Nothing Special   »   [go: up one dir, main page]

JP4661812B2 - Film forming method and storage medium - Google Patents

Film forming method and storage medium Download PDF

Info

Publication number
JP4661812B2
JP4661812B2 JP2007077607A JP2007077607A JP4661812B2 JP 4661812 B2 JP4661812 B2 JP 4661812B2 JP 2007077607 A JP2007077607 A JP 2007077607A JP 2007077607 A JP2007077607 A JP 2007077607A JP 4661812 B2 JP4661812 B2 JP 4661812B2
Authority
JP
Japan
Prior art keywords
inner tube
gas
tube
film
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007077607A
Other languages
Japanese (ja)
Other versions
JP2008243837A (en
Inventor
行雄 東條
勇雄 白谷
昌毅 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007077607A priority Critical patent/JP4661812B2/en
Publication of JP2008243837A publication Critical patent/JP2008243837A/en
Application granted granted Critical
Publication of JP4661812B2 publication Critical patent/JP4661812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、縦型熱処理装置の反応容器内にプロセスガスを導入して基板に対して成膜処理を行い、処理終了後は反応容器内にクリーニングガスを導入してクリーニングを行う成膜方法、並びに前記成膜方法を実施するためのコンピュータプログラムを格納した記憶媒体に関する。 The present invention provides a film forming method in which a process gas is introduced into a reaction vessel of a vertical heat treatment apparatus to perform a film forming process on a substrate, and after the process is completed, a cleaning gas is introduced into the reaction container to perform cleaning The present invention also relates to a storage medium storing a computer program for performing the film forming method.

半導体ウエハ(以下「ウエハ」という)に対してCVD(Chemical Vapor Deposition)により成膜処理をバッチで行う装置として縦型熱処理装置がある。図16は従来の縦型熱処理装置の一例を示し、この装置は、両端が開口している石英製の内管1a及び上端が閉じている石英製の外管1bからなる二重構造の反応管1を筒状のマニホールド11の上に搭載し、反応管1を囲むようにヒータを含む加熱炉12を設けて構成され、蓋体13の上に断熱ユニット14を介して設けられたウエハボート15に多数のウエハWを棚状に保持させ、蓋体13の上昇によりウエハボート15を反応管1内に搬入した後、成膜処理を行うものである。   There is a vertical heat treatment apparatus as an apparatus for batch-forming a semiconductor wafer (hereinafter referred to as “wafer”) by CVD (Chemical Vapor Deposition). FIG. 16 shows an example of a conventional vertical heat treatment apparatus, which is a double-structured reaction tube comprising a quartz inner tube 1a open at both ends and a quartz outer tube 1b closed at the upper end. 1 is mounted on a cylindrical manifold 11, a heating furnace 12 including a heater is provided so as to surround the reaction tube 1, and a wafer boat 15 provided on a lid 13 via a heat insulating unit 14. A number of wafers W are held in a shelf shape, and after the lid 13 is lifted, the wafer boat 15 is carried into the reaction tube 1 and then a film forming process is performed.

また上記装置は、前記マニホールド11に内管1aの内側の下部領域にて導入口が上向きの状態で位置するガス導入管16a,16bと、内管1aと外管1bとの間の上部領域にて導入口が上向きの状態で位置するガス導入管17とが設けられており、成膜処理時に前記ガス導入管16aにより反応管1内にプロセスガスが導入され、クリーニング処理時に前記ガス導入管16bにより反応管1内にクリーニングガスが導入されるようになっている。そして装置は例えばウエハボート15の搬入及び搬出時に前記ガス導入管17により反応管1内にパージガスが導入されるように構成されており、特許文献1では成膜処理時において成膜処理に使用されているプロセスガスが前記ガス導入管17内に回り込まないようにするために、前記ガス導入管17の上流側から微小量のパージガス、具体的には50sccm程度のNガスを流して当該ガス導入管17内のパージを行うことが記載されている。 In the above-mentioned apparatus, the gas inlet pipes 16a and 16b are located in the lower area inside the inner pipe 1a in the manifold 11 with the inlet port facing upward, and the upper area between the inner pipe 1a and the outer pipe 1b. And a gas introduction pipe 17 positioned with the introduction port facing upward. A process gas is introduced into the reaction tube 1 by the gas introduction pipe 16a during the film formation process, and the gas introduction pipe 16b during the cleaning process. Thus, a cleaning gas is introduced into the reaction tube 1. For example, the apparatus is configured such that purge gas is introduced into the reaction tube 1 by the gas introduction pipe 17 when the wafer boat 15 is carried in and out, and in Patent Document 1, it is used for the film formation process during the film formation process. In order to prevent the process gas from flowing into the gas introduction pipe 17, a small amount of purge gas, specifically, N 2 gas of about 50 sccm is flowed from the upstream side of the gas introduction pipe 17 to introduce the gas. It is described that purging in the tube 17 is performed.

上述した縦型熱処理装置を用いた成膜処理では、内管1a内の下部領域に導入されたプロセスガスは内管1a内を上昇してウエハボート15と内管1aとの隙間を通り、更に内管1aと外管1bとの隙間を介して下降して排気管18から排気されるため、内管1aの内面だけでなく内管1aの外面及び外管1bの内面にも膜が成膜される。ここで内管1aの処理領域の内面の成膜速度と内管1aの外面の成膜速度とを比較すると、内管1aの外面の成膜速度は内管1の内面の成膜速度と同等若しくはそれよりも高くなっている。これは内管1aの内側にあるプロセスガスよりも内管1aの外側にあるプロセスガスの方が反応管1内において長く加熱されており、その結果プロセスガスの分解率が高くなることが要因の一つであると推測される。 In the film forming process using the vertical heat treatment apparatus described above, the process gas introduced into the lower region in the inner tube 1a rises in the inner tube 1a and passes through the gap between the wafer boat 15 and the inner tube 1a. Since it descends through the gap between the inner tube 1a and the outer tube 1b and is exhausted from the exhaust tube 18, a film is formed not only on the inner surface of the inner tube 1a but also on the outer surface of the inner tube 1a and the inner surface of the outer tube 1b. Is done. Comparing the outer surface of the deposition rate of the deposition rate and the inner tube 1a of the inner surface of the processing area of the inner tube 1a, where the deposition rate of the outer surface of the inner tube 1a is the deposition rate of the inner surface of the inner tube 1 a It is equivalent or higher. This is because the process gas outside the inner tube 1a is heated longer in the reaction tube 1 than the process gas inside the inner tube 1a, resulting in a higher decomposition rate of the process gas. Presumed to be one.

一方、成膜処理した後、反応管1内全体をドライクリーニングする場合、クリーニングガスはプロセスガスと同様に内管1aの下部領域から導入されるため、クリーニングガスの大部分が内管1の内面に成膜されている膜のエッチングに消費される。そのため内管1aの外面に成膜されている膜のエッチング速度は内管1aの内面に成膜されている膜のエッチング速度に比べて低くなる。つまり内管1aの内側のエッチング速度は高く、内管1aの外側のエッチング速度は低い。 Meanwhile, after the film forming process, in the case of dry cleaning the entire reaction tube 1, a cleaning gas is to be introduced from the lower region of the inner tube 1a Similar to the process gas, the majority of the cleaning gas inner tube 1 a of It is consumed for etching the film formed on the inner surface. Therefore, the etching rate of the film formed on the outer surface of the inner tube 1a is lower than the etching rate of the film formed on the inner surface of the inner tube 1a. That is, the etching rate inside the inner tube 1a is high, and the etching rate outside the inner tube 1a is low.

従って内管1aの内面に成膜されている膜の膜厚よりも内管1の外面に成膜されている膜の膜厚の方が大きい状態で反応管1内をクリーニングした場合、内管1aの内面に成膜されている膜が早く除去される。このため内管1aの内面は膜が完全に除去された後も、内管1aの外面に成膜されている膜が除去されるまでクリーニングガスに晒されてオーバーエッチングが行われ、このため反応管1内をクリーニングする毎に、内管1aの内面を必要以上にエッチングすることになり、反応管1の使用寿命を縮めることになると共にパーティクルの発生源ともなる。 Therefore, when cleaning the reaction tube 1 while the larger the thickness of the film formed on the outer surface of the inner tube 1 a than the thickness of the film formed on the inner surface of the inner tube 1a, the inner The film formed on the inner surface of the tube 1a is removed quickly. Therefore, even after the film is completely removed from the inner surface of the inner tube 1a, it is exposed to the cleaning gas until the film formed on the outer surface of the inner tube 1a is removed, and overetching is performed. Each time the inside of the tube 1 is cleaned, the inner surface of the inner tube 1a is etched more than necessary, which shortens the service life of the reaction tube 1 and also becomes a source of particles.

特開H6−89863号公報JP H6-89863 A

本発明は、このような事情に鑑みてなされたものであり、その目的は、上面が開放された内管及び上面が閉じられている外管を含む二重管構造の縦型の反応容器を用いて成膜を行うにあたって、処理領域の下流側の累積膜厚を抑制してドライクリーニング時における反応容器内の過剰なエッチングを抑えることができる成膜方法及びその手法を実施するプログラムを格納した記憶媒体を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a vertical reaction vessel having a double tube structure including an inner tube whose upper surface is open and an outer tube whose upper surface is closed. Stored a film forming method that can suppress the excessive etching in the reaction vessel at the time of dry cleaning by suppressing the accumulated film thickness downstream of the processing region and a program for executing the method when performing film formation using It is to provide a storage medium.

本発明方法は、上面が開放された内管及び上面が閉じられている外管を含む二重管構造の縦型の反応容器内に、複数の基板を棚状に保持させた基板保持具を下方側から搬入する工程と、
前記内管内の下部側からTEOSガスを導入して内管の上端から内管と外管との隙間を介して処理領域を排気しながら当該処理領域を真空雰囲気に設定し、前記基板に対してシリコン酸化膜の成膜を行うと共に、前記内管の上部側における前記内管及び外管の隙間にて開口するガス導入口から、内管の外面及び外管の内面への成膜を抑えるために成膜抑制用のガスを500sccm〜1000sccm導入する工程と、
次に反応容器から基板保持具を搬出する工程と、
その後前記内管内の下部側からクリーニングガスを導入して内管の上端から内管と外管との隙間を介して処理領域を排気しながら反応容器内をクリーニングする工程と、を含むことを特徴とする。
The method of the present invention comprises a substrate holder in which a plurality of substrates are held in a shelf shape in a vertical reaction vessel having a double tube structure including an inner tube whose upper surface is open and an outer tube whose upper surface is closed. Carrying in from below,
TEOS gas is introduced from the lower side in the inner tube, and the processing region is set to a vacuum atmosphere while exhausting the processing region from the upper end of the inner tube through the gap between the inner tube and the outer tube. To form a silicon oxide film and suppress film formation on the outer surface of the inner tube and the inner surface of the outer tube from the gas inlet opening in the gap between the inner tube and the outer tube on the upper side of the inner tube Introducing a gas for suppressing film formation into 500 sccm to 1000 sccm ;
Next, a step of unloading the substrate holder from the reaction vessel;
And then cleaning the inside of the reaction vessel while introducing a cleaning gas from the lower side in the inner tube and exhausting the processing region from the upper end of the inner tube through the gap between the inner tube and the outer tube. And

さらに本発明は、上面が開放された内管及び上面が閉じられている外管を含む二重管構造の縦型の反応容器内に、複数の基板を棚状に保持させた基板保持具を搬入して、成膜処理を行う成膜装置に用いられるコンピュータプログラムを格納する記憶媒体であって、前記コンピュータプログラムは、上述の工程を実施するようにステップ群が組まれていることを特徴とする。前記記憶媒体としては、ハードディスク、フレキシブルディスク、コンパクトディスク、マグネットオプティカルディスク(MO)、メモリーカード等を挙げることができる。   Furthermore, the present invention provides a substrate holder in which a plurality of substrates are held in a shelf shape in a vertical reaction vessel having a double tube structure including an inner tube whose upper surface is open and an outer tube whose upper surface is closed. A storage medium for storing a computer program used in a film forming apparatus that carries in and performs a film forming process, wherein the computer program includes a group of steps so as to perform the above-described steps. To do. Examples of the storage medium include a hard disk, a flexible disk, a compact disk, a magnetic optical disk (MO), and a memory card.

本発明は、二重管構造の反応容器における処理領域の下流側に成膜抑制用のガスを導入するためのガス導入口を設け、成膜処理時に前記ガス導入口より成膜抑制用のガスを導入して、前記処理領域の下流側の累積膜厚を抑えているので、クリーニング処理において内管の内面に成膜されている膜を除去するのに要する時間の方が内管の外面や外管の内面に成膜されている膜を除去するのに要する時間よりも長いという現象を緩和することができる。このため反応容器内をドライクリーニングするときに、内管の内面が過剰にエッチングされるという不具合が抑えられ、従って反応容器の使用寿命が長くなると共にパーティクルの発生が低減できる。   The present invention provides a gas introduction port for introducing a gas for suppressing film formation downstream of a processing region in a reaction vessel having a double-pipe structure, and the gas for suppressing film formation from the gas inlet during film formation processing. To reduce the accumulated film thickness downstream of the processing region, the time required for removing the film formed on the inner surface of the inner tube in the cleaning process is shorter than the outer surface of the inner tube. It is possible to alleviate the phenomenon that it is longer than the time required to remove the film formed on the inner surface of the outer tube. For this reason, when the inside of the reaction vessel is dry-cleaned, the problem that the inner surface of the inner tube is excessively etched is suppressed, so that the service life of the reaction vessel is prolonged and the generation of particles can be reduced.

本発明の実施の形態に係る成膜装置について説明する。図1は、成膜装置であるバッチ式の縦型熱処理装置の全体構成を示す図である。この縦型熱処理装置は、例えば両端が開口している直管状の石英製の内管20及び上端が閉塞し下端が開口している石英製の外管21からなる二重構造の反応管2を備えている。前記反応管2の周囲には、筒状の断熱体30がベース体40に固定して設けられ、この断熱体30の内側には抵抗発熱体からなるヒータ31が例えば上下にゾーン分割して設けられている。内管20及び外管21は下部側にて筒状のマニホールド41の上に支持されている。このマニホールド41の一端側にはガス導入管23a及びガス導入管23bが挿入されており、これらガス導入管23a,23bは内管20の内側でL字状に屈曲され、当該ガス導入管23a,23bのガス導入口が上向きの状態で内管20の下部領域に位置するように設けられている。前記ガス導入管23aの下流側には流量計等のガス供給制御機器群32を介してプロセスガス供給源34が接続されており、前記ガス導入管23bの下流側には流量計等のガス供給制御機器群33を介してクリーニングガス供給源35が接続されている。   A film forming apparatus according to an embodiment of the present invention will be described. FIG. 1 is a diagram showing an overall configuration of a batch type vertical heat treatment apparatus which is a film forming apparatus. This vertical heat treatment apparatus includes, for example, a double-structured reaction tube 2 comprising a straight tubular inner tube 20 having both ends open and a quartz outer tube 21 having a closed upper end and an open lower end. I have. A cylindrical heat insulator 30 is fixed to the base body 40 around the reaction tube 2, and a heater 31 made of a resistance heating element is provided inside the heat insulator 30 in, for example, upper and lower zones. It has been. The inner tube 20 and the outer tube 21 are supported on a cylindrical manifold 41 on the lower side. A gas introduction pipe 23a and a gas introduction pipe 23b are inserted into one end side of the manifold 41. The gas introduction pipes 23a and 23b are bent in an L shape inside the inner pipe 20, and the gas introduction pipe 23a, The gas inlet 23b is provided so as to be positioned in the lower region of the inner tube 20 in an upward state. A process gas supply source 34 is connected to the downstream side of the gas introduction pipe 23a via a gas supply control device group 32 such as a flowmeter, and a gas supply such as a flowmeter is provided downstream of the gas introduction pipe 23b. A cleaning gas supply source 35 is connected via the control device group 33.

またマニホールド41の他端側にはガス導入管24が挿入されており、このガス導入管24は外管21の内側でL字状に屈曲されて内管20と外管21との間に立ち上げられ、当該ガス導入管24のガス導入口24aが上向きの状態で内管20と外管21との間の上部領域に位置するように設けられている。具体的には、内管20の上端部から例えば25cm下がったところに前記ガス導入口24aが位置している。前記ガス導入管24の下流側には流量計などのガス供給制御機器群36を介して成膜抑制用のガス供給源37が接続されている。また図1及び図2に示すようにマニホールド41には、内管20と外管21との間から排気するように真空排気手段42が接続された排気管43の一端が接続されている。この例では、内管20、外管21及びマニホールド41により反応容器が構成される。   A gas introduction pipe 24 is inserted on the other end side of the manifold 41. The gas introduction pipe 24 is bent in an L shape inside the outer pipe 21 and stands between the inner pipe 20 and the outer pipe 21. The gas introduction port 24a of the gas introduction pipe 24 is provided so as to be positioned in an upper region between the inner pipe 20 and the outer pipe 21 in an upward state. Specifically, the gas inlet 24a is located at a position 25 cm lower from the upper end of the inner tube 20, for example. A gas supply source 37 for suppressing film formation is connected to the downstream side of the gas introduction pipe 24 via a gas supply control device group 36 such as a flow meter. As shown in FIGS. 1 and 2, one end of an exhaust pipe 43 to which a vacuum exhaust means 42 is connected is connected to the manifold 41 so as to exhaust from between the inner pipe 20 and the outer pipe 21. In this example, a reaction vessel is constituted by the inner tube 20, the outer tube 21 and the manifold 41.

また本縦型熱処理装置は、図1及び図3に示すようにマニホールド41の下端開口部を開閉するための蓋体51を備えており、この蓋体51はボートエレベータ52の上に設けられている。前記蓋体51の上にはボートエレベータ52側に配置された駆動部53により回転軸54を介して鉛直軸回りに回転する回転台55が設けられ、この回転台55の上には断熱ユニット56を介して基板保持具であるウエハボート6が搭載されている。このウエハボート6は、図3に示すように例えば天板61及び底板62の間に複数の支柱63を設け、この支柱63に上下方向に形成された溝に基板であるウエハWの周縁を挿入して保持するように構成されている。   Further, the vertical heat treatment apparatus includes a lid 51 for opening and closing the lower end opening of the manifold 41 as shown in FIGS. 1 and 3, and the lid 51 is provided on the boat elevator 52. Yes. On the lid 51, there is provided a rotating table 55 that rotates around a vertical axis via a rotating shaft 54 by a driving unit 53 disposed on the boat elevator 52 side. A wafer boat 6 as a substrate holder is mounted via As shown in FIG. 3, the wafer boat 6 is provided with, for example, a plurality of support columns 63 between a top plate 61 and a bottom plate 62, and the periphery of the wafer W as a substrate is inserted into a groove formed in the support column 63 in the vertical direction. And is configured to hold.

また本縦型熱処理装置は図1に示すように制御部7を備えており、この制御部7は、後述する成膜処理及びクリーニング処理を行うにあたって、ガス供給制御機器群32,33,36の動作シーケンスや、成膜処理時に反応容器内に導入する成膜抑制用のガスの導入量等をコンピュータのプログラムにより制御するように構成されている。前記制御部7はこのプログラムに従って後述の一連の動作を行うようになっている。このプログラムは、例えばハードディスク、フレキシブルディスク、コンパクトディスク、マグネットオプティカルディスク(MO)、メモリーカード等の記憶媒体に格納された状態で制御部7にインストールされる。また前記制御部7はプロセスガスの種類に応じて反応容器内に導入する成膜抑制用のガスの導入量を制御する機能を有している。より詳しく説明すると、制御部7に備えた記憶部例えばメモリにはプロセスガスの種類に対応付けて成膜処理時に反応容器内に導入する成膜抑制用のガスの導入量が記憶されており、プロセスガスの種類に基づいて成膜抑制用のガスの導入量が決められる。   Further, the vertical heat treatment apparatus includes a control unit 7 as shown in FIG. 1, and this control unit 7 is used for the gas supply control device groups 32, 33, and 36 when performing a film forming process and a cleaning process to be described later. The operation sequence, the introduction amount of the gas for suppressing film formation introduced into the reaction vessel during the film formation process, and the like are controlled by a computer program. The control unit 7 performs a series of operations described later according to this program. This program is installed in the control unit 7 while being stored in a storage medium such as a hard disk, a flexible disk, a compact disk, a magnetic optical disk (MO), or a memory card. The control unit 7 has a function of controlling the amount of film formation suppression gas introduced into the reaction vessel in accordance with the type of process gas. More specifically, the storage unit such as a memory provided in the control unit 7 stores the introduction amount of the film formation suppressing gas introduced into the reaction container during the film formation process in association with the type of the process gas, The amount of gas for suppressing film formation is determined based on the type of process gas.

次に上述の実施の形態の作用について図4を参照しながら説明する。先ず、基板であるウエハWを所定枚数ウエハボート6に保持し、ボートエレベータ52を上昇させることにより、反応管2及びマニホールド41にて構成される反応容器内に搬入(ロード)する。この際、ガス導入管24からガス供給源37により窒素ガスを流して反応容器内のパージを行う。
ウエハボート6が搬入されてマニホールド41の下端開口部が蓋体51により塞がれた後、ガス供給制御機器群36のバルブを閉じて窒素ガスの供給を停止し、反応容器内の温度を例えば685℃まで昇温させると共に、図示しない排気用のバルブを開いて反応容器内を、排気管43を通じて真空排気手段42により、所定の真空度まで真空排気する。
次に、真空排気手段42により反応容器内を排気している状態でプロセスガス供給源34からガス供給制御機器群32により所定の流量例えば400sccmでガス導入管23aを通じて反応容器内にTEOSガスを導入すると共に、成膜抑制用のガス供給源37からガス供給制御機器群36により所定の流量例えば500〜1000sccm、好ましくは500sccmでガス導入管24を通じて反応容器内に窒素ガスを導入して、反応容器内を所定の真空度例えば0.39Torr(53.3Pa)に維持する。
ガス導入管23aの導入口から前記内管20内の下部側を介して導入されたTEOSガスは図5に示すように内管20内を真っ直ぐに上昇しながら一部がウエハW間に入り込み、ウエハW表面に供給される。ウエハW表面に供給されたTEOSガスはウエハW表面上で熱分解し、シリコン酸化膜(SiO膜)が形成される。そして未反応のTEOSガスは内管20の上端を越えて外側に向かい内管20と外管21との隙間を介して下降して排気管43により排気される。
Next, the operation of the above-described embodiment will be described with reference to FIG. First, a predetermined number of wafers W, which are substrates, are held in the wafer boat 6 and the boat elevator 52 is raised to load (load) the reaction vessel 2 and the manifold 41 into the reaction vessel. At this time, the inside of the reaction vessel is purged by flowing nitrogen gas from the gas introduction pipe 24 through the gas supply source 37.
After the wafer boat 6 is loaded and the lower end opening of the manifold 41 is closed by the lid 51, the valve of the gas supply control device group 36 is closed to stop the supply of nitrogen gas, and the temperature in the reaction vessel is set to, for example, The temperature is raised to 685 ° C., and an exhaust valve (not shown) is opened, and the inside of the reaction vessel is evacuated to a predetermined degree of vacuum through the exhaust pipe 43 by the vacuum exhaust means 42.
Next, TEOS gas is introduced into the reaction vessel through the gas introduction pipe 23a at a predetermined flow rate, for example, 400 sccm, from the process gas supply source 34 by the gas supply control device group 32 while the reaction vessel is being evacuated by the vacuum exhaust means 42. At the same time, nitrogen gas is introduced into the reaction vessel from the gas supply source 37 for suppressing film formation by the gas supply control device group 36 through the gas introduction pipe 24 at a predetermined flow rate, for example, 500 to 1000 sccm, preferably 500 sccm. The inside is maintained at a predetermined degree of vacuum, for example, 0.39 Torr (53.3 Pa).
The TEOS gas introduced from the introduction port of the gas introduction pipe 23a through the lower side in the inner pipe 20 ascends straight in the inner pipe 20 as shown in FIG. It is supplied to the surface of the wafer W. The TEOS gas supplied to the surface of the wafer W is thermally decomposed on the surface of the wafer W to form a silicon oxide film (SiO 2 film). Then, the unreacted TEOS gas goes to the outside beyond the upper end of the inner pipe 20, descends through the gap between the inner pipe 20 and the outer pipe 21, and is exhausted through the exhaust pipe 43.

一方、内管20と外管21との隙間に開口しているガス導入管24のガス導入口24aからは成膜抑制用の窒素ガスが図5に示すように上方に向かって流出し、周方向に拡散しながら外管21上面付近に達し、内管20の上端を越えて内管20の内側から下降しようとするが、下方側から未反応のTEOSガスが上昇してくるため、このガス流に押し戻されて内管20と外管21との隙間を下降する。従って、内管20の上端を越えて前記隙間に向かうTEOSガスは、この隙間を下降するうちに内管20の外面や外管21の内面に成膜しようとするが、下から吹き上げてくる窒素ガスにより希釈されるため、その成膜作用が弱められ、SiO膜の形成が抑えられることとなる。従って、この成膜抑制用の窒素ガスは成膜ガスの希釈用ガスと言うこともできる。 On the other hand, nitrogen gas for film formation flows out upward from the gas inlet 24a of the gas inlet pipe 24 opened in the gap between the inner pipe 20 and the outer pipe 21 as shown in FIG. It reaches near the upper surface of the outer tube 21 while diffusing in the direction, and tries to descend from the inside of the inner tube 20 beyond the upper end of the inner tube 20, but the unreacted TEOS gas rises from the lower side. Pushed back by the flow, the gap between the inner tube 20 and the outer tube 21 is lowered. Therefore, the TEOS gas that goes to the gap beyond the upper end of the inner tube 20 tries to form a film on the outer surface of the inner tube 20 and the inner surface of the outer tube 21 while descending the gap, but nitrogen blows up from below. Since it is diluted with gas, the film forming action is weakened, and the formation of the SiO 2 film is suppressed. Therefore, it can be said that the nitrogen gas for suppressing the film formation is a gas for diluting the film formation gas.

こうして所定時間成膜処理が行われた後、ガス供給制御機器群32のバルブを閉じてTEOSガスの供給を停止すると共に、ガス供給制御機器群36のバルブを閉じて窒素ガスの供給を停止し、図示しない排気用のバルブを開いて反応容器内に残っているTEOSガス及び窒素ガスを排気する。その後、反応容器内の温度を685℃に保持したまま、ガス供給制御機器群36のバルブを開いて反応容器内に窒素ガスを供給し、反応容器内を大気圧に復帰させる。しかる後、ウエハボート6の搬出(アンロード)が行われ、当該ウエハボート6において図示しない搬送アームにより成膜処理が終わったウエハWと次の成膜処理を行うためのウエハWとの積み替えが行われる。そして上述と同じ手順で次の成膜処理が行われる。このようにして成膜処理を複数回(制御部7において設定されている回数)行った後、反応容器内のクリーニングが行われる。   After the film forming process is performed for a predetermined time in this way, the valve of the gas supply control device group 32 is closed to stop the supply of TEOS gas, and the valve of the gas supply control device group 36 is closed to stop the supply of nitrogen gas. Then, an exhaust valve (not shown) is opened to exhaust the TEOS gas and nitrogen gas remaining in the reaction vessel. Thereafter, with the temperature inside the reaction vessel maintained at 685 ° C., the valve of the gas supply control device group 36 is opened to supply nitrogen gas into the reaction vessel, and the inside of the reaction vessel is returned to atmospheric pressure. Thereafter, the wafer boat 6 is carried out (unloaded), and in the wafer boat 6, the wafer W that has been subjected to the film formation process by the transfer arm (not shown) is replaced with the wafer W for the next film formation process. Done. Then, the following film forming process is performed in the same procedure as described above. After the film forming process is performed a plurality of times (the number set in the control unit 7) in this way, the inside of the reaction container is cleaned.

このクリーニング処理について説明すると、先ずウエハボート6から成膜処理が終わったウエハWを取り出し、ウエハWが載置されていない空のウエハボート6を反応容器内に搬入(ロード)し、マニホールド41の下端開口部を蓋体51により気密に閉塞する。続いて、反応容器内の温度を400℃まで降温させると共に、反応容器内を所定の真空度まで真空排気する。
次に、クリーニングガス供給源35からガス供給制御機器群33により所定の流量例えば1500sccmでガス導入管23bを通じて反応容器内にフッ化塩素(ClF)ガスを導入する。
フッ化塩素ガスはガス導入管23bの導入口から前記内管20内の下部側から導入されるが、導入されたフッ化塩素ガスは内管20内を真っ直ぐに上昇しながら内管20の上方に抜けていき、さらに内管20と外管21との隙間を介して下降して排気管43により排気される。導入されたフッ化塩素ガスの大部分は内管20の内面に成膜されているSiO膜の除去に消費され、残りのフッ化塩素ガスが内管20の外面及び外管21の内面に成膜されているSiO膜の除去に消費される。従って、内管21より外管20の方がエッチング速度が小さくなる。
しかる後、ガス供給制御機器群33のバルブを閉じてフッ化塩素ガスの供給を停止し、更に反応容器内に残っているフッ化塩素ガスを排気する。その後、反応容器内の温度を400℃に保持したまま反応容器内に窒素ガスを供給し、反応容器内を大気圧に復帰させ、一連の工程が終了する。
The cleaning process will be described. First, the wafer W after the film formation process is taken out from the wafer boat 6, and an empty wafer boat 6 on which the wafer W is not placed is loaded (loaded) into the reaction container. The lower end opening is hermetically closed by the lid 51. Subsequently, the temperature in the reaction vessel is lowered to 400 ° C., and the inside of the reaction vessel is evacuated to a predetermined degree of vacuum.
Next, chlorine fluoride (ClF 3 ) gas is introduced from the cleaning gas supply source 35 into the reaction vessel through the gas introduction pipe 23 b at a predetermined flow rate, for example, 1500 sccm, by the gas supply control device group 33.
The chlorine fluoride gas is introduced from the lower side of the inner pipe 20 through the introduction port of the gas introduction pipe 23b. The introduced chlorine fluoride gas rises straight up in the inner pipe 20 and above the inner pipe 20. And then descends through the gap between the inner pipe 20 and the outer pipe 21 and is exhausted by the exhaust pipe 43. Most of the introduced chlorine fluoride gas is consumed for removing the SiO 2 film formed on the inner surface of the inner tube 20, and the remaining chlorine fluoride gas is applied to the outer surface of the inner tube 20 and the inner surface of the outer tube 21. It is consumed to remove the SiO 2 film that has been formed. Therefore, the etching rate of the outer tube 20 is smaller than that of the inner tube 21.
Thereafter, the valve of the gas supply control device group 33 is closed to stop the supply of chlorine fluoride gas, and the chlorine fluoride gas remaining in the reaction vessel is exhausted. Thereafter, nitrogen gas is supplied into the reaction vessel while maintaining the temperature in the reaction vessel at 400 ° C., the inside of the reaction vessel is returned to atmospheric pressure, and the series of steps is completed.

上述の実施の形態によれば、成膜処理時にガス供給管24より窒素ガスを所定量この例では500sccm導入して、内管20の外面及び外管21の内面に成膜されるSiO膜の成膜速度を抑えているので、成膜処理を繰り返し行うことによるこの部位の累積膜厚を抑制できる。従って、クリーニング処理において内管20の内面に成膜されているSiO膜を除去するのに要する時間と内管20の外面及び外管21の内面に成膜されているSiO膜を除去するのに要する時間との差が縮まり、内管20の内面がクリーニングガスであるフッ化塩素ガスに晒される時間即ちオーバーエッチングされる時間が短くなる。このため反応容器の使用寿命が長くなると共にパーティクルの発生が低減できる。
また前記ガス導入口24aの好ましい位置としては、図6に示すようにガス導入管24のガス導入口24aが下向きの状態で内管20の上端側の上方空間に位置してもよい。なお内管20の上端側の上方空間に位置している導入口24は外方側に向いていてもよい。即ち、前記ガス導入口24aの位置は前記内管20で囲まれる基板の処理領域の下流側であれば、成膜処理に悪影響を与えず且つ本発明の効果が得られればその向きは特に限定されない。
According to the above-described embodiment, a predetermined amount of nitrogen gas is introduced from the gas supply pipe 24 through the gas supply pipe 24 in this example, and in this example, 500 sccm is introduced, and the SiO 2 film formed on the outer surface of the inner tube 20 and the inner surface of the outer tube 21 Therefore, the accumulated film thickness of this part can be suppressed by repeatedly performing the film forming process. Therefore, to remove the SiO 2 film formed on the outer and inner surfaces of the outer tube 21 of the time required to remove the SiO 2 film formed on the inner surface of the inner tube 20 and the inner pipe 20 in the cleaning process The time required for this is reduced, and the time during which the inner surface of the inner tube 20 is exposed to chlorine fluoride gas, which is a cleaning gas, that is, the time for overetching is shortened. For this reason, the service life of the reaction vessel is extended and the generation of particles can be reduced.
Further, as a preferred position of the gas inlet 24a, as shown in FIG. 6, the gas inlet 24a of the gas inlet pipe 24 may be positioned in the upper space on the upper end side of the inner pipe 20 in a downward state. The introduction port 24 located in the upper space on the upper end side of the inner tube 20 may face outward. That is, if the position of the gas introduction port 24a is on the downstream side of the processing region of the substrate surrounded by the inner tube 20, the direction is particularly limited as long as the film forming process is not adversely affected and the effect of the present invention is obtained. Not.

ここで成膜処理時にガス導入管24から反応容器内に導入する窒素ガスの導入量としては、処理領域における内管20の内面に付着したSiO膜をクリーニングする時間をt1、内管20の外面及び外管21の内面に付着したSiO膜をクリーニングする時間をt2とすると、窒素ガスを導入しながら成膜を行った後にクリーニングをしたときにおける時間差(t2−t1)(この時間差をΔtaとする)が、窒素ガスを導入せずに成膜を行った後にクリーニングをしたときにおける時間差(t2−t1)(この時間差をΔtbとする)の半分以下となるように窒素ガスの導入量が設定される。即ち、時間比(Δtb/Δta)が50%を目安に設定しており、この例では500sccmとしている。 Here, the amount of nitrogen gas introduced into the reaction vessel from the gas introduction tube 24 during the film forming process is defined as a time t1 for cleaning the SiO 2 film adhering to the inner surface of the inner tube 20 in the processing region. Assuming that the time for cleaning the SiO 2 film adhering to the outer surface and the inner surface of the outer tube 21 is t2, the time difference (t2−t1) when cleaning is performed after film formation while introducing nitrogen gas (this time difference is Δta However, the amount of nitrogen gas introduced is less than half of the time difference (t2−t1) (this time difference is Δtb) when cleaning is performed after film formation is performed without introducing nitrogen gas. Is set. That is, the time ratio (Δtb / Δta) is set to 50% as a guide, and in this example, it is set to 500 sccm.

また上述の実施の形態では、プロセスガスとしてTEOSガス用いてウエハW表面にSiO膜を成膜する成膜処理を行っているが、プロセスガスとしてTEOSガスとTMB(トリメチルボレート)ガスとを用いてウエハW表面にBSG(Born Silicate Glass)膜を成膜する成膜処理を行ってもよい。この場合、成膜処理時にガス導入管24から反応容器内に導入する窒素ガスの導入量としては、上述したように時間比(Δtb/Δta)が50%を目安にすると、この例では1500sccmである。
このようにプロセスガス毎に成膜処理時に反応容器内に導入する窒素ガスの導入量が変わるので、制御部7に備えたメモリにプロセスガス毎のガス導入量を書き込んでおき、このデータに基づいて、窒素ガスの導入量が決定される。
また成膜処理の種別としてはウエハWの表面にポリシリコン膜を成膜するプロセスであってもよい。
In the above-described embodiment, the film forming process for forming the SiO 2 film on the surface of the wafer W using the TEOS gas as the process gas is performed. However, the TEOS gas and the TMB (trimethyl borate) gas are used as the process gas. Then, a film forming process for forming a BSG (Born Silicate Glass) film on the surface of the wafer W may be performed. In this case, the amount of nitrogen gas introduced from the gas introduction pipe 24 into the reaction vessel during the film forming process is 1500 sccm in this example, assuming that the time ratio (Δtb / Δta) is 50% as described above. is there.
As described above, since the amount of nitrogen gas introduced into the reaction vessel at the time of film formation varies for each process gas, the amount of gas introduced for each process gas is written in the memory provided in the control unit 7, and based on this data. Thus, the amount of nitrogen gas introduced is determined.
The type of film forming process may be a process of forming a polysilicon film on the surface of the wafer W.

本発明の効果を確認するために行った実験例について述べる。
(実施例1−1)
図7に示すように、上述した縦型熱処理装置において、内管20の内側と内管20の外側に石英チップSを夫々設け、反応容器内にガス導入管23aを通じてTEOSガスを400sccm導入すると共に、ガス導入管24を通じて窒素ガスを500sccm導入して、各石英チップSに成膜されるSiO膜の成膜速度を測定した。なお、成膜処理時の反応容器内の設定温度及び設定圧力は夫々685℃及び53.3Paである。石英チップSを設ける場所についてもう少し詳しく述べると、内管20の内側では排気管43の逆側に石英チップSが上部領域(TOP)、中部領域(CTR)、下部領域(BTM)に1個づつ設けられ、内管20の外側ではガス供給管24側に石英チップSが上部領域、中部領域、下部領域に1個づつ夫々設けられている。
(比較例1−1)
窒素ガスの導入量を50sccmとした他は、実施例1−1と同様にして各石英チップSに成膜されるSiO膜の成膜速度を測定した。
An experimental example performed to confirm the effect of the present invention will be described.
(Example 1-1)
As shown in FIG. 7, in the above-described vertical heat treatment apparatus, quartz chips S are respectively provided inside the inner tube 20 and outside the inner tube 20, and 400 sccm of TEOS gas is introduced into the reaction vessel through the gas introduction tube 23a. Then, 500 sccm of nitrogen gas was introduced through the gas introduction tube 24, and the deposition rate of the SiO 2 film deposited on each quartz chip S was measured. The set temperature and set pressure in the reaction vessel during the film forming process are 685 ° C. and 53.3 Pa, respectively. The place where the quartz chip S is provided will be described in more detail. Inside the inner tube 20, one quartz chip S is provided in the upper region (TOP), the middle region (CTR), and the lower region (BTM) on the opposite side of the exhaust pipe 43. A quartz chip S is provided outside the inner tube 20 on the gas supply tube 24 side, one in each of the upper region, the middle region, and the lower region.
(Comparative Example 1-1)
The deposition rate of the SiO 2 film deposited on each quartz chip S was measured in the same manner as in Example 1-1 except that the amount of nitrogen gas introduced was 50 sccm.

(結果及び考察)
実施例1−1の結果を図8に示すと共に、比較例1−1の結果を図9に示す。図8及び図9の横軸は、内管20の上端部からの長さ(mm)を示しており、縦軸は、各石英チップSに成膜されるSiO膜の成膜速度(nm/分)を示している。また図8及び図9中において▲は内管20の内側に設けられている石英チップSを示し、△はガス導入管24側に設けられている石英チップSを示している。図9に示すように、比較例1−1では内管20の外側に設けられている石英チップSにおいて上部領域、中部領域、下部領域の石英チップSに成膜されるSiO膜の成膜速度は夫々6nm/分、5.5nm/分、5nm/分であるのに対して、図8に示すように、実施例1−1では内管20の外側に設けられている石英チップSにおいて上部領域、中部領域、下部領域の石英チップSに成膜されるSiO膜の成膜速度は夫々3nm/分、3.8nm/分、4nm/分である。このことから反応容器内に窒素ガスを500sccmm導入することで、内管20の外側に設けられている石英チップSに成膜されるSiO膜の成膜速度が抑えられることが分かる。
(Results and discussion)
The result of Example 1-1 is shown in FIG. 8, and the result of Comparative Example 1-1 is shown in FIG. 8 and 9, the horizontal axis indicates the length (mm) from the upper end of the inner tube 20, and the vertical axis indicates the deposition rate (nm) of the SiO 2 film deposited on each quartz chip S. / Min). 8 and 9, ▲ indicates the quartz chip S provided inside the inner tube 20, and Δ indicates the quartz chip S provided on the gas introduction tube 24 side. As shown in FIG. 9, in Comparative Example 1-1, the SiO 2 film formed on the quartz chip S in the upper region, the middle region, and the lower region in the quartz chip S provided outside the inner tube 20 is formed. While the speeds are 6 nm / min, 5.5 nm / min, and 5 nm / min, respectively, as shown in FIG. 8, in the example 1-1, the quartz chip S provided outside the inner tube 20 is used. The deposition rate of the SiO 2 film formed on the quartz chip S in the upper region, middle region, and lower region is 3 nm / min, 3.8 nm / min, and 4 nm / min, respectively. From this, it can be seen that by introducing 500 sccm of nitrogen gas into the reaction vessel, the deposition rate of the SiO 2 film deposited on the quartz chip S provided outside the inner tube 20 can be suppressed.

(実施例1−2)
上述した縦型熱処理装置において、反応容器内にガス導入管23aを通じてTEOSガスを400sccm導入すると共に、ガス導入管24を通じて窒素ガスを500sccm導入して、ウエハボート6に棚状に載置されているウエハWに対してSiO膜の成膜処理を行い、その後、反応容器からウエハボート6を搬出して、ウエハボート6の上部領域(TOP)、中部領域(CTR)、下部領域(BTM)に載置されているウエハWの面内均一性を測定した。なお、成膜処理時の反応容器内の設定温度及び設定圧力は夫々685℃及び53.3Paである。
(比較例1−2)
成膜処理において窒素ガスの導入量を50sccmした他は、実施例1−2と同様にしてウエハWの面内均一性を測定した。
(Example 1-2)
In the vertical heat treatment apparatus described above, 400 sccm of TEOS gas is introduced into the reaction vessel through the gas introduction pipe 23 a and 500 sccm of nitrogen gas is introduced through the gas introduction pipe 24, and is placed on the wafer boat 6 in a shelf shape. The SiO 2 film is formed on the wafer W, and then the wafer boat 6 is unloaded from the reaction vessel to the upper region (TOP), middle region (CTR), and lower region (BTM) of the wafer boat 6. In-plane uniformity of the wafer W placed thereon was measured. The set temperature and set pressure in the reaction vessel during the film forming process are 685 ° C. and 53.3 Pa, respectively.
(Comparative Example 1-2)
The in-plane uniformity of the wafer W was measured in the same manner as in Example 1-2 except that the amount of nitrogen gas introduced was 50 sccm in the film formation process.

(結果及び考察)
実施例1−2及び比較例1−2の結果を図10に示す。図10の横軸は、ウエハボート6におけるウエハWの載置場所を示しており、左側縦軸は内管20の内壁面に成膜されるSiO膜の成長速度(nm/分)を示しており、右側縦軸はウエハWの面内均一性(%)を示している。図10に示すように実施例1−2と比較例1−2とでは、ウエハボート6の上部領域(TOP)、中部領域(CTR)、下部領域(BTM)に載置されているウエハWの面内均一性が殆ど同じであることが分かる。このことから反応容器内に窒素ガスを500sccmmと従来よりも多量な窒素ガスを導入しても、内管20で囲まれるウエハWの処理雰囲気を窒素ガスによって乱すといったおそれがないことが分かる。
(Results and discussion)
The results of Example 1-2 and Comparative Example 1-2 are shown in FIG. The horizontal axis in FIG. 10 indicates the placement location of the wafer W on the wafer boat 6, and the left vertical axis indicates the growth rate (nm / min) of the SiO 2 film formed on the inner wall surface of the inner tube 20. The right vertical axis represents the in-plane uniformity (%) of the wafer W. As shown in FIG. 10, in the example 1-2 and the comparative example 1-2, the wafers W placed in the upper region (TOP), the middle region (CTR), and the lower region (BTM) of the wafer boat 6 are shown. It can be seen that the in-plane uniformity is almost the same. From this, it can be seen that even if nitrogen gas is introduced into the reaction vessel at 500 sccmm, which is larger than the conventional nitrogen gas, there is no fear that the processing atmosphere of the wafer W surrounded by the inner tube 20 is disturbed by the nitrogen gas.

(実施例2−1)
図7に示すように、上述した縦型熱処理装置において、内管20の内側と内管20の外側に石英チップSを夫々設けて、反応容器内にガス導入管23aを通じてTEOSガス及びTMBガスを各々330sccm及び162sccm導入すると共に、ガス導入管24を通じて窒素ガスを1500sccm導入して、各石英チップSに成膜されるBSG膜の成膜速度を測定した。なお、成膜処理時の反応容器内の設定温度及び設定圧力は夫々685℃及び73.3Paである。また石英チップSを設ける場所は実施例1−1と全く同じ場所である。
(比較例2−1)
窒素ガスの導入量を50sccmした他は、実施例2−1と同様にして各石英チップSに成膜されているBSG膜の成膜速度を測定した。
(Example 2-1)
As shown in FIG. 7, in the above-described vertical heat treatment apparatus, quartz chips S are respectively provided inside the inner tube 20 and outside the inner tube 20, and TEOS gas and TMB gas are supplied into the reaction vessel through the gas introduction tube 23a. While introducing 330 sccm and 162 sccm, respectively, and introducing 1500 sccm of nitrogen gas through the gas introduction tube 24, the deposition rate of the BSG film deposited on each quartz chip S was measured. The set temperature and set pressure in the reaction vessel during the film forming process are 685 ° C. and 73.3 Pa, respectively. The place where the quartz chip S is provided is exactly the same as in Example 1-1.
(Comparative Example 2-1)
The film formation rate of the BSG film formed on each quartz chip S was measured in the same manner as in Example 2-1, except that the amount of nitrogen gas introduced was 50 sccm.

(結果及び考察)
実施例2−1の結果を図11に示すと共に、比較例2−1の結果を図12に示す。図11及び図12の横軸は、内管20の上端部からの長さ(mm)を示しており、縦軸は、各石英チップSに成膜されるBSG膜の成膜速度(nm/分)を示している。また図11及び図12中において▲は内管20の内側に設けられている石英チップSを示し、△は内管20の外側に設けられている石英チップSを示している。図12に示すように、比較例2−1では内管20の外側に設けられている石英チップSにおいて上部領域、中部領域、下部領域の石英チップSに成膜されるBSG膜の成膜速度は夫々5nm/分、5nm/分、3.5nm/分であったのに対して、図11に示すように、実施例2−1では内管20の外側に設けられている石英チップSにおいて上部領域、中部領域、下部領域の石英チップSに成膜されるBSG膜の成膜速度は夫々3nm/分、3.5nm/分、3.5nm/分であった。このことから反応容器内に窒素ガスを1500sccmm導入することで、内管20の外側に設けられている石英チップSに成膜されるBSG膜の成膜速度が抑えられることが分かる。
(Results and discussion)
The results of Example 2-1 are shown in FIG. 11, and the results of Comparative Example 2-1 are shown in FIG. 11 and 12 indicate the length (mm) from the upper end of the inner tube 20, and the vertical axis indicates the film formation rate (nm / mm) of the BSG film formed on each quartz chip S. Minutes). 11 and 12, ▲ indicates the quartz chip S provided inside the inner tube 20, and Δ indicates the quartz chip S provided outside the inner tube 20. As shown in FIG. 12, in Comparative Example 2-1, the deposition rate of the BSG film formed on the quartz chip S in the upper region, the middle region, and the lower region in the quartz chip S provided outside the inner tube 20. Were 5 nm / min, 5 nm / min, and 3.5 nm / min, respectively, whereas in Example 2-1, in the quartz chip S provided outside the inner tube 20, as shown in FIG. The deposition rates of the BSG films formed on the quartz chip S in the upper region, middle region, and lower region were 3 nm / min, 3.5 nm / min, and 3.5 nm / min, respectively. From this, it can be seen that by introducing 1500 sccc mm of nitrogen gas into the reaction vessel, the deposition rate of the BSG film deposited on the quartz chip S provided outside the inner tube 20 can be suppressed.

(実施例2−2)
上述した縦型熱処理装置において、反応容器内にガス導入管23aを通じてTEOSガス及びTMBガスを各々330sccm及び162sccm導入すると共に、ガス導入管24を通じて窒素ガスを1500sccm導入して行い、ウエハボート6に棚状に載置されているウエハWに対してBSG膜の成膜処理を行い、その後、反応容器からウエハボート6を搬出して、ウエハボート6の上部領域(TOP)、中部領域(CTR)、下部領域(BTM)に載置されているウエハWの面内均一性を測定した。なお、成膜処理時の反応容器内の設定温度及び設定圧力は夫々685℃及び73.3Paである。
(比較例2−2)
成膜処理において窒素ガスの導入量を50sccmした他は、実施例2−2と同様にしてウエハWの面内均一性を測定した。
(Example 2-2)
In the above-described vertical heat treatment apparatus, TEOS gas and TMB gas are introduced into the reaction vessel through the gas introduction pipe 23a at 330 sccm and 162 sccm, respectively, and nitrogen gas is introduced through the gas introduction pipe 24 at 1500 sccm, and the shelf is mounted on the wafer boat 6. BSG film formation processing is performed on the wafer W placed in a shape, and then the wafer boat 6 is unloaded from the reaction vessel, and the upper region (TOP), middle region (CTR), The in-plane uniformity of the wafer W placed on the lower region (BTM) was measured. The set temperature and set pressure in the reaction vessel during the film forming process are 685 ° C. and 73.3 Pa, respectively.
(Comparative Example 2-2)
The in-plane uniformity of the wafer W was measured in the same manner as in Example 2-2 except that the amount of nitrogen gas introduced was 50 sccm in the film formation process.

(結果及び考察)
実施例2−2及び比較例2−2の結果を図13に示す。図13の横軸は、ウエハボート6におけるウエハWの載置場所を示しており、左側縦軸は内管20の内壁面に成膜されるBSG膜の成膜速度(nm/分)を示しており、右側縦軸はウエハWの面内均一性(%)を示している。図13に示すように実施例2−2と比較例2−2とでは、ウエハボート6の上部領域(TOP)、中部領域(CTR)、下部領域(BTM)に載置されているウエハWの面内均一性が殆ど同じであることが分かる。このことから反応容器内に窒素ガスを1500sccmmと従来よりも多量な窒素ガスを導入しても、内管20で囲まれるウエハWの処理雰囲気を窒素ガスによって乱すといったおそれがないことが分かる。
(Results and discussion)
The results of Example 2-2 and Comparative Example 2-2 are shown in FIG. The horizontal axis in FIG. 13 indicates the placement location of the wafer W on the wafer boat 6, and the left vertical axis indicates the deposition rate (nm / min) of the BSG film deposited on the inner wall surface of the inner tube 20. The right vertical axis represents the in-plane uniformity (%) of the wafer W. As shown in FIG. 13, in Example 2-2 and Comparative Example 2-2, the wafers W placed in the upper region (TOP), the middle region (CTR), and the lower region (BTM) of the wafer boat 6 are shown. It can be seen that the in-plane uniformity is almost the same. From this, it can be seen that even if nitrogen gas is introduced into the reaction vessel at 1500 sccmm, which is larger than the conventional nitrogen gas, the processing atmosphere of the wafer W surrounded by the inner tube 20 is not disturbed by the nitrogen gas.

(実施例3)
実施例2−1と同じ条件でウエハボート6に棚状に載置されているウエハWに対して200nmのBSG膜を成膜した後、実施例1−1と同じ条件で前記ウエハWに対して225nmのSiO膜を成膜した。そしてこの成膜処理を5回行った後、反応容器内にガス導入管23bを通じてフッ化塩素ガスを1500sccm導入して、反応容器内のクリーニングを行い、内管20の内側に設けられている石英チップS及び内管20の外側に設けられている石英チップSにおいて上部領域(TOP)、中部領域(CTR)、下部領域(BTM)の石英チップSに成膜されている積層膜が除去される時間を夫々測定した。なお、クリーニング処理時の反応容器内の設定温度及び設定圧力は夫々420℃及び266.6Paである。
(比較例3)
成膜処理において窒素ガスの導入量を50sccmした他は、実施例3と同様にして石英チップSに成膜されている積層膜が除去される時間を測定した。
(Example 3)
After forming a 200 nm BSG film on the wafer W placed in a shelf shape on the wafer boat 6 under the same conditions as in Example 2-1, the wafer W was applied on the same conditions as in Example 1-1. A 225 nm SiO 2 film was formed. Then, after this film forming process is performed five times, 1500 sccm of chlorine fluoride gas is introduced into the reaction vessel through the gas introduction tube 23b, the reaction vessel is cleaned, and the quartz provided inside the inner tube 20 is disposed. In the quartz chip S provided outside the chip S and the inner tube 20, the laminated film formed on the quartz chip S in the upper region (TOP), middle region (CTR), and lower region (BTM) is removed. Each time was measured. The set temperature and set pressure in the reaction vessel during the cleaning process are 420 ° C. and 266.6 Pa, respectively.
(Comparative Example 3)
The time for removing the laminated film formed on the quartz chip S was measured in the same manner as in Example 3 except that the amount of nitrogen gas introduced was 50 sccm in the film forming process.

(結果及び考察)
実施例3の結果を図14に示すと共に、比較例3の結果を図15に示す。図14及び図15の横軸は石英チップSの設置場所を示しており、縦軸は、各石英チップSに成膜されている積層膜を除去するのに要する時間(分)を示している。図15に示すように、比較例3では内管20の外側で最も長いクリーニング時間から内管20の内側で最も短いクリーニング時間を差し引いた時間Δtdが約150分であったのに対して、図14に示すように、実施例3では内管20の外側で最も長いクリーニング時間から内管20の内側で最も短いクリーニング時間を差し引いた時間Δtcが約55分であった。このことから内管20の内面がフッ素塩素ガスで晒される時間が150分から55分に短縮され、内管20の内面がエッチングされる時間が約1/3に減少したことが分かる。従って、概略的な言い方をすれば反応容器の使用寿命が約3倍長くなったと言える。
(Results and discussion)
The result of Example 3 is shown in FIG. 14, and the result of Comparative Example 3 is shown in FIG. The horizontal axis of FIGS. 14 and 15 indicates the installation location of the quartz chip S, and the vertical axis indicates the time (minutes) required to remove the laminated film formed on each quartz chip S. . As shown in FIG. 15, in Comparative Example 3, the time Δtd obtained by subtracting the shortest cleaning time inside the inner tube 20 from the longest cleaning time outside the inner tube 20 was about 150 minutes. As shown in FIG. 14, in Example 3, the time Δtc obtained by subtracting the shortest cleaning time inside the inner tube 20 from the longest cleaning time outside the inner tube 20 was about 55 minutes. From this, it can be seen that the time during which the inner surface of the inner tube 20 is exposed to fluorine chlorine gas has been reduced from 150 minutes to 55 minutes, and the time during which the inner surface of the inner tube 20 is etched has been reduced to about 1 /. Therefore, in general terms, it can be said that the service life of the reaction vessel is about three times longer.

本発明の実施の形態に係る縦型熱処理装置を示す縦断側面図である。It is a vertical side view which shows the vertical heat processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る縦型熱処理装置を示す横断側面図である。It is a cross-sectional side view which shows the vertical heat processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る縦型熱処理装置を示す外観図である。It is an external view which shows the vertical heat processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of embodiment of this invention. 前記縦型熱処理装置内のガスの流れを示す説明図である。It is explanatory drawing which shows the flow of the gas in the said vertical heat processing apparatus. 本発明の実施の形態に係る縦型熱処理装置の他の例を示す縦断側面図である。It is a vertical side view which shows the other example of the vertical heat processing apparatus which concerns on embodiment of this invention. 本発明の効果を確認するために使用した縦型熱処理装置を示す概略縦断面図及び概略横断面図である。It is the schematic longitudinal cross-sectional view and schematic cross-sectional view which show the vertical heat processing apparatus used in order to confirm the effect of this invention. 各石英チップに成膜されるSiO膜の成膜速度を示す特性図である。It is a characteristic diagram showing the deposition rate of the SiO 2 film deposited on each quartz chips. 各石英チップに成膜されるSiO膜の成膜速度を示す特性図である。It is a characteristic diagram showing the deposition rate of the SiO 2 film deposited on each quartz chips. ウエハ表面の面内均一性を示す特性図である。It is a characteristic view which shows the in-plane uniformity of a wafer surface. 各石英チップに成膜されるBSG膜の成膜速度を示す特性図である。It is a characteristic view which shows the film-forming speed | rate of the BSG film | membrane formed into each quartz chip. 各石英チップに成膜されるBSG膜の成膜速度を示す特性図である。It is a characteristic view which shows the film-forming speed | rate of the BSG film | membrane formed into each quartz chip. ウエハ表面の面内均一性を示す特性図である。It is a characteristic view which shows the in-plane uniformity of a wafer surface. 各石英チップに成膜されている積層膜を除去するのに要する時間を示す特性図である。It is a characteristic view which shows time required to remove the laminated film currently formed in each quartz chip. 各石英チップに成膜されている積層膜を除去するのに要する時間を示す特性図である。It is a characteristic view which shows time required to remove the laminated film currently formed in each quartz chip. 従来の縦型熱処理装置を示す縦断側面図である。It is a vertical side view which shows the conventional vertical heat processing apparatus.

符号の説明Explanation of symbols

W ウエハ
2 反応管
20 内管
21 外管
23 ガス導入管
24 ガス導入管
24a ガス導入口
30 断熱体
31 ヒータ
34 プロセスガス供給源
35 クリーニングガス供給源
37 成膜抑制用のガス供給源
40 ベース体
41 マニホールド
42 真空排気手段
43 排気管
51 蓋体
52 ボートエレベータ
6 ウエハボート
7 制御部
W Wafer 2 Reaction tube 20 Inner tube 21 Outer tube 23 Gas introduction tube 24 Gas introduction tube 24a Gas introduction port 30 Heat insulator 31 Heater 34 Process gas supply source 35 Cleaning gas supply source 37 Gas supply source 40 for suppressing film formation Base body 41 Manifold 42 Vacuum exhaust means 43 Exhaust pipe 51 Cover body 52 Boat elevator 6 Wafer boat 7 Controller

Claims (2)

上面が開放された内管及び上面が閉じられている外管を含む二重管構造の縦型の反応容器内に、複数の基板を棚状に保持させた基板保持具を下方側から搬入する工程と、
前記内管内の下部側からTEOSガスを導入して内管の上端から内管と外管との隙間を介して処理領域を排気しながら当該処理領域を真空雰囲気に設定し、前記基板に対してシリコン酸化膜の成膜を行うと共に、前記内管の上部側における前記内管及び外管の隙間にて開口するガス導入口から、内管の外面及び外管の内面への成膜を抑えるために成膜抑制用のガスを500sccm〜1000sccm導入する工程と、
次に反応容器から基板保持具を搬出する工程と、
その後前記内管内の下部側からクリーニングガスを導入して内管の上端から内管と外管との隙間を介して処理領域を排気しながら反応容器内をクリーニングする工程と、を含むことを特徴とする成膜方法。
A substrate holder holding a plurality of substrates in a shelf shape is carried from the lower side into a vertical reaction container having a double tube structure including an inner tube whose upper surface is opened and an outer tube whose upper surface is closed. Process,
TEOS gas is introduced from the lower side in the inner tube, and the processing region is set to a vacuum atmosphere while exhausting the processing region from the upper end of the inner tube through the gap between the inner tube and the outer tube. To form a silicon oxide film and suppress film formation on the outer surface of the inner tube and the inner surface of the outer tube from the gas inlet opening in the gap between the inner tube and the outer tube on the upper side of the inner tube Introducing a gas for suppressing film formation into 500 sccm to 1000 sccm ;
Next, a step of unloading the substrate holder from the reaction vessel;
And then cleaning the inside of the reaction vessel while introducing a cleaning gas from the lower side in the inner tube and exhausting the processing region from the upper end of the inner tube through the gap between the inner tube and the outer tube. A film forming method.
上面が開放された内管及び上面が閉じられている外管を含む二重管構造の縦型の反応容器内に、複数の基板を棚状に保持させた基板保持具を搬入して、成膜処理を行う成膜装置に用いられるコンピュータプログラムを格納する記憶媒体であって、
前記コンピュータプログラムは、請求項に記載の成膜方法を実施するようにステップ群が組まれていることを特徴とする記憶媒体。
A substrate holder holding a plurality of substrates in a shelf shape is carried into a vertical reaction vessel having a double tube structure including an inner tube whose upper surface is open and an outer tube whose upper surface is closed. A storage medium for storing a computer program used in a film forming apparatus that performs film processing,
A storage medium characterized in that the computer program includes a group of steps so as to implement the film forming method according to claim 1 .
JP2007077607A 2007-03-23 2007-03-23 Film forming method and storage medium Expired - Fee Related JP4661812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077607A JP4661812B2 (en) 2007-03-23 2007-03-23 Film forming method and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077607A JP4661812B2 (en) 2007-03-23 2007-03-23 Film forming method and storage medium

Publications (2)

Publication Number Publication Date
JP2008243837A JP2008243837A (en) 2008-10-09
JP4661812B2 true JP4661812B2 (en) 2011-03-30

Family

ID=39914868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077607A Expired - Fee Related JP4661812B2 (en) 2007-03-23 2007-03-23 Film forming method and storage medium

Country Status (1)

Country Link
JP (1) JP4661812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677958B2 (en) * 2016-03-16 2020-04-08 大陽日酸株式会社 Dry cleaning equipment for contaminated parts in vapor phase growth equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284260A (en) * 2000-03-30 2001-10-12 Hitachi Kokusai Electric Inc Method for processing substrate
JP2003347288A (en) * 2002-05-30 2003-12-05 Tokyo Electron Ltd Injector for semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for cleaning semiconductor manufacturing apparatus
JP2006080101A (en) * 2003-01-08 2006-03-23 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284260A (en) * 2000-03-30 2001-10-12 Hitachi Kokusai Electric Inc Method for processing substrate
JP2003347288A (en) * 2002-05-30 2003-12-05 Tokyo Electron Ltd Injector for semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for cleaning semiconductor manufacturing apparatus
JP2006080101A (en) * 2003-01-08 2006-03-23 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Also Published As

Publication number Publication date
JP2008243837A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US11365482B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP6538582B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
JP6476369B2 (en) Cleaning method, semiconductor device manufacturing method, substrate processing apparatus, and program
TWI815898B (en) Etching method and etching device
US9653326B2 (en) Method of cleaning, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2017037937A1 (en) Reaction tube, substrate processing device and semiconductor device manufacturing method
TWI694518B (en) Substrate processing apparatus, quartz reaction tube, cleaning method, and recording media
JP2020017757A (en) Substrate processing apparatus, reaction vessel, and manufacturing method of semiconductor device
JP7114554B2 (en) Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program
US20210305058A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20190127848A1 (en) Processing Method, Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium
KR20210117950A (en) Vaporizer, substrate processing apparatus, cleaning method and method of manufacturing semiconductor device
US10714336B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
US20230223247A1 (en) Cleaning method, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP4661812B2 (en) Film forming method and storage medium
JP7539480B2 (en) SUBSTRATE PROCESSING METHOD, PROGRAM, SUBSTRATE PROCESSING APPARATUS, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP7539481B2 (en) SUBSTRATE PROCESSING METHOD, PROGRAM, AND SUBSTRATE PROCESSING APPARATUS
JP7154055B2 (en) Film forming method and film forming apparatus
JP7229266B2 (en) SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND PROGRAM
KR20210124909A (en) Cleaning method and heat treatment apparatus
JP5571157B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
WO2020054299A1 (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
US11965240B2 (en) Cleaning method, method of manufacturing semiconductor device, and substrate processing apparatus
JP7572124B2 (en) Film formation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees