Nothing Special   »   [go: up one dir, main page]

JP4667065B2 - Brazing fin material and manufacturing method thereof - Google Patents

Brazing fin material and manufacturing method thereof Download PDF

Info

Publication number
JP4667065B2
JP4667065B2 JP2005041209A JP2005041209A JP4667065B2 JP 4667065 B2 JP4667065 B2 JP 4667065B2 JP 2005041209 A JP2005041209 A JP 2005041209A JP 2005041209 A JP2005041209 A JP 2005041209A JP 4667065 B2 JP4667065 B2 JP 4667065B2
Authority
JP
Japan
Prior art keywords
mass
less
brazing
fin material
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005041209A
Other languages
Japanese (ja)
Other versions
JP2006225723A (en
Inventor
晃 川原
昭男 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2005041209A priority Critical patent/JP4667065B2/en
Publication of JP2006225723A publication Critical patent/JP2006225723A/en
Application granted granted Critical
Publication of JP4667065B2 publication Critical patent/JP4667065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

本発明はブレージング用フィン材およびその製造方法に関する。   The present invention relates to a brazing fin material and a method for producing the same.

ブレージングによってラジエータなどの自動車用熱交換器に使用されるフィン材は、従来、コルゲート成形され、チューブ材と組み合わせてろう付接合される。近年熱交換器の軽量化、コスト低減の要求がますます高まり、フィン材はじめ主要部材の薄肉化がさらに進行している。フィン材を薄くする際、熱交換器の特性を維持、向上するため、近年のフィン材はさまざまな元素を添加したり、工程を検討することによって、高強度化を実現している。例えば添加元素を変更した例として、強度と熱伝導性に優れたAl−Fe−Ni系合金フィン材(特許文献1,2参照)が提案されている。しかし、この合金はフィンの薄肉化のためには、自己耐食性に関し課題の残る合金であった。また、工程を検討した例として、連続鋳造圧延での冷却速度を規定して強度および導電性を高めたAl−Fe−Mn−Si系合金フィン材(特許文献3参照)があるが、特許文献3中に記載されているとおり、このフィン材は素材の再結晶粒径が極端に小さい。フィン材のグレインサイズが微細であると、高温においてクリープ変形しやすく、ろう付工程時にフィンが座屈するため熱交換器の組み付け強度が低下することが多い。特許文献4ではろう付後強度、熱伝導性、自己耐食性に優れたフィン材が提案されている。しかしながら、概文献に記載のフィン材の最終冷間圧延率は15〜50%であるが、最終冷間圧延率が15%と50%では、素材強度、結晶組織形状が大きく異なるのは明白であり、これは上記組み付け強度に対して適切な規定とはいえない。また、概文献の実施例を見ると、全ての実施例における中間焼鈍は1分未満の連続式焼鈍を用いている。最終板厚と最終冷間圧延率から逆算すると、板厚0.11mmにおいて連続式焼鈍を行っており、これは工業用設備においてはかなり困難な、限定された設備でのみ実施可能な条件といえる。一般的な連続式焼鈍炉は、コスト、性能の点から板厚0.3〜1.0mmで実施することが前提とされている。例えば板厚0.3mmにおいて連続焼鈍を行い、その後0.08mmまで冷間圧延するとすると、最終冷間圧延率は70%を超え、グレインサイズが微細化する可能性が極めて高い。   A fin material used for a heat exchanger for an automobile such as a radiator by brazing is conventionally corrugated and brazed in combination with a tube material. In recent years, the demand for weight reduction and cost reduction of heat exchangers has been increasing, and the thinning of main members such as fin materials has further progressed. In order to maintain and improve the characteristics of the heat exchanger when thinning the fin material, recent fin materials have been improved in strength by adding various elements and studying the process. For example, as an example in which the additive element is changed, an Al—Fe—Ni alloy fin material excellent in strength and thermal conductivity (see Patent Documents 1 and 2) has been proposed. However, this alloy has remained a problem with respect to self-corrosion resistance for fin thinning. Further, as an example of examining the process, there is an Al—Fe—Mn—Si alloy fin material (see Patent Document 3) whose strength and conductivity are increased by specifying a cooling rate in continuous casting and rolling. 3, the fin material has an extremely small recrystallized grain size. If the grain size of the fin material is fine, creep deformation tends to occur at high temperatures, and the fins buckle during the brazing process, and the assembly strength of the heat exchanger often decreases. Patent Document 4 proposes a fin material excellent in strength after brazing, thermal conductivity, and self-corrosion resistance. However, although the final cold rolling rate of the fin material described in the general literature is 15 to 50%, it is obvious that the material strength and the crystal structure shape are greatly different between the final cold rolling rates of 15% and 50%. Yes, this is not an appropriate rule for the assembly strength. Moreover, when the Example of general literature is seen, the intermediate annealing in all the Examples uses the continuous annealing for less than 1 minute. Back-calculating from the final plate thickness and the final cold rolling rate, continuous annealing is performed at a plate thickness of 0.11 mm, which is a condition that can be implemented only with limited facilities, which is quite difficult in industrial facilities. . A general continuous annealing furnace is assumed to be implemented with a plate thickness of 0.3 to 1.0 mm from the viewpoint of cost and performance. For example, if continuous annealing is performed at a plate thickness of 0.3 mm and then cold rolling is performed to 0.08 mm, the final cold rolling rate exceeds 70%, and the possibility of fine grain size is very high.

さらに、特許文献5では双ロール連続鋳造圧延を用いることにより、高強度・高熱伝導性を有するフィン材を提案している。このフィン材はろう付加熱まで圧延組織(繊維状組織)を保持することによって耐ろう拡散性を高めている。しかしながら、ろう付加熱まで圧延組織を有する材料の内部には大量のひずみが残存して、素材の強度が高くなる恐れがある。フィン素材強度が高いと、スプリングバック量が多いことから、フィン材の成形性が低下し、コルゲートやプレス成形を行えない可能性がある。また、素材強度が高いとコバ等から割れが生じ、薄肉での圧延中にコイルが破断する問題もある。   Furthermore, Patent Document 5 proposes a fin material having high strength and high thermal conductivity by using twin roll continuous casting rolling. This fin material enhances the diffusion resistance of the brazing by holding the rolling structure (fibrous structure) up to the brazing heat. However, a large amount of strain remains in the material having a rolled structure up to the brazing heat, and the strength of the material may be increased. If the strength of the fin material is high, the amount of springback is large, so the moldability of the fin material is reduced, and corrugation or press molding may not be possible. Further, when the strength of the material is high, cracks occur from the edge and the like, and there is a problem that the coil breaks during rolling with a thin wall.

以上のように、フィン材の薄肉化には、ろう付加熱後の強度、熱伝導性、耐食性、ろう付中の組み付け強度等の特性に優れるだけでなく、安定に生産するために圧延性をはじめとした生産性を材料面から考慮する必要がある。
特開平7−216485号公報 特開平8−104934号公報 国際公開WO00/05426号パンフレット 特開2002−256402号公報 特開2002−241910号公報
As described above, thinning the fin material not only has excellent properties such as strength after brazing heat addition, thermal conductivity, corrosion resistance, and assembly strength during brazing, but also has rolling properties for stable production. It is necessary to consider productivity from the viewpoint of materials.
Japanese Patent Laid-Open No. 7-216485 JP-A-8-104934 International Publication WO00 / 05426 Pamphlet JP 2002-256402 A JP 2002-241910 A

本発明は、ろう付加熱後の強度、熱伝導性、自己耐食性およびコルゲート形成性に優れたブレージング用フィン材、およびそのフィン材を安定に製造可能な製造方法を提供することを目的とする。   An object of the present invention is to provide a fin material for brazing excellent in strength, heat conductivity, self-corrosion resistance, and corrugating ability after brazing heat, and a production method capable of stably producing the fin material.

本発明は、
(1)1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなり、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最後に行う中間焼鈍後に、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つアルミニウム合金を板厚圧下率30%未満で冷間圧延して製造されたことを特徴とするブレージング用フィン材、
(2)1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、(a)3.0mass%以下のZn、0.3mass%以下のIn、0.3%mass以下のSnの1種または2種以上、および/または(b)0.25mass%以下のCu、0.1mass%以下のTi、0.1mass%以下のZrの1種または2種以上、および/または(c)0.2mass%以下のNi、0.2mass%以下のCr、0.2mass%以下のCoの1種または2種以上残部Alおよび不可避不純物からなる組成の合金であって、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最後に行う中間焼鈍後に、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つアルミニウム合金を板厚圧下率30%未満で冷間圧延して製造されたことを特徴とするブレージング用フィン材、
(3)前記最後の中間焼鈍を300〜480℃、30〜1500分で行うことを特徴とする(1)又は(2)記載のブレージング用フィン材、
(4)1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、および0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなるアルミニウム合金を、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最終の中間焼鈍を行い、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を有するようにし、その後板厚圧下率30%未満で冷間圧延することを特徴とするブレージング用フィン材の製造方法、
(5)1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、(a)3.0mass%以下のZn、0.3mass%以下のIn、0.3%mass以下のSnの1種または2種以上、および/または(b)0.25mass%以下のCu、0.1mass%以下のTi、0.1mass%以下のZrの1種または2種以上、および/または(c)0.2mass%以下のNi、0.2mass%以下のCr、および0.2mass%以下のCoの1種または2種以上残部Alおよび不可避不純物からなる組成の合金を、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最終の中間焼鈍を行い、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を有するようにし、その後板厚圧下率30%未満で冷間圧延することを特徴とするブレージング用フィン材の製造方法、および
(6)前記最終の中間焼鈍を300〜480℃、30〜1500分で行うことを特徴とする(4)又は(5)記載のブレージング用フィン材の製造方法
を提供するものである。
The present invention
(1) Fe exceeding 1.2 mass% and 1.8 mass% or less, Si exceeding 1.2 mass% and 2.0 mass% or less, Mn exceeding 0.3 mass% and 0.9 mass% or less, the balance being Al and inevitable 80% or more of the surface area seen from the surface layer has a diameter of 10 mm or more in the rolling direction after the intermediate annealing that is finally performed at a sheet thickness of 0.1 mm or less without annealing before intermediate annealing. A brazing fin material produced by cold rolling an aluminum alloy having a crystal structure occupied by recrystallized grains at a sheet thickness reduction of less than 30%;
(2) Fe exceeding 1.2 mass% and 1.8 mass% or less, Si exceeding 1.2 mass% and 2.0 mass% or less, Mn exceeding 0.3 mass% and 0.9 mass% or less , (a) 3. Zn of 0 mass% or less, In of 0.3 mass% or less, 1 type or 2 types or more of Sn of 0.3% mass or less, and / or (b) Cu of 0.25 mass% or less, 0.1 mass% or less One or more of Ti, 0.1 mass% or less of Zr, and / or (c) one of 0.2 mass% or less of Ni, 0.2 mass% or less of Cr, or 0.2 mass% or less of Co or 2 or more, it alloys der compositions the balance of Al and inevitable impurities, without performing annealing before intermediate annealing, after the intermediate annealing carried out at the end at the plate thickness 0.1mm or less, the table as viewed from the surface layer And characterized in that more than 80% of the product has been produced by cold rolling an aluminum alloy having a crystal structure that is occupied by recrystallized grains with a diameter of more than a length of 10mm in the rolling direction in the sheet thickness reduction rate less than 30% Fin material for brazing,
(3) The last intermediate annealing is performed at 300 to 480 ° C. for 30 to 1500 minutes, the brazing fin material according to (1) or (2),
(4) Fe in excess of 1.2 mass% and 1.8 mass% or less, Si in excess of 1.2 mass% and 2.0 mass% or less, and Mn in excess of 0.3 mass% and 0.9 mass% or less, the balance being Al and An aluminum alloy composed of inevitable impurities is subjected to final intermediate annealing at a thickness of 0.1 mm or less without annealing before intermediate annealing, and 80% or more of the surface area seen from the surface layer is 10 mm or more in length in the rolling direction. A method for producing a brazing fin material, characterized by having a crystal structure occupied by recrystallized grains having a diameter of, and then cold rolling at a sheet thickness reduction of less than 30%,
(5) Fe exceeding 1.2 mass% and not more than 1.8 mass%, Si exceeding 1.2 mass% and not more than 2.0 mass%, Mn exceeding 0.3 mass% and not more than 0.9 mass% , (a) 3. Zn of 0 mass% or less, In of 0.3 mass% or less, 1 type or 2 types or more of Sn of 0.3% mass or less, and / or (b) Cu of 0.25 mass% or less, 0.1 mass% or less 1 type or 2 types or more of Ti, 0.1 mass% or less of Zr, and / or (c) 1 type of 0.2 mass% or less of Ni, 0.2 mass% or less of Cr, and 0.2 mass% or less of Co Alternatively, an alloy having a composition of two or more , with the balance being Al and inevitable impurities , is subjected to final intermediate annealing at a thickness of 0.1 mm or less without annealing before intermediate annealing, and the surface area as seen from the surface layer The brazing fin is characterized in that 80% or more of the steel has a crystal structure occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction, and is then cold-rolled at a sheet thickness reduction of less than 30%. Manufacturing method of the material, and
(6) The method for producing a brazing fin material according to (4) or (5), wherein the final intermediate annealing is performed at 300 to 480C for 30 to 1500 minutes. is there.

本発明では薄肉化が進むフィン材の特性を改善できる。具体的には、薄肉化の際に必要である垂下量(熱交換器組み付け製造時の強度)、自己耐食性およびコルゲート形成性を改善し、ろう付加熱後の引張強さと熱伝導性を向上できる。さらに本発明は、これらの高性能フィン材を安定に製造することができる。   In the present invention, the characteristics of the fin material that is becoming thinner can be improved. Specifically, the amount of droop (strength when manufacturing heat exchanger assembly), self-corrosion resistance and corrugation formation necessary for thinning can be improved, and tensile strength and thermal conductivity after brazing heat can be improved. . Furthermore, this invention can manufacture these high performance fin materials stably.

本発明の一つの実施態様は、1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなり、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最後に行う中間焼鈍後に、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つアルミニウム合金を板厚圧下率30%未満で冷間圧延して製造されたブレージング用フィン材である。
One embodiment of the invention includes Fe greater than 1.2 mass% and less than 1.8 mass%, Si greater than 1.2 mass% and less than 2.0 mass%, Mn greater than 0.3 mass% and less than 0.9 mass%. In addition, the balance is made of Al and inevitable impurities, and 80% or more of the surface area viewed from the surface layer is length in the rolling direction after the final annealing at the plate thickness of 0.1 mm or less without annealing before the intermediate annealing. A brazing fin material manufactured by cold rolling an aluminum alloy having a crystal structure occupied by recrystallized grains having a diameter of 10 mm or more at a sheet thickness reduction of less than 30%.

また、本発明の別の実施態様は、1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、および0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなるアルミニウム合金を、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最終の中間焼鈍を行い、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を有するようにし、その後板厚圧下率30%未満で冷間圧延するブレージング用フィン材の製造方法である。
In another embodiment of the present invention, Fe is more than 1.2 mass% and less than 1.8 mass% Fe, Si is more than 1.2 mass% and less than 2.0 mass%, and more than 0.3 mass% and 0.9 mass%. The aluminum alloy consisting of the following Mn , the balance being Al and inevitable impurities , is subjected to final intermediate annealing at a sheet thickness of 0.1 mm or less without annealing before intermediate annealing, and more than 80% of the surface area seen from the surface layer Is a method for producing a brazing fin material that has a crystal structure occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction and then cold-rolls at a sheet thickness reduction of less than 30%.

本発明において、フィン材に用いられるアルミニウム(Al)合金の組成を上記のように限定した理由を以下に説明する。
本発明ではAl−Fe−Mn−Si系金属間化合物が微細に分散し、それらが中間焼鈍時に転位や亜結晶粒界の移動を妨げる効果によって、粗大な再結晶組織を得ることが目的である。必須元素である鉄(Fe)、ケイ素(Si)、マンガン(Mn)の含有は、フィン材のろう付後の強度向上、および微細な金属間化合物を得て、再結晶の粗大化を目的とする点で共通する。以下、各元素について詳しく説明する。
The reason why the composition of the aluminum (Al) alloy used for the fin material in the present invention is limited as described above will be described below.
In the present invention, an Al-Fe-Mn-Si intermetallic compound is finely dispersed, and it is an object to obtain a coarse recrystallized structure due to the effect of preventing dislocations and movement of subgrain boundaries during intermediate annealing. . The inclusion of essential elements such as iron (Fe), silicon (Si), and manganese (Mn) is aimed at improving the strength after brazing of the fin material and obtaining a fine intermetallic compound to increase the recrystallization coarseness. It is common in the point to do. Hereinafter, each element will be described in detail.

Feの含有は、第二相分散粒子をAl−Fe−Mn−Si系金属間化合物とし、ろう付によって分散粒子がマトリックス相に再固溶して熱伝導性が低下するのを防ぐことがさらなる目的である。Feの含有量が1.2mass%以下では強度の向上が十分ではなく、1.8mass%を超えると晶出相が粗大化し、再結晶の核生成サイトが増すために再結晶組織が微細となる。またフィン材の耐食性が低下する。上記効果からFeの含有量は1.3mass%を超え1.7mass%未満の範囲が好ましい。   The inclusion of Fe can further prevent the second phase dispersed particles from being an Al—Fe—Mn—Si intermetallic compound and prevent the dispersed particles from re-dissolving in the matrix phase by brazing to lower the thermal conductivity. Is the purpose. When the Fe content is 1.2 mass% or less, the strength is not sufficiently improved. When the Fe content exceeds 1.8 mass%, the crystallization phase becomes coarse and the recrystallization nucleation sites increase, resulting in a fine recrystallized structure. . Further, the corrosion resistance of the fin material is lowered. From the above effect, the Fe content is preferably in the range of more than 1.3 mass% and less than 1.7 mass%.

Siの含有量が少ない場合、金属間化合物の大部分がAl−Mn系の化合物となる。この化合物は微細であり、加熱時の再結晶粗大化には有効であるが、ろう付加熱によってそのほとんどが母相中に再固溶するためろう付加熱後の強度が低下する。ろう付後の強度を十分に得るためにSiの含有量が1.2mass%以下では効果が不十分である。また、2.0mass%を超えると合金の融点が低下し、ブレージング用フィン材として用いる場合にろう材の拡散によってフィン材が座屈してしまうばかりでなく、初晶Siが生成し、薄肉における圧延性が著しく損なわれる。上記理由からSiの含有量はより好ましくは1.2mass%を超え1.6mass%以下の範囲である。   When the Si content is small, most of the intermetallic compounds are Al-Mn compounds. Although this compound is fine and effective for coarsening of recrystallization during heating, most of it is re-dissolved in the matrix by the heat of brazing, so that the strength after brazing is reduced. In order to sufficiently obtain the strength after brazing, the effect is insufficient when the Si content is 1.2 mass% or less. Moreover, when it exceeds 2.0 mass%, the melting point of the alloy decreases, and when used as a brazing fin material, the fin material not only buckles due to diffusion of the brazing material, but also primary crystal Si is generated, and rolling in a thin wall The properties are significantly impaired. For the above reasons, the Si content is more preferably in the range of more than 1.2 mass% and 1.6 mass% or less.

Mnの含有量が0.3mass%以下であると第二相分散粒子のうち、Al−Fe−Si系金属間化合物の割合が増す。Al−Fe−Si系金属間化合物は、Al−Fe−Mn−Si系と比較して粗大なため、再結晶組織の粗大化が不十分となる。また、ろう付加熱後の強度も十分に向上することが出来ない。逆にMnの含有量が0.9mass%を超えると熱伝導性と圧延性が低下する。上記理由より好ましくは0.4mass%を超え、0.8mass%未満の範囲である。   When the content of Mn is 0.3 mass% or less, the ratio of the Al—Fe—Si intermetallic compound in the second phase dispersed particles increases. Since the Al—Fe—Si intermetallic compound is coarser than the Al—Fe—Mn—Si, the recrystallized structure is not sufficiently coarsened. Also, the strength after brazing heat cannot be sufficiently improved. On the other hand, if the Mn content exceeds 0.9 mass%, the thermal conductivity and the rollability deteriorate. From the above reason, it is preferably in the range of more than 0.4 mass% and less than 0.8 mass%.

また、本発明のフィン材を構成するAl合金には、前記の必須元素に加え、犠牲陽極効果を有する亜鉛(Zn)、インジウム(In)、スズ(Sn)のうちの1種または2種以上、または/および強度向上に有効な銅(Cu)、チタン(Ti)、ジルコニウム(Zr)のうちの1種または2種以上を加えても良い。Zn,In,Snの添加は、犠牲陽極効果の付与とともに、フィン材自身の自己耐食性が劣化するので、それぞれの含有量の上限値は好ましくはZn;3.0mass%,In;0.3mass%,Sn;0.3mass%である。また、上述の強化元素を多量に加えると、Cu,Tiの場合にはろう付後のフィン材の熱伝導性や、耐食性、犠牲陽極効果が、Zrの場合には圧延性、疲労特性が低下するので、これらの元素を加える場合の好ましい含有量の上限はそれぞれ、Cu;0.25mass%,Ti;0.1mass%,Zr;0.1mass%である。
上述の元素の他に、化合物をさらに微細化する元素(例えばニッケル(Ni)、クロム(Cr)、コバルト(Co))を本発明のフィン材に加えても構わない。その場合には、フィン材の耐食性、結晶組織制御の観点から好ましい含有量の上限はそれぞれ0.2mass%である。
本発明のフィン材に用いられるアルミニウム合金の組成は、上述の元素の他、残部Alおよび不可避不純物から成るものである。
The Al alloy constituting the fin material of the present invention includes one or more of zinc (Zn), indium (In), and tin (Sn) having a sacrificial anode effect in addition to the essential elements described above. Alternatively, and / or one or more of copper (Cu), titanium (Ti), and zirconium (Zr) effective for strength improvement may be added. Addition of Zn, In and Sn, together with the provision of the sacrificial anode effect, deteriorates the self-corrosion resistance of the fin material itself. Therefore, the upper limit value of each content is preferably Zn: 3.0 mass%, In: 0.3 mass% , Sn; 0.3 mass%. In addition, when Cu or Ti is added in a large amount, the heat conductivity, corrosion resistance, and sacrificial anode effect of the fin material after brazing are reduced in the case of Cu and Ti, and the rollability and fatigue characteristics are reduced in the case of Zr. Therefore, the upper limit of the preferable content when these elements are added is Cu: 0.25 mass%, Ti: 0.1 mass%, Zr: 0.1 mass%, respectively.
In addition to the elements described above, elements that further refine the compound (for example, nickel (Ni), chromium (Cr), cobalt (Co)) may be added to the fin material of the present invention. In that case, the upper limit of the preferable content from the viewpoint of the corrosion resistance of the fin material and the control of the crystal structure is 0.2 mass%.
The composition of the aluminum alloy used for the fin material of the present invention is composed of the balance of Al and inevitable impurities in addition to the above-mentioned elements.

次に本発明において、最後に行う中間焼鈍後の結晶組織を規定した理由を説明する。本発明は高強度フィンを主な対象にしているため、中間焼鈍によって再結晶させることが必須である。再結晶させてO材にせずとも0.1mm以下の板厚で、冷間圧延や、レベリング、スリッティングが容易に行える材料、例えばフィン材素材強度が170MPa以下のようなフィン材では本発明の製造方法を適用せずとも、容易にフィン材を製造できる。これに対して、本発明は中間焼鈍によって軟化させないと、素材強度が170MPa以上となって製造が困難となるような高強度フィン材に好適なものである。   Next, the reason why the crystal structure after the final annealing performed in the present invention is specified will be described. Since the present invention is mainly intended for high-strength fins, it is essential to recrystallize by intermediate annealing. A material having a thickness of 0.1 mm or less without being recrystallized to easily perform cold rolling, leveling, and slitting, for example, a fin material having a fin material strength of 170 MPa or less is used in the present invention. The fin material can be easily manufactured without applying the manufacturing method. On the other hand, the present invention is suitable for a high-strength fin material that has a material strength of 170 MPa or more and is difficult to manufacture unless softened by intermediate annealing.

本発明で規定される組成をもつアルミニウム合金には、微細な金属間化合物が密に分散しているため、中間焼鈍後の再結晶粒径は粗大化する。本発明における結晶組織に関する規定は、本発明者らが種々の結晶粒径を持つフィン材を観察した結果得た知見に基づいている。すなわち、圧延方向に10mm未満の長さを持つ粗大な再結晶組織では、各結晶方位によって強度が異なるため、条材のフラットネスが保てず、冷間圧延率の制御やレベリング、スリッティングライン通板が困難になる。フラットネスを保つには、表面積の約80%以上がこのように、繊維組織に近い粗大展伸組織、例えば略楕円形状の再結晶粒を有する必要がある。
本発明においては、最後の中間焼鈍後の圧延材の表層からみた表面積の80%以上を占める再結晶粒の径の長さは、圧延材表面における圧延方向で、10mm以上、好ましくは10〜80mm、さらに好ましくは10〜40mmである。この圧延材を得るためには、例えば、上記組成のAl合金を双ロール連続鋳造圧延法により、鋳造速度500〜3000mm/minで、板厚2〜9mmの板状鋳塊に作製し、通常の冷間圧延の条件で板厚0.1mm以下に圧延して、300〜480℃、30〜1500分の最後の中間焼鈍を行なえばよい。中間焼鈍の温度が低すぎると十分に強度が低下しないため、得られるフィン材の成形性が劣り、また、高すぎると析出粒子が粗大化し、得られるフィン材のろう付加熱後の強度が低下する。
なお、本発明で、「表層から見た表面積」とは、板厚方向と垂直な面(LT−ST面)から目視で見たときの表面積をいい、その際の圧延材の大きさ(長さおよび幅)はいくつでも良い。スリッターを施した製品条幅でも、スリッター前の圧延全幅でも構わない。測定の便利上、製品条幅が好ましいが、どの大きさで測定しようとも結果は同じである。
In the aluminum alloy having the composition defined in the present invention, fine intermetallic compounds are densely dispersed, so that the recrystallized grain size after the intermediate annealing becomes coarse. The provisions relating to the crystal structure in the present invention are based on the knowledge obtained by the present inventors as a result of observing fin materials having various crystal grain sizes. That is, in a coarse recrystallized structure having a length of less than 10 mm in the rolling direction, the strength differs depending on each crystal orientation, so the flatness of the strip cannot be maintained, and control of the cold rolling rate, leveling, slitting line, etc. Threading becomes difficult. In order to maintain flatness, it is necessary that about 80% or more of the surface area has a coarse extended structure close to the fiber structure, for example, a substantially elliptical recrystallized grain.
In the present invention, the length of the diameter of the recrystallized grains occupying 80% or more of the surface area as viewed from the surface layer of the rolled material after the final intermediate annealing is 10 mm or more, preferably 10 to 80 mm in the rolling direction on the surface of the rolled material. More preferably, it is 10-40 mm. In order to obtain this rolled material, for example, an Al alloy having the above composition is produced into a plate-shaped ingot having a thickness of 2 to 9 mm at a casting speed of 500 to 3000 mm / min by a twin roll continuous casting rolling method. Rolling to a sheet thickness of 0.1 mm or less under the conditions of cold rolling, the final intermediate annealing at 300 to 480 ° C. for 30 to 1500 minutes may be performed. If the temperature of the intermediate annealing is too low, the strength is not sufficiently lowered, so that the formability of the obtained fin material is inferior, and if it is too high, the precipitated particles are coarsened and the strength of the obtained fin material after brazing heat is lowered. To do.
In the present invention, the “surface area viewed from the surface layer” refers to the surface area as viewed from the surface perpendicular to the plate thickness direction (LT-ST surface), and the size (long) of the rolled material at that time The width and width) can be any number. It may be the product width subjected to slitting, or the entire rolling width before slitting. For convenience of measurement, the product width is preferable, but the result is the same regardless of the size.

フィン材を再結晶させる最後の中間焼鈍を、板厚0.1mm以下で行なうことに限定したのは、これ以上の板厚で焼鈍を行った場合、本発明の他の要件を満たしても、0.1mm以下、例えば0.06mmの最終板厚まで圧延すると相当量のひずみが蓄えられ、ろう付加熱の際の再結晶組織が微細になるためである。また、多量のひずみが蓄えられた高強度フィン材は、素材強度が高くなりコバ割れなどの不良が生じる。本発明は、最終冷間圧延率が低く、ろう付時の熱交換器組み付け強度と生産性に優れたフィン材を製造することを目的とするので、最後の中間焼鈍は最終板厚に近い板厚で行う。本発明においてアルミニウム合金は、最後の中間焼鈍を行ったのち冷間圧延によってブレージング用フィン材に製造するが、その際の冷間圧延率を30%未満に規定した理由も、同様に熱交換器の組み付け強度と、圧延時のコバ割れを防ぐためである。最後の中間焼鈍後の冷間圧延における板厚圧下率(冷間圧延率)は12〜28%であることが好ましい。   The final intermediate annealing for recrystallizing the fin material is limited to be performed at a plate thickness of 0.1 mm or less, and when annealing is performed at a plate thickness of more than this, even if the other requirements of the present invention are satisfied, This is because rolling to a final thickness of 0.1 mm or less, for example, 0.06 mm, accumulates a considerable amount of strain and makes the recrystallized structure fine during brazing addition heat. In addition, a high-strength fin material in which a large amount of strain is stored has a high material strength and causes defects such as edge cracks. The purpose of the present invention is to produce a fin material having a low final cold rolling rate and excellent heat exchanger assembly strength and productivity at the time of brazing, so the final intermediate annealing is a plate close to the final thickness. Do it in thickness. In the present invention, the aluminum alloy is manufactured into a brazing fin material by cold rolling after the final intermediate annealing. The reason why the cold rolling rate at that time is specified to be less than 30% is also a heat exchanger. This is to prevent the cracking strength at the time of rolling. The sheet thickness reduction ratio (cold rolling ratio) in the cold rolling after the final intermediate annealing is preferably 12 to 28%.

中間焼鈍後のフィン材の結晶組織を観察するには、得られた合金フィン材を王水中に浸漬し、板材表面を直接観察すれば良い。本発明のような粗大な結晶組織を観察するには目視で十分である。圧延方向に粗大である結晶粒は、通常、板厚方向に1〜2個の結晶粒しか有さないため、表層からの観察を行えば良い。本発明において、表層から見た表面積の圧延方向に長さ10mm以上の径を有する再結晶粒が占める割合は80%以上であり、85〜100%が好ましい。中間焼鈍後のサンプルを採取出来ない場合には、フィン製品を観察しても良い。なぜならば中間焼鈍で粗大な結晶組織になっている場合、その後本発明の規定範囲のような低い圧延率で圧延した後の結晶組織もほぼ同等なためである。   In order to observe the crystal structure of the fin material after the intermediate annealing, the obtained alloy fin material may be immersed in aqua regia and the plate material surface may be directly observed. Visual observation is sufficient to observe a coarse crystal structure as in the present invention. The crystal grains that are coarse in the rolling direction usually have only one or two crystal grains in the plate thickness direction, and therefore observation from the surface layer may be performed. In the present invention, the proportion of recrystallized grains having a diameter of 10 mm or more in the rolling direction of the surface area viewed from the surface layer is 80% or more, preferably 85 to 100%. If the sample after the intermediate annealing cannot be collected, the fin product may be observed. This is because when a coarse crystal structure is formed by intermediate annealing, the crystal structure after rolling at a low rolling rate as in the specified range of the present invention is almost the same.

さらに、ろう付後の再結晶組織から加熱前の再結晶組織を推定することも可能である。ろう付加熱後の再結晶粒径が本発明のように粗大であるためには、通常のろう付加熱条件(約600℃×数分)を鑑みると、加熱前の結晶組織は繊維組織か、粗大再結晶組織のどちらかに限定できる。微細な再結晶組織をろう付加熱しても10mm以上に成長するほどろう付による加熱時間は長くはない。また、繊維組織から再結晶した組織と、粗大再結晶組織から再結晶した組織では、結晶粒界の形状が異なる。すなわち図1、2のろう付け加熱前後におけるフィン材結晶組織の写真に示すように粗大再結晶組織から再結晶した結晶粒界(図1:参考例1)は、繊維組織からのそれ(図2:参考例2)と比較し、鋸歯状になる。これは繊維組織からの再結晶する場合と異なり、一度再結晶することにより歪みが低減したことによって再結晶の駆動力が小さくなっており、さらに中間焼鈍温度が高いため析出が進み、粒界の移動を妨げる分散粒子が多いためである。このような違いに注目すると、ろう付後の再結晶組織から、加熱前の再結晶組織が推定でき、さらに中間焼鈍温度直後の再結晶組織を推測できる。なお、図1、2において、各上段はろう付け前、各下段はろう付け後を示し、スケールの最小目盛りは図1は1mm、図では0.5mmである。また、再結晶粒サイズは、長径(圧延方向。図中左右方向)で測定したものである。図では、上段に示すろう付け前の完全繊維状組織から下段に示すろう付け後の再結晶組織へ再結晶し、結晶粒の形状が大きく変化する。これに対して、図1は、上段に示すろう付け前の再結晶組織は、下段に示すろう付け後の図では圧延方向に若干展伸して、異方性の特徴が弱くなっており、結晶組織の短径(巾方向。図中上下方向)が太くなり、再結晶が生じているが、鋸歯状の形状の結晶粒界を維持している。すなわち、ろう付け後において、図1示されるような再結晶組織(圧延方向に長さ10mm以上の径を有する粗大な鋸歯状の再結晶粒が表面積の80%以上を占める組織)であれば、中間焼鈍後の再結晶組織が本発明で規定する再結晶組織であることが推測できる。
本発明においては、上記で説明された条件以外は、適宜常法を用いてフィン材を製造することができる。
Furthermore, it is possible to estimate the recrystallized structure before heating from the recrystallized structure after brazing. In order for the recrystallized grain size after brazing heat to be coarse as in the present invention, in view of normal brazing heat treatment conditions (about 600 ° C. × several minutes), the crystal structure before heating is a fiber structure, It can be limited to either a coarse recrystallized structure. Even if a fine recrystallized structure is heated by brazing, the heating time by brazing is not so long that it grows to 10 mm or more. Moreover, the shape of the crystal grain boundary differs between the structure recrystallized from the fiber structure and the structure recrystallized from the coarse recrystallized structure. That is, as shown in the photographs of the crystal structure of the fin material before and after brazing heating in FIGS. 1 and 2, the grain boundaries recrystallized from the coarse recrystallized structure (FIG. 1 : Reference Example 1 ) are those from the fiber structure (FIG. 2). : Compared with Reference Example 2 ), it has a sawtooth shape. This is different from the case of recrystallization from the fiber structure, and the recrystallization driving force is reduced due to the reduction of strain by recrystallization once, and further the precipitation proceeds due to the high intermediate annealing temperature. This is because there are many dispersed particles that hinder movement. Paying attention to such a difference, the recrystallized structure before heating can be estimated from the recrystallized structure after brazing, and the recrystallized structure immediately after the intermediate annealing temperature can be estimated. In FIG. 1, 2, each upper stage before brazing, each lower indicates after brazing, the minimum scale of the scale in FIG. 1 1 mm, a 0.5mm in FIG. Further, the recrystallized grain size is measured by a major axis (rolling direction, left and right direction in the figure). In FIG. 2 , it recrystallizes from the complete fibrous structure before brazing shown in the upper stage to the recrystallized structure after brazing shown in the lower stage, and the shape of the crystal grains changes greatly. In contrast, in the FIG. 1, the before brazing recrystallized structure shown in the upper part in the figure after brazing as shown in the lower part by enlargement slightly extended in the rolling direction, and characteristics of the anisotropic weakens The minor axis (width direction; vertical direction in the figure) of the crystal structure becomes thick and recrystallization occurs, but the crystal grain boundary in a sawtooth shape is maintained. That is, after the brazing, if recrystallized structure as shown in FIG. 1 (tissue coarse serrated recrystallized grains having a size of at least a length of 10mm in the rolling direction is 80% or more of the surface area) It can be presumed that the recrystallized structure after the intermediate annealing is the recrystallized structure defined in the present invention.
In the present invention, except for the conditions described above, the fin material can be appropriately produced using a conventional method.

以上説明したように、本発明規定のアルミニウム合金から製造されるフィン材は、ろう付後の特性、特に強度とろう付加熱中の組み付け強度に優れる。また、フィン材に製造する際の薄肉における冷間圧延性、レベリング、スリッティングなどが問題なく製造できるものである。   As described above, the fin material manufactured from the aluminum alloy defined in the present invention is excellent in characteristics after brazing, particularly strength and assembly strength during brazing heat. Moreover, the cold rolling property, leveling, slitting, etc. in the thin wall when manufacturing into the fin material can be manufactured without problems.

以下に本発明を実施例により詳細に述べる。
実施例
(本発明例)
表1に示す本発明規定組成のAl合金No.1を溶解し、得られる溶湯をロール径880mmの双ロールを用いた連続鋳造圧延法により、溶湯の冷却速度1000mm/minで幅1000mmの板状鋳塊に鋳造して、コイル状に巻き取り、板厚0.1mm以下で、400℃、120分間の最後の中間焼鈍を行なった。中間焼鈍後、後述のマクロ観察により、表層からみた再結晶粒の圧延方向の径の長さの最大のものは18mmであり、10mm以上の再結晶粒は、表面積の約90%を占めていた。次いでこれを板厚圧下率20%で冷間圧延して、本発明例1のフィン材を製造した。同様にして、表1に示す本発明規定組成のAl合金No.2〜5を用いて、それぞれ本発明例2〜5のフィン材を製造した。
The present invention will be described in detail below with reference to examples.
Example (Invention Example)
The Al alloy no. 1 is melted, and the resulting molten metal is cast into a plate-shaped ingot having a width of 1000 mm at a cooling rate of 1000 mm / min by a continuous casting and rolling method using a twin roll having a roll diameter of 880 mm, and wound into a coil shape. The final intermediate annealing was performed at 400 ° C. for 120 minutes with a plate thickness of 0.1 mm or less. After the intermediate annealing, the maximum length of the diameter in the rolling direction of the recrystallized grains as seen from the surface layer was 18 mm by macro observation described later, and the recrystallized grains of 10 mm or more occupied about 90% of the surface area. . Next, this was cold-rolled at a sheet thickness reduction of 20% to produce the fin material of Inventive Example 1. In the same manner, the Al alloy no. The fin materials of Invention Examples 2 to 5 were produced using 2 to 5, respectively.

(比較例)
表1に示す本発明規定外組成のAl合金No.6〜11を用いた他は、本発明例1〜5と同様にして、それぞれ比較例6〜11のフィン材を製造した。
また、本発明規定組成である、表1中の合金No.1を用いたが、中間焼鈍を280℃、600分間に変更した以外は、本発明例1〜5と同様にして比較例12のフィン材を製造した。
(Comparative example)
Table 1 shows an Al alloy no. The fin material of Comparative Examples 6-11 was manufactured similarly to Example 1-5 of this invention except having used 6-11, respectively.
In addition, the alloy no. 1 was used, but the fin material of Comparative Example 12 was manufactured in the same manner as Examples 1 to 5 except that the intermediate annealing was changed to 280 ° C. and 600 minutes.

(試験例)
本発明例および比較例のフィン材について、冷間圧延中に破断したか否か、また、レベリングおよびスリッティング工程において通板出来なかった、或いは困難だったか否かを評価した。上記のような製造上の不具合によって工業的に製造出来なかったものについては、残部をラボ設備を用いてフィン材に冷間圧延して試験或いは評価した。これらの試験、評価結果を表2に示す。
表2で圧延中の破断の有無は、前記の冷間圧延中の破断の有無である。
また、最終中間焼鈍後、および圧延完了後の結晶組織を、Al合金フィン材200mm×20mmの表面を王水に浸漬することによりマクロエッチングして、マクロ組織を観察し、評価した。表2では再結晶組織が、圧延方向に長さ10mm以上の径の再結晶粒が表面積に対して80%以上の場合には○、80%未満60%以上であった場合には△、60%未満の場合は×で示した。なお、表面積中の10mm以上の再結晶粒が占める割合は、マクロエッチングしたフィン材表面の写真を画像としてコンピュータに取り込み、画像解析ツールを用いて解析した。
また、以下の評価試験を行なった。それぞれの試験結果について表2に示した。
フィン材をろう付相当条件(600℃×4分)で加熱したのち、引張強さ、および導電率を測定した。引張強さはJIS Z 2241に準じ、導電率はJIS H 0505に準じてそれぞれ評価した。
ここで、導電率は熱伝導性の指標であり、フィンの導電率が5%IACS向上すると、熱交換器の熱効率は1%程度向上する。
また、熱交換器の組み付け強度の指標として耐垂下性を評価した。耐垂下性は、フィン材を突き出し長さが50mmとなるように水平に指示し、600℃で10分間加熱、加熱後の垂下量(mm)を測定し、評価した。自己耐食性は7日間のCASS試験を行ったのち重量減少率を調べて評価した。
(Test example)
About the fin material of the example of the present invention and the comparative example, it was evaluated whether or not it broke during cold rolling, and whether or not it could not pass through in the leveling and slitting process. For those that could not be industrially manufactured due to the above manufacturing problems, the remainder was cold-rolled into a fin material using a laboratory facility and tested or evaluated. These tests and evaluation results are shown in Table 2.
In Table 2, the presence or absence of breakage during rolling is the presence or absence of breakage during the cold rolling.
Further, the crystal structure after final intermediate annealing and after completion of rolling was subjected to macro etching by immersing the surface of the Al alloy fin material 200 mm × 20 mm in aqua regia, and the macro structure was observed and evaluated. In Table 2, the recrystallized structure is ◯ when the recrystallized grains having a diameter of 10 mm or more in the rolling direction are 80% or more with respect to the surface area, and Δ, 60 when the recrystallized structure is less than 80% and 60% or more. When it was less than%, it was shown by x. The ratio of the recrystallized grains of 10 mm or more in the surface area was analyzed by using a macro-etched fin material surface image as an image in a computer and using an image analysis tool.
Moreover, the following evaluation tests were conducted. The test results are shown in Table 2.
The fin material was heated under brazing equivalent conditions (600 ° C. × 4 minutes), and then the tensile strength and conductivity were measured. The tensile strength was evaluated according to JIS Z 2241 and the electrical conductivity was evaluated according to JIS H 0505.
Here, the electrical conductivity is an index of thermal conductivity. When the electrical conductivity of the fin is improved by 5% IACS, the thermal efficiency of the heat exchanger is improved by about 1%.
In addition, sagging resistance was evaluated as an index of the strength of assembly of the heat exchanger. The drooping resistance was evaluated by measuring the drooping amount (mm) after heating by heating at 600 ° C. for 10 minutes, instructing the fin material horizontally so that the length was 50 mm. The self-corrosion resistance was evaluated by examining the weight loss rate after conducting a CASS test for 7 days.

表2から明らかなように、本発明例1〜5のフィン材はいずれも冷間圧延中に破断せず、また、レベリング、スリッティングラインも問題なく通板し、フィン材に製造することができ、また、コルゲート状に成形できた。フィン材は耐垂下性と自己耐食性に優れ、ろう付加熱後における引張強さと導電率が高かった。   As is clear from Table 2, none of the fin materials of Invention Examples 1 to 5 breaks during cold rolling, and the leveling and slitting lines can be passed through without problems and manufactured into fin materials. And could be formed into a corrugated shape. The fin material was excellent in droop resistance and self-corrosion resistance, and had high tensile strength and electrical conductivity after brazing heat.

一方、比較例6は添加Fe量が多いため、晶出相が粗大化した。そのため再結晶の核生成サイトが増し、再結晶が数百μmに微細化した。その結果、垂下量が増加した。また、第二相分散粒子に占めるAl−Fe−Si系金属間化合物の割合が増していたため自己耐食性が低下した。
比較例7はFe量が少なく、MnとSiの晶析出量が減少したため、ろう付相当加熱後の引張強さと導電率が低下した。代わりに初晶Siが生成したため、再結晶の核となりグレインサイズが数百μmに微細化した。初晶Siとグレインサイズの影響により垂下量が増大した。
比較例8は添加Si量が多く、初晶Siが生成したため、再結晶の核となりグレインサイズが微細化し、10mm以下となった。これによりフラットネスが悪化し、レベリングを行えなかった。
比較例9はSiが少なく、Al−Fe−Mn系の晶出物が粗大化し、再結晶の核生成サイトとなった。従って中間焼鈍後のグレインサイズが圧延方向で4〜5mmとなった。さらに、Si量が不足したため、ろう付加熱後の引張強さが低下した。
比較例10は、添加Mn量が多く、圧延中に破断した。残部から作製したフィン材は、ろう付相当加熱後の導電率が低下していた。
比較例11は、添加Mn量が少ないため、第二相分散粒子の大部分がAl−Fe−Si系金属間化合物となっていた。このため自己耐食性が低下した。また、Al−Fe−Si系化合物は、Al−Fe−Mn−Si系金属間化合物と比較して粗大であるため、再結晶の核生成サイトとなり、再結晶が微細となり、垂下量が増加した。また、ろう付相当加熱後の引張強さが低下した。
比較例12は、ろう付中、およびろう付加熱後のフィン特性は問題なかったが、レベリングおよびスリッティング工程においてフラットネスの悪化により通板が困難であった。
On the other hand, in Comparative Example 6, since the amount of added Fe was large, the crystallization phase was coarsened. As a result, the number of nucleation sites for recrystallization increased and the recrystallization was refined to several hundred μm. As a result, the drooping amount increased. Moreover, since the ratio of the Al—Fe—Si intermetallic compound in the second phase dispersed particles was increased, the self-corrosion resistance was lowered.
In Comparative Example 7, the amount of Fe was small and the amount of crystal precipitation of Mn and Si was decreased, so that the tensile strength and conductivity after brazing equivalent heating were lowered. Instead, primary crystal Si was formed, which became the core of recrystallization and the grain size was refined to several hundred μm. The amount of drooping increased due to the effects of primary Si and grain size.
In Comparative Example 8, since the amount of added Si was large and primary Si was generated, it became the core of recrystallization and the grain size was refined to 10 mm or less. As a result, flatness deteriorated and leveling could not be performed.
In Comparative Example 9, the amount of Si was small, and the Al-Fe-Mn-based crystallized material became coarse and became a nucleation site for recrystallization. Therefore, the grain size after the intermediate annealing was 4 to 5 mm in the rolling direction. Furthermore, since the amount of Si was insufficient, the tensile strength after brazing addition heat decreased.
Comparative Example 10 had a large amount of added Mn and broke during rolling. The fin material produced from the remaining portion had a reduced electrical conductivity after brazing equivalent heating.
In Comparative Example 11, since the amount of added Mn was small, most of the second phase dispersed particles were Al—Fe—Si intermetallic compounds. For this reason, self-corrosion resistance fell. In addition, since the Al-Fe-Si compound is coarser than the Al-Fe-Mn-Si intermetallic compound, it becomes a nucleation site for recrystallization, the recrystallization becomes fine, and the amount of drooping increases. . Moreover, the tensile strength after brazing equivalent heating fell.
In Comparative Example 12, there was no problem with fin characteristics during brazing and after brazing addition heat, but it was difficult to pass the plate due to deterioration of flatness in the leveling and slitting processes.

参考例1のフィン材のろう付け加熱前後における結晶組織の一例の写真である。It is a photograph of an example of the crystal structure of the fin material of Reference Example 1 before and after brazing heating. 参考例2のフィン材のろう付け加熱前後における結晶組織の一例の写真である。It is a photograph of an example of the crystal structure before and after brazing heating of the fin material of Reference Example 2 .

Claims (6)

1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなり、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最後に行う中間焼鈍後に、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つアルミニウム合金を板厚圧下率30%未満で冷間圧延して製造されたことを特徴とするブレージング用フィン材。 Fe of more than 1.2 mass% and 1.8 mass% or less of Fe, Si of more than 1.2 mass% and 2.0 mass% or less, Mn of more than 0.3 mass% and 0.9 mass% or less, the balance being Al and inevitable impurities Recrystallized grains in which 80% or more of the surface area viewed from the surface layer has a diameter of 10 mm or more in the rolling direction after the intermediate annealing finally performed at a sheet thickness of 0.1 mm or less without annealing before intermediate annealing. A brazing fin material produced by cold-rolling an aluminum alloy having a crystal structure occupied by a thickness of less than 30%. 1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、(a)3.0mass%以下のZn、0.3mass%以下のIn、0.3%mass以下のSnの1種または2種以上、および/または(b)0.25mass%以下のCu、0.1mass%以下のTi、0.1mass%以下のZrの1種または2種以上、および/または(c)0.2mass%以下のNi、0.2mass%以下のCr、0.2mass%以下のCoの1種または2種以上残部Alおよび不可避不純物からなる組成の合金であって、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最後に行う中間焼鈍後に、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つアルミニウム合金を板厚圧下率30%未満で冷間圧延して製造されたことを特徴とするブレージング用フィン材。 Fe exceeding 1.2 mass% and 1.8 mass% or less, Si exceeding 1.2 mass% and 2.0 mass% or less, Mn exceeding 0.3 mass% and 0.9 mass% or less , (a) 3.0 mass% or less Zn, 0.3 mass% or less of In, 0.3% or less of Sn or less of 0.3% or less, and / or (b) 0.25 mass% or less of Cu, 0.1 mass% or less of Ti, 0 1 type or 2 types or more of Zr of 1 mass% or less, and / or (c) 1 type or 2 types or more of Ni of 0.2 mass% or less, Cr of 0.2 mass% or less, Co of 0.2 mass% or less , What alloy der compositions the balance of Al and inevitable impurities, without performing annealing before intermediate annealing, after the intermediate annealing carried out at the end at the plate thickness 0.1mm or less, the surface area as viewed from the surface layer 8 Brazing characterized in that 0% or more is produced by cold rolling an aluminum alloy having a crystal structure occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction at a sheet thickness reduction of less than 30%. Fin material. 前記最後の中間焼鈍を300〜480℃、30〜1500分で行うことを特徴とする請求項1又は2記載のブレージング用フィン材。The brazing fin material according to claim 1, wherein the final intermediate annealing is performed at 300 to 480 ° C. for 30 to 1500 minutes. 1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、および0.3mass%を超え0.9mass%以下のMn、残部がAlおよび不可避不純物からなるアルミニウム合金を、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最終の中間焼鈍を行い、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を有するようにし、その後板厚圧下率30%未満で冷間圧延することを特徴とするブレージング用フィン材の製造方法。 Fe exceeding 1.2 mass% and not more than 1.8 mass%, Si exceeding 1.2 mass% and not more than 2.0 mass%, Mn exceeding 0.3 mass% and not more than 0.9 mass%, the balance from Al and inevitable impurities The final aluminum annealing is performed at a sheet thickness of 0.1 mm or less without annealing before the intermediate annealing, and 80% or more of the surface area seen from the surface layer has a diameter of 10 mm or more in the rolling direction. A method for producing a brazing fin material, characterized by having a crystal structure occupied by the recrystallized grains, and then cold rolling at a sheet thickness reduction of less than 30%. 1.2mass%を越え1.8mass%以下のFe、1.2mass%を越え2.0mass%以下のSi、0.3mass%を超え0.9mass%以下のMn、(a)3.0mass%以下のZn、0.3mass%以下のIn、0.3%mass以下のSnの1種または2種以上、および/または(b)0.25mass%以下のCu、0.1mass%以下のTi、0.1mass%以下のZrの1種または2種以上、および/または(c)0.2mass%以下のNi、0.2mass%以下のCr、および0.2mass%以下のCoの1種または2種以上残部Alおよび不可避不純物からなる組成の合金を、中間焼鈍前に焼鈍を行うことなく、板厚0.1mm以下にて最終の中間焼鈍を行い、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を有するようにし、その後板厚圧下率30%未満で冷間圧延することを特徴とするブレージング用フィン材の製造方法。 Fe exceeding 1.2 mass% and 1.8 mass% or less, Si exceeding 1.2 mass% and 2.0 mass% or less, Mn exceeding 0.3 mass% and 0.9 mass% or less , (a) 3.0 mass% or less Zn, 0.3 mass% or less of In, 0.3% or less of Sn or less of 0.3% or less, and / or (b) 0.25 mass% or less of Cu, 0.1 mass% or less of Ti, 0 1 type or 2 types of Zr of 1 mass% or less, and / or (c) 1 type or 2 types of Ni of 0.2 mass% or less, Cr of 0.2 mass% or less, and Co of 0.2 mass% or less above, the alloy composition and the balance of Al and inevitable impurities, without performing annealing before intermediate annealing, carried out the final intermediate annealing at a thickness 0.1mm or less, the surface area as viewed from the surface layer 80 % Of the fin material for brazing characterized by having a crystal structure occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction and then cold rolling at a sheet thickness reduction of less than 30% Production method. 前記最終の中間焼鈍を300〜480℃、30〜1500分で行うことを特徴とする請求項4又は5記載のブレージング用フィン材の製造方法。6. The method for producing a brazing fin material according to claim 4, wherein the final intermediate annealing is performed at 300 to 480 [deg.] C. for 30 to 1500 minutes.
JP2005041209A 2005-02-17 2005-02-17 Brazing fin material and manufacturing method thereof Expired - Fee Related JP4667065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041209A JP4667065B2 (en) 2005-02-17 2005-02-17 Brazing fin material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041209A JP4667065B2 (en) 2005-02-17 2005-02-17 Brazing fin material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006225723A JP2006225723A (en) 2006-08-31
JP4667065B2 true JP4667065B2 (en) 2011-04-06

Family

ID=36987344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041209A Expired - Fee Related JP4667065B2 (en) 2005-02-17 2005-02-17 Brazing fin material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4667065B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680857B2 (en) * 2010-01-07 2015-03-04 株式会社Uacj Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP5704678B2 (en) * 2010-01-07 2015-04-22 株式会社Uacj Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
ES2646767T3 (en) 2011-12-16 2017-12-15 Novelis, Inc. Aluminum alloy for fins and method of producing it
MX2015016401A (en) * 2013-06-02 2016-04-13 Uacj Corp Heat exchanger, and fin material for said heat exchanger.
EP3177748B1 (en) 2014-08-06 2020-09-30 Novelis, Inc. Aluminum alloy for heat exchanger fins

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239774A (en) * 1999-02-23 2000-09-05 Sumitomo Light Metal Ind Ltd High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity
JP2002241910A (en) * 2000-12-13 2002-08-28 Furukawa Electric Co Ltd:The Method for producing aluminum alloy fin material for brazing
JP2002256402A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131166A (en) * 1997-10-27 1999-05-18 Denso Corp Thin aluminum alloy fin material excellent for forming and brazing, and its production
JP3876505B2 (en) * 1997-12-11 2007-01-31 三菱アルミニウム株式会社 Al alloy fin material for heat exchangers with excellent erosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239774A (en) * 1999-02-23 2000-09-05 Sumitomo Light Metal Ind Ltd High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity
JP2002241910A (en) * 2000-12-13 2002-08-28 Furukawa Electric Co Ltd:The Method for producing aluminum alloy fin material for brazing
JP2002256402A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger

Also Published As

Publication number Publication date
JP2006225723A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP6492056B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and heat exchanger
US20160161199A1 (en) Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member
JP2005220375A (en) High strength aluminum alloy fin material for heat exchanger and manufacturing method thereof
WO2013086628A1 (en) Aluminium fin alloy and method of making the same
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
KR101039178B1 (en) Aluminum Alloy Fin Material for Soldering
JP4667065B2 (en) Brazing fin material and manufacturing method thereof
WO2019181768A1 (en) Aluminum alloy fin material for heat exchanger, production method therefor, and heat exchanger
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
US7850796B2 (en) Aluminum alloy fin material for brazing
JP4669709B2 (en) Brazing fin material and manufacturing method thereof
JP4669712B2 (en) Brazing fin material and manufacturing method thereof
US10145630B2 (en) Aluminum alloy fin material for heat exchangers, and method of producing the same
JP4669710B2 (en) Brazing fin material and manufacturing method thereof
JP4667064B2 (en) Brazing fin material and manufacturing method thereof
JP5431046B2 (en) Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability
US10161693B2 (en) Aluminum alloy fin material for heat exchangers, and method of producing the same
CA2597157C (en) Aluminum alloy fin material for brazing
JP6328472B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP5544591B2 (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees