気が終了し、その後、所定の期間が経過した後の吸気弁開弁タイミングIOにて吸気が開始する。即ち、排気行程から吸気行程に移行する際に吸気弁32及び排気弁34の両方が閉弁されている期間である負のオーバーラップ期間は、同期間の開始時期としての排気弁閉弁タイミングEC及び同期間の終了時期としての吸気弁開弁タイミングIOによって決定される。なお、本明細書においては、上記ステップ325にて決定される排気弁閉弁タイミングECと、上記ステップ330にて決定される吸気弁開弁タイミングIOと、によって決定される負のオーバーラップ期間を予定オーバーラップ期間OLepと称呼する。
続いて、CPU71は、ステップ335に進んで吸気弁閉弁タイミングICをテーブルMapIC(TQ,NE)に基づいて求める。ここで、テーブルMapICは、求められる吸気弁閉弁タイミングICが吸気下死点の直後の所定のタイミングとなるように予め設定されている。
その後、CPU71は、ステップ340に進んで燃料噴射量τをテーブルMapτ(TQ,NE)に基づいて求める。ここで、テーブルMapτは、求められる燃料噴射量τの燃料が所定のタイミングにて燃焼することにより要求出力軸トルクTQが同内燃機関10により出力されるように予め設定されている。
次いで、CPU71は、ステップ345に進んで燃料噴射開始タイミングINJをテーブルMapINJ(TQ,NE)に基づいて求める。ここで、テーブルMapINJは、任意の運転状態のときに同テーブルMapINJに基づいて求められる燃料噴射開始タイミングINJが上記テーブルMapIOに基づいて求められる吸気弁開弁タイミングIOの直後の所定のタイミングとなるように予め設定されている。従って、求められる燃料噴射開始タイミングINJは、吸気弁32が開弁している期間(吸気弁開弁期間)内の初期のタイミングとなる。
そして、CPU71は、ステップ350に進んで後述する自着火タイミング推定ルーチンにより推定された自着火タイミング(推定自着火タイミング)Sestの最新の値をRAM73から読み込む。
次いで、CPU71は、ステップ355に進んで排気弁閉弁タイミングECの補正量ΔECをテーブルMapΔEC(Sest,TQ,NE)に基づいて求めるとともに、吸気弁開弁タイミングIOの補正量ΔIOをテーブルMapΔIO(Sest,TQ,NE)に基づいて求める。
ここで、テーブルMapΔECは、図4の曲線CECにより示したように、推定自着火タイミングSestが予定自着火タイミングSepと一致するとき、求められる補正量ΔECが0となるように、且つ、推定自着火タイミングSestが進角するほど、求められる補正量ΔECが減少するように予め設定されている。ここで、予定自着火タイミングSepは、現時点の要求出力軸トルクTQ及び現時点のエンジン回転速度NEに基づいてステップ320からステップ345までの処理により決定された制御量及び制御時期に従って内燃機関10が運転されることによって混合ガスが自着火するタイミングとして予定されていたタイミングである。
更に、テーブルMapΔIOは、図4の曲線CIOにより示したように、推定自着火タイミングSestが予定自着火タイミングSepと一致するとき、求められる補正量ΔIOが0となるように、且つ、推定自着火タイミングSestが進角するほど、求められる補正量ΔIOが増大するように予め設定されている。
次に、CPU71は、ステップ360に進んで上記ステップ325にて決定された排気弁閉弁タイミングECに上記ステップ355にて決定された補正量ΔECを加えることにより排気弁閉弁タイミングECを補正(更新)する。更に、同ステップ360にてCPU71は、上記ステップ330にて決定された吸気弁開弁タイミングIOに上記ステップ355にて決定された補正量ΔIOを加えることにより吸気弁開弁タイミングIOを補正(更新)する。
このようにして、推定自着火タイミングSestが進角するほど、排気弁閉弁タイミングECは進角させられ、且つ、吸気弁開弁タイミングIOは遅角させられる。従って、図5に示したように、負のオーバーラップ期間は、推定自着火タイミングSestが進角するほど長くなるように設定されている。更に、負のオーバーラップ期間は、推定自着火タイミングSestが予定自着火タイミングSepと一致するとき、予定オーバーラップ期間OLepに一致するように設定されている。なお、ステップ355及びステップ360の処理が実行されることは、燃焼ガス供給手段の機能の一部が達成されることに対応している。
そして、CPU71はステップ399に進んで本ルーチンを一旦終了する。以上により、第n気筒の吸気弁32、排気弁34及びインジェクタ37を制御するタイミング並びに第n気筒の燃焼室25内に噴射される燃料の量が決定される。
(自着火タイミング推定)
一方、CPU71は、図3のルーチンの処理に用いた推定自着火タイミングSestを推定するため、図6にフローチャートにより示した自着火タイミング推定ルーチンをクランク角が所定の微小なクランク角だけ変化する毎に第n気筒専用に実行するようになっている。なお、自着火タイミング推定ルーチンの処理が実行されることは、自着火タイミング取得手段の機能が達成されることに対応している。
従って、所定のタイミングになると、CPU71は、ステップ600から処理を開始してステップ605に進み、第n気筒の筒内圧力センサ63により検出された筒内圧力Pcを読み込む。次いで、CPU71は、ステップ610に進み上記ステップ605にて読み込まれた現時点の筒内圧力Pcから前回の本ルーチンの実行時において後述するステップ630にて設定された過去(前回実行時)の筒内圧力Pc1を減じることにより筒内圧力の時間変化量ΔPc(=Pc−Pc1)を算出する。
そして、CPU71は、ステップ615に進みクランクポジションセンサ62により検出されたクランク角θを読み込む。その後、CPU71は、ステップ620に進み上記ステップ610にて算出された筒内圧力の時間変化量ΔPcを上記ステップ615にて読み込まれたクランク角θと関連付けてRAM73に記憶させる。
次に、CPU71は、ステップ625に進み第n気筒の現時点のクランク角が上記制御量決定クランク角に一致しているか否かを判定する。
まず、第n気筒の現時点のクランク角が上記制御量決定クランク角の直後のクランク角である場合から説明する。この場合、CPU71は、同ステップ625にて「No」と判定してステップ630に進み、過去の筒内圧力Pc1を上記ステップ605にて読み込まれた現時点の筒内圧力Pcに設定する。そして、CPU71はステップ699に進んで本ルーチンを一旦終了する。
本ルーチンについての以上の処理は、第n気筒のクランク角が上記制御量決定クランク角に一致するまで繰り返し実行される。この間、本ルーチンが実行される毎に筒内圧力の時間変化量ΔPcがクランク角θと関連付けられてRAM73に記憶される。
そして、第n気筒のクランク角が上記制御量決定クランク角に一致すると、CPU71が本ルーチンを実行してステップ625に進んだとき、CPU71は、「Yes」と判定してステップ635に進み、RAM73に記憶された筒内圧力の時間変化量ΔPcの中から最大の時間変化量ΔPcを検索する。
そして、CPU71は、ステップ640に進み推定自着火タイミングSestを、上記ステップ635にて検索された最大の時間変化量ΔPcに対応した(関連付けて記憶された)クランク角θに設定する。換言すると、CPU71は、同最大の時間変化量ΔPcに対応したクランク角θを推定自着火タイミングSestとして推定する。更に、CPU71は、同ステップ640にて推定された推定自着火タイミングSestをRAM73に記憶させる。
その後、CPU71は、ステップ645に進みRAM73に記憶された時間変化量ΔPcをクリア(消去、又は、「0」に設定)する。次いで、CPU71は、上述したように、ステップ630の処理を実行した後、ステップ699に進んで本ルーチンを一旦終了する。
なお、本実施形態は、1つの燃焼サイクルにおいて筒内圧力の時間変化量ΔPcが最大となったタイミングを推定自着火タイミングSestとして推定するように構成されているが、燃焼により発生する熱量(熱発生量)の変化率(熱発生率)が1つの燃焼サイクルにおいて最大となったタイミングを推定自着火タイミングSestとして推定するように構成されていてもよい。また、1つの燃焼サイクル全体における熱発生量の総量に対する1つの燃焼サイクルにおいて熱発生量を積算した値の割合が所定の割合(例えば、半分)となったタイミングを推定自着火タイミングSestとして推定するように構成されていてもよい。
(駆動制御)
また、CPU71は、図7にフローチャートにより示した内燃機関10を駆動制御するための駆動制御ルーチンを、クランク角が所定の微小なクランク角だけ変化する毎に第n気筒専用に実行するようになっている。
従って、所定のタイミングになると、CPU71はステップ700から本ルーチンの処理を開始してステップ705に進み、第n気筒の現時点のクランク角が前述した図3のステップ320にて決定された第n気筒の排気弁開弁タイミングEOと一致しているか否かを判定する。そして、第n気筒の現時点のクランク角が第n気筒の排気弁開弁タイミングEOと一致していると、CPU71はステップ705にて「Yes」と判定してステップ710に進み、排気弁駆動機構34aに指示信号を送出して第n気筒の排気弁34を開弁させる(図8の(1)を参照。)。これにより、前回の燃焼サイクルにおける燃焼により生成された燃焼ガスが燃焼室25から排出され始める(排気が開始する)。
以降、CPU71はステップ715からステップ750までの処理に従って、排気弁34を開弁させる場合と同様に各種の指示信号を適当なタイミングにて発生し、以下に記述する各種の動作を行わせる。
ステップ715及びステップ720…第n気筒の現時点のクランク角が図3のステップ360にて補正された第n気筒の排気弁閉弁タイミングECと一致したとき、排気弁駆動機構34aに指示信号を送出して第n気筒の排気弁34を閉弁させる(図8の(2)を参照。)。これにより、排気が終了する。その結果、今回の燃焼サイクルにおいて混合ガスが燃焼することにより生成された燃焼ガスの一部は、燃焼室25内に残留して次回の燃焼サイクルに対して供給される。
ステップ725及びステップ730…第n気筒の現時点のクランク角が図3のステップ360にて補正された第n気筒の吸気弁開弁タイミングIOと一致したとき、吸気弁駆動機構32aに指示信号を送出して第n気筒の吸気弁32を開弁させる(図8の(3)を参照。)。これにより、燃焼室25内へ空気が導入され始める(吸気が開始する)。
ところで、負のオーバーラップ期間の開始時期又は終了時期が変更されると、今回の燃焼サイクルにおいて混合ガスが燃焼することにより生成された燃焼ガスであって燃焼室25内に残留することにより次回の燃焼サイクルに対して供給される燃焼ガスの量及び次回の燃焼サイクルに対して新たに供給される空気の量が変化する。
図5に示したように、推定自着火タイミングSestが予定自着火タイミングSepよりも進角側のタイミングS1である場合、燃焼ガスの温度(残留燃焼ガス温度)が予定された温度(予定温度)Tepよりも低い温度T1となる。この場合、上述したように、負のオーバーラップ期間は予定オーバーラップ期間OLepよりも長いオーバーラップ期間OL1に設定されている。従って、今回の燃焼サイクルにおいて混合ガスが燃焼することにより生成された燃焼ガスであって燃焼室25内に残留することにより次回の燃焼サイクルに対して供給される燃焼ガスの量(燃焼ガス残留量)は、予定された燃焼ガス残留量(予定残留量)Aepよりも多い残留量A1となる。
これにより、次回の燃焼サイクルにおいて混合ガスに含められる燃焼ガスの温度が低くなっても、混合ガスの圧縮が開始する時点(圧縮開始時点)の混合ガスの温度が予定された温度よりも過度に低くなることを防止することができる。この結果、次回の燃焼サイクルにおける実際の自着火タイミングが予定自着火タイミングSepよりも過度に遅角することを防止することができる。
一方、推定自着火タイミングSestが予定自着火タイミングSepよりも遅角側のタイミングS2である場合、残留燃焼ガス温度が予定温度Tepよりも高い温度T2となる。この場合、負のオーバーラップ期間は予定オーバーラップ期間OLepよりも短いオーバーラップ期間OL2である。従って、燃焼ガス残留量は予定残留量Aepよりも少ない残留量A2となる。これにより、次回の燃焼サイクルにおいて混合ガスに含められる燃焼ガスの温度が高くなっても、圧縮開始時点の混合ガスの温度が予定された温度よりも過度に高くなることを防止することができる。この結果、次回の燃焼サイクルにおける実際の自着火タイミングが予定自着火タイミングSepよりも過度に進角することを防止することができる。
なお、ステップ715からステップ730までの各処理が実行されることは、燃焼ガス供給手段の機能の一部が達成されることに対応している。
ステップ735及びステップ740…第n気筒の現時点のクランク角が図3のステップ345にて決定された第n気筒の燃料噴射開始タイミングINJと一致したとき、第n気筒のインジェクタ37を図3のステップ340にて決定された燃料噴射量τに応じた時間だけ開弁させ、燃料噴射量τの燃料を燃焼室25内に噴射させる(図8の(4)を参照。)。噴射された燃料は、燃焼室25内に続いて吸入される空気の流れにより同燃焼室25にて拡散する。
ステップ745及びステップ750…第n気筒の現時点のクランク角が図3のステップ335にて決定された第n気筒の吸気弁閉弁タイミングICと一致したとき、吸気弁駆動機構32aに指示信号を送出して第n気筒の吸気弁32を閉弁させる(図8の(5)を参照。)。これにより、吸気が終了するとともに空気と燃料と燃焼ガスとからなる混合ガスの圧縮が開始する。
その後、ピストン22が上死点位置近傍に到達すると、ピストン22により圧縮された混合ガスの温度は、自着火温度に到達する。これにより、混合ガスは、自着火による燃焼を開始する。
そして、CPUはステップ799に進んで本ルーチンを一旦終了する。
このようにして、内燃機関10は4サイクル予混合圧縮自着火方式により運転される。
以上、説明したように、本発明による予混合圧縮自着火式内燃機関の制御装置の第1実施形態によれば、今回の燃焼サイクルにおける推定自着火タイミングSestが進角するほど(即ち、今回の燃焼サイクルが終了する時点における燃焼ガスの温度が低くなるほど)多くなる量の燃焼ガスが次回の燃焼サイクルに対して供給される。
これにより、今回の燃焼サイクルの自着火タイミングが比較的大きく進角した場合、即ち、今回の燃焼サイクルが終了する時点における燃焼ガスの温度が予定された温度よりも低くなった場合、比較的多い量の燃焼ガスが次回の燃焼サイクルの混合ガスに含められる。その結果、圧縮開始温度が過度に低くなることを防止することができるので、次回の燃焼サイクルの自着火タイミングが過度に遅角することを防止することができる。
一方、今回の燃焼サイクルの自着火タイミングが比較的大きく遅角した場合、即ち、今回の燃焼サイクルが終了する時点における燃焼ガスの温度が予定された温度よりも高くなった場合、比較的少ない量の燃焼ガスが次回の燃焼サイクルの混合ガスに含められる。これにより、圧縮開始温度が過度に高くなることを防止することができるので、次回の燃焼サイクルの自着火タイミングが過度に進角することを防止することができる。
従って、本発明によれば、燃焼サイクルの経過に伴う自着火タイミングの変動の大きさを、今回の燃焼サイクルの自着火タイミングにかかわらず一定量の燃焼ガスが次回の燃焼サイクルに対して供給される場合と比較して小さくすることができる。即ち、出力軸トルクが比較的大きく変動する状態が継続することを防止することができる。
<第2実施形態>
次に、本発明の第2実施形態に係る予混合圧縮自着火式内燃機関の制御装置について説明する。第2実施形態に係る制御装置は、推定自着火タイミングSestの平均値である平均自着火タイミングSaveが内燃機関10の運転状態に応じた目標自着火タイミングStgtに一致するように学習値GEC及びGIOをそれぞれ算出し、算出された学習値GEC及びGIOに基づいて負のオーバーラップ期間を補正する点のみにおいて上記第1実施形態に係る制御装置と相違している。以下、かかる相違点を中心として説明する。
この制御装置は、制御量及び制御時期を決定するルーチンとして図3のルーチンに代わるルーチンを実行するようになっている。このルーチンは、上記第1実施形態に係る図3に示したルーチンのステップ350とステップ399との間に、図9にフローチャートにより示したステップ905からステップ950までの処理を加えたルーチンである。なお、ステップ905からステップ950までの各処理が実行されることは、燃焼ガス供給手段の機能の一部が達成されることに対応している。
まず、実際の自着火タイミングが略一定である(実際の自着火タイミングの変動の大きさが極めて小さい)場合から説明する。この場合、CPU71がこのルーチンの処理を開始し、ステップ350までの処理を実行すると、同CPU71は、ステップ905に進み前回の本ルーチンの実行時において後述するステップ910にて算出された平均自着火タイミングSaveと上記ステップ350にて読み込まれた推定自着火タイミングSestとの差の大きさが所定の閾値αよりも小さいか否かを判定する。ここで、閾値αは正の値であって、内燃機関10の運転状態に応じて変化してもよい。
上記仮定に従えば、推定自着火タイミングSestは、平均自着火タイミングSaveと極めて近しい値である。従って、CPU71は、ステップ905にて「Yes」と判定してステップ910に進み前回の本ルーチンの実行時において同ステップ910にて算出された平均自着火タイミングSaveと、上記ステップ350にて読み込まれた推定自着火タイミングSestと、同ステップ910内に示した式と、に基づいて最新の平均自着火タイミングSaveを算出する。ここで、上付き添え字「*」が付された変数は、要求出力軸トルクTQ及びエンジン回転速度NEの所定の範囲毎に互いに独立した変数である。
更に、CPU71は、同ステップ910にて平均自着火タイミングSaveを算出する基となった推定自着火タイミングSestの数である平均基礎サイクル数Nに「1」を加算する。
そして、CPU71は、ステップ915に進み目標自着火タイミングStgtをテーブルMapStgt(TQ,NE)に基づいて求める。ここで、テーブルMapStgtは、図10に示したように、要求出力軸トルクTQが所定の低トルク閾値よりも小さい領域であってエンジン回転速度NEが所定の高回転閾値よりも低い領域(内燃機関10の運転状態が低負荷閾値よりも低負荷側の低負荷運転状態である領域)Aにおいては、求められる目標自着火タイミングStgtが早期自着火タイミングとなるとともに、同領域Aよりも高トルク側又は高回転側の領域(内燃機関10の運転状態が同低負荷閾値よりも高負荷側の中高負荷運転状態である領域)Bにおいては、求められる目標自着火タイミングStgtが最大出力自着火タイミングとなるように設定されている。
最大出力自着火タイミングは、自着火タイミングSに対する出力軸トルクの変化を表す図11に示したように、内燃機関10により出力される出力軸トルクを最大とするタイミングである。また、早期自着火タイミングは、最大出力自着火タイミングよりも進角側のタイミングである。
次いで、CPU71は、ステップ920に進み学習値補正係数KECをテーブルMapKEC(TQ,NE)に基づいて求めるとともに、学習値補正係数KIOをテーブルMapKIO(TQ,NE)に基づいて求める。ここで、テーブルMapKECは、求められる学習値補正係数KECが負の値となるように設定されている。また、テーブルMapKIOは、求められる学習値補正係数KIOが正の値となるように設定されている。
その後、CPU71は、ステップ925に進み上記ステップ910にて算出された最新の平均自着火タイミングSaveから上記ステップ915にて決定された目標自着火タイミングStgtを減じた値に、上記ステップ920にて求められた学習値補正係数KECを乗じることにより学習値GECに対する補正値を算出し、同算出された補正値を前回の本ルーチンの実行時において同ステップ925にて算出された学習値GECに加えることにより最新の学習値GECを算出する。
これにより、平均自着火タイミングSaveが目標自着火タイミングStgtよりも進角側にあるとき、値Save−Stgtが負の値となって学習値GECに対する補正値が正の値となるので、学習値GECは増大する。この結果、排気弁閉弁タイミングECは、後述するステップ935にてより遅角側に補正される。即ち、排気弁閉弁タイミングECは、負のオーバーラップ期間がより短くなるように補正される。
更に、CPU71は、同ステップ925にて上記ステップ910にて算出された最新の平均自着火タイミングSaveから上記ステップ915にて決定された目標自着火タイミングStgtを減じた値に、上記ステップ920にて求められた学習値補正係数KIOを乗じることにより学習値GIOに対する補正値を算出し、同算出された補正値を同ステップ925の処理の前回の実行により算出された学習値GIOに加えることにより最新の学習値GIOを算出する。
これにより、平均自着火タイミングSaveが目標自着火タイミングStgtよりも進角側にあるとき、値Save−Stgtが負の値となって学習値GIOに対する補正値が負の値となるので、学習値GIOは減少する。この結果、吸気弁開弁タイミングIOは、後述するステップ935にてより進角側に補正される。即ち、吸気弁開弁タイミングIOは、負のオーバーラップ期間がより短くなるように補正される。
そして、CPU71は、ステップ930に進み補正量ΔEC及びΔIOの値をそれぞれ「0」に設定する。
次いで、CPU71は、ステップ935に進み上記ステップ325にて決定された排気弁閉弁タイミングECに上記ステップ925にて算出された学習値GECと上記ステップ930にて設定された補正量ΔECとを加えることにより排気弁閉弁タイミングECを補正(更新)する。更に、CPU71は、同ステップ935にて上記ステップ330にて決定された吸気弁開弁タイミングIOに上記ステップ925にて算出された学習値GIOと上記ステップ930にて設定された補正量ΔIOとを加えることにより吸気弁開弁タイミングIOを補正(更新)する。
そして、CPU71はステップ399に進んで本ルーチンを一旦終了する。
このように、平均自着火タイミングSaveが目標自着火タイミングStgtよりも進角側にあるとき、負のオーバーラップ期間がより短くなるように学習値GEC及びGIOがそれぞれ更新される。これにより、次回の燃焼サイクルに対して供給される燃焼ガス量が少なくなるので、次回の燃焼サイクルにおける圧縮開始温度は低くなる。その結果、次回の燃焼サイクルにおいて、実際の自着火タイミングは遅角して目標自着火タイミングStgtに十分に近づけられる。
一方、平均自着火タイミングSaveが目標自着火タイミングStgtよりも遅角側にあるとき、負のオーバーラップ期間がより長くなるように学習値GEC及びGIOがそれぞれ更新される。これにより、次回の燃焼サイクルに対して供給される燃焼ガス量が多くなるので、次回の燃焼サイクルにおける圧縮開始温度は高くなる。その結果、次回の燃焼サイクルにおいて、実際の自着火タイミングは進角して目標自着火タイミングStgtに十分に近づけられる。
以上により、実際の自着火タイミングを目標自着火タイミングStgtに一致させることができる。この結果、内燃機関10の運転状態が中高負荷運転状態である(図10の領域Bにある)とき、目標自着火タイミングStgtが最大出力自着火タイミングに設定されるとともに、実際の自着火タイミングがその最大出力自着火タイミングに一致させられる。また、内燃機関10の運転状態が低負荷運転状態である(図10の領域Aにある)とき、目標自着火タイミングStgtが早期自着火タイミングに設定されるとともに、実際の自着火タイミングがその早期自着火タイミングに一致させられる。
次に、実際の自着火タイミングの変動の大きさが比較的大きい場合について説明を続けると、CPU71は、ステップ905に進んだとき、同ステップ905にて「No」と判定してステップ950に進み上記ステップ355と同様に排気弁閉弁タイミングECの補正量ΔEC及び吸気弁開弁タイミングIOの補正量ΔIOを決定し、その後、ステップ935に進んで排気弁閉弁タイミングEC及び吸気弁開弁タイミングIOを補正する。
このように、実際の自着火タイミングの変動の大きさが比較的大きい場合、上記第1実施形態と同様に、燃焼ガスの温度の変動に伴う圧縮開始温度の変動の大きさを抑制するように負のオーバーラップ期間が補正される。
これにより、燃焼サイクルの経過に伴う自着火タイミングの変動の大きさを、今回の燃焼サイクルの自着火タイミングにかかわらず一定量の燃焼ガスが次回の燃焼サイクルに対して供給される場合と比較して小さくすることができる。即ち、出力軸トルクが比較的大きく変動する状態が継続することを防止することができる。
以上、説明したように、本発明による予混合圧縮自着火式内燃機関の制御装置の第2実施形態によれば、実際の自着火タイミングが略一定である場合、実際の自着火タイミングが目標自着火タイミングStgtに一致するように学習値GEC及びGIOが算出され、算出された学習値GEC及びGIOに基づいて排気弁閉弁タイミングEC及び吸気弁開弁タイミングIOが補正される。これにより、実際の自着火タイミングが目標自着火タイミングStgtに一致する。
ところで、上記第2実施形態においては、内燃機関10の運転状態が中高負荷運転状態であるとき(中高負荷運転時)、目標自着火タイミングStgtとして最大出力タイミングが採用され、一方、内燃機関10の運転状態が低負荷運転状態であるとき(低負荷運転時)、目標自着火タイミングStgtとして早期自着火タイミングが採用される。
従って、中高負荷運転時、実際の自着火タイミングが最大出力自着火タイミングに一致するように負のオーバーラップ期間が補正される。これにより、実際の自着火タイミングが最大出力自着火タイミングに一致するので、内燃機関10により出力されるトルクは、あらゆる自着火タイミングの中で最大となる。この結果、内燃機関10を良好な燃費にて運転することができる。
一方、低負荷運転時、実際の自着火タイミングが早期自着火タイミングに一致するように負のオーバーラップ期間が補正される。これにより、実際の自着火タイミングが最大出力自着火タイミングよりも進角側の早期自着火タイミングに一致するので、混合ガスの温度は、実際の自着火タイミングが最大出力自着火タイミングに一致する場合よりも早期に、同混合ガスを自着火させるために必要な温度(自着火温度)に到達する。この結果、混合ガスが自着火しにくい低負荷運転時において、混合ガスをより確実に自着火させることができる。
なお、「今回の燃焼サイクルにおける自着火タイミングの変化」に対する「次回の燃焼サイクルに対して供給される燃焼ガスの温度の変化」が比較的小さい運転領域においては、上記制御量及び制御時期を決定するルーチンにおいて、ステップ950の処理を省略してもよい。
また、上記第2実施形態においては、平均自着火タイミングSaveは、現時点までのすべての燃焼サイクルの推定自着火タイミングSestの平均値であったが、所定のサイクル数(例えば、3つ)だけ前の燃焼サイクルから今回の燃焼サイクルまでの推定自着火タイミングSestの平均値であってもよい。
更に、上記第2実施形態は、現時点までの燃焼サイクルの推定自着火タイミングSestの平均値である平均自着火タイミングSaveを算出し、平均自着火タイミングSaveと目標自着火タイミングStgtとの差に基づいて学習値GEC及びGIOを算出するように構成されていたが、今回の燃焼サイクルの推定自着火タイミングSestと目標自着火タイミングStgtとの差に基づいて学習値GEC及びGIOを算出するように構成されていてもよい。この場合、上記制御量及び制御時期を決定するルーチンにおいて、ステップ910の処理を省略するとともに、ステップ925内に示した式に代えて同式の平均自着火タイミングSaveを推定自着火タイミングSestに置換した式により学習値GEC及びGIOを算出する。
なお、本発明は上記各実施形態及び変形例に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記各実施形態においては、内燃機関10の運転方式は4サイクル式であったが、2サイクル式であってもよい。この場合、排気弁閉弁タイミングEC及び吸気弁開弁タイミングIOを補正して掃気期間を補正することにより次回の燃焼サイクルに対して供給される燃焼ガス量を変更することが好適である。
更に、上記各実施形態は、負のオーバーラップ期間を設けることにより燃焼ガスを燃焼室25内に供給するとともに負のオーバーラップ期間を変更することにより燃焼室25内に残留する燃焼ガス量を制御していたが、排気通路と吸気通路とを連通する環流通路を経由して排気通路から吸気通路へ燃焼ガスを導入することにより燃焼ガスを燃焼室25内に供給するとともに同環流通路に配設された制御弁により同環流通路を通流する燃焼ガス量を制御することにより燃焼室25内に供給される燃焼ガス量を制御してもよい。
また、排気の終了時に閉弁された排気弁を吸気行程において再び開弁することにより、排気ポート33へ一旦排出された燃焼ガスを燃焼室25に再び吸入させてもよい。この場合、吸気行程における排気弁の開弁タイミング及び閉弁タイミングを変更することにより燃焼室25内に供給される燃焼ガス量を制御する。
また、上記各実施形態においては、失火を確実に防止するために点火プラグ35によって火花を補助的に発生してもよい。
燃焼サイクルに対する自着火タイミング及び燃焼ガス温度の変化を示したグラフである。 本発明の第1実施形態に係る制御装置を4サイクル予混合圧縮自着火式内燃機関に適用したシステムの概略構成図である。 図2に示したCPUが実行する制御量及び制御時期を決定するためのルーチンを表すフローチャートである。 図2に示したCPUが参照する推定自着火タイミングと補正量との関係を規定したテーブルを示した図である。 推定自着火タイミングに対する残留燃焼ガス温度、負のオーバーラップ期間及び燃焼ガス残留量の変化を示したグラフである。 図2に示したCPUが実行する自着火タイミングを推定するためのルーチンを表すフローチャートである。 図2に示したCPUが実行する内燃機関を駆動制御するためのルーチンを表すフローチャートである。 吸気弁開弁タイミング、吸気弁閉弁タイミング、排気弁開弁タイミング、排気弁閉弁タイミング及び燃料噴射開始タイミング等を概念的に示した説明図である。 本発明の第2実施形態に係る制御装置が制御量及び制御時期を決定するために図3に示したルーチンに加えて実行する処理を表すフローチャートである。 本発明の第2実施形態に係る制御装置が参照する要求出力軸トルク及びエンジン回転速度と目標自着火タイミングとの関係を規定したテーブルを示した図である。 自着火タイミングに対する出力軸トルクの変化を示したグラフである。
符号の説明
10…内燃機関、31…吸気ポート、32…吸気弁、32a…吸気弁駆動機構、33…排気ポート、34…排気弁、34a…排気弁駆動機構、37…インジェクタ、38…駆動回路、62…クランクポジションセンサ、63…筒内圧力センサ、64…アクセル開度センサ、65…アクセルペダル、70…電気制御装置、71…CPU、73…RAM。

Claims (3)

  1. 燃焼室内に空気と、燃料と、燃焼ガスと、を含む混合ガスを形成するとともに同形成された混合ガスをピストンの圧縮動作により圧縮して自着火により燃焼させる方式により運転される予混合圧縮自着火式内燃機関の制御装置であって、
    前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
    該自着火タイミング取得手段によって取得された今回の燃焼サイクルにおける自着火タイミングが早いタイミングであるほど次回の燃焼サイクルにおける混合ガスに含まれる燃焼ガスの量が多くなるように今回までの燃焼サイクルにおいて生成された燃焼ガスを次回の燃焼サイクルにおける混合ガスに供給する燃焼ガス供給手段と、
    を備える予混合圧縮自着火式内燃機関の制御装置。
  2. 燃焼室内に空気と、燃料と、燃焼ガスと、を含む混合ガスを形成するとともに同形成された混合ガスをピストンの圧縮動作により圧縮して自着火により燃焼させる方式により運転される予混合圧縮自着火式内燃機関の制御装置であって、
    前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
    次回の燃焼サイクルの自着火タイミングが前記内燃機関により出力されるトルクを最大とする最大出力自着火タイミングに一致するように前記取得された今回の燃焼サイクルの自着火タイミング又は前記取得された現時点までの所定の複数の燃焼サイクルの自着火タイミングの平均値である平均自着火タイミングに基づいて燃焼ガス供給量を決定するとともに、今回までの燃焼サイクルにおいて生成された燃焼ガスを同決定された燃焼ガス供給量だけ同次回の燃焼サイクルにおける前記混合ガスに含まれる前記燃焼ガスとして供給する燃焼ガス供給手段と、
    を備える予混合圧縮自着火式内燃機関の制御装置。
  3. 燃焼室内に空気と、燃料と、燃焼ガスと、を含む混合ガスを形成するとともに同形成された混合ガスをピストンの圧縮動作により圧縮して自着火により燃焼させる方式により運転される予混合圧縮自着火式内燃機関の制御装置であって、
    前記内燃機関の運転状態を取得する運転状態取得手段と、
    前記混合ガスが自着火するタイミングである自着火タイミングを取得する自着火タイミング取得手段と、
    前記取得された運転状態が所定の運転状態である場合、次回の燃焼サイクルの自着火タイミングが前記内燃機関により出力されるトルクを最大とする最大出力自着火タイミングよりも進角側の早期自着火タイミングに一致するように前記取得された今回の燃焼サイクルの自着火タイミング又は前記取得された現時点までの所定の複数の燃焼サイクルの自着火タイミングの平均値である平均自着火タイミングに基づいて燃焼ガス供給量を決定するとともに、今回までの燃焼サイクルにおいて生成された燃焼ガスを同決定された燃焼ガス供給量だけ同次回の燃焼サイクルにおける前記混合ガスに含まれる前記燃焼ガスとして供給する燃焼ガス供給手段と、
    を備える予混合圧縮自着火式内燃機関の制御装置。
JP2006110587A 2006-04-13 2006-04-13 予混合圧縮自着火式内燃機関の制御装置 Expired - Fee Related JP4682905B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110587A JP4682905B2 (ja) 2006-04-13 2006-04-13 予混合圧縮自着火式内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110587A JP4682905B2 (ja) 2006-04-13 2006-04-13 予混合圧縮自着火式内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2007285140A JP2007285140A (ja) 2007-11-01
JP4682905B2 true JP4682905B2 (ja) 2011-05-11

Family

ID=38757165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110587A Expired - Fee Related JP4682905B2 (ja) 2006-04-13 2006-04-13 予混合圧縮自着火式内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4682905B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485010B2 (ja) * 2010-05-11 2014-05-07 本田技研工業株式会社 内燃機関の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2000265867A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 予混合圧縮自着火エンジンとその制御方法
JP2003097317A (ja) * 2001-09-26 2003-04-03 Hitachi Ltd 予混合圧縮着火エンジンの着火時期制御方法
JP2005220839A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 圧縮自着火ガソリンエンジンおよびその燃料噴射の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2000265867A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 予混合圧縮自着火エンジンとその制御方法
JP2003097317A (ja) * 2001-09-26 2003-04-03 Hitachi Ltd 予混合圧縮着火エンジンの着火時期制御方法
JP2005220839A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 圧縮自着火ガソリンエンジンおよびその燃料噴射の制御方法

Also Published As

Publication number Publication date
JP2007285140A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
US7950369B2 (en) Internal combustion engine controlling apparatus
JP4882787B2 (ja) 内燃機関の制御装置
US7870844B2 (en) Control system and method for internal combustion engine
JP4861915B2 (ja) 内燃機関の制御装置
JP2013072280A (ja) 圧縮自己着火式エンジンの始動制御装置
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
JP2009062862A (ja) 内燃機関の燃料噴射制御装置
JP2017150420A (ja) 内燃機関制御装置
JP5639387B2 (ja) ディーゼルエンジンの始動制御装置
JP4682905B2 (ja) 予混合圧縮自着火式内燃機関の制御装置
JP4227924B2 (ja) 内燃機関の燃料噴射制御装置
JP4518251B2 (ja) 内燃機関の制御装置
JP2010185440A (ja) 内燃機関
JP2007321684A (ja) 内燃機関の制御装置
JP2009222002A (ja) ディーゼルエンジンの自動停止装置
JP4105019B2 (ja) 内燃機関の制御装置
JP5514635B2 (ja) 内燃機関の制御装置
JP2010159683A (ja) 内燃機関
JP2004190539A (ja) 2サイクル運転可能な頭上弁式多気筒エンジン
JP4534968B2 (ja) 内燃機関の制御装置
JP2006194096A (ja) 内燃機関の制御装置
JP7238571B2 (ja) エンジンの制御方法およびエンジンの制御装置
JP2005098186A (ja) 内燃機関の運転領域制御装置
JP4801744B2 (ja) 内燃機関の運転方法および装置
JP2010255587A (ja) 内燃機関のegr制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees