Nothing Special   »   [go: up one dir, main page]

JP4667964B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP4667964B2
JP4667964B2 JP2005159865A JP2005159865A JP4667964B2 JP 4667964 B2 JP4667964 B2 JP 4667964B2 JP 2005159865 A JP2005159865 A JP 2005159865A JP 2005159865 A JP2005159865 A JP 2005159865A JP 4667964 B2 JP4667964 B2 JP 4667964B2
Authority
JP
Japan
Prior art keywords
valve
movable member
flow rate
screw
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005159865A
Other languages
Japanese (ja)
Other versions
JP2006336701A (en
Inventor
洋 冨田
匡輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2005159865A priority Critical patent/JP4667964B2/en
Publication of JP2006336701A publication Critical patent/JP2006336701A/en
Application granted granted Critical
Publication of JP4667964B2 publication Critical patent/JP4667964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mechanically-Actuated Valves (AREA)

Description

本発明は、半導体製造装置等の腐食性雰囲気で使用され、差動ネジを利用して弁開度を調整する流量調整弁に関する。   The present invention relates to a flow rate adjusting valve that is used in a corrosive atmosphere such as a semiconductor manufacturing apparatus and adjusts a valve opening degree using a differential screw.

例えば、半導体製造工程のエッチング装置では、チャンバにウエハを1枚設置して回転させ、そのウエハに一定の流量で薬液を供給し、ウエハ表面の膜を一定量、均一にエッチングする処理が行われる。薬液の流量は、薄膜の品質に影響を与えるため、正確に制御する必要がある。薬液の流量を調整するものとして、例えば図9及び図10に示すように、差動ネジにより弁開度を調整する流量調整弁100,200が知られている。図9は、第1従来例の流量調整弁100の断面図を示し、図10は、第2従来例の流量調整弁200の断面図を示す。   For example, in an etching apparatus in a semiconductor manufacturing process, a wafer is placed in a chamber and rotated, a chemical solution is supplied to the wafer at a constant flow rate, and a film on the wafer surface is uniformly etched by a certain amount. . Since the flow rate of the chemical solution affects the quality of the thin film, it must be accurately controlled. As shown in FIG. 9 and FIG. 10, for example, flow rate adjusting valves 100 and 200 that adjust the valve opening by a differential screw are known as devices for adjusting the flow rate of a chemical solution. FIG. 9 shows a cross-sectional view of the flow control valve 100 of the first conventional example, and FIG. 10 shows a cross-sectional view of the flow control valve 200 of the second conventional example.

図9に示す流量調整弁100は、スライドステム103がスプリング105の弾圧力に抗してダイアフラム弁体101を下方へ押し下げ、弁座104に当接させる。スライドステム103は、ベース管109に摺動可能に保持され、上方からスピンドル106を螺合される。スピンドル106の上端部には、アウタースリーブ107が固設され、アウタースリーブ107の外周面とベース管109の内周面が螺合する。アウタースリーブ107には、ハンドル110が固定される。このような流量調整弁100では、差動ネジは、スライドステム103とスピンドル106との間に設けられる内ネジ121と、アウタースリーブ107とベース配管109との間に設けられる外ネジ122とから構成される。   In the flow rate adjusting valve 100 shown in FIG. 9, the slide stem 103 pushes down the diaphragm valve body 101 against the elastic force of the spring 105 and contacts the valve seat 104. The slide stem 103 is slidably held by the base tube 109, and the spindle 106 is screwed from above. An outer sleeve 107 is fixed to the upper end portion of the spindle 106, and the outer peripheral surface of the outer sleeve 107 and the inner peripheral surface of the base tube 109 are screwed together. A handle 110 is fixed to the outer sleeve 107. In such a flow rate adjusting valve 100, the differential screw is composed of an inner screw 121 provided between the slide stem 103 and the spindle 106 and an outer screw 122 provided between the outer sleeve 107 and the base pipe 109. Is done.

流量調整弁100は、ハンドル110を回転させ、外ネジ122のネジ送りによりアウタースリーブ107を昇降させると、スピンドル106がアウタースリーブ107と一体的に回転しながら昇降し、内ネジ121のネジ送りによりスライドステム103を昇降させる。このとき、スライドステム103の昇降量は、内ネジ121のピッチと外ネジ122のピッチの差距離となる。ダイアフラム弁体101は、スライドステム103の昇降量に応じて位置調整され、弁開度が調整される(例えば、特許文献1参照)。   When the handle 110 is rotated and the outer sleeve 107 is moved up and down by the screw feed of the outer screw 122, the flow rate adjusting valve 100 moves up and down while rotating integrally with the outer sleeve 107, and the screw feed of the inner screw 121. The slide stem 103 is moved up and down. At this time, the lift amount of the slide stem 103 is the difference between the pitch of the inner screw 121 and the pitch of the outer screw 122. The position of the diaphragm valve body 101 is adjusted according to the lift amount of the slide stem 103, and the valve opening degree is adjusted (see, for example, Patent Document 1).

図10に示す流量調整弁200は、流路ブロック213、シリンダ201、案内管206をネジで連結し、外観が構成される。シリンダ201には、ピストン202が摺動自在に装填され、ピストン202の下端にダイアフラム弁体203が連結される。案内管206とピストン202との間には、スプリング204が縮設され、ピストン202を介してダイアフラム弁体203を弁座205方向へ常時押圧する。案内管206には、弁開度調整ロッド207とストローク調整ロッド208が摺動可能に装填され、ピストン202の上端面に突き当たる弁開度調整ロッド207の上端部がストローク調整ロッド208に下方から螺入されている。ストローク調整ロッド208は、上端部が案内管206から外部へ突きだし、その突き出した部分にハンドル209が固設される。ハンドル209は、袋状をなし、内周面が案内管206の外周面に螺合される。このような流量調整弁200では、差動ネジが、弁開度調整ロッド207の上端部とストローク調整ロッド208との間に設けた内ネジ211と、ハンドル209と案内管206との間に設けられた外ネジ212とを同心円状に配置して構成され、全高を低くすることに配慮されている。   The flow rate adjusting valve 200 shown in FIG. 10 is configured by connecting the flow path block 213, the cylinder 201, and the guide tube 206 with screws. A piston 202 is slidably loaded in the cylinder 201, and a diaphragm valve body 203 is connected to the lower end of the piston 202. A spring 204 is contracted between the guide tube 206 and the piston 202, and always presses the diaphragm valve body 203 toward the valve seat 205 via the piston 202. A valve opening adjustment rod 207 and a stroke adjustment rod 208 are slidably loaded in the guide tube 206, and the upper end of the valve opening adjustment rod 207 that abuts against the upper end surface of the piston 202 is screwed into the stroke adjustment rod 208 from below. It has been entered. The stroke adjusting rod 208 has an upper end protruding from the guide tube 206 to the outside, and a handle 209 is fixed to the protruding portion. The handle 209 has a bag shape, and an inner peripheral surface thereof is screwed to an outer peripheral surface of the guide tube 206. In such a flow rate adjusting valve 200, a differential screw is provided between the inner screw 211 provided between the upper end of the valve opening adjusting rod 207 and the stroke adjusting rod 208, and between the handle 209 and the guide tube 206. The outer screw 212 is arranged concentrically and is designed to reduce the overall height.

流量調整弁200は、ハンドル209を所定方向K1へ回転させると、内ネジ211と外ネジ212のネジ送りにより、弁開度調整ロッド207が上昇し、ダイアフラム弁体203が受圧面に作用する流体圧によりピストン202を弁開度調整ロッド207に突き当てるまで上昇する。一方、ハンドル209を所定方向と反対方向K2へ回転させると、内ネジ211と外ネジ212のネジ送りにより、弁開度調整ロッド207が下降し、ダイアフラム弁体203が弁座205に近づく方向へ下降する(例えば、特許文献2参照)。   When the handle 209 is rotated in the predetermined direction K1, the flow rate adjusting valve 200 is moved by the screw feed of the inner screw 211 and the outer screw 212, so that the valve opening adjusting rod 207 is raised and the diaphragm valve body 203 acts on the pressure receiving surface. The pressure rises until the piston 202 abuts against the valve opening adjustment rod 207 by the pressure. On the other hand, when the handle 209 is rotated in the direction K2 opposite to the predetermined direction, the valve opening degree adjusting rod 207 is lowered by the screw feed of the inner screw 211 and the outer screw 212, and the diaphragm valve body 203 approaches the valve seat 205. Lower (see, for example, Patent Document 2).

実用新案登録第2541613号公報Utility Model Registration No. 2541613 特開2004−225839号公報JP 2004-225839 A

しかしながら、図9及び図10に示す流量調整弁100,200は、腐食性の高い雰囲気で使用することができなかった。流量調整弁100,200は、内ネジ121,211と外ネジ122,212に細目ネジを適用することにより内ネジ121,211と外ネジ122,212のピッチ差を小さくし、弁開度を微小調整する。差動ネジの内ネジ121,211と外ネジ122,212には、流体圧や摩擦抵抗等に耐えうる強度が求められ、従来の流量調整弁100,200は、内ネジ121,211と外ネジ122,212を剛性のある金属で形成していた。一方、流量調整弁100,200は、腐食性の高い薬液を制御する場合、腐食性雰囲気にさらされる。そのため、流量調整弁100,200は、腐食性の高い雰囲気で使用されると、内ネジ121,211や外ネジ122,212が腐食して細くなり、差動ネジの回転量に基づいて弁開度を正確に調整できないことがあった。この点、流量調整弁100,200の差動ネジを金属に換えて樹脂で構成することとも考えられる。ところが、流量調整弁100,200は、外ネジ122の外側を支えるベース管109や内ネジ121の外側を支えるスライドステム103、外ネジ211の外側を支える案内管206や外ネジ212の外側を支えるストローク調整ロッド208の肉厚が薄いため、単に差動ネジの材質を金属から樹脂に変更するだけでは、流体圧や摩擦抵抗等に耐えうる強度を確保できなかった。   However, the flow control valves 100 and 200 shown in FIGS. 9 and 10 cannot be used in a highly corrosive atmosphere. The flow rate adjusting valves 100 and 200 reduce the pitch difference between the inner screws 121 and 211 and the outer screws 122 and 212 by applying fine screws to the inner screws 121 and 211 and the outer screws 122 and 212, thereby reducing the valve opening degree. adjust. The inner screws 121 and 211 and the outer screws 122 and 212 of the differential screw are required to have a strength that can withstand fluid pressure, frictional resistance, and the like. The conventional flow rate adjusting valves 100 and 200 include the inner screws 121 and 211 and the outer screws. 122 and 212 were made of a rigid metal. On the other hand, the flow regulating valves 100 and 200 are exposed to a corrosive atmosphere when controlling a highly corrosive chemical. Therefore, when the flow control valves 100 and 200 are used in a highly corrosive atmosphere, the inner screws 121 and 211 and the outer screws 122 and 212 become corroded and become thin, and the valve is opened based on the rotation amount of the differential screw. The degree could not be adjusted accurately. In this regard, it can be considered that the differential screws of the flow rate adjusting valves 100 and 200 are made of resin instead of metal. However, the flow control valves 100 and 200 support the outside of the base tube 109 that supports the outside of the external screw 122, the slide stem 103 that supports the outside of the internal screw 121, the guide tube 206 that supports the outside of the external screw 211, and the outside of the external screw 212. Since the thickness of the stroke adjusting rod 208 is thin, simply changing the material of the differential screw from metal to resin cannot secure the strength that can withstand fluid pressure, frictional resistance, and the like.

そのため、図9に示す流量調整弁100や図10に示す流量調整弁200の差動ネジを樹脂にする場合には、内ネジ121の外側を支えるスライドステム103(図9参照)、内ネジ211の外側を支えるストローク調整ロッド208(図10参照)や、外ネジ122の外側を支えるベース管109(図9参照)、外ネジ212の外側を支えるハンドル209(図10参照)の肉厚を径方向に厚くして強度アップをしなければならず、サイズが径方向に大きくなる問題があった。
これに加え、図9に示す流量調整弁100や図10に示す流量調整弁200は、内ネジ121,211と外ネジ122,212を同心円状に配置するため、差動ネジ機構を構成する部品が多くなり、高価であった。
Therefore, when the differential screw of the flow rate adjusting valve 100 shown in FIG. 9 or the flow rate adjusting valve 200 shown in FIG. 10 is made of resin, the slide stem 103 (see FIG. 9) that supports the outer side of the inner screw 121 and the inner screw 211 The thickness of the stroke adjusting rod 208 (see FIG. 10) that supports the outside of the outer thread 122, the base tube 109 (see FIG. 9) that supports the outside of the external screw 122, and the handle 209 (see FIG. 10) that supports the outside of the external screw 212 The thickness has to be increased in the direction to increase the strength, and the size has increased in the radial direction.
In addition to this, the flow rate adjusting valve 100 shown in FIG. 9 and the flow rate adjusting valve 200 shown in FIG. 10 have inner screws 121, 211 and outer screws 122, 212 arranged concentrically, so that the components constituting the differential screw mechanism Was more expensive.

そこで、本発明は、上記問題点を解決するためになされたものであり、腐食性雰囲気の中で使用されても流量調整を正確にすることができる小型で安価な流量調整弁を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides a small and inexpensive flow rate adjustment valve capable of accurately adjusting the flow rate even when used in a corrosive atmosphere. With the goal.

本発明に係る流量調整弁は、次のような構成を有している。
(1)弁座に当接又は離間するダイアフラム弁体の位置を差動ネジを用いて調整する流量調整弁において、弁座を設けられた樹脂製の流路ブロックに、樹脂製の保持部材と樹脂製のカバーを積層して連結することにより、外観を構成され、保持部材とカバーとの間に形成される収納室に軸方向に移動可能に収納され、ダイアフラム弁体に連結される樹脂製の可動部材と、前記カバーの上端には肉厚のボス部が形成され、該ボス部から軸方向へ移動可能に挿入され、一端が前記収納室内に位置して前記可動部材に連結し、他端が外部に突き出す棒状に成形した樹脂製のストローク調整部材と、を有し、前記差動ネジが、前記可動部材と前記ストローク調整部材との連結部分に樹脂で設けられた第1連結ネジと、前記ストローク調整部材と前記カバーの前記ボス部との摺接面に樹脂で設けられた第2連結ネジとからなること、前記可動部材と前記収納室の内壁との間に、前記可動部材の軸を出す第1軸出し部材を前記可動部材の上端外周面に形成された環状溝に配設したこと、前記可動部材の凸部と前記保持部材の貫通孔の内壁との間に、前記可動部材の軸を出す第2軸出し部材を前記凸部の下端外周面に形成された環状溝に配設したこと、少なくとも、前記第1軸出し部材が、前記可動部材を軸方向に押圧してがたつきを防止することを特徴とする。
(2)(1)に記載する流量調整弁において、前記収納室が前記可動部材を挟んで弁と反対側の一次室と弁側の二次室とに区画され、前記二次室に圧縮流体が充填されることを特徴とする。
The flow regulating valve according to the present invention has the following configuration.
(1) In a flow rate adjusting valve that adjusts the position of a diaphragm valve element that contacts or separates from a valve seat using a differential screw, a resin-made holding member and a resin-made flow channel block provided with the valve seat A resin cover is formed by stacking and connecting resin covers, and the exterior is configured and stored in the storage chamber formed between the holding member and the cover so as to be movable in the axial direction and connected to the diaphragm valve body. A thick boss portion is formed at the upper end of the movable member and the cover , and is inserted from the boss portion so as to be movable in the axial direction . One end is located in the storage chamber and is connected to the movable member. A resin-made stroke adjusting member formed in a rod shape whose end protrudes to the outside, and the differential screw is a first connecting screw provided with resin at a connecting portion between the movable member and the stroke adjusting member. , The stroke adjusting member and the cap And a second coupling screw provided with a resin on the surface of sliding contact between the boss portion of the over, between the inner wall of the storage chamber and the movable member, put the first axis issuing an axis of said movable member The member is disposed in an annular groove formed on the outer peripheral surface of the upper end of the movable member, and a second axis is formed between the convex portion of the movable member and the inner wall of the through hole of the holding member. The pivoting member is disposed in an annular groove formed on the outer peripheral surface of the lower end of the convex portion, and at least the first pivoting member presses the movable member in the axial direction to prevent rattling. It is characterized by.
(2) In the flow regulating valve described in (1), the storage chamber is partitioned into a primary chamber opposite to the valve and a secondary chamber on the valve side across the movable member, and a compressed fluid is contained in the secondary chamber. Is filled .

本発明の流量調整弁は、樹脂製の保持部材と樹脂製のカバーとの間に収納室が形成され、その収納室に樹脂製の可動部材が軸方向に移動可能に収納されており、棒状に成形した樹脂製のストローク調整部材がカバーの上端には肉厚のボス部が形成され、該ボス部から軸方向へ移動可能に挿入されて一端を可動部材に連結され、ストローク調整部材の推力を可動部材を介してダイアフラム弁体に伝達し、弁開度を調整する。可動部材とストローク調整部材との連結部分には第1連結ネジが樹脂で設けられ、ストローク調整部材とカバーの前記ボス部との摺接面には第2連結ネジが樹脂で設けられており、第1連結ネジと第2連結ネジが軸方向に直列に配置されて差動ネジを構成する。本発明の流量調整弁は、差動ネジ機構が樹脂製の保持部材、カバー、可動部材、ストローク調整部材の4部品で構成されるため、腐食性雰囲気で使用されても、差動ネジが細ることがなく、ストローク調整部材の回転量に基づいてダイアフラム弁体の位置を調整し、流量を正確に調整することができる。また、本発明の流量調整弁は、第1連結ネジの外側を可動部材で支え、第2連結ネジの外側をカバーのボス部で支えるので、樹脂製差動ネジの強度を確保するために、可動部材やカバーの肉厚を径方向に大きくする必要がなく、小型である。さらに、本発明の流量調整弁は、第1連結ネジと第2連結ネジを直列に配置するので、第1,第2連結ネジを同心円状に配置する場合より部品点数が少なくて済み、安価である。
また、本発明の流量調整弁は、第1軸出し部材が可動部材の上端外周面に形成された環状溝に配設されて該可動部材を軸方向に押圧してがたつきを防止することより、可動部材を一定の軌跡を辿って軸方向へ移動させるので、第1連結ネジと第2連結ネジが正しく螺合して推力を伝達し合い、弁開度を正確に調整できる。
また、本発明の流量調整弁は、第2軸出し部材が第1軸出し部材と別位置で可動部材を軸方向に押圧してがたつきを防止することにより、可動部材をより一層確実に一定の軌跡を辿って軸方向へ移動させるので、第1連結ネジと第2連結ネジが正しく螺合して推力を伝達し合い、弁開度をより一層正確に調整できる。
また、本発明の流量調整弁は、二次室に圧縮流体を充填することにより、二次室の圧力を可動部材に対してダイアフラム弁体に作用する流体圧と同じ方向に作用させ、第1連結ネジと第2連結ネジのバッククラッシュを防止する。そのため、本発明の流量調整弁は、可動部材を軸方向へ移動させて弁開度を調整するときに、第1連結ネジと第2連結ネジとががたつかず、流量を正確に調整できる。また、バッククラッシュを防止するための金属製のバネが不要となり、腐食性雰囲気で使用する場合に、より高い信頼性を確保できる。
Flow control valve of the present invention is accommodated chamber formed between the resin holding member and the resin cover, a resin of the movable member is movably accommodated in the axial direction to the housing chamber, the rod-shaped Thick boss part is formed at the upper end of the cover , and the resin stroke adjustment member molded in the shape is inserted in the axial direction so that it can move in the axial direction, one end is connected to the movable member, and the thrust of the stroke adjustment member Is transmitted to the diaphragm valve body through the movable member to adjust the valve opening. A first connecting screw is provided with a resin at a connecting portion between the movable member and the stroke adjusting member, and a second connecting screw is provided with a resin on a sliding contact surface between the stroke adjusting member and the boss portion of the cover, The first connecting screw and the second connecting screw are arranged in series in the axial direction to constitute a differential screw. In the flow rate adjusting valve of the present invention, the differential screw mechanism is composed of four parts including a resin holding member, a cover, a movable member, and a stroke adjusting member, so that the differential screw is thin even when used in a corrosive atmosphere. The position of the diaphragm valve body can be adjusted based on the rotation amount of the stroke adjusting member, and the flow rate can be adjusted accurately. In addition, since the flow regulating valve of the present invention supports the outside of the first connecting screw with a movable member and supports the outside of the second connecting screw with the boss portion of the cover , in order to ensure the strength of the resin differential screw, It is not necessary to increase the thickness of the movable member or the cover in the radial direction, and it is small. Furthermore, since the flow regulating valve of the present invention has the first connecting screw and the second connecting screw arranged in series, the number of parts is less than that in the case where the first and second connecting screws are arranged concentrically and is inexpensive. is there.
The flow rate control valve of the present invention, that the first shaft centering member prevents disposed in an annular groove formed on the upper end outer peripheral surface of the movable member backlash by pressing the movable member in the axial direction Accordingly, since the movable member is moved in the axial direction following a certain locus, the first connecting screw and the second connecting screw are correctly screwed together to transmit thrust, and the valve opening can be adjusted accurately.
In addition, the flow regulating valve of the present invention further ensures the movable member by preventing rattling by pressing the movable member in the axial direction at a position different from the first pivoting member. Since the first connection screw and the second connection screw are properly screwed together to transmit a thrust, the valve opening can be adjusted more accurately.
Further, the flow regulating valve of the present invention causes the pressure in the secondary chamber to act on the movable member in the same direction as the fluid pressure acting on the diaphragm valve body by filling the secondary chamber with the compressed fluid. Backlash of the connecting screw and the second connecting screw is prevented. Therefore, flow control valve of the present invention, the movable member when moved in the axial direction to adjust the valve opening, not rattle a first connection screw and a second coupling screw can be accurately adjust the flow rate. In addition, a metal spring for preventing back-crash is not required, and higher reliability can be secured when used in a corrosive atmosphere.

次に、本発明に係る流量調整弁の実施形態について図面を参照して説明する。   Next, an embodiment of a flow control valve according to the present invention will be described with reference to the drawings.

(第1実施形態)
まず、本発明の第1実施形態について図面を参照して説明する。図1は、流量調整弁1Aの断面図である。図2は、図1に示す流量調整弁1Aの流量調整用ロッドを上限位置まで移動させた状態を示す図である。図3は、図1のA−A断面図である。図4は、図1に示す流量調整弁の右側面図であって、ネジの締結部分を断面で示している。
本実施形態の流量調整弁1Aは、従来技術と同様、半導体製造工程で使用されるエッチング装置に組み込まれ、ウエハに滴下する薬液の流量を制御する。流量調整弁1Aは、腐食性雰囲気の中で使用可能なように主たる構成部品が樹脂で形成されている。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the flow regulating valve 1A. FIG. 2 is a view showing a state where the flow rate adjusting rod of the flow rate adjusting valve 1A shown in FIG. 1 is moved to the upper limit position. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 4 is a right side view of the flow rate adjusting valve shown in FIG. 1 and shows a screw fastening portion in section.
The flow rate adjusting valve 1A according to the present embodiment is incorporated in an etching apparatus used in a semiconductor manufacturing process, and controls the flow rate of a chemical solution dropped on a wafer, as in the prior art. The flow rate adjusting valve 1A has a main component made of resin so that it can be used in a corrosive atmosphere.

図4に示すように、流量制御弁1Aは、流路ブロック2、シリンダ(保持部材)3、カバー4を積層し、上方から4本のボルトVを貫き通し、取付板19にインサート成形されたナットNに先端部を締結することにより一体化され、外観を構成される。カバー4は、ボルトVを挿通される開口部がキャップCで塞がれ、ボルトVを腐食性雰囲気から遮断している。   As shown in FIG. 4, the flow rate control valve 1 </ b> A includes a flow path block 2, a cylinder (holding member) 3, and a cover 4, and through four bolts V from above and a nut insert-molded on the mounting plate 19. It is integrated by fastening the tip to N, and the appearance is configured. In the cover 4, the opening through which the bolt V is inserted is closed by the cap C, and the bolt V is blocked from the corrosive atmosphere.

図1及び図2に示すように、流路ブロック2は、PTFE(ポリテトラフルオロエチレン)やPFA(四フッ化エチレンパーフルオロアルキルビニルエーテル共重合体)など耐熱性・耐腐食性に優れた樹脂をブロック状に成形したものである。流路ブロック2は、第1ポート5と第2ポート6が穿設され、第1ポート5と第2ポート6の間に形成された弁座7を介して連通する。シリンダ3は、PP(ポリプロピレン)など耐腐食性が高く、成形が比較的容易な樹脂を円柱状のブロック形状に成形したものであり、外周面に径方向に延設されたフランジを備える。カバー4は、PPなど耐腐食性が高く、成形が比較的容易な樹脂を袋状に成形したものであり、カバー4の下端面と流路ブロック2の上端面との間でシリンダ3のフランジを挟み込むように、シリンダ3に被せられる。   As shown in FIGS. 1 and 2, the flow path block 2 is made of a resin having excellent heat resistance and corrosion resistance, such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer). It is molded into a block shape. The flow path block 2 is provided with a first port 5 and a second port 6, and communicates via a valve seat 7 formed between the first port 5 and the second port 6. The cylinder 3 is formed by molding a resin having a high corrosion resistance such as PP (polypropylene) and relatively easy to mold into a cylindrical block shape, and includes a flange extending radially in the outer peripheral surface. The cover 4 is formed of a resin such as PP that has a high corrosion resistance and is relatively easy to mold, and is formed between the lower end surface of the cover 4 and the upper end surface of the flow path block 2. Is put on the cylinder 3 so as to sandwich it.

流路ブロック2とシリンダ3との間には、樹脂製のダイアフラム弁体8が狭持されている。ダイアフラム弁体8は、PTFEなど耐熱性・耐腐食性に優れた樹脂を略円形に成形したものであり、中央部に円錐状の弁体部9が設けられている。ダイアフラム弁体8は、弁体部9の先端を弁座7に挿入し、弁体部9の外周面と弁座7の内周面の間に形成される断面積を変化させて、流量調整を行う。   A resin-made diaphragm valve element 8 is sandwiched between the flow path block 2 and the cylinder 3. The diaphragm valve body 8 is formed by molding a resin having excellent heat resistance and corrosion resistance, such as PTFE, into a substantially circular shape, and a conical valve body portion 9 is provided at the center. Diaphragm valve body 8 adjusts the flow rate by inserting the tip of valve body portion 9 into valve seat 7 and changing the cross-sectional area formed between the outer peripheral surface of valve body portion 9 and the inner peripheral surface of valve seat 7. I do.

シリンダ3とカバー4との間には、収納室10が形成され、可動部材11が収納されている。可動部材11は、PVDF(ポリフッ化ビニリデン)やPCTFE(ポリクロロトリフルオロエチレン)など比較的硬度、耐熱性、耐薬品性の高い樹脂を略円柱形状に成形したものである。可動部材11は、図中下端部に凸部12が円柱状に設けられ、その凸部12をシリンダ3に形成された貫通孔3aに摺動可能に貫き通してダイアフラム弁体8に連結する。可動部材11は、図中上端面から有底孔が穿設され、その内周面に第1雌ネジ11aが一体的に樹脂で形成される。図3に示すように、シリンダ3には、ガイド溝3bが上端面から軸方向に切り欠いて形成され、可動部材11は、外周面を2カ所面取りされてガイド面11bを形成され、ガイド面11bがガイド溝3bに支持されて廻り止めされる。   A storage chamber 10 is formed between the cylinder 3 and the cover 4 to store the movable member 11. The movable member 11 is formed by molding a resin having relatively high hardness, heat resistance, and chemical resistance such as PVDF (polyvinylidene fluoride) and PCTFE (polychlorotrifluoroethylene) into a substantially cylindrical shape. The movable member 11 is provided with a convex portion 12 in a cylindrical shape at the lower end portion in the figure, and slidably penetrates the convex portion 12 through a through hole 3 a formed in the cylinder 3 and is connected to the diaphragm valve body 8. The movable member 11 is provided with a bottomed hole from the upper end surface in the figure, and a first female screw 11a is integrally formed of resin on the inner peripheral surface thereof. As shown in FIG. 3, the guide groove 3b is formed in the cylinder 3 by notching the upper end surface in the axial direction, and the movable member 11 is chamfered at two outer peripheral surfaces to form a guide surface 11b. 11b is supported by the guide groove 3b and stopped.

カバー4には、ボス部4aが形成され、ストローク調整ロッド(ストローク調整部材)13がボス部4aから上下方向へ移動可能に挿入され、収納室10内に位置する下端部が可動部材11に連結する。ストローク調整ロッド13は、PVDFやPCTFEなど比較的硬度、耐熱性、耐薬品性の高い樹脂を棒状に成形したものである。ストローク調整ロッド13は、下端外周に第1雄ネジ13aが一体的に樹脂で形成され、その第1雄ネジ13aを可動部材11の第1雌ネジ11aに螺合させて第1連結ネジ14を構成する。ストローク調整ロッド13は、第1連結ネジ14を構成する第1雄ネジ13aの上方に第2雄ネジ13bが一体的に樹脂で形成される。カバー4は、ストローク調整ロッド13を貫き通される貫通孔の内周に第2雌ネジ4bが一体的に樹脂で形成され、ストローク調整ロッド13の第2雄ネジ13bをカバー4の第2雌ネジ4bに螺合させて第2連結ネジ15を構成する。第1連結ネジ14と第2連結ネジ15は、同一方向にネジが設けられ、第2連結ネジ15のピッチが第1連結ネジ14のピッチより大きく設定され、第1連結ネジ14と第2連結ネジ15のピッチ差により可動部材11、ひいては、ダイアフラム弁体8の位置を微調整する。つまり、流量調整弁1Aは、樹脂製の第1連結ネジ14と第2連結ネジ15により差動ネジが構成され、この差動ネジには金属を一切使用しない。   The cover 4 is formed with a boss portion 4a, a stroke adjusting rod (stroke adjusting member) 13 is inserted from the boss portion 4a so as to be movable in the vertical direction, and a lower end portion located in the storage chamber 10 is connected to the movable member 11. To do. The stroke adjusting rod 13 is formed by molding a resin having relatively high hardness, heat resistance, and chemical resistance such as PVDF or PCTFE into a rod shape. The stroke adjusting rod 13 has a first male screw 13a integrally formed of resin on the outer periphery of the lower end, and the first male screw 13a is screwed into the first female screw 11a of the movable member 11 so that the first connecting screw 14 is engaged. Constitute. In the stroke adjusting rod 13, a second male screw 13 b is integrally formed of resin above the first male screw 13 a constituting the first connecting screw 14. In the cover 4, the second female screw 4 b is integrally formed of resin on the inner periphery of the through hole that passes through the stroke adjusting rod 13, and the second male screw 13 b of the stroke adjusting rod 13 is connected to the second female screw of the cover 4. The second connecting screw 15 is configured by being screwed to the screw 4b. The first connection screw 14 and the second connection screw 15 are provided in the same direction, and the pitch of the second connection screw 15 is set larger than the pitch of the first connection screw 14. The position of the movable member 11 and thus the diaphragm valve body 8 is finely adjusted by the pitch difference of the screw 15. That is, in the flow rate adjusting valve 1A, a differential screw is constituted by the resin first connecting screw 14 and the second connecting screw 15, and no metal is used for the differential screw.

差動ネジを樹脂で構成した場合、流体圧や摩擦抵抗等に対する強度が問題となる。本実施形態の流量調整弁1Aは、可動部材11及びストローク調整ロッド13をPVDFやPCTFEなど比較的硬度の高い材質で構成し、第1雌ネジ11a、第1雄ネジ13a、第2雄ネジ13bの強度を確保する。そして、第1雌ネジ11aを構成する可動部材11がブロック状をなし肉厚であるため、第1連結ネジ14の外側に位置する第1雌ネジ11aを支える強度が確保される。一方、カバー4は、PVDFやPCTFEより硬度の低い樹脂(PP等)を材質とするが、第2雌ネジ4bをボス部4a内に設けて第2連結ネジ15の周りを肉厚にしているため、第2連結ネジ15の外側に位置する第2雌ネジ4bを支える強度が確保される。   When the differential screw is made of resin, the strength against fluid pressure, frictional resistance, etc. becomes a problem. In the flow rate adjusting valve 1A of the present embodiment, the movable member 11 and the stroke adjusting rod 13 are made of a relatively hard material such as PVDF or PCTFE, and the first female screw 11a, the first male screw 13a, and the second male screw 13b. Ensure the strength of. And since the movable member 11 which comprises the 1st internal thread 11a has a block shape and is thick, the intensity | strength which supports the 1st internal thread 11a located in the outer side of the 1st connection screw 14 is ensured. On the other hand, the cover 4 is made of resin (PP or the like) whose hardness is lower than that of PVDF or PCTFE, but the second female screw 4b is provided in the boss portion 4a so that the periphery of the second connecting screw 15 is thick. Therefore, the strength to support the second female screw 4b located outside the second connecting screw 15 is ensured.

なお、ストローク調整ロッド13の上端部には、ノブ16が設けられ、ストローク調整ロッド13を手動で回転しやすくしている。   Note that a knob 16 is provided at the upper end of the stroke adjusting rod 13 so that the stroke adjusting rod 13 can be easily rotated manually.

ところで、流量調整弁1Aは、ストローク調整ロッド13とカバー4の摺接面、ストローク調整ロッド13と可動部材11の摺接面、及び、可動部材11の凸部12とシリンダ3の貫通孔3aとの摺接面により、可動部材11を位置決めし、軸出しを行う。しかし、ストローク調整ロッド13、カバー4、可動部材11、シリンダ3は、樹脂で形成されているため、精度良く加工・成形することが困難であり、組み立てた際の部品間の隙間(ガタ)が大きくなりやすい。また、ストローク調整ロッド13が図2に示すように、上限位置まで移動すると、可動部材11とストローク調整ロッド13との摺接面積が小さくなり、可動部材11やストローク調整ロッド13ががたついて傾きやすくなる。可動部材11やストローク調整ロッド13が傾くと、可動部材11の軌道が安定せず、弁開度を正確に調整できない恐れがある。   By the way, the flow rate adjusting valve 1A includes a sliding contact surface of the stroke adjusting rod 13 and the cover 4, a sliding contact surface of the stroke adjusting rod 13 and the movable member 11, and a convex portion 12 of the movable member 11 and the through hole 3a of the cylinder 3. The movable member 11 is positioned by the slidable contact surface, and the axis is aligned. However, since the stroke adjusting rod 13, the cover 4, the movable member 11, and the cylinder 3 are made of resin, it is difficult to process and mold them with high accuracy, and there is a gap (backlash) between parts when assembled. Easy to grow. Further, when the stroke adjusting rod 13 moves to the upper limit position as shown in FIG. 2, the sliding contact area between the movable member 11 and the stroke adjusting rod 13 decreases, and the movable member 11 and the stroke adjusting rod 13 are tilted and tilted. It becomes easy. If the movable member 11 or the stroke adjusting rod 13 is tilted, the trajectory of the movable member 11 may not be stable, and the valve opening may not be adjusted accurately.

そのため、可動部材11は、上端部外周面に形成された環状溝に、フッ素ゴムやパーフロロエラストマーなどゴム製のOリング(第1軸出し部材)17を装着し、可動部材11とカバー4との間でOリング17を径方向に押し潰して弾性変形させる。また、可動部材11は、凸部12の外周面に形成され環状溝に、フッ素ゴムやパーフロロエラストマーなどゴム製のOリング(第2軸出し部材)18を装着し、可動部材11の凸部12とシリンダ3の貫通孔3aの内壁との間でOリング18を径方向に押し潰して弾性変形させる。弾性変形したOリング17,18は、その復元力により可動部材11を軸方向へ押圧し、可動部材11の軸出しを行う。   Therefore, the movable member 11 is provided with an O-ring (first axising member) 17 made of rubber such as fluoro rubber or perfluoroelastomer in an annular groove formed on the outer peripheral surface of the upper end portion. The O-ring 17 is crushed in the radial direction and elastically deformed. Further, the movable member 11 is formed on the outer peripheral surface of the convex portion 12, and an O-ring (second axising member) 18 made of rubber such as fluororubber or perfluoroelastomer is attached to the annular groove. The O-ring 18 is crushed in the radial direction between 12 and the inner wall of the through hole 3a of the cylinder 3 to be elastically deformed. The elastically deformed O-rings 17 and 18 press the movable member 11 in the axial direction by the restoring force, and the movable member 11 is centered.

ここで、出願人らは、Oリング17の機能を調べる実験を行った。図5に、軸出し部材の機能を調べる実験で使用した装置の回路図を示す。
実験で使用した装置は、上流側から圧力計21、流量計22、評価サンプルSを順に配置される。評価サンプルSには、Oリング17を有する本実施形態の流量調整弁1Aと、本実施形態の流量調整弁1AからOリング17を除いた流量調整弁とを使用した。実験方法は、まず、評価サンプルSとなる流量調整弁を弁開状態に設定し、評価サンプルSとなる流量調整弁の第1ポート5から圧力(約0.1MPa)を加え、流量計22で流量を測定してから、ストローク調整ロッド13を弁閉方向に数回転回し、その後、評価サンプルSとなる流量調整弁を再度弁開状態に設定し、第1ポート5から圧力(約0.1MPa)を加え、流量計22で流量を測定する。この一連の実験を3回繰り返し、流量の変化を確認した。
Here, the applicants conducted an experiment to examine the function of the O-ring 17. FIG. 5 shows a circuit diagram of the apparatus used in the experiment for examining the function of the centering member.
In the apparatus used in the experiment, the pressure gauge 21, the flow meter 22, and the evaluation sample S are sequentially arranged from the upstream side. For the evaluation sample S, the flow rate adjusting valve 1A of the present embodiment having the O-ring 17 and the flow rate adjusting valve obtained by removing the O-ring 17 from the flow rate adjusting valve 1A of the present embodiment were used. In the experiment method, first, the flow rate adjustment valve to be the evaluation sample S is set in an open state, pressure (about 0.1 MPa) is applied from the first port 5 of the flow rate adjustment valve to be the evaluation sample S, and the flow meter 22 After measuring the flow rate, the stroke adjusting rod 13 is rotated several times in the valve closing direction, and then the flow rate adjusting valve to be the evaluation sample S is set to the valve open state again, and the pressure (about 0.1 MPa from the first port 5 is set. ) And measure the flow rate with the flow meter 22. This series of experiments was repeated three times to confirm changes in flow rate.

Oリング17を有しない流量調整弁の実験結果を図6に示し、Oリング17を有する流量調整弁1Aの実験結果を図7に示す。
Oリング17を有しない流量調整弁は、図6に示すように、第1回目の流量が4603cm3/min、第2回目の流量が約4740cm3/min、第3回目の流量が4624cm3/minであった。第2回目の流量は、第1回目の流量に対して約137cm3/min増加し、変化率が約+3%であった。また、第3回目の流量は、第2回目の流量に対して約116cm3/min減少し、変化率が約−2%であった。
一方、Oリング17を有する流量調整弁1Aは、図7に示すように、第1回目の流量が4670cm3/min、第2回目の流量が約4682cm3/min、第3回目の流量が4678cm3/minであった。第2回目の流量は、第1回目の流量に対して約12cm3/min増加し、変化率が約+0.2%であった。また、第3回目の流量は、第2回目の流量に対して約4cm3/min減少し、変化率が約−0.1%であった。
FIG. 6 shows the experimental result of the flow rate adjusting valve not having the O-ring 17, and FIG. 7 shows the experimental result of the flow rate adjusting valve 1 A having the O-ring 17.
No flow regulating valve O-ring 17, as shown in FIG. 6, the first flow rate 4603cm 3 / min, the second-time flow rate of about 4740cm 3 / min, the third-time flow rate is 4624Cm 3 / min. The second flow rate increased by about 137 cm 3 / min with respect to the first flow rate, and the rate of change was about + 3%. In addition, the third flow rate decreased by about 116 cm 3 / min with respect to the second flow rate, and the rate of change was about −2%.
On the other hand, as shown in FIG. 7, the flow rate adjusting valve 1A having the O-ring 17 has a first flow rate of 4670 cm 3 / min, a second flow rate of about 4682 cm 3 / min, and a third flow rate of 4678 cm. 3 / min. The second flow rate increased by about 12 cm 3 / min with respect to the first flow rate, and the rate of change was about + 0.2%. In addition, the third flow rate decreased by about 4 cm 3 / min with respect to the second flow rate, and the rate of change was about −0.1%.

この実験結果より、Oリング17を有しない流量調整弁は、可動部材11を軸方向へ移動させて開閉動作を繰り返すたびに、流量が2〜3%程度変化するのに対して、Oリング17を有する流量調整弁1Aは、可動部材11を軸方向へ移動させて開閉動作を繰り返しても、流量が僅か0.1〜0.2%程度しか変化せず、Oリング17を有する流量調整弁1Aの流量変化率は、Oリング17を有しない流量調整弁の流量変化率の10%程度に抑えられることが判明した。これは、Oリング17を有しない流量調整弁は、可動部材11ががたついて軌道が安定せず、弁開時におけるダイアフラム弁体8と弁座7との間の断面積がばらついて、流量がばらつくのに対して、Oリング17を有する流量調整弁1Aは、可動部材11が軸方向に同じ軌道で移動し、弁開時におけるダイアフラム弁体8と弁座7との間の断面積が安定し、流量が安定するからであると考えられる。   From this experimental result, the flow rate adjusting valve without the O-ring 17 changes the flow rate by about 2 to 3% every time the movable member 11 is moved in the axial direction and the opening / closing operation is repeated, whereas the O-ring 17 The flow rate adjusting valve 1A having a flow rate of only 0.1 to 0.2% changes even when the movable member 11 is moved in the axial direction and the opening and closing operation is repeated, and the flow rate adjusting valve having the O-ring 17 It has been found that the flow rate change rate of 1A can be suppressed to about 10% of the flow rate change rate of the flow rate adjusting valve without the O-ring 17. This is because the flow rate adjusting valve having no O-ring 17 is not stable due to rattling of the movable member 11, and the cross-sectional area between the diaphragm valve body 8 and the valve seat 7 when the valve is opened varies. On the other hand, the flow regulating valve 1A having the O-ring 17 moves the movable member 11 along the same track in the axial direction, and the cross-sectional area between the diaphragm valve body 8 and the valve seat 7 when the valve is opened is different. This is considered to be because the flow rate is stable.

このような流量調整弁1Aは、取付板19を介してエッチング装置に取り付けられ、図1の状態では、ダイアフラム弁体8の弁体部9が弁座7を閉鎖し、第1ポート5から流入した薬液を弁座7にて遮断する。その後、ノブ16を図1の所定方向K1へ回転させ、ストローク調整ロッド13を上昇させると、可動部材11が第1連結ネジ14と第2連結ネジ15のピッチ差に応じて上昇し、ダイアフラム弁体3を弁座7から離間させる。薬液は、弁体部9と弁座7との間に形成される隙間で流量調整された後、第2ポート6から出力される。さらにその後、ノブ16を所定方向と反対方向K2へ回転させ、ストローク調整ロッド13を下降させると、可動部材11が第1連結ネジ14と第2連結ネジ15のピッチ差に応じて下降し、ダイアフラム弁体3を弁座7に近づけて弁開度を小さくし、流量を減少させる。   Such a flow regulating valve 1A is attached to the etching apparatus via the mounting plate 19, and in the state of FIG. 1, the valve body portion 9 of the diaphragm valve body 8 closes the valve seat 7 and flows in from the first port 5. The chemical solution is blocked at the valve seat 7. Thereafter, when the knob 16 is rotated in the predetermined direction K1 in FIG. 1 and the stroke adjusting rod 13 is raised, the movable member 11 is raised according to the pitch difference between the first connecting screw 14 and the second connecting screw 15, and the diaphragm valve The body 3 is separated from the valve seat 7. The chemical liquid is output from the second port 6 after the flow rate is adjusted in a gap formed between the valve body portion 9 and the valve seat 7. Thereafter, when the knob 16 is rotated in the direction K2 opposite to the predetermined direction and the stroke adjusting rod 13 is lowered, the movable member 11 is lowered according to the pitch difference between the first connecting screw 14 and the second connecting screw 15, and the diaphragm The valve body 3 is brought close to the valve seat 7 to reduce the valve opening, thereby reducing the flow rate.

従って、本実施形態の流量調整弁1Aは、樹脂製のシリンダ3と樹脂製のカバー4との間に収納室10が形成され、その収納室10に樹脂製の可動部材11が軸方向に移動可能に収納されており、樹脂製のストローク調整ロッド13がカバー4に挿入されて一端を可動部材11に連結され、ストローク調整ロッド13の推力を可動部材11を介してダイアフラム弁体8に伝達し、弁開度を調整する。可動部材11とストローク調整ロッド13との連結部分には第1連結ネジ14が樹脂で設けられ、ストローク調整ロッド13とカバー4との摺接面には第2連結ネジ15が樹脂で設けられており、第1連結ネジ14と第2連結ネジ15が軸方向に直列に配置されて差動ネジを構成する。本実施形態の流量調整弁1Aは、差動ネジ機構が樹脂製のシリンダ3、カバー4、可動部材11、ストローク調整ロッド13の4部品で構成されるため、腐食性雰囲気で使用されても、差動ネジが細ることがなく、ストローク調整ロッド13の回転量に基づいてダイアフラム弁体8の位置を調整し、流量を正確に調整することができる。また、本実施形態の流量調整弁1Aは、第1連結ネジの外側を可動部材11で支え、第2連結ネジ15の外側をカバー4で支えるので、樹脂製差動ネジの強度を確保するために、可動部材11やカバー4の肉厚を径方向に大きくする必要がなく、小型である。さらに、本実施形態の流量調整弁1Aは、第1連結ネジ14と第2連結ネジ15を直列に配置するので、図9に示す流量調整弁100や図10に示す流量調整弁200のように内ネジ121,211と外ネジ122,212を同心円状に配置するものと比べて部品点数が少なくて済み、安価である。   Accordingly, in the flow rate adjusting valve 1A of the present embodiment, the storage chamber 10 is formed between the resin cylinder 3 and the resin cover 4, and the resin movable member 11 moves in the storage chamber 10 in the axial direction. The stroke adjusting rod 13 made of resin is inserted into the cover 4 and one end is connected to the movable member 11, and the thrust of the stroke adjusting rod 13 is transmitted to the diaphragm valve body 8 via the movable member 11. Adjust the valve opening. A first connecting screw 14 is provided with a resin at a connecting portion between the movable member 11 and the stroke adjusting rod 13, and a second connecting screw 15 is provided with a resin on a sliding contact surface between the stroke adjusting rod 13 and the cover 4. The first connecting screw 14 and the second connecting screw 15 are arranged in series in the axial direction to constitute a differential screw. Since the differential screw mechanism of the flow rate adjusting valve 1A of the present embodiment is composed of four parts of the resin cylinder 3, the cover 4, the movable member 11, and the stroke adjusting rod 13, even when used in a corrosive atmosphere, The differential screw is not thinned, and the position of the diaphragm valve body 8 can be adjusted based on the rotation amount of the stroke adjusting rod 13 to accurately adjust the flow rate. Moreover, since the flow regulating valve 1A of this embodiment supports the outer side of the 1st connection screw with the movable member 11, and supports the outer side of the 2nd connection screw 15 with the cover 4, in order to ensure the intensity | strength of a resin-made differential screw. Moreover, it is not necessary to increase the thickness of the movable member 11 and the cover 4 in the radial direction, and the size is small. Furthermore, since the flow regulating valve 1A of this embodiment arranges the first connecting screw 14 and the second connecting screw 15 in series, like the flow regulating valve 100 shown in FIG. 9 and the flow regulating valve 200 shown in FIG. Compared with the case where the inner screws 121 and 211 and the outer screws 122 and 212 are arranged concentrically, the number of parts is small and the cost is low.

また、本実施形態の流量調整弁1Aは、Oリング17,18が可動部材11の図中上下位置を軸方向に押圧してがたつきを防止し、可動部材11を常に一定の軌跡を辿って軸方向へ移動させるので、第1連結ネジ14と第2連結ネジ15が正しく螺合して推力を伝達し合い、弁開度を正確に調整できる。特に、流量調整弁1Aは、Oリング17を設けることにより、流量変化率を僅か0.1〜0.2%程度に抑えることができるので(図7参照)、薬液の微流量調整に有効である。   Further, in the flow rate adjusting valve 1A of the present embodiment, the O-rings 17 and 18 press the upper and lower positions of the movable member 11 in the drawing in the axial direction to prevent rattling, and the movable member 11 always follows a constant locus. Therefore, the first connecting screw 14 and the second connecting screw 15 are properly screwed together to transmit thrust, and the valve opening can be adjusted accurately. In particular, the flow rate adjusting valve 1A is effective in adjusting the fine flow rate of the chemical solution because the flow rate change rate can be suppressed to only about 0.1 to 0.2% by providing the O-ring 17 (see FIG. 7). is there.

(第2実施形態)
続いて、本発明の第2実施形態について図面を参照して説明する。図8は、流量調整弁1Bの断面図である。
本実施形態の流量調整弁1Bは、可動部材11の二次側に圧縮流体を封入して差動ネジのバッククラッシュを防止する点で、第1実施形態の流量調整弁1Aと相違する。よって、ここでは、第1実施形態の流量調整弁1Aと相違する点を中心に説明し、共通する構成には、第1実施形態と同一符号を図面に付し、説明を適宜省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a cross-sectional view of the flow regulating valve 1B.
The flow rate adjusting valve 1B of the present embodiment is different from the flow rate adjusting valve 1A of the first embodiment in that a compressed fluid is sealed on the secondary side of the movable member 11 to prevent backlash of the differential screw. Therefore, here, it demonstrates centering on the point which is different from the flow regulating valve 1A of 1st Embodiment, attaches | subjects the code | symbol same as 1st Embodiment to a common structure, and abbreviate | omits description suitably.

本実施形態の流量調整弁1Bは、シリンダ3とカバー4との間に形成される収納室10が可動部材11を挟んで弁と反対側の一次室10Aと弁側の二次室10Bに区画される。可動部材11とカバー4との間には、Oリング17が径方向に押し潰された状態で保持され、可動部材11とカバー4との間を気密にシールする。シリンダ3の外周面には、環状溝32が形成され、フッ素ゴムやパーフロロエラストマーなどゴム製のOリング31が環状溝32とカバー4との間で径方向に押し潰されてシリンダ3とカバー4との間を気密にシールする。また、可動部材11の凸部12とシリンダ3の貫通孔3aとの間には、Oリング18が径方向に押し潰された状態で保持され、可動部材11の凸部12とシリンダ3の貫通孔3aとの間を気密にシールする。このように気密性を確保された二次室10Bには、カバー4に開設された給排気ポート33が連通し、給排気ポート33に接続する図示しない圧縮流体供給手段より圧縮流体を供給される。給排気ポート33は、二次室10Bに圧縮流体を充填した後、キャップ34で封止される。このとき、二次室10Bには、可動部材11が上限位置まで移動したときに、内圧が大気圧以上になるように、圧縮流体を充填される。   In the flow regulating valve 1B of the present embodiment, a storage chamber 10 formed between the cylinder 3 and the cover 4 is partitioned into a primary chamber 10A on the opposite side of the valve and a secondary chamber 10B on the valve side across the movable member 11. Is done. Between the movable member 11 and the cover 4, the O-ring 17 is held in a state of being crushed in the radial direction, and the space between the movable member 11 and the cover 4 is hermetically sealed. An annular groove 32 is formed on the outer peripheral surface of the cylinder 3, and a rubber O-ring 31 such as fluoro rubber or perfluoroelastomer is crushed in the radial direction between the annular groove 32 and the cover 4, and the cylinder 3 and the cover. 4 is sealed airtight. Further, the O-ring 18 is held between the convex portion 12 of the movable member 11 and the through hole 3 a of the cylinder 3 in a state of being crushed in the radial direction, and the convex portion 12 of the movable member 11 and the cylinder 3 are penetrated. The space between the holes 3a is hermetically sealed. The air supply / exhaust port 33 established in the cover 4 communicates with the secondary chamber 10B thus secured in airtightness, and compressed fluid is supplied from a compressed fluid supply means (not shown) connected to the air supply / exhaust port 33. . The air supply / exhaust port 33 is sealed with a cap 34 after the secondary chamber 10B is filled with the compressed fluid. At this time, the secondary chamber 10B is filled with the compressed fluid so that the internal pressure becomes equal to or higher than the atmospheric pressure when the movable member 11 moves to the upper limit position.

一般に、ネジは、軸方向へねじ込んで移動できるように、がたが設けられる。流量調整弁1Bは、第1,第2連結ネジ14,15にがたがあり、二次室10Bを加圧しないときには、流量調整時にバッククラッシュを生じる恐れがある。二次室10Bに金属製のスプリングを縮設してバッククラッシュを防止すると、耐食性の観点より問題ある。しかし、本実施形態の流量調整弁1Bは、二次室10Bに圧縮流体を充填することにより、二次室10Bの圧力を可動部材11に対してダイアフラム弁体8に作用する流体圧と同じ方向に作用させ、第1連結ネジ14と第2連結ネジ15のバッククラッシュを防止する。そのため、流量調整弁1Bは、可動部材11を軸方向へ移動させて弁開度を調整するときに、第1連結ネジ14の第1雄ネジ13aと第1雌ネジ11a、及び、第2連結ネジ15の第2雄ネジ13bと第2雌ネジ4bが常に同じ端面に当接してがたつかず、流量を正確に調整できる。また、バッククラッシュを防止するための金属製のバネを使用した場合には、バネが腐食して弾圧力が低下し、バッククラッシュを防止できなくなる恐れがあるが、本実施形態のように圧縮流体の圧力を利用する場合には、流量調整弁1Bを腐食性雰囲気で使用しても、ストローク調整ロッド13を常に安定した力で押し上げてバッククラッシュを防止することができ、より高い信頼性を確保できる。   Generally, a screw is provided so that the screw can be screwed in the axial direction and moved. The flow rate adjusting valve 1B has a backlash on the first and second connecting screws 14 and 15, and when the secondary chamber 10B is not pressurized, there is a possibility that backlash may occur during the flow rate adjustment. If a metal spring is contracted in the secondary chamber 10B to prevent back crash, there is a problem from the viewpoint of corrosion resistance. However, the flow rate adjusting valve 1B of the present embodiment fills the secondary chamber 10B with a compressed fluid, so that the pressure in the secondary chamber 10B is the same direction as the fluid pressure acting on the diaphragm valve body 8 with respect to the movable member 11. This prevents backlash of the first connecting screw 14 and the second connecting screw 15. Therefore, when the flow regulating valve 1B moves the movable member 11 in the axial direction and adjusts the valve opening degree, the first male screw 13a, the first female screw 11a, and the second connecting screw 14 of the first connecting screw 14 are used. The second male screw 13b and the second female screw 4b of the screw 15 are not always in contact with the same end face, and the flow rate can be adjusted accurately. In addition, when a metal spring for preventing backlash is used, the spring may be corroded and the elastic pressure may be reduced, and backlash may not be prevented. When pressure is used, even if the flow control valve 1B is used in a corrosive atmosphere, the stroke adjustment rod 13 can always be pushed up with a stable force to prevent back crash, ensuring higher reliability. it can.

尚、本発明の実施の形態について説明したが、本発明は、上記実施の形態に限定されることなく、色々な応用が可能である。
(1)例えば、上記実施形態では、ゴム製のOリング17,18を第1,第2軸出し部材として使用したが、可動部材11の軸出しのみを目的とするならば、ゴム材より弾性変形量の小さい樹脂製のブッシュなどを第1,第2軸出し部材として使用してもよい。また、可動部材11の軸出し及びシールを目的とするならば、ゴム製のYパッキンなど異形シール部材を第1,第2軸出し部材として使用してもよい。つまり、第1,第2軸出し部材は、可動部材11を軸方向に押圧して軸出しできるものであればよい。
(2)例えば、上記実施の形態では、ノブを手動で回転させたが、ストローク調整ロッドの上端部にモータを連結し、自動でストローク調整ロッドを回転させるようにしてもよい。
(3)例えば、上記実施形態では、ニードル弁構造を流量調整弁1A,1Bに適用したが、ポペット弁構造を流量調整弁1A,1Bに適用してもよい。
(4)例えば、上記第2実施の形態では、圧縮流体を二次室に充填した状態でキャップを閉め、二次室に圧縮流体を封入したが、給排気ポートに圧縮流体供給装置を接続したままの状態にし、二次室に常時圧縮流体を供給して二次室の圧力を一定圧以上に保つようにしてもよい。
Although the embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various applications are possible.
(1) For example, in the above-described embodiment, the rubber O-rings 17 and 18 are used as the first and second pivoting members. However, if only the pivoting of the movable member 11 is intended, it is more elastic than the rubber material. A resin bush or the like having a small amount of deformation may be used as the first and second pivoting members. Further, if the purpose is to center and seal the movable member 11, a deformed seal member such as a rubber Y packing may be used as the first and second centering members. That is, the first and second axising members may be any members that can be axially pressed by pressing the movable member 11 in the axial direction.
(2) For example, in the above embodiment, the knob is manually rotated, but a motor may be connected to the upper end portion of the stroke adjusting rod to automatically rotate the stroke adjusting rod.
(3) For example, in the above embodiment, the needle valve structure is applied to the flow rate adjusting valves 1A and 1B, but the poppet valve structure may be applied to the flow rate adjusting valves 1A and 1B.
(4) For example, in the second embodiment, the cap is closed with the compressed fluid filled in the secondary chamber, and the compressed fluid is sealed in the secondary chamber, but the compressed fluid supply device is connected to the supply / exhaust port. Alternatively, the compressed fluid may be constantly supplied to the secondary chamber to keep the pressure in the secondary chamber at a certain level or higher.

本発明の第1実施形態に係る流量調整弁の断面図であって、閉弁状態を示す。It is sectional drawing of the flow regulating valve concerning 1st Embodiment of this invention, Comprising: A valve closing state is shown. 図1に示す流量調整弁の流量調整用ロッドを上限位置まで移動させた状態を示す図である。It is a figure which shows the state which moved the flow regulating rod of the flow regulating valve shown in FIG. 1 to the upper limit position. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1に示す流量調整弁の右側面図であって、ネジの締結部分を断面で示している。It is a right view of the flow regulating valve shown in FIG. 1, Comprising: The fastening part of the screw is shown by the cross section. 軸出し部材の機能を調べる実験で使用した装置の回路図である。It is the circuit diagram of the apparatus used in the experiment which investigates the function of a shafting member. 軸出し部材の機能を説明するための図であって、第1軸出し部材を有しない流量調整弁について流量調整を繰り返し行い、流量変化を調べたものである。図中縦軸は、流量を示し、図中横軸は、繰り返し回数を示す。It is a figure for demonstrating the function of a pivoting member, Comprising: Flow volume adjustment was repeatedly performed about the flow regulating valve which does not have a 1st pivoting member, and the flow volume change was investigated. The vertical axis in the figure indicates the flow rate, and the horizontal axis in the figure indicates the number of repetitions. 軸出し部材の機能を説明するための図であって、第1軸出し部材を有する流量調整弁について流量調整を繰り返し行い、流量変化を調べたものである。図中縦軸は、流量を示し、図中横軸は、繰り返し回数を示す。It is a figure for demonstrating the function of a pivoting member, Comprising: Flow volume adjustment was repeatedly performed about the flow regulating valve which has a 1st pivoting member, and the flow volume change was investigated. The vertical axis in the figure indicates the flow rate, and the horizontal axis in the figure indicates the number of repetitions. 本発明の第2実施形態に係る流量調整弁の断面図であって、閉弁状態を示す。It is sectional drawing of the flow regulating valve concerning 2nd Embodiment of this invention, Comprising: A valve closing state is shown. 第1従来例の流量調整弁の断面図である。It is sectional drawing of the flow regulating valve of the 1st prior art example. 第2従来例の流量調整弁の断面図である。It is sectional drawing of the flow regulating valve of a 2nd prior art example.

符号の説明Explanation of symbols

1A,1B 流量調整弁
2 流路ブロック
3 シリンダ(保持部材)
3a 貫通孔
4 カバー
7 弁座
8 ダイアフラム弁体
10 収納室
10B 二次室
11 可動部材
12 凸部
13 ストローク調整ロッド(ストローク調整部材)
14 第1連結ネジ
15 第2連結ネジ
17 Oリング(第1軸出し部材)
18 Oリング(第2軸出し部材)
1A, 1B Flow rate adjustment valve 2 Flow path block 3 Cylinder (holding member)
3a Through-hole 4 Cover 7 Valve seat 8 Diaphragm valve element 10 Storage chamber 10B Secondary chamber 11 Movable member 12 Convex portion 13 Stroke adjustment rod (Stroke adjustment member)
14 1st connection screw 15 2nd connection screw 17 O-ring (1st axising member)
18 O-ring (second shafting member)

Claims (2)

弁座に当接又は離間するダイアフラム弁体の位置を差動ネジを用いて調整する流量調整弁において、
前記弁座を設けられた樹脂製の流路ブロックに、樹脂製の保持部材と樹脂製のカバーを積層して連結することにより、外観を構成され、
前記保持部材と前記カバーとの間に形成される収納室に軸方向に移動可能に収納され、前記ダイアフラム弁体に連結される樹脂製の可動部材と、
前記カバーの上端には肉厚のボス部が形成され、該ボス部から軸方向へ移動可能に挿入され、一端が前記収納室内に位置して前記可動部材に連結し、他端が外部に突き出す棒状に成形した樹脂製のストローク調整部材と、を有し、
前記差動ネジが、前記可動部材と前記ストローク調整部材との連結部分に樹脂で設けられた第1連結ネジと、前記ストローク調整部材と前記カバーの前記ボス部との摺接面に樹脂で設けられた第2連結ネジとからなること、
前記可動部材と前記収納室の内壁との間に、前記可動部材の軸を出す第1軸出し部材を前記可動部材の上端外周面に形成された環状溝に配設したこと、
前記可動部材の凸部と前記保持部材の貫通孔の内壁との間に、前記可動部材の軸を出す第2軸出し部材を前記凸部の下端外周面に形成された環状溝に配設したこと
少なくとも、前記第1軸出し部材が、前記可動部材を軸方向に押圧してがたつきを防止すること
を特徴とする流量調整弁。
In the flow rate adjustment valve that adjusts the position of the diaphragm valve element that contacts or separates from the valve seat using a differential screw,
By laminating and connecting a resin holding member and a resin cover to the resin flow path block provided with the valve seat, the appearance is configured,
A resin-made movable member that is accommodated in a storage chamber formed between the holding member and the cover so as to be movable in the axial direction, and connected to the diaphragm valve body;
A thick boss is formed at the upper end of the cover , and is inserted from the boss so as to be movable in the axial direction . One end is located in the storage chamber and is connected to the movable member, and the other end protrudes to the outside. A stroke adjustment member made of resin molded into a rod shape ,
The differential screw is provided with a resin on a sliding contact surface between a first connecting screw provided with a resin at a connecting portion between the movable member and the stroke adjusting member, and the boss portion of the cover with the stroke adjusting member. A second connecting screw,
A first pivoting member for projecting the axis of the movable member is disposed in an annular groove formed on the outer peripheral surface of the movable member between the movable member and the inner wall of the storage chamber;
Between the convex part of the said movable member and the inner wall of the through-hole of the said holding member, the 2nd axial member which takes out the axis | shaft of the said movable member was arrange | positioned in the annular groove formed in the lower end outer peripheral surface of the said convex part . that,
The flow rate adjusting valve characterized in that at least the first axising member presses the movable member in the axial direction to prevent rattling .
請求項1に記載する流量調整弁において、
前記収納室が前記可動部材を挟んで弁と反対側の一次室と弁側の二次室とに区画され、前記二次室に圧縮流体が充填されることを特徴とする流量調整弁。
In the flow regulating valve according to claim 1,
The flow rate regulating valve, wherein the storage chamber is partitioned into a primary chamber opposite to the valve and a secondary chamber on the valve side with the movable member interposed therebetween, and the secondary chamber is filled with a compressed fluid.
JP2005159865A 2005-05-31 2005-05-31 Flow control valve Expired - Lifetime JP4667964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159865A JP4667964B2 (en) 2005-05-31 2005-05-31 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159865A JP4667964B2 (en) 2005-05-31 2005-05-31 Flow control valve

Publications (2)

Publication Number Publication Date
JP2006336701A JP2006336701A (en) 2006-12-14
JP4667964B2 true JP4667964B2 (en) 2011-04-13

Family

ID=37557434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159865A Expired - Lifetime JP4667964B2 (en) 2005-05-31 2005-05-31 Flow control valve

Country Status (1)

Country Link
JP (1) JP4667964B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517371B2 (en) * 2006-12-25 2010-08-04 Smc株式会社 Flow control valve
JP2008221386A (en) * 2007-03-12 2008-09-25 Hitachi Koki Co Ltd Driving machine
JP6441672B2 (en) 2014-12-26 2018-12-19 旭有機材株式会社 valve
JP6959743B2 (en) 2017-02-22 2021-11-05 株式会社Screenホールディングス Board processing equipment
JP7440276B2 (en) 2020-01-28 2024-02-28 アズビル株式会社 diaphragm valve
CN117605842B (en) * 2023-09-28 2025-03-25 科讯工业制造(深圳)有限公司 A manual regulating valve for semiconductor wet process and its assembly method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544678Y2 (en) * 1991-07-31 1997-08-20 アドバンス電気工業株式会社 Non-contact type water saving valve
JP2646336B2 (en) * 1994-08-02 1997-08-27 日曹エンジニアリング株式会社 Handle mechanism of manually operated valve
JPH1151217A (en) * 1997-08-05 1999-02-26 Advance Denki Kogyo Kk Flow regulating valve mechanism
JP2004068935A (en) * 2002-08-07 2004-03-04 Advance Denki Kogyo Kk Diaphragm valve device
JP4078216B2 (en) * 2003-01-24 2008-04-23 シーケーディ株式会社 Flow rate adjusting valve and adjusting method thereof
JP4136839B2 (en) * 2003-08-08 2008-08-20 シーケーディ株式会社 Chemical valve

Also Published As

Publication number Publication date
JP2006336701A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
KR101282925B1 (en) Flow control valve
KR101013441B1 (en) Pinch Valve
US10132415B2 (en) Fluid controller
US5439197A (en) Flow rate control valve
TWI795473B (en) Fluid control valve
EP2058568A1 (en) Cam valve
US10167960B2 (en) Fluid control valve
JP4340119B2 (en) Chemical valve
US10989317B2 (en) Two-way valve
AU2016204475A1 (en) Relief valves and methods for installing the same
WO2017130959A1 (en) Fluid controller
JP4667964B2 (en) Flow control valve
JP4190866B2 (en) Flow control device
JP2016161022A (en) Fluid controller
KR20200123226A (en) Diaphragm valve
TWI647394B (en) Manual valve
JP4925936B2 (en) Suck back valve
CN117605842B (en) A manual regulating valve for semiconductor wet process and its assembly method
JP4860506B2 (en) Control valve
JP4078216B2 (en) Flow rate adjusting valve and adjusting method thereof
JP2002372159A (en) Pinch valve
JP2006194298A (en) Diaphragm valve
JP4575790B2 (en) Chemical valve
JP2006046196A (en) Regulator for fluid
JP2003329159A (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150