JP4660925B2 - Waste home appliance recycling system - Google Patents
Waste home appliance recycling system Download PDFInfo
- Publication number
- JP4660925B2 JP4660925B2 JP2000397669A JP2000397669A JP4660925B2 JP 4660925 B2 JP4660925 B2 JP 4660925B2 JP 2000397669 A JP2000397669 A JP 2000397669A JP 2000397669 A JP2000397669 A JP 2000397669A JP 4660925 B2 JP4660925 B2 JP 4660925B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- specific gravity
- sorter
- sorting
- crushed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002699 waste material Substances 0.000 title claims description 65
- 238000004064 recycling Methods 0.000 title claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 570
- 230000005484 gravity Effects 0.000 claims description 359
- 239000000463 material Substances 0.000 claims description 278
- 239000007788 liquid Substances 0.000 claims description 138
- 238000011084 recovery Methods 0.000 claims description 89
- 239000002994 raw material Substances 0.000 claims description 77
- 238000000926 separation method Methods 0.000 claims description 66
- 238000007667 floating Methods 0.000 claims description 28
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 20
- 239000003562 lightweight material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 14
- 238000005086 pumping Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 4
- 229920005989 resin Polymers 0.000 description 126
- 239000011347 resin Substances 0.000 description 126
- -1 ferrous metals Chemical class 0.000 description 77
- 239000004743 Polypropylene Substances 0.000 description 71
- 229920001155 polypropylene Polymers 0.000 description 71
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 50
- 238000003860 storage Methods 0.000 description 48
- 229920003023 plastic Polymers 0.000 description 43
- 239000004033 plastic Substances 0.000 description 43
- 239000000428 dust Substances 0.000 description 35
- 239000010865 sewage Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 229910001385 heavy metal Inorganic materials 0.000 description 24
- 238000010586 diagram Methods 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 18
- 238000007664 blowing Methods 0.000 description 17
- 238000005406 washing Methods 0.000 description 15
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 10
- 239000000440 bentonite Substances 0.000 description 9
- 229910000278 bentonite Inorganic materials 0.000 description 9
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 9
- 238000011109 contamination Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 229920005672 polyolefin resin Polymers 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 235000011121 sodium hydroxide Nutrition 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 229920005990 polystyrene resin Polymers 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 230000005070 ripening Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229920001890 Novodur Polymers 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 239000008394 flocculating agent Substances 0.000 description 3
- 239000006148 magnetic separator Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006327 polystyrene foam Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B5/00—Operations not covered by a single other subclass or by a single other group in this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/82—Recycling of waste of electrical or electronic equipment [WEEE]
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Processing Of Solid Wastes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Combined Means For Separation Of Solids (AREA)
- Disintegrating Or Milling (AREA)
- Air Transport Of Granular Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、廃棄物となった廃家電製品を破砕した破砕物から、プラスチック等を素材別に水比重選別する廃家電再資源化処理装置に関するものである。
【0002】
【従来の技術】
従来、既存リサイクル業者は使用済み家電製品を、図24に示す処理フローで再資源化していた。以下、その処理フローについて説明する。
【0003】
使用済み家電製品をストックヤード1から供給装置2にて破砕機3へ搬送した後、破砕機3にて破砕し、破砕した破砕物から磁気選別機4にて鉄を回収する。
【0004】
鉄を回収した後の破砕物は、風力選別機5にて、プラスチックが主構成物のダスト群と非鉄群とに選別する。選別されたプラスチックが主構成物のダスト群は、各種のプラスチックとゴムと電線類等の混合物であり、ダストとして管理型埋め立て地に埋め立てられたり、焼却処分される。また、選別された非鉄群は、篩い選別機6にてサイズ別に分離する。比較的大きい非鉄群は渦電流選別機7にてアルミニウムと銅に選別し、また比較的小サイズの非鉄群は比重選別装置8にて銅およびアルミニウムに選別される。
【0005】
また、別の方法として、特開平5−147040号公報に示される廃棄物の処理方法及びその装置があり、このフローを図25を参照しながら説明する。
【0006】
ストックヤード9から供給装置10にて搬送し、金属塊分別手段11で、モータ、コンプレッサー等の金属塊を分別する。つぎに、金属塊を分別された本体を破砕機12で50mm〜100mm程度の大きさに破砕し、破砕物を軽量物分別手段13にて発泡ウレタン等の発泡成形材を分離する。
【0007】
一方、分別されたモータ、コンプレッサー等の金属塊は冷却装置14で−100℃以下の低温に冷却した後、破砕機15にて破砕し、軽量物分別手段13で出た重い廃棄物と一緒になって金属・非鉄分別工程16に送られる。金属・非鉄分別工程16では磁気選別機17で鉄を回収し、ステンレス選別機18でステンレスを回収する。
【0008】
つぎに、渦電流選別機19で選別した非鉄群を磁性流体を利用した比重選別機20で銅、アルミニウム、その他非鉄金属の3種類に分別する。さらに、金属・非鉄を回収した後のプラスチック群は、静電分離装置21にて木材等を分離して、プラスチック分別工程22に送られる。
【0009】
冷却装置23で0〜−60℃程度に冷却されたプラチック群は破砕機24で破砕し、篩い選別機25にて、脆化点が高く大部分が細かい破砕物となった塩化ビニル系のプラスチックと、比較的大きな破砕物となった塩化ビニルが少ないプラスチック群とに選別する。細かい破砕物は比重液を利用した比重選別機26にて、沈降する塩化ビニルと浮上するその他の樹脂に分離し、その他の樹脂は比較的大きな破砕物であるプラスチック群と一緒に水比重選別機27にて、オレフィン系樹脂と、スチレン系樹脂と、塩化ビニルとに分離される。
【0010】
水比重選別機27は、図26に示すように、比重選別槽と回収は塩化ビニル沈降用の第1の槽28および弁29を介した塩化ビニルの回収コンベアー30と、スチレン系樹脂沈降用の第2の槽31および弁32を介したスチレン系樹脂の回収コンベアー33と、下流側にオレフィン系樹脂の回収コンベアー34で構成し、選別水の循環経路は比重選別機27の最終部に設けた第3の槽35と貯水槽36を連通し、第1の槽28の底部と第2の槽30の底部とは、それぞれ弁29と回収コンベアー30および弁32と回収コンベアー33と受け容器37を介して貯水槽36と連通し、貯水槽36はポンプ38を介して第1の槽28と連通した構成としている。
【0011】
次に動作を説明すると、水比重選別機27に供給されたオレフィン系樹脂a、スチレン系樹脂b、塩化ビニル樹脂cの内、比重が1.4程度の塩化ビニル樹脂cは、循環水の流れに余り影響されることなく第1の槽28に沈降し、回収コンベアー30で回収され、比重が1.05程度のスチレン系樹脂bは、循環水の流れに影響されながら徐々に第2の槽31の底部に沈降し、回収コンベアー33で回収される。比重が0.91程度と水の比重よりも小さなオレフィン系樹脂aは、循環水の流れにより徐々に下流側へ移動し、コンベアー34で回収される。
【0012】
また、既存のプラスチック再生業者が行っていたプラスチックの水比重選別装置の汚水処理装置の構成を図27に示す。プラスチックの水比重選別装置の基本的構成は上記従来例に同じであり省略する。以下、選別に利用して汚水となった選別水の廃水処理の構成と動作を説明する。図27に示すように、水比重選別機(図示せず)の底部に設けられた排水バルブ(図示せず)を介し砂ろ過機39とイオン交換塔40で汚水処理廃水経路を構成する。
【0013】
次に動作を説明すると、プラスチック選別作業において、選別水には、水比重選別機(図示せず)への原料供給以前に分離できなかった重金属を含む金属粉と非鉄粉と、破砕時にプラスチック表面に付着した重金属を含む金属粉と非鉄粉と、塵埃および洗濯機の場合はかび等の汚れが持ち込まれ、選別水は重金属、鉄等の金属、非鉄、泥、かび等ですぐに汚れる。
【0014】
この水比重選別機(図示せず)内で汚水となった選別水は、排水バルブ(図示せず)を介し、砂ろ過機39で未溶解状態の汚染物質をろ過し、次にイオン交換塔40でイオン状態の重金属等の金属イオンを除去した後の処理水を排水し、水比重選別機(図示せず)に新しく水を入れかえるものである。
【0015】
【発明が解決しようとする課題】
しかしながら、図24に示す第1の処理方法では、家電製品の素材構成ウエイトの高いプラスチックがダストとして埋立もしくは焼却される。この結果、有限で貴重な資源(化石燃料)を大量に無駄にしているという大きな問題があった。
【0016】
また、第2の問題としては、比較的大きいサイズの非鉄金属部品は破砕された後、風力選別装置5でダスト群と非鉄金属に選別できるが、家電製品に使用されているモータやコンプレッサー等の銅線と、銅線を使用している内部配線や電源コードは絡みやすく軽いために、50mm〜100mm程度の破砕物を風力選別する風力選別装置5では、ダスト群中へ大部分混入し廃棄される。さらに、非鉄金属側に風力選別された一部の銅線類は、破砕で細かく切断された状態で、篩い選別機6の篩いに絡み機能を低下させる。
【0017】
この結果、熱交換器を有する一部の家電製品を除く大部分の家電製品では、使用している銅の大部分をモータと内部配線および電源コードの銅が占めるために、有価価値の高い銅の回収率は極めて低いものとなる問題があるとともに、篩い選別機6の篩い機能までも阻害する問題があった。
【0018】
また、ダストに混入している銅線を振動分別で選別、回収するには、破砕サイズを極めて細かく揃える必要がある。しかし、家電製品のダスト群は熱可塑性樹脂が大部分を占めているため熱伝導が悪く、破砕時の熱で熱可塑性樹脂が溶融し破砕できない問題があった。
【0019】
また、図25に示す第2の処理方法では、プラスチック破砕物が水になじむまで撥水性を有するものを多く含むので、スチレン系樹脂bがオレフィン系樹脂aに混入し、適切に条件設定しても、選別精度は95%が限界であった。一方、水比重選別の処理能力をアップさせるために、水比重選別機へのプラスチック投入量を増すとプラスチック同士の重なりを生じ、本来沈むべきものが浮くものに挟まれ浮いてしまうことにより、著しく選別精度が低下する。
【0020】
別の処理能力アップの方法として、水比重選別機へのプラスチック投入量を増すとともに、循環水がスピードアップするとプラスチック同士の重なりは減るが、ポリスチレン系樹脂bが循環水の流れに乗ってオレフィン系樹脂aに混入するために著しく選別精度が低下する。
【0021】
この結果、家電製品で最も大量に使用され汎用的なポリプロピレン樹脂(オレフィン系樹脂)が、再度ポリプロピレン樹脂としてマテリアルリサイクルされずに油化あるいは助燃材となっている。
【0022】
また、プラスチック群から塩化ビニルを除去するために冷却装置23で0〜−60℃程度に冷却すると言う大変高価な設備も必要であるという問題がある。
【0023】
また、廃家電製品の破砕物を大量に水比重選別機27で選別すると、選別水は破砕物に付着している金属粉と汚れ等ですぐに汚れ、プラスチックがこの汚れた選別水で再汚染されると、選別したポリプロピレン樹脂をリペレットにするときに、金属の触媒作用でプラスチックの熱劣化を生じさせたり、長期間の使用中に酸化劣化する。さらに、リペレットするときの押し出し機のスクリーンを目詰まりさせ、量産に問題が生じる。
【0024】
しかしながら、図27に示すコンパクトな汚水処理装置では、ろ過工程とイオン交換工程で汚水処理能力が低く、汚水と処理水を水比重選別機27に循環させるクローズドシステムには対応できない問題がある。すなわち、クローズドシステムとするには広い設置スペースと大型装置が必要で、リサイクルコストのアップ要因となり現実的ではない。
【0025】
また、定期的にろ過材の砂を入れかえる必要があり、リサイクルを行っているにも関わらず、重金属の安定化処理した後に砂を含めた廃棄物処理が不可欠となる問題があった。また、イオン交換塔のイオン交換樹脂を定期的に再生しなければならない煩雑さと再生費用が生じる問題がある。
【0026】
また、第2の問題としては、上記第1の処理方法と同じく、内部配線や電源コードの破砕物は絡みやすく軽いために、50mm〜100mmに破砕された破砕物を軽量物分別装置13で分別すると、ダスト群中へ相当量混入し廃棄される。また、モータやコンプレッサー等の銅線と前工程からの一部の内部配線や電源コードの破砕物を金属分別工程16に送っているが、銅塊やアルミ塊以外の表面積の極めて小さい銅線等の非鉄金属を渦電流選別機19で分離することは極めて困難なため、プラスチック群と一緒になって次工程へ送られ、銅線が回収できない問題がある。
【0027】
また、金属塊分別手段11にて予めモータやコンプレッサーを取り外さなければならない。また冷却装置14で−100℃以下の低温に冷却し、破砕機15で破砕するという大変高価な設備であるという問題がある。
【0028】
本発明は上記従来の課題を解決するもので、大量に廃家電のプラスチック破砕物の水比重選別をし、家電製品で最も大量に使用され汎用的なポリプロピレン樹脂(オレフィン系樹脂)を、再度ポリプロピレン樹脂としてマテリアルリサイクルできる純度のポリプロピレン樹脂を選別回収できるようにすることを目的としている。
【0029】
【課題を解決するための手段】
本発明は上記第1の目的を達成するために、廃家電製品の破砕物、または破砕物と選別水を供給する第1の原料供給手段からの供給原料を、第1の水比重選別装置にて、破砕物の比重差で少なくとも2種類の破砕物に選別し、少なくとも2種類に選別した破砕物の内、軽量物と選別水に、第2の水比重選別装置にて、鉛直方向に回転中心軸を有し内方に選別水を収容する回転ドラムと、この回転ドラムの回転中心軸上に設けられ回転ドラム内に軽量物と選別水の混合物を供給する筒体と、回転ドラムの回転軸側かつ筒体の外側に設けられ回転させることにより水に浮く破砕物を回収する回収機とを有し、回転ドラムを第1の所定回転速度で回転させて筒体の周囲に空気の層を発生させ、水に浮く破砕物を回転ドラムの回転軸側に収集し、回収機を第1の所定回転速度より高速の第2の回転速度で回転させ、水に浮く破砕物を回収機で回収するものである。
【0030】
これにより、大量に廃家電のプラスチック破砕物の水比重選別をし、家電製品で最も大量に使用され汎用的なポリプロピレン樹脂(オレフィン系樹脂)を、再度ポリプロピレン樹脂としてマテリアルリサイクルできる純度のポリプロピレン樹脂を選別回収することができる。
【0031】
【発明の実施の形態】
本発明の請求項1に記載の発明は、廃家電製品の破砕物、または前記破砕物と選別水を供給する第1の原料供給手段と、この第1の原料供給手段からの供給原料を前記破砕物の比重差で少なくとも2種類の破砕物に選別する第1の水比重選別装置と、前記少なくとも2種類に選別した破砕物の内、軽量物と選別水を後工程に供給する第1の供給手段と、前記第1の供給手段から送られた軽量物と選別水に遠心力を作用させ再度水に沈む破砕物と水に浮く破砕物に選別する第2の水比重選別装置とを備え、前記第2の水比重選別装置は、鉛直方向に回転中心軸を有し内方に選別水を収容する回転ドラムと、この回転ドラムの回転中心軸上に設けられ前記回転ドラム内に軽量物と選別水の混合物を供給する筒体と、前記回転ドラムの回転軸側かつ前記筒体の外側に設けられ回転させることにより水に浮く破砕物を回収する回収機とを有し、前記回転ドラムを第1の所定回転速度で回転させて前記筒体の周囲に空気の層を発生させ、前記水に浮く破砕物を前記回転ドラムの回転軸側に収集し、前記回収機を前記第1の所定回転速度より高速の第2の回転速度で回転させ、前記水に浮く破砕物を前記回収機で回収するものであり、第1の水比重選別装置で水に沈む破砕物を分離し、プラスチック同士の重なりの原因となる破砕物の絶対量を減らすとともに、プラスチックの水濡れ性もよくなっているので、第1の水比重選別装置ではプラスチックの撥水性で水に浮いたり、プラスチック同士の重なりで軽量物中へ混入した本来水に沈むプラスチックは、遠心力が作用する第2の水比重選別装置ではほぼ完全に分離される。この結果、大量に廃家電のプラスチック破砕物の水比重選別をし、家電製品で最も大量に使用され汎用的なポリプロピレン樹脂(オレフィン系樹脂)を、再度ポリプロピレン樹脂としてマテリアルリサイクルできる純度のポリプロピレン樹脂を選別回収することができる。
【0032】
請求項2に記載の発明は、上記請求項1に記載の発明において、第1の水比重選別装置は、銅線または非鉄類を含む重比重物を選別する第1の選別槽を有するとともに、この重比重物より小さい比重の中比重物を選別する第2の選別槽を、前記第1の選別槽の下流側に設けたものであり、予め廃家電製品の破砕物から磁力選別機で鉄を回収した後の破砕物を第1の水比重選別装置に供給することで、この破砕物中の重比重物は選別水の流れに抗し直ちに沈み、重比重物の水比重選別槽に沈降する。また、中比重物は選別水の流れに流されながら徐々に沈み、中比重物の水比重選別槽に沈降する。さらに、水に浮く軽比重物は下流まで流れ第2の水比重選別装置に供給される。したがって、沈降物を重比重物と中比重物に選別回収することができる。この結果、予め非鉄金属を多く使用しているモータ、コンプレッサー、電源コード、内部配線等を取り外すことなく、有価価値の高い銅線やアルミニウムの小片も容易に選別回収できる。
【0033】
請求項3に記載の発明は、上記請求項1または2に記載の発明において、回転ドラムの底部側に第1の回収手段を備えたものであり、回転ドラム内に略円筒形状に形成される選別水の回転中心軸を鉛直方向とし、第1の水比重選別装置または第3の水比重選別装置から供給される軽量物(水に浮いた破砕物)と選別水の混合物を回転ドラム内の回転中心軸上に設けた筒体から供給すると、供給された軽量物の内、水の比重1.0よりも比重が大きい軽量物(本来、水に沈む破砕物)と比重が小さい軽量物(本来、水に浮く破砕物)を回転方向には遠心力で、鉛直方向には重力で分離することができ、水の比重よりも比重の大きな軽量物を回転ドラム底部側の第1の回収手段で回収することができる。これにより、第1の水比重選別装置または第1の水比重選別装置と第3の水比重選別装置で粗選別した後に、第2の水比重選別装置で選別対象物を遠心力と重力による2方向の分離力により選別することができ、予め第1の水比重選別装置または第1の水比重選別装置と第3の水比重選別装置で選別対象物の量を減らしている(容易に水に沈む物を除去している)ので、選別精度と処理能力を高くすることができる。また、第2の水比重選別装置の運転開始時、運転停止時などの非定常運転時に、回転ドラム内の選別水と選別対象物による回転アンバランスを防止することができ、大がかりな振動減衰装置や高トルクの駆動モータが必要でなく、装置を小型化できるのでシンプルで安価な廃家電再資源化処理装置を提供できる。
【0034】
請求項4に記載の発明は、上記請求項1〜3に記載の発明において、第1の水比重選別装置と、第2の水比重選別装置の間に、破砕物の比重差で少なくとも2種類の破砕物に選別する1つ以上の水比重選別装置を設け、前工程の水比重選別装置から次工程の水比重選別装置に軽量物と選別水を供給する第2の供給手段を備えたものであり、第1の水比重選別装置で比重が1.0よりも大きいにも関わらず、プラスチック破砕物の撥水性によって軽量物としてポリプロピレン樹脂群(軽比重物)の中に混入したスチレン系樹脂(中比重物)の一部がプラスチック表面が親水化して次工程の少なくとも1つ以上の水比重選別機(第3〜第nの水比重選別装置)で徐々に沈み分離されて、遠心力が作用する第2の水比重選別機には、減量化とプラスチック表面が親水化した破砕物が供給される。したがって、遠心力の作用する第2の水比重選別装置内ではプラスチック同士の重なりも生じ難く、Gで瞬時に分離される。この結果、さらに高純度のポリプロピレン樹脂を選別回収することができる。
【0035】
請求項5に記載の発明は、上記請求項1〜4に記載の発明において、水比重選別装置間に水中破砕手段を備えたものであり、第1の水比重選別装置から軽量物と選別水が水中破砕手段に供給されると、軽量物は選別水中で細破砕されるとともに破砕物表面が洗浄される。したがって、細破砕されることでプラスチック同士の重なりや異物の絡みも減り、次工程の分離精度を向上することができる。また、選別回収されるポリプロピレン樹脂の汚れも減らすことができる。この結果、さらに汚れが少なく、純度の高いポリプロピレン樹脂を選別回収することができる。
【0036】
請求項6に記載の発明は、上記請求項1〜5に記載の発明において、水比重選別装置から回収した破砕物と選別水とを分離する固液分離手段を備え、この固液分離手段に連結して選別水循環手段を設けたものであり、水比重選別装置から選別した選別水を含む破砕物を回収する際に、固液分離手段で破砕物と選別水とを分離することができて、選別した破砕物を回収するとともに、分離した選別水を水比重選別装置に選別水循環手段を介して循環させることができる。これによって、水比重選別装置から選別した破砕物の連続回収と水比重選別装置の選別水の循環バランスをとることができ、連続した選別処理が可能となる。
【0037】
請求項7に記載の発明は、上記請求項6に記載の発明において、固液分離手段が、破砕物と選別水との混合物を供給する固液供給手段と、前記固液供給手段より供給された前記破砕物と選別水とを分離し選別水を分離した破砕物を搬送する固液分離搬送手段と、前記固液分離搬送手段により搬送された破砕物を空気圧送により回収する固体回収手段と、前記固液分離搬送手段の底部に設けられ破砕物と選別水を分離する網体とを備えたものであり、水比重選別装置から選別した選別水を含む破砕物を回収する際に、破砕物と選別水とを分離することができて、選別水の付着が少ない破砕物を回収することができ、分離した選別水を水比重選別装置に選別水循環手段を介して循環させることができる。これによって、安価な固液分離装置で、水比重選別装置から選別した破砕物の連続回収と水比重選別装置の選別水の循環バランスをとることができ、連続した選別処理が可能な廃家電再資源化処理装置を提供することができる。
【0038】
請求項8に記載の発明は、上記請求項3または6に記載の発明において、少なくとも第2の比重選別装置の第2の回収手段または固液分離手段のいずれかの次段に脱水手段と、これによって脱水した破砕物を回収する第3の回収手段を備えたものであり、少なくとも第2の回収手段または固液分離手段から回収された破砕物を、次段の脱水手段で破砕物の脱水をする。これによって、脱水した破砕物が回収できる。特に、ポリプロピレン樹脂は吸水性がほとんどないので、脱水した破砕物を直ちにリペレット加工(加熱溶融)することができる。
【0039】
請求項9に記載の発明は、上記請求項8に記載の発明において、脱水手段の次段に、風力搬送手段と、風力選別手段と、前記風力選別手段によって分離した超軽量物を回収する第3の回収手段を備えたものであり、脱水手段で破砕物を脱水した後、風力選別手段へ風力搬送手段で破砕物を搬送する際に、破砕物表面を風乾することができ、コンデンサーフイルム等の超軽量物で前行程で取りきれなかった異物を風力選別装置で分離した後、第3の回収手段で超軽量物が回収できる。これによって、リペレット加工時に押し出し機のスクリーンを目詰まりさせて生産性を低下させるコンデンサーフイルム等が除去されたポリプロピレン樹脂を得ることができる。
【0040】
請求項10に記載の発明は、上記請求項9に記載の発明において、風力選別手段が、中心軸が略鉛直方向の略円筒形状の筒体と、前記筒体の上端部の排出部に連結し超軽量物を回収する第3の回収手段と、前記筒体の下端部に設け軽比重物を排出する選別物排出部と、前記筒体の下部に設け斜め上方向で略接線方向に原料が筒体内に空気圧送される第2の原料供給手段とを備えたものであり、圧送される空気により、筒体の内部に筒体の内壁に沿って渦巻き状の上昇空気流を形成することができ、筒体の内部は中心軸から外縁部へ行くほど周速度が速く、遠心力の大きな渦巻き状の上昇空気流となる。原料供給手段より供給された破砕物は、渦巻き状の空気流により渦巻き状に移動し、破砕物が実際に移動する距離(螺旋状に移動する距離)を大きくできて、破砕物中の軽比重物と超軽量物をほぐすことができ、軽比重物に働く鉛直方向の重力と上昇力がほぼバランスした状態での滞留時間を長くできて軽比重物と超軽量物の重なりを少なくすることができ、分離精度を向上することができる。また、筒体内で略水平方向の遠心力が作用し、軽比重物と超軽量物を水平方向に分離させる力が作用する。したがって、軽比重物は渦巻き流の遠心力で外側へ移動し、超軽量物は遠心力が小さいので筒体の中心軸側となるので、分離精度を一層向上することができる。
【0041】
請求項11に記載の発明は、上記請求項9または10に記載の発明において、破砕物の圧送と風力選別手段の風力を供給する圧送手段兼風力供給手段を備え、前記圧送手段兼風力供給手段の吹き出し口を分岐し、一端を風力選別手段の風力供給側に連結し、他の一端をエアー抜きとし、前記風力選別手段の上部は第3の回収手段を介して前記圧送手段兼風力供給手段のエアー取り込み口と連結し、前記風力選別手段内を負圧状態としたものであり、破砕物は圧送手段兼風力供給手段によって風力選別手段に供給され、フイルム、発泡スチロール、綿状の汚れ等の超軽量物は圧送手段兼風力供給手段の吸引力で風力選別手段の上部を介し第3の回収手段で回収される。一方、軽比重物は風力選別手段の下部から排出される。このとき、風力選別手段内は負圧となっているので風力選別手段の下部から風力選別手段内に外気を吸引する。これによって、圧送手段兼風力供給手段のエアー抜きの一端を適正に処理することで、圧送手段兼風力供給手段と、風力選別手段と、第3の回収手段で形成するループから粉塵が飛散するのを防止することができる。
【0042】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0043】
(実施例1)
図1に示すように、廃家電再資源化処理装置は、破砕物を供給するコンベアー41と、浮沈式水比重選別機(第1の水比重選別装置)42へ破砕物と選別水との混合物を供給する第1の原料供給部(第1の原料供給手段)43と、浮沈式水比重選別機42から縦型遠心式水比重選別機(第2の水比重選別装置)44に設けた第2の原料供給部(筒体)45へ、水に浮いた破砕物(軽量物)と選別水との混合物を供給する第1のポンプ(第1の供給手段)46とを設け、縦型遠心式水比重選別機44に設けた第1の回収用配管(第1の回収手段)47から水に沈んだ破砕物と選別水との混合物と、脱水機48の脱水液排出部49から排出される選別水とを、撹拌機50aを設けた貯水槽50と、第2のポンプ51(選別水循環手段)とを介して、浮沈式水比重選別機42の第1の原料供給部43に循環させる構成としている。
【0044】
また、浮沈式水比重選別機42は、第1の選別槽52と、第2の選別槽53と、第1の選別槽52に配置した第1のスクリューコンベアー54と、第2の選別槽53に配置した第2のスクリューコンベアー55と、排出部56に設けたスクリュー式排出装置57とで構成している。
【0045】
また、縦型遠心式水比重選別機44は、図2に詳細を示すように、回転ドラム58は、鉛直方向に回転中心軸を有し、第1の駆動モータ59によりベルト60を介して回転数2000r/minで回転し、この回転ドラム58の回転中心軸上に、破砕物を供給する第2の原料供給部(筒体)45を設け、回転ドラム58の底部側の側壁近傍に下部排出口61を介して第1の回収用配管(第1の回収手段)47を設けている。
【0046】
回転ドラム58の上方部側に下部排出口61より回転中心軸側に上部排出口62と、スクリュー式回収機63と、脱水機48とを設けた回収機構(第2の回収手段)を配置している。スクリュー式回収機63は、第2の駆動モータ64により、ベルト65と駆動シャフト66とベルト67を介して回転数2200r/minで回転し、回転ドラム58よりも200r/min高速で回転する。脱水機48の上部側壁側には、破砕物をブロワー68で空気搬送する搬送ダクト69を設けている。
【0047】
回転ドラム58の内方に分離水70を収容し、比重1.0を基準として破砕物を選別(分別)するようにしている。
【0048】
上記構成において動作を説明する。先ず水の流れを説明すると、浮沈式水比重選別機42内の選別水が、排出部56と第1のポンプ46とを介して、第2の原料供給部45から縦型遠心式水比重選別機44内に供給され、供給された選別水は縦型遠心式水比重選別機44内で略円筒形状の分離水70を形成し、大部分は下部排出口61と第1の回収用配管47を介して、また一部の選別水(分離水)は上部排出口62と脱水機48と脱水液排出部49を介し貯水槽50に供給される。
【0049】
貯水槽50に供給された選別水は第2のポンプ51によって第1の原料供給部43を介して浮沈式水比重選別機42に循環され、第1の原料供給部43から浮沈式水比重選別機42へ供給された選別水は、排出部57へ流れ循環する。このとき、使用済み家電製品を破砕し、磁選機で鉄を回収した残部の非鉄類を含む破砕物(プラスチック群)が、コンベアー41から第1の原料供給部43に供給され、選別水と混合された状態で浮沈式水比重選別機42に流れ込む。
【0050】
この破砕物の内、比重の大きな非鉄類dと塩化ビニル樹脂cは直ちに第1の選別槽52の底部に沈み第1のスクリューコンベアー54で回収される。スチレン系樹脂bのように、水に沈むが水の比重と近似している樹脂は選別水の流れに流されながら第2の選別槽53の底部に徐々に沈み第2のスクリューコンベアー55で回収される。
【0051】
また、比重が0.91程度のオレフィン系樹脂(家電製品のオレフィン系樹脂は大部分をポリプロピレン樹脂が占めるので、以降ポリプロピレン樹脂という)aと、本来、沈むべきスチレン系樹脂bの一部と電解コンデンサーのフイルムの一部が撥水性によって水に浮いたものと、連立発泡体のスポンジ類とが、選別水の流れに乗って排出部56からスクリュー式排出装置57を介して選別水との混合状態で、第1のポンプ46によって縦型遠心式水比重選別機44の第2の原料供給部45を介して回転ドラム58内に入る。
【0052】
このとき、回転ドラム58は回転数2000r/minで回転しているので、分離水70は回転ドラム58内で略円筒形状に形成され、分離水70の外周部で約800Gの遠心力が作用し、比重が1.0以上の破砕物は遠心力で回転ドラム58の側壁側へ移動し、選別水(分離水70)と水に沈んだ破砕物が混合状態で排出口61と、第1の回収用配管47とを介して貯水槽50に供給される。一方、比重が1.0よりも小さいポリプロピレン樹脂aの破砕物は、分離水70の回転中心軸側の水面に集まり、排出口62を介してスクリュー回収機63によって脱水機48に供給される。
【0053】
脱水されたポリプロピレン樹脂aは、ブロワー68によって搬送ダクト69より送り出され回収される。脱水された選別水は脱水液排出部49を介して貯水槽50に供給される。貯水槽50に供給された選別水と比重が1.0よりも大きな破砕物は、第2のポンプ51によって第1の原料供給部43に循環され、再び浮沈式水比重選別機42に戻された比重が1.0より大きな破砕物は親水性となっているので第2の選別槽53に沈降する。
【0054】
この結果、比重が1.0よりも大きい破砕物の大部分は、浮沈式水比重選別機42で分離回収でき、当初、撥水性があるために、あるいは気泡が付着していたり、スポンジ類のように内部に空気を保持していることによって分離できなかった破砕物は、遠心力のGで強力に分離させる縦型遠心式水比重選別機44によって、本来、沈むべき破砕物を分離除去したポリプロピレン樹脂aが回収できるので、マテリアルリサイクルに好適なものが提供できる。
【0055】
なお、本発明の縦型遠心式水比重選別機44を横型遠心式水比重選別機に置きかえても全く同じ効果が得られること、また遠心力が5G程度のハイドロサイクロンに置きかえた場合には、本実施例に比べ、やや分離精度が劣るが、マテリアルリサイクルの用途によっては十分実用に耐えることはいうまでもない。
【0056】
(実施例2)
図3に示すように、浮沈式水比重選別機(第1の水比重選別装置)42と、縦型遠心式水比重選別機(第2の水比重選別装置)44との間にハイドロサイクロン(第3の水比重選別装置)71を設け、浮沈式水比重選別機42は第1のポンプ46(第1の供給手段)を介して略逆錐形状のハイドロサイクロン71の外周側壁部の上部に接線方向に設けた第3の原料供給部72と連結し、ハイドロサイクロン71の中心軸上の上部に設けた上部排出配管(第2の供給手段)73と、縦型遠心式水比重選別機44の第2の原料供給部45とを連結している。
【0057】
ハイドロサイクロン71の中心軸上の下部に設けた下部排出配管74と、縦型遠心式水比重選別機44の第1の回収用配管47と脱水液排出部49とは撹拌機50aを設けた貯水槽50に連結し、貯水槽50は第2のポンプ51を介し第1の原料供給部43に連結した構成としている。他の構成は上記実施例1と同じであり、同一符号を付して説明を省略する。
【0058】
上記構成において動作を説明する。浮沈式水比重選別機42で水に浮いた破砕物と選別水の混合物は排出部56と、第1のポンプ46とを介し、第3の原料供給部72からハイドロサイクロン71内に供給される。ハイドロサイクロン71内では略逆錘形状に従い下向きの渦巻き流が形成され、渦巻き流により約5G程度の水平方向の遠心力が作用し、水に沈む破砕物は外周部に移動し、下部排出配管74を介し貯水槽50に流れる。
【0059】
一方、水に浮く破砕物は水平方向の遠心力に抗し、渦巻き流の中心軸側に移動し、上部排出配管73と縦型遠心式水比重選別機44の第2の原料供給部45を介し縦型遠心式水比重選別機44内に供給され、水に浮くポリプロピレン樹脂aは搬送ダクト69を介し分離回収され、水に沈む破砕物と選別水との混合物が第1の回収用配管47から貯水槽50に供給され、脱水された選別水が脱水液排出部49から貯水槽50に供給される。
【0060】
貯水槽50に持ち込まれた水に沈む破砕物と選別水との混合物は、第1の原料供給部43に循環され、撥水性が無くなった破砕物や空気の抜けた破砕物は、浮沈式水比重選別機42で沈降し回収される。なお、その他の動作は上記実施例1と同じであるので説明を省略する。
【0061】
この結果、浮沈式水比重選別機42と、次段の浮沈式水比重選別機42よりも分離性能に優れるハイドロサイクロン71で水に沈む破砕物を分離し、破砕物の量を減らし、最も分離性能に優れる縦型遠心式水比重選別機44によって最終の分離を行うので、極めて異物混入の少ないポリプロピレン樹脂aが回収できる。すなわち、浮沈式水比重選別機(第1の水比重選別装置)42と、縦型遠心式水比重選別機(第2の水比重選別装置)44との間にハイドロサイクロン(第3の水比重選別装置)71を配置することによって、上記実施例1よりも異物混入が少ないポリプロピレン樹脂が回収できる。
【0062】
(実施例3)
図4に示すように、浮沈式水比重選別機(第1の水比重選別装置)42と、ハイドロサイクロン(第3の水比重選別装置)71との間に水中破砕機(水中破砕手段)75を設け、浮沈式水比重選別機42の排出部56と、水中破砕機75の破砕室部75aとを連結し、吐出部75bとハイドロサイクロン71の外周側壁部の上部に接線方向に設けられた第3の原料供給部72とを連結した構成としている。他の構成は上記実施例1または実施例2と同じであり、同一符号を付して説明を省略する。
【0063】
上記構成において動作を説明する。浮沈式水比重選別機42で分離された破砕物の内、水に浮いた破砕物は浮沈式水比重選別機42の排出部56から水中破砕機75の破砕室75a内に供給される。水中破砕機75は破砕とポンプ機能を有するので、供給された破砕物は破砕室75aにおいて5mm〜10mm程度の大きさに細破砕されて、細破砕物と選別水との混合物の状態でハイドロサイクロン71内へ第3の原料供給部72を介して水中破砕機75のポンプ機能によって圧送供給される。なお、その他の動作は上記実施例1および実施例2と同じであるので説明を省略する。
【0064】
この結果、破砕物の破砕サイズが5mm〜10mm程度と概ね揃うことと、水中破砕時に破砕物同士で強力に揉まれ、破砕物表面が親水性となることによって以降のハイドロサイクロン71と縦型遠心式水比重選別機44での分離精度が向上する。また、水中破砕時に破砕物表面に付着している汚れの洗浄効果も得られる。したがって、ポリプロピレン樹脂の分離精度向上と樹脂表面の洗浄効果が得られ、さらにマテリアルリサイクルに好適なポリプロピレン樹脂を得ることができる。
【0065】
(実施例4)
全体システムを図5に、固液分離機76(固液分離手段)の詳細を図6に示すように、全体システムは浮沈式水比重選別機42の第2の選別槽53の底部53aと、ハイドロサイクロン71の下部排出配管74と、縦型遠心式水比重選別機44の第1の回収用配管47と、固液分離機76とを連結し、固液分離機76は固体排出部76aと排水部76bを有し、排水部76bはポンプ77を介して貯水槽50と連結した構成としている。
【0066】
この固液分離機76は、図6に示すように、固液分離搬送体(固液分離搬送手段)78を略円盤状に構成し、外周部に外周壁78aを設けるとともに外周底部に網体78bを設け、モータ79のシャフト80を介して回転自在としている。ここで、網体78bは供給される分離した破砕物の大きさよりも細かいメッシュとしている。
【0067】
回収物供給管(固液供給手段)81は、分離した破砕物と選別水との混合物を固液分離搬送体78の上方に供給するもので、固液分離搬送体78の上方に設けている。回収物供給管81と相対して固液分離搬送体78の下方に水受け槽82と排水管83を配置している。回収ダクト84は、固液分離搬送体78の上方の回収物供給管81と異なる位置に設け、この回収ダクト84と相対して固液分離搬送体78の下方にブロワー(空気圧送手段)85を配置している。
【0068】
ここで、固液回収ダクト84とブロワー85とで、固液分離搬送体78により選別水を分離して搬送された破砕物を回収する固体回収手段を構成するとともに、ブロワー85は、さらに破砕物の目詰まりを防止する目詰まり防止手段を構成している。その他の構成は上記実施例1〜3と同じであり、同一符号を付して説明を省略する。
【0069】
上記構成において動作を説明する。浮沈式水比重選別機42の第2の選別槽53の底部53aに沈降した破砕物と選別水との混合物が回収物供給管81から、モータ79のシャフト80を介して回転する固液分離機76の固液分離搬送体78上に供給される。また、ハイドロサイクロン71の下部排出配管74と第1の回収用配管47からも水に沈む破砕物と選別水との混合物が同様にして固液分離機76の固液分離搬送体78上に回収物供給管81を介して供給される。
【0070】
このとき、選別水は網体78bを通過して水受け槽82から排水管83とポンプ77を介して貯水槽50に供給され、貯水槽50の選別水はポンプ51を介して浮沈式水比重選別機42の第1の原料供給部43に循環する。
【0071】
一方、固液分離搬送体78の網体78b上に残った水に沈む破砕物は、選別水が分離された状態で固液分離搬送体78の回転でブロワー85の上部まで搬送され、ブロワー85からの圧送空気で上方向に吹き上げられ、固体回収ダクト84を介して選別水の付着が少ない破砕物を回収することができる。
【0072】
この結果、ハイドロサイクロン71と縦型遠心式水比重選別機44で分離した水に沈む破砕物を固液分離機76で分離し、選別水だけを浮沈式水比重選別機42に循環させることによって、浮沈式水比重選別機42で選別する破砕物量を減らすことができるので選別精度を向上することができる。
【0073】
また、固液分離搬送体78の網体78bを破砕物の供給側と反対方向から圧送空気で破砕物を吹き飛ばす際に、網体78bを目詰まりさせる小片の破砕物も吹き飛ばすことができ、固液分離搬送体78による破砕物と選別水の良好な分離性能を確保することができ、ブロワー85からの圧送空気で水に沈む破砕物を乾燥することもできる。なお、その他の動作は、上記実施例1から3と同じであるので説明を省略する。
【0074】
(実施例5)
図7に示すように、縦型遠心式水比重選別機44の内部の上部に設けた脱水機(脱水手段:図示せず)から、風力搬送手段を構成するブロワー68と搬送ダクト69を介してポリプロピレン樹脂aを空気圧送する先の第1のサイクロン(第3の回収手段)86を設け、第1のサイクロン86の下部排出部86aに第1の密閉式回収容器87を配置し、固液分離機76の固体排出部76aの次段に脱水機88と、第2のサイクロン89とを設け、第2のサイクロン89の下部排出部89aに第2の密閉式回収容器90を配置し、第1のサイクロン86の上部排気部86bと、第2のサイクロン89の上部排気部89bとを集塵機91に連結した構成としている。
【0075】
脱水機88は、原料供給部88aと、排出部88bと、脱水液排出部88cと、モータ92とシャフト93で回転自在に連結した破砕物サイズより小さな脱水穴(図示せず)を有する略逆円錐形状の穴あき回転脱水槽94と、破砕物を空気圧送するブロワー95と、脱水した選別水を貯水槽50に循環させるポンプ96で構成している。なお、他の構成は上記実施例1〜4と同じであり、同一符号を付して説明を省略する。
【0076】
上記構成において動作を説明する。浮沈式水比重選別機42と、水中破砕機75と、ハイドロサイクロン71と、縦型遠心式水比重選別機44とを介して、最終縦型遠心式水比重選別機44によって分離された水に浮くポリプロピレン樹脂aは、縦型遠心式水比重選別機44の内部の上部に設けられた脱水機(図示せず)で脱水された後、第1のサイクロン86の下部排出部86aを介して第1の密閉式回収容器87に回収される。
【0077】
また、浮沈式水比重選別機42の第2の選別槽53の底部53aと、ハイドロサイクロン71の下部排出管74と、遠心式水比重選別機44の第1の回収用配管47とを介して固液分離機76へ水に沈むスチレン系樹脂bが供給される。この供給されたスチレン系樹脂bは、固液分離機76の固体排出部76aから排出され、原料供給部88aを介して脱水機88の穴あき回転脱水槽94の概ね回転中心軸上に供給されて、スチレン系樹脂bは穴あき回転脱水槽94内で脱水されながら遠心力で上方向に移動し、排出部88bを介してブロワー95の圧送空気によって第2のサイクロン89に供給され下部排出部89aを介して密閉式回収容器90に回収される。
【0078】
一方、脱水機88で脱水された選別水は脱水液排出部88cと、ポンプ96とを介して貯水槽50に循環される。また、第1のサイクロン86の上部排気部86bからの排気と、第2のサイクロン89の上部排気部89bからの排気は集塵機91と連結されており処理される。なお、その他の動作は、上記実施例1から4と同じであるので説明を省略する。
【0079】
この結果、ポリプロピレン樹脂aはマテリアルリサイクルのためのリペレット加工へ、直ちに提供できる乾燥状態で回収できる。また、スチレン系樹脂についても、サーマルリサイクルの原料として直ちに提供できる乾燥状態で回収できる。
【0080】
(実施例6)
部分システムを図8に、風力選別機(風力選別手段)97の詳細を図9に示すように、縦型遠心式水比重選別機44の内部の上部に設けた脱水機(脱水手段:図示せず)と、風力搬送手段を構成するブロワー68と搬送ダクト69を介し、風力選別機97の原料供給管(第2の原料供給手段)98とを連通させ、風力選別機97の上部の排出部99と第1のサイクロン86(第3の回収手段)とを連結し、風力選別機97の下部の選別物排出部100にポリプロピレン樹脂aを回収する回収容器101を設け、第1のサイクロン86の下部に第1のサイクロン86と密閉シール状態とした積層コンデンサーのフイルム等の超軽量物eを回収する密閉式回収容器(剛体)87を設けた構成としている。
【0081】
詳細を図9に示すように、風力選別機97の筒体102は、胴体部102aを有する略円筒形状とし、中心軸を略鉛直方向になるように配置し、胴体部102aの上下に略円錐台形に形成した上端部102bと下端部102cとを設け、原料供給管98は、先端部を胴体部102aの下部に、斜め上方向で略接線方向に向けて設け、筒体102の上端部102bから超軽量物を排出する排出部99を設け、筒体102の下端部102cからポリプロピレン樹脂aを排出する選別物排出部100を設け、筒体102の内面上部に衝突板103を設け、衝突板103は、衝突面103aを傾斜させて、中心軸方向へ突出するように配置し、筒体内の渦巻き状の上昇空気流が衝突面103aに衝突するように構成している。他の構成は上記実施例1〜5と同じである。
【0082】
上記構成において動作を説明する。図8に示すように、縦型遠心式水比重選別機44で選別されたポリプロピレン樹脂aは、縦型遠心式水比重選別機44の内部の上部に設けた脱水機(図示せず)で脱水された後、ブロワー68で搬送ダクト69を介して風力選別機97の筒体102内に原料供給管98から圧送空気とともにポリプロピレン樹脂aが筒体102の下部より、斜め上方向で略接線方向に向けて空気圧送される。
【0083】
ここで、集塵機(図示せず)の風量はブロワー68の送風量よりも若干大きく設定しており、筒体102内が負圧となるために、筒体102内に渦巻き状の上昇空気流と選別物排出部100から筒体102内へ弱い上昇空気流が発生する。したがって、筒体102内に送られたポリプロピレン樹脂aは渦巻き状の上昇空気流により渦巻き状に吹き上げられる。
【0084】
このとき、ポリプロピレン樹脂a(質量が大きい選別物)は、渦巻き状の上昇空気流の遠心力で筒体102の内壁側へ移動するとともに重力により減速して筒体102内部を落下し、選別物排出部100から回収容器101内に排出され回収される。
【0085】
詳細を図9に示すように、ポリプロピレン樹脂aの大きさ(質量)のバラツキで、大きいポリプロピレン樹脂aは速い段階で落下し、小さくなるほど落下するタイミングが遅くなり、筒体102内部に設けられた衝突板103の衝突面103aに衝突し下方向に跳ね返され、重力方向の慣性力が増して落下する。
【0086】
一方、水比重選別で破砕物の表面性状、形状、質量(小さい)ために分離しきれずに異物として混入してしまった超軽量物e(積層コンデンサーのフイルムや発泡スチロール等の発泡体)は、渦巻き状の上昇空気流により筒体102上部まで渦巻き状に吹き上げられ、上部の排出部99を介して第1のサイクロン(図示せず)で分離され、超軽量物eは第1の密閉式回収容器(図示せず)に回収される。なお、その他の動作は、上記実施例1から5と同じであり、説明を省略する。
【0087】
積層コンデンサーのフイルムはPETフイルム上にアルミニウムを蒸着したものであり、ポリプロピレン樹脂よりも融点が高いことから、リペレット加工時に押し出し機のスクリーンの目詰まりを生じ、生産性を著しく悪化させる。また、異材質が混入すると物性が低下したり、成形品表面に黒点等が生じるが、積層コンデンサーのフイルムや発泡スチロール等の発泡体の超軽量物eを分離して回収することで、リペレット加工の生産性を低下させたり、物性を低下させたり、成形品表面にコンタミとなる異物の混入が少ないポリプロピレン樹脂を回収することができる。
【0088】
(実施例7)
図10に示すように、縦型遠心式水比重選別機44の内部の上部に設けた脱水機(図示せず)から排出されるポリプロピレン樹脂aを空気圧送するブロワー(圧送手段兼風力供給手段)68の吹き出し部104を分岐し、第1の吹き出し部104aは風力選別機(風力選別手段)97の原料供給管98に連結し、風力選別機97の上部の排出部99と第1のサイクロン86(第3の回収手段)とを連結し、さらにサイクロンの上部排気部86bとブロワー68の吸気口68aとを連結した圧送空気の循環経路を構成している。
【0089】
一方、第2の吹き出し部104bは大気に開放している。この時、ブロワー68の吹き出し部104の分岐は、第1の吹き出し部104aへの風量を概ね8割、第2の吹き出し部を概ね2割となるようにしている。他の構成は上記実施例1〜6と同じである。
【0090】
上記構成において動作を説明する。先ず、圧送空気経路の循環経路について説明する。圧送空気の循環経路は、ブロワー68からの供給風量を、吸気口68aからの取り込み風量の概ね8割として、第1のサイクロン86内と、密閉式容器101b内と、風力選別機97内とは負圧となり、風力選別機97の選別物排出部100から若干空気を吸い込む状態となるようにしている。その他の動作は上記実施例1から5(全体システムと水比重選
別の動作)と実施例6(風力選別の動作)と同じであり、説明を省略する。
【0091】
この結果、水比重選別後の破砕物を回収する独立したシステムとすることによって、集塵機(図示せず)と第1のサイクロン86を連結する必要がなく、風力選別機97内を負圧とする設定が容易にすることができる。
【0092】
(実施例8)
図11に示すように、原料ホッパー105と、破砕物を空気圧送するブロワー106と、搬送ダクト107とを有する2次破砕機(2次破砕手段)108を備え、浮沈式水比重選別機(水比重選別装置)42の上流側に設けた風力選別機(風力選別手段)109の原料供給管110と搬送ダクト107とを連結し、風力選別機109の選別物排出部111と浮沈式水比重選別機44の第1の原料供給部43とを密閉せずに連結している。
【0093】
さらに風力選別機109の上部の排出部112と第3のサイクロン113とを連結し、第3のサイクロン113の下部排出口113aと密閉シール状態とした積層コンデンサーのフイルム、発泡体、塵埃等の超軽量物eを回収する密閉式回収容器(剛体)114を設け、第3のサイクロン113の上部排気口113bと集塵機91とを連結し、風力選別機109内が若干負圧となるようにブロワー106の風量よりも集塵機91の吸い込み風量を大きくした構成としている。ここで、ブロワー106と搬送ダクト107とで搬送手段を構成している。他の構成は上記実施例1(水比重選別機)および実施例6(風力選別機)と同じである。
【0094】
上記構成において動作を説明する。廃家電製品を1次破砕した後に磁力選別機にて鉄を回収した残りの30mm〜100mm程度の破砕物を、2次破砕機108の原料ホッパー105に投入する。投入された1次破砕物は、2次破砕機108によって概ね10mm〜15mmに再破砕された後に、搬送ダクト107を介してブロワー106によって風力選別機109内へ空気圧送される。
【0095】
風力選別機109内においては、マテリアルリサイクルを目的として選別回収するポリプロピレン樹脂aへ異物として混入しやすい発泡スチロールや積層コンデンサーのフイルム等と、選別水を汚す塵埃等の超軽量物eと非鉄やゴム等を含むプラスチック群(重量物)とを分離し、非鉄やゴム等を含むプラスチック群は選別物排出部111から浮沈式水比重選別機42に循環する選別水とともに第1の原料供給部43から供給される。
【0096】
一方、超軽量物は上部の排出部112から第3のサイクロン113へ供給されて密閉式回収容器114に回収される。その他の動作は上記実施例1(水比重選別機)および実施例6(風力選別機)と同じであり、説明を省略する。
【0097】
この結果、破砕サイズが10mm〜15mm程度の大きさに揃えることによって、破砕物同士の絡みや重なりを減らすことができて、超軽量物と重量物の風力選別と水比重選別の分離精度を向上することができる。また、水比重選別の前に超軽量物を風力選別機109で予め除去するので、ポリプロピレン樹脂aへの異物混入を低減することができる。
【0098】
(実施例9)
図12に示すように、2次破砕機(2次破砕手段)108と浮沈式水比重選別機42の上流側の風力選別機109との間に、破砕物の供給口115と収容器116と下部に設けたモータ117によって回転自在とした供給スクリュー部118と、供給スクリュー部118の先端部が連通し下端部にブロワー119を配置した搬送ダクト120とを有する原料定量供給機(原料定量供給手段)121を設け、破砕物の供給口115の上方に設けた風力選別機122の選別物排出口123を破砕物の供給口115内に配置し、2次破砕機108の搬送ダクト107と風力選別機122とを連結し、原料定量供給機121の搬送ダクト120と風力選別機109とを連結している。
【0099】
さらに風力選別機122の上部の排出部123は下部に密閉式回収容器125を配置した第4のサイクロン126を介して集塵機91と連結し、また風力選別機109の上部の排出部112は下部に密閉式回収容器114を配置した第3のサイクロン113を介して集塵機91と連結した構成としている。
【0100】
このとき、2次破砕機108のブロワー106と原料定量供給機120のブロワー118の風量よりも集塵機91の吸い込み風量を大きく設定して、風力選別機122と風力選別機109それぞれの内部が若干の負圧状態となるようにしている。他の構成において、水比重選別機の構成は上記実施例1または実施例2と同じであり、風力選別機の構成は実施例6と同じである。
【0101】
上記構成において動作を説明する。2次破砕機108で10mm〜15mm程度に再破砕された破砕物がブロワー106の圧送空気とともに搬送ダクト107を介して第1段目の風力選別機122へ供給される。供給された破砕物の内、1次選別された超軽量物は、上部の排出部124を介して第4のサイクロン126へ供給されて、密閉式回収容器125に回収される。
【0102】
一方、破砕物の内、重量物は風力選別機122の選別物排出部123から原料定量供給機121の収容器116に入り、モータ117で回転する回転スクリュー部118から搬送ダクト120へ定量供給されて、ブロワー119の圧送空気によって第2段目の風力選別機109内へ定量供給される。定量供給された破砕物の内、2次選別された超軽量物は上部の排出部112を介して第3のサイクロン113へ供給されて、密閉式回収容器114に回収される。
【0103】
一方、破砕物の内、風力で2次選別された定量の重量物は選別物排出部111と第1の原料供給部43を介して選別水とともに浮沈式水比重選別機42へ供給される。他の動作において、水比重選別機の動作は上記実施例1または実施例2と同じであり、風力選別機の動作は実施例6と同じであり、説明を省略する。
【0104】
この結果、2次破砕機108で10mm〜15mm程度に破砕サイズを揃えられた破砕物を、2段階の風力選別を行うのでポリプロピレン樹脂aへの異物混入を減らすことができる。さらに、水比重選別機へ破砕物を定量供給するので、破砕物同士の重なりを抑制することによって、ポリプロピレン樹脂aの選別精度を向上することができる。
【0105】
(実施例10)
図13に示すように、2次破砕機108のブロワー106の吹き出し部を第1の吹き出し部127aと第2の吹き出し部127bとに分岐し、第1の吹き出し部127aを搬送ダクト107の下端と連結し、搬送ダクト107を介して2次破砕機108と風力選別機122とを連結している。ここで、風力選別機122の下部の選別物排出部123は、原料定量供給機121の破砕物の供給口115に開放状態で挿入している。
【0106】
また、風力選別機122の上部の排出部124は第4のサイクロン126と連結し、また上部排気部126bは2次破砕機108のブロワー106の吸気口106aと連結して、圧送空気の第1の循環経路を構成している。ここで、第4のサイクロン126の下部排出部126aと密閉シール状態で密閉式回収容器125配置している。この時、ブロワー106の第2の吹き出し部126bは、大気に開放した構成とし、第1の吹き出し部126aの風量がブロワー106の吸気口106aの概ね8割程度となるようにしている。
【0107】
さらに、原料定量供給機121のブロワー119の吹き出し部を第1の吹き出し部128aと第2の吹き出し部128bとに分岐し、第1の吹き出し部128aを搬送ダクト120の下端と連結し、搬送ダクト120を介して原料定量供給機121と風力選別機109とを連結している。ここで、風力選別機109の下部の選別物排出部111は、浮沈式水比重選別機42の第1の原料供給部43に密閉せずに連結している。
【0108】
また、風力選別機109の上部の排出部112は第3のサイクロン113と連結し、第3のサイクロン113の上部排気部113bは原料定量供給機121のブロワー119の吸気口119aと連結して、圧送空気の第2の循環経路を構成している。ここで、第3のサイクロン113の下部排出部113aと密閉シール状態で密閉式回収容器114を配置している。このとき、ブロワー119の第2の吹き出し部128bは、大気に開放した構成とし、第1の吹き出し部128aの風量がブロワー119の吸気口119aの概ね8割程度となるようにしている。他の構成において、水比重選別機の全体構成は上記実施例1または実施例2と同じであり、風力選別機の構成は上記実施例6と同じであり、2次破砕機から水比重選別機までの圧送空気の循環経路以外の構成は同じである。
【0109】
上記構成において動作を説明する。2次破砕機108のブロワー106の第1の吹き出し部127aの風量がブロワー106の吸気口106aの風量の概ね8割としているので、圧送空気の循環経路内の風力選別機122内と第4のサイクロン126内は若干の負圧状態となり、風力選別機122の下部の選別物排出部123から若干の空気を吸い込む状態となる。圧送空気の第2の循環経路も同様である。他の動作において、水比重選別の動作は上記実施例1または実施例2と同じであり、風力選別の動作は実施例6と同じであり、2次破砕から水比重選別機までの破砕物の動作は実施例9と同じであり、説明を省略する。
【0110】
この結果、圧送空気の循環経路をそれぞれ独立させているので、それぞれの風力選別機内の負圧状態と風力選別の風力および破砕物を搬送する風力のエアーバランスが容易にコントロールできる。また、集塵機を必要としないので設備コストも安価にできる。
【0111】
(実施例11)
図14に示すように、浮沈式水比重選別機42の第2の選別槽53から貯水槽129へ選別水供給管130を設け、貯水槽129からポンプ131を介して浮沈式水比重選別機42の水面上に設けたシャワー部132と連結し、2次破砕機108のブロワー106の第2の吹き出し部127bと、原料定量供給機121のブロワー119の第2の吹き出し部128bからのエアー配管の配管先端部133をシャワー部132の下に設け、ブロワー106とブロワー119のエアーがシャワー部131の下を通過する構成としている。他の構成は上記実施例10と同じである。
【0112】
上記構成において動作を説明する。浮沈式水比重選別機42の第2の選別槽53の選別水を、選別水供給管130と貯水槽129とポンプ131を介して第1の選別槽52の上に設けたシャワー部132から浮沈式水比重選別機42の選別水面上に循環させている。ここで、2次破砕機108のブロワー106の第2の吹き出し部127bと、原料定量供給機121のブロワー119の第2の吹き出し部128bとから配管した配管先端部133から吹き出されるエアーが、シャワー部131の下を通過する際に、エアー中に含まれる微細な粉塵がシャワーでたたき落とされて選別水中に分散する。なお、その他の動作は上記実施例10と同じであり、説明を省略する。
【0113】
この結果、2次破砕機108のブロワー106の第2の吹き出し部125bと、原料定量供給機121のブロワー118の第2の吹き出し部126bとから作業場へ粉塵が飛散するのを防止ができる。
【0114】
(実施例12)
図15に示すように、浮沈式水比重選別機42の排出部56とポンプ46を介し縦型遠心式水比重選別機44の第2の原料供給部45とを連結し、浮沈式水比重選別機42の第2の選別槽53の底部53aと、縦型遠心式水比重選別機44の第1の回収用配管47とを固液分離機76へ連結し、固液分離機76の排水部76bをポンプ77を介して貯水槽50に連結している。
【0115】
また、縦型遠心式水比重選別機44の脱水液排出部49を貯水槽50連結し、貯水槽50からポンプ51を介して第1の原料供給部43とシャワー部132に配管して選別水を循環させる構成としている。一方、固液分離機76の固体排出部76aから分離した選別物を排出する構成としている。他の構成は上記実施例11と同じである。
【0116】
上記構成において動作を説明する。浮沈式水比重選別機42の第2の選別槽53に沈んだスチレン系樹脂bは、底部53aから選別水とともに固液分離機76に供給される。また、縦型遠心式水比重選別機44の第1の回収用配管47から遠心力で分離された水に沈むスチレン系樹脂bが選別水とともに固液分離機76に供給される。
【0117】
固液分離機76に供給されたスチレン系樹脂bと選別水は分離されて、選別水は排出部76bとポンプ77と貯水槽50とポンプ51を介して第1の原料供給部43とシャワー部132に供給されて、選別水は浮沈式水比重選別機42に循環される。一方、固液分離機76で分離されたスチレン系樹脂bは固体排出部76aから排出される。なお、その他の動作は上記実施例11と同じであり、説明を省略する。
【0118】
この結果、2段の風力選別機(2次破砕機から原料定量供給機まで図示せず)で、予め水比重選別の時に分離が困難な積層コンデンサーのフイルムや発泡スチロール等の超軽量物を分離除去し、さらに浮沈式水比重選別機42の第2の選別槽53の底部53aから選別水を排出する流れで、浮遊するポリスチレン系樹脂bを強制的に引き込む力を作用させることによって、縦型遠心式水比重選別機44へ供給する破砕物への異物やスチレン系樹脂bの混入量と破砕物の絶対供給量が減らせるので、ポリプロピレン樹脂aの選別精度を向上することができる。
【0119】
また、固液分離機76を介した選別水をシャワー部132へ供給するのでスチレン系樹脂bによる目詰まりの恐れを防止することができる。また、スチレン系樹脂bを選別水と分離して排出できる。
【0120】
(実施例13)
図16に示すように、固液分離機76の固体排出部76aと脱水機88の供給部88aとを連結し、脱水機88の排出部88bと第2のサイクロン89とを連結し、第2のサイクロン89の上部排気部89bを集塵機91に連結し、第2のサイクロン89の下部排出部89aに密閉式回収容器90を設けた構成としている。
【0121】
また、縦型遠心式水比重選別機44の搬送ダクト69と風力選別機97の原料供給管98とを連結し、風力選別機97の上部排出部99と第1のサイクロン86とを連結し、第1のサイクロン86の上部排気部86bと縦型遠心式水比重選別機44のブロワー68とを連結し、第1の圧送空気の循環経路を構成している。また、ブロワー68の第2の吹き出し部104bは配管先端部133に連結した構成としている。
【0122】
このとき、風力選別機97の選別物排出部100を開放した状態で、下方に回収容器101を設け、第1のサイクロン86の下部排出部86aに大気と密閉状態を確保するように密閉式回収容器87を設け、さらにブロワー68の第1の吹き出し部104aへの風量を概ね8割、第2の吹き出し部104bを概ね2割となるようにしている。他の構成は上記実施例12と同じである。
【0123】
上記構成において動作を説明する。固液分離機76の固体排出部76aから脱水機88へ供給部88aを介して穴あき回転脱水槽94にスチレン系樹脂bが供給される。供給されたスチレン系樹脂bは脱水されながら遠心力で略逆錘形状を上方に移動し、排出部88bからブロワー95によって第2のサイクロン89内に空気圧送されて、スチレン系樹脂bは下部排出部89aから密閉式回収容器90に回収される。この時、脱水機88で脱水された選別水はポンプ96を介して貯水槽50に循環される。
【0124】
また、第2のサイクロン89の上部排気部89bからの排気は集塵機91と連結され処理される。また、縦型遠心式水比重選別機44内の脱水機(図示せず)で脱水されたポリプロピレン樹脂aは、搬送ダクト69を介して風力選別機97内に供給されて重量物であるポリプロピレン樹脂aは選別物排出部100を介して回収容器101内に落下し回収される。
【0125】
一方、超軽量物eは風力選別機97の上部排出部99を介して第1のサイクロン86内に空気圧送されて、密閉式回収容器87内に落下し回収される。この時、第1の圧送空気経路の循環経路において、ブロワー68からの供給風量が、吸気口68aからの取り込み風量の概ね8割としているので、第1のサイクロン86内と、密閉式容器87内と、風力選別機97内とは負圧となり、風力選別機97の選別物排出部100から若干空気を吸い込む状態となっている。他の動作は、上記実施例12と同じであるので説明を省略する。
【0126】
この結果、縦型遠心式水比重選別機で水比重選別した後のポリプロピレン樹脂aと、取りきれずに残ったわずかな量の超軽量物eの混入した破砕物の絶対量が減った段階で、もう一度、超軽量物eを風力選別するので異物混入の少ないポリプロピレン樹脂aが脱水された状態で回収できる。また、水比重選別で分離したスチレン系樹脂bを脱水した状態で回収できるのでサーマルリサイクルにも直ちに提供できる。
【0127】
(実施例14)
図17に示すように、浮沈式水比重選別機42と縦型遠心式水比重選別機44の間に水中破砕機75を設け、浮沈式水比重選別機42の排出部56、水中破砕機75の破砕室部75aとを連結し、水中破砕機75の吐出部75bと、縦型遠心式水比重選別機44の第2の原料供給部45とを連結した構成としている。他の構成は上記実施例13と同じである。
【0128】
上記構成において動作を説明する。鉄を回収した後の廃家電製品の残りの破砕物を、2次破砕機(図示せず)によって10mmから15mm程度の破砕物とし浮沈式水比重選別機42へ供給する。供給された破砕物の内、浮沈式水比重選別機42の選別で浮いた破砕物と選別水の混合物が排出部56からスクリュー式排出装置57を介して概ね一定の混合比で水中破砕機75の破砕室75aに供給される。
【0129】
供給された破砕物は破砕室75aで5mm〜10mm程度に細破砕されて、吐出部75bから縦型遠心式水比重選別機44内に第2の原料供給部45を介して供給される。他の動作は上記実施例13と同じであり、説明を省略する。
【0130】
この結果、縦型遠心式水比重選別機44には5mmから10mm程度の破砕物と選別水の混合比が概ね一定で供給されるので、破砕物同士のからみや重なりがなく、ポリプロピレン樹脂aの分離精度を向上することができ、異物混入を少なくできる。
【0131】
また、水中破砕機75で破砕する際に、選別水中で破砕物同士の摩擦が生じることによって、破砕物表面を洗浄する作用が得られて、ポリプロピレン樹脂a表面の金属粉付着量や汚れ付着量が少なくなる。したがって、マテリアルリサイクルに好適なポリプロピレン樹脂aを得ることができる。
【0132】
(実施例15)
図18に示すように、比重液選別機134の上方向に、浮沈式水比重選別機(図示せず)の底部53aと、縦型遠心式水比重選別機(図示せず)の第1の回収用配管47から分離された選別水に沈む樹脂群(ポリスチレン系樹脂bが主構成物の混合樹脂)が供給される第2のサイクロン89の下部排出部89aに原料供給部135を設け、第2のサイクロン89の上部排気部89bは集塵機(図示せず)に連結している。
【0133】
原料供給部135の下方には、選別槽136と内部に押し込みスクリュー137を配置したオーバーフロー部138で構成する比重液選別機134を設け、選別槽136の底部136aと固液分離機139とを連結し、固体排出部139aは脱水機140を介して第5のサイクロン141と連結している。また、固液分離機139の排水部139bと、脱水機140の排水部140aとはポンプ142を介して貯水槽143に連結する第1の比重液の経路Aを構成している。
【0134】
また、第5のサイクロン141の下部排出部141aには密閉式回収容器143を設け、上部排気部141bを集塵機(図示せず)に連結している。一方、オーバーフロー部138は、固液分離機144と連結し、固体排出部144aは脱水機145を介して第6のサイクロン146と連結している。また、固液分離機144の排水部144bと、脱水機144の排水部145aとはポンプ147を介して貯水槽143に連結する第2の比重液の経路Bを構成している。
【0135】
また、第6のサイクロン146の下部排出口146aには密閉式回収容器148を設け、上部排気部146bを集塵機(図示せず)に連結している。さらに、貯水槽143はポンプ149を介して比重液選別機134の上方に設けた原料供給部135と連結し、比重液を循環させる構成としている。ここで、比重液は炭酸塩で比重を1.2に調整したものである。他の構成は上記実施例1〜14と同じである。
【0136】
上記構成において動作を説明する。浮沈式水比重選別機(図示せず)と縦型遠心式水比重選別機(図示せず)で水比重選別されて水に沈んだポリスチレン系樹脂bを主構成成分とする樹脂群と選別水との混合物が、固液分離機76で樹脂群と選別水に分離されて、樹脂群が脱水機88を介して第2のサイクロン89に供給される。第2のサイクロン89に供給された樹脂群は下部排出部89aから原料供給部135を介して、循環する比重液(次に説明する)とともに比重液選別機134に供給される。
【0137】
このとき、比重液は比重液選別機134の選別槽136の底部136aから第1の比重液の循環経路Aと、比重液選別機134のオーバーフロー部138から第2の比重液の循環経路Bを経て貯水槽143とポンプ149と原料供給部135を介して循環しているので、比重液選別機134の比重液の液面はオーバーフロー部138側へ流れている。
【0138】
ここで、比重液選別機134に供給された樹脂群の内、前工程の水比重選別でスチレン系樹脂bに混入していた塩化ビニル樹脂cは、比重液の比重1.2よりも比重が大きいので、比重液の流れに抗して選別槽136に沈み、底部136aからの比重液の流れに吸い込まれて固液分離機139に供給され、塩化ビニル樹脂cは固体排出部139aから脱水機140を介して第5のサイクロン141に供給されて下部排出口141aから密閉式回収容器143に回収される。
【0139】
また、固液分離機139の排水部139bから分離された比重液と、脱水機140の排水部140aからの脱水された比重液が、ポンプ142を介して貯水槽143へ送られる。一方、比重が1.2よりも小さな比重液に浮くポリスチレン系樹脂bを主構成成分とする樹脂群はオーバーフロー部138から押し込みスクリュー137を介して固液分離機144に供給されて、樹脂群は固体排出部144aから脱水機145を介して第6のサイクロン146に供給されて下部排出口146aから密閉式回収容器148に回収される。
【0140】
また、固液分離機144の排水部144bから分離された比重液と、脱水機145の排水部145aから脱水された比重液が、ポンプ147を介して貯水槽143へ送られる。貯水槽143の比重液はポンプ149を介して比重液選別機134の原料供給部135へ循環される。このとき、第5のサイクロン141の上部排気部141bと第6のサイクロン146の上部排気部146bから集塵機(図示せず)へ排気される。他の動作は上記実施例1から14と同じであり、説明を省略する。
【0141】
この結果、前工程の水比重選別で分離されたスチレン系樹脂bを主構成成分とする樹脂群から混入した塩化ビニル樹脂cを分離できるので、スチレン系樹脂bを主構成成分とする樹脂群は、高炉還元材やボイラー燃料の好適な材料として提供することができる。なお、塩化ビニル樹脂cは炉の耐火物を傷めたり、鉄の溶融粘度を変化させるので、埋立あるいは脱塩素処理後に燃料材料とする。
【0142】
(実施例16)
図19に示すように、浮沈式水比重選別機42の第1の選別槽52の底部52aを貯水槽50に連結し、浮沈式水比重選別機42の第2の選別槽53の底部53aと、縦型遠心式水比重選別機44の第1の回収用配管47とを固液分離機76を介し排水部76bを貯水槽50に連結している。貯水槽50は、ポンプ150を介して点線部で示す汚水処理装置(汚水処理手段)151の汚水供給部152に連結し汚水供給手段を構成している。
【0143】
ここで、汚水処理装置151は凝集分離装置であり、凝集剤反応槽153と、フロック(凝集物)熟成槽154と、フロック分離槽155で構成され、凝集反応槽153には第1の撹拌機156aと、凝集剤投入装置157(定量ポンプ157aを有する)とを設け、フロック熟成槽154には第2の撹拌機156bを設け、凝集反応槽153とフロック熟成槽154の境は第1の溢流部158を形成している。
【0144】
フロック分離槽155には第2の溢流部159と、第1のガイド板160aと、第2のガイド板160bと、第3のガイド板160cと、第4のガイド板160dと、傾斜板161と、採水溝162と、底部のスラッジ排出用のバルブ163で構成している。さらに、フロック分離槽155の採水溝162は貯水槽164に配管165で連結されており、貯水槽164はポンプ166を介して浮沈式水比重選別機42の原料供給部(図示せず)に連結した構成としている。他の構成は上記実施例1〜15と同じである。
【0145】
上記構成において動作を説明する。使用済み電化製品の破砕物を水比重選別すると、選別水は破砕時に生じた金属粉、非鉄粉、重金属粉、また使用時に付着していた泥、綿埃、塵埃等で選別水が汚れる。このとき、浮沈式水比重選別機42の第1の選別槽52の底部52aから汚れた選別水(以下、汚水という)が貯水槽50に送られる。
【0146】
また、浮沈式水比重選別機42の第2の選別槽53の底部53aからと、縦型遠心式水比重選別機44の第1の回収用配管47からの汚水が固液分離機76を介して貯水槽50に送られる。貯水槽50に溜まった汚水はポンプ150と汚水供給部152を介して凝集剤反応槽153に供給される。凝集反応槽153では、汚水と凝集剤投入装置157の定量ポンプ157aによって投入された凝集剤とが第1の撹拌機156aによって低速で撹拌されて、汚れ成分と凝集剤が反応して凝集物(以下、フロックという)を生成する。
【0147】
凝集剤反応槽153の処理水は第1の溢流部158を介してフロック熟成槽154へ溢流する。フロック熟成槽154では、第2の撹拌機156bによって低速で撹拌し、未反応で溢流してきた汚れ成分と凝集剤を反応させてフロックを熟成させる。ここで、フロック熟成槽154の処理水は第2の溢流部159を介してフロック分離槽155に溢流する。
【0148】
フロック分離槽155では第1のガイド板160aと第2のガイド板160bとの間を通り、第3のガイド板160cに沿って底部まで誘導され、処理水は第3のガイド板160cと第4のガイド板160dとの間から複数の傾斜板161の間を通り上方向へ誘導される。傾斜板161の間を通過する際に、処理水は、フロックときれいな選別水(以下、浄化水という)とに分離して、フロックはフロック分離槽155の底部に沈降して堆積する。
【0149】
浄化水は、採水溝162から配管165を介して貯水槽164に溜まり、貯水槽164の浄化水はポンプ166を介して選別水として浮沈式水比重選別機42へ原料供給部43とシャワー部132から循環される。他の動作は上記実施例1〜15と同じであり、説明を省略する。
【0150】
この結果、廃家電製品の破砕物の水比重選別を行いながら、選別水中の破砕物の汚れを分離し、選別水の汚れを抑制することができる。したがって、水比重選別によって選別したプラスチックが選別水の汚れによって再汚染されるのを防止することができる。また、選別水の比重が水比重選別に支障が生じるまで、クローズドシステムで使用できるので、水資源を有効に利用できる。
【0151】
なお、本実施例では、沈降式凝集分離方法であるが、加圧水を利用する浮上式凝集分離方法でも同様の効果が得られることはいうまでもない。
【0152】
(実施例17)
図20に示すように、浮沈式水比重選別機42に苛性ソーダの自動投入機167(定量ポンプ167aを有する)を設け、貯水槽50にPH測定器168を設け、PH制御装置169を設けた構成としている。他の構成は上記実施例16と同じである。
【0153】
上記構成において動作を説明する。貯水槽50に送られてくる汚水(汚れた選別水)のPH値がPH9.0以下であるとPH測定器168が検知すると、PH制御装置169はPH測定器168から送られてきた信号によって、苛性ソーダ自動投入機167の定量ポンプ167aを動作させて苛性ソーダ溶液を浮沈式水比重選別機42に供給する。
【0154】
苛性ソーダ溶液が循環する選別液に拡散されて貯水槽50の選別液のPH値がPH10であるとPH測定器168が検知すると、PH制御装置169はPH測定器168から送られてきた信号によって、苛性ソーダ自動投入機167の定量ポンプ167aを停止する。他の動作は上記実施例16と同じであり、説明を省略する。
【0155】
この結果、循環する選別液と汚水はPH9からPH10の間に保持される。ここで、破砕物とともに選別水中に持ち込まれた鉛などの重金属はほとんど溶解することなく、選別水中に未溶解のSS(浮遊粒子)となって存在するので、重金属のほとんどを凝集分離することができる。したがって、選別水中の重金属量を低くできるので、分離回収するプラスチックの重金属汚染を防止することできる。
【0156】
(実施例18)
図21に示すように、貯水槽50から汚水を供給するポンプ150と、凝集剤反応槽153との間に、第3の撹拌機156cと、重金属キレート剤投入装置170(定量ポンプ170aを有する)を配置した重金属反応槽171を設け、重金属反応槽171から凝集剤反応槽152へ溢流する構成としている。他の構成は上記実施例16と同じである。
【0157】
上記構成において動作を説明する。貯水槽50からポンプ150を介して重金属反応槽171へ汚水が供給されるとともに、重金属キレート剤投入装置170から定量ポンプ170aによって重金属のキレート剤が重金属反応槽171に供給される。
【0158】
重金属反応槽171内では、第3の撹拌機156cの撹拌によって汚水中に溶解している重金属イオンと重金属のキレート剤が反応して水に不溶性の物質に変わり凝集剤反応槽153へ溢流する。凝集剤反応槽153では、他の汚れ成分と、重金属の水に不溶性の物質とは、凝集剤によってフロックを生成する。他の動作は上記実施例16と同じであり、説明を省略する。
【0159】
この結果、凝集分離法で分離できない水に溶解した重金属を、水に不溶性の物質に変えることによって、汚水から重金属を分離除去することができる。したがって、上記実施例17よりも重金属を完全に汚水から分離除去することができる。
【0160】
(実施例19)
図22に示すように、貯水槽50に第1の濁度計(第1の濁度検知手段)172と、貯水槽164に第2の濁時計(第2の濁度検知手段)173と、凝集剤反応槽153にベントナイト(鉱物性粘土)分散溶液を定量投入するベントナイト投入装置174(定量ポンプ174aと撹拌機174bを有する)と、第1の濁度計172と第2の濁度計173の信号を検知して凝集剤投入装置157とベントナイト投入装置174を制御する制御装置175とを設け、さらに貯水槽164に比重計(比重検知手段)176を設けた構成としている。他の構成は上記実施例17と同じである。
【0161】
上記構成において動作を説明する。浮沈式水比重選別機42と縦型遠心式水比重選別機44から貯水槽50に供給された汚水の汚れ度合い(濁度)を第1の濁度計172が検知する。また、汚水処理装置151から貯水槽164に供給された浄化水の濁度を第2の濁度計173が検知する。
【0162】
このとき、予め制御装置175に第1の濁度計172の濁度値a1と、第2の濁度計173の濁度値b1とを設定しており、第1の濁度計172の濁度値がa1よりも大で、かつ、第2の濁度計172の濁度値がb1よりも大のときには、制御装置175は凝集剤投入装置157の凝集剤を凝集反応槽153に投入する定量ポンプ157aを連続稼働させる。
【0163】
また、第1の濁度計172の濁度値がa1よりも大で、かつ、第2の濁度計173の濁度値がb1よりも小となったときには、制御装置175はベントナイト投入装置174からベントナイト溶液を投入する定量ポンプ174aを連続稼働させる。
【0164】
これは、汚水中に含まれる汚れ成分の量が汚水処理によって減少したために凝集剤の量が過剰となってきており、ベントナイトを凝集剤反応槽153に供給することで、ベントナイトがフロック生成の核となり、汚れ成分を凝集させるとともに過剰の凝集剤を消費して、浄化水の中に未反応の凝集剤が残ることを防止する。
【0165】
また、第1の濁度計171の濁度値がa1より小で、第2の濁度計173の濁度値がb1よりも小になったときに、凝集剤投入装置157の定量ポンプ157aとベントナイト投入装置174の定量ポンプ174aを制御装置175が停止させる。
【0166】
さらに、選別水中に破砕物が持ち込む塩類が溶解して、徐々に比重が上昇してくるが、ポリプロピレン樹脂aとスチレン系樹脂bとを水比重選別するのに支障の生じる恐れのある比重1.02を比重計176が検知した時に、廃家電再資源化処理装置の制御機器板(図示せず)にランプ表示して、選別水の入れ替え時期であることを知らせるものである。他の動作は上記実施例17と同じであり、説明を省略する。
【0167】
この結果、汚水の汚れ具合と汚水処理の進行状況によって凝集剤とベントナイトの投入開始と停止を自動的に行うことができる。また、比重選別水の入れ替え時期がわかり、選別精度を維持することができる。
【0168】
(実施例20)
図23に示すように、縦型遠心式水比重選別機44の搬送ダクト69と第1の風力選別機97aとを連結し、第1の風力選別機97aの選別物排出部100aの下方に撹拌機177aを有する酸洗浄槽178を設け、酸洗浄槽178の排出部178aと、第1の固液分離機179aの固体排出部179a1とを介して第2の風力選別機97bとを連結し、第2の風力選別機97bの選別物排出部100bの下方に撹拌機177bを有するアルカリ洗浄槽180を設けている。
【0169】
アルカリ洗浄槽180の排出部180aと、第2の固液分離機179bの固体排出部178b1とを介して第3の風力選別機97cとを連結し、第3の風力選別機97cの選別物排出部100cの下方に撹拌機177cを有する水洗槽181を設け、水洗浄槽181の排出部181aと、第3の固液分離機179cの固体排出部179c1とを介して脱水機182と連結し、脱水機182と下部に密閉式回収容器184を配置した第7のサイクロン183とを連結している。
【0170】
このとき、第1の固液分離機179aの液体排出部179a2は第1のポンプ185aを介して酸洗浄槽178に循環させて、第2の固液分離機179bの液体排出部179b2は第2のポンプ185bを介してアルカリ洗浄槽180に循環させて、第3の固液分離機179cの液体排出部179c2は第3のポンプ185cを介して水洗浄槽181に循環し、脱水機182の脱水液についても第4のポンプ185dを介して水洗浄槽181に循環させる構成としている。
【0171】
また、第1の風力選別機97aの上部の排出部99a1と、第2の風力選別機97bの上部の排出部99a2と、第3の風力選別機97cの上部の排出部99a3とは、下部に密閉式回収容器87を配置した第1のサイクロン86に連結し、風力選別機(第1から第3)内が負圧となるようにしている。ここで、第1のサイクロン86の上部排気部86bと、第7のサイクロン183の上部の排気部183bとは集塵機(図示せず)に連結している。他の構成は上記実施例1〜12と同じである。
【0172】
上記構成において動作を説明する。廃家電製品の破砕物を水比重選別して脱水したポリプロピレン樹脂aが、縦型遠心式水比重選別機44の搬送ダクト69を介して第1の風力選別機97a内に空気圧送され、選別物排出部100aから塩酸を収容する酸洗浄槽178内に供給される。酸洗浄槽178内のポリプロピレン樹脂aは、撹拌機177aによって撹拌されながら破砕樹脂表面に付着している鉄や非鉄が溶解除去され、排出部178aと、固液分離機179aとを介して第2の風力選別機97b内へ空気圧送され、選別物排出部100bから苛性ソーダ溶液を収容するアルカリ洗浄槽180内に供給される。
【0173】
アルカリ洗浄槽180内のポリプロピレン樹脂aは、撹拌機177bによって撹拌されながら破砕樹脂表面に残る酸分を苛性ソーダ溶液が中和し、排出部180aと、第2の固液分離機179bとを介して第3の風力選別機97c内に空気圧送され、選別物排出部100cから洗浄水を収容する水洗浄槽181内に供給される。
【0174】
水洗浄槽181内のポリプロピレン樹脂aは、破砕樹脂表面に残るアルカリ分を洗い落として排出部181aと、第3の固液分離機179cとを介して脱水機182内に供給される。脱水機182で脱水されたポリプロピレン樹脂aは、第7のサイクロン183に空気圧送されて密閉式回収容器184内に回収される。
【0175】
このとき、酸洗浄槽178の排出部178aから排出された塩酸は、第1の固液分離機179aと、第1のポンプ185aとを介して第1の酸洗浄槽178の上部に循環させている。また、アルカリ洗浄槽180の排出部180aから排出された苛性ソーダ溶液は、第2の固液分離機179bと、第2のポンプ185bとを介してアルカリ洗浄槽180の上部に循環させている。
【0176】
また、水洗浄槽181の排出部181aから排出された洗浄水は、第3の固液分離機179cと第3のポンプ185cとを介して水洗浄槽181の上部に循環させている。脱水機182の脱水液についても第4のポンプ185dを介して水洗浄槽181の上部に循環させている。他の動作は上記実施例1〜19と同じであり、説明を省略する。
【0177】
【発明の効果】
以上のように本発明の請求項1に記載の発明によれば、廃家電製品の破砕物、または前記破砕物と選別水を供給する第1の原料供給手段と、この第1の原料供給手段からの供給原料を前記破砕物の比重差で少なくとも2種類の破砕物に選別する第1の水比重選別装置と、前記少なくとも2種類に選別した破砕物の内、軽量物と選別水を後工程に供給する第1の供給手段と、前記第1の供給手段から送られた軽量物と選別水に遠心力を作用させ再度水に沈む破砕物と水に浮く破砕物に選別する第2の水比重選別装置とを備え、前記第2の水比重選別装置は、鉛直方向に回転中心軸を有し内方に選別水を収容する回転ドラムと、この回転ドラムの回転中心軸上に設けられ前記回転ドラム内に軽量物と選別水の混合物を供給する筒体と、前記回転ドラムの回転軸側かつ前記筒体の外側に設けられ回転させることにより水に浮く破砕物を回収する回収機とを有し、前記回転ドラムを第1の所定回転速度で回転させて前記筒体の周囲に空気の層を発生させ、前記水に浮く破砕物を前記回転ドラムの回転軸側に収集し、前記回収機を前記第1の所定回転速度より高速の第2の回転速度で回転させ、前記水に浮く破砕物を前記回収機で回収するから、第1の水比重選別装置では、廃家電製品の破砕物の内、比重が1.0よりも大で且つ重量物である破砕物と、比重が1.0より大で撥水性の少ない破砕物とは、沈む側に選別される。一方、第1の水比重選別機で総量が減量された水に浮く破砕物だけが遠心力の作用する第2の水比重選別機に供給されるので、破砕物間の重なりも少ない状態で遠心力のGが作用する水比重選別では、当初、撥水性があるために、あるいは気泡が付着していたり、スポンジ類(連立発泡のスポンジ)のように内部に空気を保持していることによって分離できなかった破砕物も、高精度で分離できる。この結果、本来沈むべき破砕物を分離除去したポリプロピレン樹脂が回収できるので、マテリアルリサイクルに好適なものが提供できる。
【0178】
また、請求項2に記載の発明によれば、第1の水比重選別装置は、銅線または非鉄類を含む重比重物を選別する第1の選別槽を有するとともに、この重比重物より小さい比重の中比重物を選別する第2の選別槽を、前記第1の選別槽の下流側に設けたから、破砕前に廃家電製品からモータ、コンプレッサー、電源コード、内部配線等の銅線を含む部品を、予め取り外しすることなく重比重物として銅線類、アルミニウム片を回収することができる。この結果、従来風力選別や渦電流等の非鉄回収方法では選別が困難であった銅線類、非鉄の小片を容易に回収できる。また、水に沈む破砕物を重比重物と中比重物に選別できるので、重比重物の有価価値も高くすることができる。また、中比重物への金属の混入を少なくできるので、高炉還元材のコークスの一部代替用原料、ボイラー燃料の代替材料として提供することができる。
【0179】
また、請求項3に記載の発明によれば、回転ドラムの底部側に第1の回収手段を備えたから、前段の水比重選別装置から第2の水比重選別装置に供給された水に浮く軽量物に800G程度の強力な遠心力を作用させることができるので、高精度、高速度の選別を行うことができる。また、回転ドラムと一体に脱水機を設けることができるので、脱水されたポリプロピレン樹脂が回収できる。また、縦型遠心式水比重選別装置(回転ドラムの回転中心軸が鉛直方向)なので、運転開始時および停止時においてもアンバランスが生じ難く、回転振動に対する振動減衰装置等が不要である。この結果、選別精度の高い脱水されたポリプロピレン樹脂が回収できるので、直ちにリペレット加工に提供できる。また、縦型遠心式水比重選別装置により、水比重選別の処理能力を向上できるとともに、廃家電再資源化処理装置の省スペース化を図ることができる。
【0180】
また、請求項4に記載の発明によれば、第1の水比重選別装置と、第2の水比重選別装置の間に、破砕物の比重差で少なくとも2種類の破砕物に選別する1つ以上の水比重選別装置を設け、前工程の水比重選別装置から次工程の水比重選別装置に軽量物と選別水を供給する第2の供給手段を備えたから、第1の水比重選別装置から第3〜第nの水比重選別装置を経由して第2の水比重選別装置に水に浮く軽量物が供給されるので、第2の水比重選別装置の前段の水比重選別装置で、疎水性あるいは気泡付着等の分離阻害要因のために混入していた中比重物が徐々に阻害要因が無くなり分離されるとともに、次段の水比重選別装置への破砕物の供給量が減量される。この結果、第2の水比重選別装置から選別精度が極めて高いポリプロピレン樹脂が回収できる。また、各水比重選別装置から排出される水に沈む破砕物の回収を分けることによって、中比重物において重比重物の混入量が異なるものが回収できる。この結果、高炉還元材、ボイラー燃料等の燃焼用途に応じて中比重物を得ることができる。
【0181】
また、請求項5に記載の発明によれば、水比重選別装置間に水中破砕手段を備えたから、選別水中で5mmから10mm程度に細破砕するとともに水中破砕時に破砕物間の摩擦により破砕物表面が洗浄され、このとき、破砕物表面の水濡れ性も向上する。この結果、細破砕状態で次段の水比重選別装置に供給されると、破砕物同士のからみや重なりが生じ難く、表面の水濡れ性もよくなるので選別精度を向上することができる。また、破砕物表面が洗浄されるのでポリプロピレン樹脂への異物混入を低減することができる。
【0182】
また、請求項6に記載の発明によれば、水比重選別装置から回収した破砕物と選別水とを分離する固液分離手段を備え、この固液分離手段に連結して選別水循環手段を設けたから、水比重選別装置から選別した選別水を含む破砕物を回収する際に、固液分離手段で破砕物と選別水とを分離することができて、選別した破砕物を回収するとともに、分離した選別水を水比重選別装置に選別水循環手段を介して循環させることができる。これによって、水比重選別装置から選別した破砕物の連続回収と水比重選別装置の選別水の循環バランスをとることができ、連続した選別処理が可能となる。
【0183】
また、請求項7に記載の発明によれば固液分離手段が、破砕物と選別水との混合物を供給する固液供給手段と、前記固液供給手段より供給された前記破砕物と選別水とを分離し選別水を分離した破砕物を搬送する固液分離搬送手段と、前記固液分離搬送手段により搬送された破砕物を空気圧送により回収する固体回収手段と、前記固液分離搬送手段の底部に設けられ破砕物と選別水を分離する網体とを備えたから、水比重選別装置から選別した選別水を含む破砕物を回収する際に、破砕物と選別水とを分離することができて、選別水の付着が少ない破砕物を回収することができ、分離した選別水を水比重選別装置に選別水循環手段を介して循環させることができる。これによって、安価な固液分離装置で、水比重選別装置から選別した破砕物の連続回収と水比重選別装置の選別水の循環バランスをとることができ、連続した選別処理が可能な廃家電再資源化処理装置を提供することができる。
【0184】
また、請求項8に記載の発明によれば、少なくとも第2の比重選別装置の第2の回収手段または固液分離手段のいずれかの次段に脱水手段と、これによって脱水した破砕物を回収する第3の回収手段を備えたから、少なくとも第2の回収手段または固液分離手段から回収された破砕物を、次段の脱水手段で破砕物の脱水をする。これによって、脱水した破砕物が回収できる。この結果、第2の回収手段の次段に脱水機を設けた場合は、回収されたポリプロピレン樹脂は直ちにリペレット加工のできる状況で回収できる。また、固液分離装置の次段に脱水機を設けた場合は、高炉還元材あるいはボイラー燃料として直ちに出荷のできるプラスチックの回収をすることができる。
【0185】
また、請求項9に記載の発明によれば、脱水手段の次段に、風力搬送手段と、風力選別手段と、前記風力選別手段によって分離した超軽量物を回収する第3の回収手段を備えたから、脱水手段で破砕物を脱水した後、風力選別手段へ風力搬送手段で破砕物を搬送する際に、破砕物表面を風乾することができ、コンデンサーフイルム等の超軽量物で前行程で取りきれなかった異物を風力選別装置で分離した後、第3の回収手段で超軽量物が回収できる。これによって、リペレット加工時に押し出し機のスクリーンを目詰まりさせて生産性を低下させるコンデンサーフイルム等が除去されたポリプロピレン樹脂を得ることができる。
【0186】
また、請求項10に記載の発明によれば、風力選別手段が、中心軸が略鉛直方向の略円筒形状の筒体と、前記筒体の上端部の排出部に連結し超軽量物を回収する第3の回収手段と、前記筒体の下端部に設け軽比重物を排出する選別物排出部と、前記筒体の下部に設け斜め上方向で略接線方向に原料が筒体内に空気圧送される第2の原料供給手段とを備えたから、第2の原料供給手段より圧送される空気により、筒体内部に筒体の内壁に沿って渦巻き状の上昇空気流を形成することができ、同時に供給された破砕物は、渦巻き状の上昇空気流により渦巻き状に移動し、破砕物が実際に移動する距離(螺旋状に移動する距離)を大きくできて、破砕物中の重量物(プラスチック等)と軽量物(前記の超軽量物)をほぐすことができ、重量物に働く鉛直方向の重力と上昇力がバランスした状態での滞留時間を長くできて重量物と軽量物の重なりを少なくすることができ、分離精度を向上することができる。また、筒体内部は中心軸から外縁部へ行くほど周速度が速く、遠心力の大きな渦巻き状の上昇空気流となり、筒体内で略水平方向の遠心力が作用し、重量物と軽量物を水平方向に分離させる力が作用するため、重量物は遠心力で外縁部へ移動し、軽量物は遠心力が小さいので筒体の中心軸側となるので、分離精度を一層向上することができる。この結果、水比重選別装置から回収されたポリプロピレン樹脂中に混入する超軽量物をほぼ完全に除去できる。
【0187】
また、請求項11に記載の発明によれば、破砕物の圧送と風力選別手段の風力を供給する圧送手段兼風力供給手段を備え、前記圧送手段兼風力供給手段の吹き出し口を分岐し、一端を風力選別手段の風力供給側に連結し、他の一端をエアー抜きとし、前記風力選別手段の上部は第3の回収手段を介して前記圧送手段兼風力供給手段のエアー取り込み口と連結し、前記風力選別手段内を負圧状態としたから、圧送手段兼風力供給手段と風力選別手段と第3の回収手段とをループとする圧送空気の循環経路を構成することで、風力選別手段の下部から重力によってポリプロピレン樹脂を排出する選別物排出部から空気を吸い込む状態にできる。この結果、従来のように風力選別手段の超軽量物を排出する上部を集塵機で吸引する必要もなく、安価な装置で高性能の風力選別が行えて、異物混入の極めて少ないポリプロピレン樹脂を得ることができる。また、ポリプロピレン樹脂の回収容器を風力選別手段と非接触で配置できるので、回収容器の入れ替えが容易になる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図2】 同廃家電再資源化処理装置の遠心式水比重選別機の縦断面図
【図3】 本発明の第2の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図4】 本発明の第3の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図5】 本発明の第4の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図6】 同廃家電再資源化処理装置の固液分離機の一部切欠した側面図
【図7】 本発明の第5の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図8】 本発明の第6の実施例の廃家電再資源化処理装置の要部システム構成図
【図9】 同廃家電再資源化処理装置の風力選別機の一部切欠した斜視図
【図10】 本発明の第7の実施例の廃家電再資源化処理装置の要部システム構成図
【図11】 本発明の第8の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図12】 本発明の第9の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図13】 本発明の第10の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図14】 本発明の第11の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図15】 本発明の第12の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図16】 本発明の第13の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図17】 本発明の第14の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図18】 本発明の第15の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図19】 本発明の第16の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図20】 本発明の第17の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図21】 本発明の第18の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図22】 本発明の第19の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図23】 本発明の第20の実施例の廃家電再資源化処理装置の一部切欠したシステム構成図
【図24】 従来の廃家電再資源化処理装置の一例の工程フローチャート
【図25】 従来の廃家電再資源化処理装置の他の例の工程フローチャート
【図26】 同廃家電再資源化処理装置の水比重選別装置の断面図
【図27】 同廃家電再資源化処理装置の汚水処理装置のシステム構成図
【符号の説明】
42 浮沈式水比重選別機(第1の水比重選別装置)
43 第1の原料供給部(第1の原料供給手段)
44 縦型遠心式水比重選別機(第2の水比重選別装置)
46 第1のポンプ(第1の供給手段)
51 第2のポンプ(選別水循環手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste home appliance recycling treatment apparatus that sorts plastics and the like by water specific gravity from crushed materials obtained by crushing waste home appliances that have become waste.
[0002]
[Prior art]
Conventionally, existing recyclers have recycled used home appliances with the processing flow shown in FIG. The processing flow will be described below.
[0003]
After used household appliances are conveyed from the
[0004]
The crushed material after the iron is collected is sorted by a
[0005]
As another method, there is a waste processing method and apparatus disclosed in Japanese Patent Laid-Open No. Hei 5-147040. This flow will be described with reference to FIG.
[0006]
The material is conveyed from the
[0007]
On the other hand, the separated metal lumps such as motors and compressors are cooled to a low temperature of −100 ° C. or lower by the cooling device 14, then crushed by the crusher 15, and the heavy waste discharged by the light material sorting means 13. And sent to the metal / non-ferrous
[0008]
Next, the non-ferrous group sorted by the eddy
[0009]
The plastic group cooled to about 0 to −60 ° C. by the
[0010]
As shown in FIG. 26, the water
[0011]
Next, the operation will be described. Of the olefin resin a, styrene resin b, and vinyl chloride resin c supplied to the water
[0012]
In addition, FIG. 27 shows the configuration of a sewage treatment apparatus of a plastic water specific gravity sorting apparatus that has been performed by an existing plastic reclaimer. The basic structure of the plastic water specific gravity sorting apparatus is the same as that of the conventional example described above, and is omitted. Hereinafter, the configuration and operation of the wastewater treatment of the sorted water that has been used as the sewage will be described. As shown in FIG. 27, a sewage treatment wastewater path is constituted by the
[0013]
Next, the operation will be explained. In the plastic sorting operation, the sorted water includes metal powder and non-ferrous powder containing heavy metals that could not be separated before the raw material supply to the water specific gravity sorter (not shown), and the plastic surface during crushing. Metal powder containing heavy metal and non-ferrous powder adhering to the surface, dust and dirt such as mold in the case of washing machines are brought in, and the sorted water is immediately contaminated with metals such as heavy metal and iron, non-ferrous, mud, and mold.
[0014]
Sorted water that has become sewage in this water specific gravity sorter (not shown) is filtered through a drainage valve (not shown) to remove undissolved contaminants by
[0015]
[Problems to be solved by the invention]
However, in the first processing method shown in FIG. 24, plastic having a high material composition weight of household electrical appliances is landfilled or incinerated as dust. As a result, there is a big problem that a large amount of limited and valuable resources (fossil fuel) are wasted.
[0016]
As a second problem, non-ferrous metal parts having a relatively large size can be crushed and then sorted into dust groups and non-ferrous metals by the
[0017]
As a result, in most home appliances except for some home appliances that have heat exchangers, the copper used in the motor, internal wiring, and power cords occupies the most valuable copper. There is a problem that the recovery rate of the sieving machine is extremely low and the sieving function of the sieving
[0018]
Moreover, in order to select and collect the copper wire mixed in the dust by vibration separation, it is necessary to make the crushing size very fine. However, the dust group of home appliances has a problem that heat conduction is poor because the thermoplastic resin occupies most, and the thermoplastic resin melts and cannot be crushed by the heat during crushing.
[0019]
Further, in the second treatment method shown in FIG. 25, since many of the crushed plastics have water repellency until they become familiar with water, the styrene resin b is mixed into the olefin resin a, and the conditions are appropriately set. However, the limit of the sorting accuracy was 95%. On the other hand, if the amount of plastic input to the water specific gravity sorter is increased in order to increase the processing capacity of the water specific gravity sorter, the plastics will overlap each other, and the material that should originally sink will be sandwiched between the floats. Sorting accuracy decreases.
[0020]
Another way to increase the processing capacity is to increase the amount of plastic input to the water specific gravity sorter andButWhen the speed is increased, the overlap between the plastics is reduced, but since the polystyrene resin b rides on the flow of the circulating water and is mixed into the olefin resin a, the selection accuracy is significantly lowered.
[0021]
As a result, a general-purpose polypropylene resin (olefin-based resin) that is used in a large amount in home appliances is converted into an oil or auxiliary material without being recycled as a polypropylene resin again.
[0022]
Moreover, in order to remove vinyl chloride from the plastic group, there is a problem that a very expensive facility of cooling to about 0 to −60 ° C. by the cooling
[0023]
In addition, when a large amount of waste home appliance crushed material is sorted by the water
[0024]
However, the compact sewage treatment apparatus shown in FIG. 27 has a problem that the sewage treatment capacity is low in the filtration step and the ion exchange step, and cannot be applied to a closed system that circulates the sewage and the treated water to the water
[0025]
In addition, it is necessary to periodically replace the sand of the filter medium, and there is a problem that waste treatment including sand is indispensable after stabilization of heavy metals, despite recycling. In addition, there is a problem in that the ion exchange resin of the ion exchange tower must be periodically regenerated and the regeneration cost is increased.
[0026]
Further, as the second problem, as in the first processing method, the crushed material of the internal wiring and the power cord is easily entangled and light, so the crushed material crushed to 50 mm to 100 mm is separated by the lightweight
[0027]
In addition, the motor and the compressor must be removed in advance by the metal lump separating means 11. Moreover, there is a problem that the cooling device 14 is a very expensive facility that is cooled to a low temperature of −100 ° C. or lower and is crushed by the crusher 15.
[0028]
The present invention solves the above-mentioned conventional problems, and sorts out the water specific gravity of plastic crushed material from waste home appliances in large quantities, and again uses the most commonly used polypropylene resin (olefin-based resin) in home appliances as polypropylene again. To be able to select and collect polypropylene resin with a purity that can be recycled as a resin.EyesIt has been the target.
[0029]
[Means for Solving the Problems]
In order to achieve the first object, the present invention uses a crushed product of waste home appliances or a feed material from a first material supply means for supplying crushed material and sorted water to a first water specific gravity sorting device. Then, the crushed material is sorted into at least two types of crushed materials, and among the crushed materials sorted into at least two types, the light weight material and the sorted water are separated into the second water specific gravity sorting device.A rotating drum having a rotation center axis in the vertical direction and containing the selected water inward; a cylinder provided on the rotation center axis of the rotating drum for supplying a mixture of light weight and selected water into the rotating drum; A recovery unit that is provided on the rotating shaft side of the rotating drum and outside the cylinder and collects crushed material floating in water by rotating the rotating drum, and rotates the rotating drum at a first predetermined rotation speed to surround the cylinder An air layer is generated, and crushed material floating in the water is collected on the rotating shaft side of the rotating drum, and the recovery machine is rotated at a second rotational speed higher than the first predetermined rotational speed, and crushed material floating in the water. Is recovered with a recovery machineIs.
[0030]
This makes it possible to sort out the specific gravity of waste plastics from waste home appliances in large quantities, and to purify polypropylene resins with the purity that can be recycled as polypropylene resins again from general-purpose polypropylene resins (olefin-based resins) that are used most in home appliances. Can be collected and collected.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to
[0032]
According to a second aspect of the present invention, there is provided the first water specific gravity sorting device according to the first aspect of the present invention.Contains copper wire or non-ferrous metalsHeavy specific gravityA first sorting tank that sorts out a specific gravity smaller than this heavy specific gravityMedium specific gravityA second sorting tank that sorts the first sorting tank is provided downstream of the first sorting tank.By supplying the crushed material after the iron is recovered from the crushed material of the waste home appliances in advance to the first water specific gravity separator, the heavy specific gravity in the crushed material is separated from the sorted water. Immediately sinks against the flow and settles in a water specific gravity sorting tank. In addition, the medium specific gravity sinks gradually while flowing in the flow of the selected water, and settles in the water specific gravity sorting tank of the medium specific gravity. Further, the light specific gravity floating in the water flows downstream and is supplied to the second water specific gravity sorting device. Therefore, the sediment can be sorted and recovered into a heavy specific gravity product and a medium specific gravity product. As a result, it is possible to easily sort and collect high-value copper wires and small pieces of aluminum without removing motors, compressors, power cords, internal wiring, and the like that use a lot of non-ferrous metals in advance.
[0033]
The invention according to
[0034]
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, at least two types of crushed materials may have a difference in specific gravity between the first water specific gravity sorting device and the second water specific gravity sorting device. One or more water specific gravity sorters that sort into crushed materialsPlaceProvided with a second supply means for supplying light weight and sorted water from the water specific gravity sorting device in the previous process to the water specific gravity sorting device in the next process, and the specific gravity of the first water specific gravity sorting device is 1. In spite of being larger than 0, the plastic surface is partially hydrophilized due to the water repellency of the plastic crushed material, as part of the styrene resin (medium specific gravity) mixed in the polypropylene resin group (light specific gravity) as a lightweight material. The second water specific gravity sorter which is gradually submerged and separated by at least one water specific gravity sorter (third to n th water specific gravity sorter) in the next step and is subjected to centrifugal force has reduced weight. Crushed material having a hydrophilic plastic surface is supplied. Accordingly, the plastics hardly overlap each other in the second water specific gravity sorting device on which the centrifugal force acts, and are separated instantaneously by G. As a result, higher purity polypropylene resin can be selected and recovered.
[0035]
The invention according to
[0036]
The invention according to
[0037]
The invention according to claim 7 is the invention according to
[0038]
The invention according to claim 8 is the invention according to
[0039]
The invention according to
[0040]
According to a tenth aspect of the present invention, in the invention according to the ninth aspect, the wind power sorting means is connected to a substantially cylindrical cylindrical body having a substantially vertical central axis and a discharge portion at the upper end of the cylindrical body. And a third collection means for collecting ultra-lightweight materials, a sorted material discharge portion provided at the lower end portion of the cylindrical body for discharging light specific gravity, and a raw material provided in a lower portion of the cylindrical body in a substantially tangential direction obliquely upward. Is provided with a second raw material supply means that is pneumatically fed into the cylinder, and a spiral rising air flow is formed in the cylinder along the inner wall of the cylinder by the pressure-fed air. The inside of the cylinder has a higher peripheral speed from the central axis to the outer edge, and becomes a spiral rising air flow with a large centrifugal force. The crushed material supplied from the raw material supply means moves spirally by the spiral air flow, and the distance that the crushed material actually moves (distance that moves spirally) can be increased. Can reduce the overlap between the light specific gravity and the super light weight. And separation accuracy can be improved. Further, a centrifugal force in a substantially horizontal direction acts in the cylinder, and a force that separates the light specific gravity material and the ultralight material in the horizontal direction acts. Accordingly, the light specific gravity material moves outward due to the centrifugal force of the spiral flow, and the ultralight material has a small centrifugal force, so that it becomes the central axis side of the cylindrical body, so that the separation accuracy can be further improved.
[0041]
The invention according to claim 11 is the invention according to
[0042]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0043]
Example 1
As shown in FIG. 1, the waste home appliance recycling processing device is a mixture of crushed material and sorted water to a
[0044]
The float / sink water
[0045]
Further, in the vertical centrifugal water
[0046]
A recovery mechanism (second recovery means) provided with an
[0047]
The separated
[0048]
The operation in the above configuration will be described. First, the flow of water will be described. Sorted water in the float / sink type water
[0049]
The sorted water supplied to the
[0050]
Of the crushed material, the non-ferrous metals d and vinyl chloride resin c having a large specific gravity immediately sink to the bottom of the
[0051]
In addition, an olefin resin having a specific gravity of about 0.91 (the olefin resin of household electrical appliances is mostly a polypropylene resin, and will be referred to as a polypropylene resin hereinafter) a, and a part of the styrene resin b that should originally sink and electrolysis A part of the film of the condenser floats on the water due to water repellency and the sponges of the simultaneous foam are mixed with the sorted water from the
[0052]
At this time, since the
[0053]
The dehydrated polypropylene resin a is sent out from the
[0054]
As a result, most of the crushed material having a specific gravity of more than 1.0 can be separated and recovered by the float / sink type water
[0055]
In addition, when the vertical centrifugal water
[0056]
(Example 2)
As shown in FIG. 3, a hydrocyclone (a hydrocyclone (first water specific gravity sorter) 42 and a vertical centrifugal water specific gravity sorter (second water specific gravity sorter) 44 is placed between a float / sink type water specific gravity sorter (first water specific gravity sorter) 42 and a vertical centrifugal water specific gravity sorter (second water specific gravity sorter) 44. A third water specific
[0057]
The
[0058]
The operation in the above configuration will be described. A mixture of the crushed material and the sorted water floating in the water by the float / sink type water
[0059]
On the other hand, the crushed material floating in the water resists the centrifugal force in the horizontal direction, moves to the center axis side of the spiral flow, and connects the
[0060]
The mixture of the crushed material sinking into the water brought into the
[0061]
As a result, the crushed material that is submerged in water is separated by a
[0062]
Example 3
As shown in FIG. 4, an underwater crusher (underwater crushing means) 75 is provided between a float / sink type water specific gravity sorter (first water specific gravity sorter) 42 and a hydrocyclone (third water specific gravity sorter) 71. The
[0063]
The operation in the above configuration will be described. Of the crushed material separated by the float / sink type water
[0064]
As a result, the
[0065]
(Example 4)
The entire system is shown in FIG. 5 and the details of the solid-liquid separator 76 (solid-liquid separation means) are shown in FIG. 6, and the entire system includes a bottom 53a of the
[0066]
In this solid-
[0067]
The recovered material supply pipe (solid-liquid supply means) 81 supplies a mixture of the crushed material and the separated water separated above the solid-liquid
[0068]
Here, the solid /
[0069]
The operation in the above configuration will be described. A solid-liquid separator in which a mixture of crushed material settled on the bottom 53a of the
[0070]
At this time, the sorted water passes through the
[0071]
On the other hand, the crushed material that sinks in the water remaining on the
[0072]
As a result, the crushed material that sinks in the water separated by the
[0073]
In addition, when the crushed material is blown off with the pressurized air from the direction opposite to the crushed material supply side of the
[0074]
(Example 5)
As shown in FIG. 7, from a dehydrator (dehydrating means: not shown) provided in the upper part of the vertical centrifugal water
[0075]
The
[0076]
The operation in the above configuration will be described. The water separated by the final vertical centrifugal water
[0077]
The bottom 53a of the
[0078]
On the other hand, the sorted water dehydrated by the
[0079]
As a result, the polypropylene resin a can be recovered in a dry state that can be immediately provided to repellet processing for material recycling. Styrenic resins can also be recovered in a dry state that can be immediately provided as a raw material for thermal recycling.
[0080]
(Example 6)
The partial system is shown in FIG. 8, and the details of the wind sorter (wind sorter) 97 are shown in FIG. 9, and the dehydrator (dehydrator: not shown) provided in the upper part of the vertical centrifugal water
[0081]
As shown in detail in FIG. 9, the
[0082]
The operation in the above configuration will be described. As shown in FIG. 8, the polypropylene resin a selected by the vertical centrifugal water
[0083]
Here, the air volume of the dust collector (not shown) is set to be slightly larger than the air flow rate of the
[0084]
At this time, the polypropylene resin a (sorted material having a large mass) moves to the inner wall side of the
[0085]
As shown in detail in FIG. 9, the size (mass) of the polypropylene resin a varies, and the larger polypropylene resin a falls at a faster stage. It collides with the collision surface 103a of the
[0086]
On the other hand, ultra-lightweight materials e (foams such as films of multilayer capacitors and polystyrene foam) that cannot be separated due to the surface property, shape, and mass (small) of the crushed material in the water specific gravity sorting are mixed in as a spiral. Is blown up to the upper part of the
[0087]
The film of the multilayer capacitor is obtained by evaporating aluminum on a PET film, and has a higher melting point than polypropylene resin. Therefore, the screen of the extruder is clogged during repellet processing, and the productivity is remarkably deteriorated. In addition, when different materials are mixed, the physical properties deteriorate or black spots are formed on the surface of the molded product. By separating and collecting the ultralight material e such as a film of a multilayer capacitor or a foamed polystyrene, it is possible to repellet processing. It is possible to recover a polypropylene resin that reduces productivity, reduces physical properties, and contains less contaminants on the surface of the molded product.
[0088]
(Example 7)
As shown in FIG. 10, a blower (pumping means and wind power supply means) for pneumatically feeding polypropylene resin a discharged from a dehydrator (not shown) provided in the upper part of the vertical centrifugal water
[0089]
On the other hand, the
[0090]
The operation in the above configuration will be described. First, the circulation path of the pressurized air path will be described. The circulation path of the pressurized air is such that the supply air volume from the
This is the same as another operation) and the sixth embodiment (wind power sorting operation), and a description thereof will be omitted.
[0091]
As a result, by using an independent system that collects the crushed material after the water specific gravity sorting, there is no need to connect the dust collector (not shown) and the
[0092]
(Example 8)
As shown in FIG. 11, a secondary crusher (secondary crushing means) 108 having a
[0093]
Further, the
[0094]
The operation in the above configuration will be described. The remaining crushed material of about 30 mm to 100 mm, in which iron is recovered by a magnetic separator after first crushing the waste home appliance, is put into the
[0095]
In the
[0096]
On the other hand, the ultralight material is supplied from the
[0097]
As a result, the crushing size is adjusted to a size of about 10 mm to 15 mm, so that the entanglement and overlap between the crushed materials can be reduced, and the separation accuracy of wind sorting and water specific gravity sorting of ultralight and heavy items is improved. can do. In addition, since the ultralight material is removed in advance by the
[0098]
Example 9
As shown in FIG. 12, between the secondary crusher (secondary crushing means) 108 and the
[0099]
Further, the
[0100]
At this time, the suction air volume of the
[0101]
The operation in the above configuration will be described. The crushed material re-crushed to about 10 mm to 15 mm by the
[0102]
On the other hand, among the crushed material, heavy material enters the
[0103]
On the other hand, of the crushed material, a fixed amount of heavy material that has been secondarily sorted by wind power is supplied to the floatation-type water
[0104]
As a result, the crushed material whose crushing size is adjusted to about 10 mm to 15 mm by the
[0105]
(Example 10)
As shown in FIG. 13, the blower part of the
[0106]
Further, the
[0107]
Furthermore, the blowing part of the
[0108]
Further, the
[0109]
The operation in the above configuration will be described. Since the air volume of the
[0110]
As a result, since the circulation paths of the pumped air are made independent, the negative pressure state in each wind power sorter and the air balance of wind power for wind sorting and crushed material can be easily controlled. Also, since no dust collector is required, the equipment cost can be reduced.
[0111]
(Example 11)
As shown in FIG. 14, a sorted
[0112]
The operation in the above configuration will be described. The sorted water in the
[0113]
As a result, it is possible to prevent dust from scattering from the second blowing part 125b of the
[0114]
(Example 12)
As shown in FIG. 15, the
[0115]
Further, the dewatering
[0116]
The operation in the above configuration will be described. The styrenic resin b that has sunk in the
[0117]
The styrene-based resin b and the sorted water supplied to the solid-
[0118]
As a result, a two-stage wind sorter (not shown from the secondary crusher to the raw material supply unit) separates and removes ultra-lightweight materials such as film and polystyrene foam that are difficult to separate at the time of water specific gravity sorting in advance. Further, the vertical centrifugal force is applied by forcibly pulling the floating polystyrene resin b in the flow for discharging the sorted water from the bottom 53a of the
[0119]
Further, since the sorted water is supplied to the
[0120]
(Example 13)
As shown in FIG. 16, the
[0121]
Further, the
[0122]
At this time, with the sorted
[0123]
The operation in the above configuration will be described. The styrenic resin b is supplied to the perforated
[0124]
Further, the exhaust from the
[0125]
On the other hand, the ultralight material e is pneumatically fed into the
[0126]
As a result, at the stage where the absolute amount of the crushed material mixed with the polypropylene resin a after the water specific gravity sorting with the vertical centrifugal water specific gravity sorter and the very small amount of the ultralight material e remaining without being removed is reduced. Once again, the ultralight material e is subjected to wind sorting, so that the polypropylene resin a with little foreign matter can be recovered in a dehydrated state. Further, since the styrene resin b separated by the water specific gravity sorting can be recovered in a dehydrated state, it can be immediately provided for thermal recycling.
[0127]
(Example 14)
As shown in FIG. 17, an
[0128]
The operation in the above configuration will be described. The remaining crushed material of the waste home appliance after the iron is collected is supplied as a crushed material of about 10 mm to 15 mm by a secondary crusher (not shown) to the floatation-type water
[0129]
The supplied crushed material is crushed to about 5 mm to 10 mm in the crushing
[0130]
As a result, since the mixing ratio of the crushed material of about 5 mm to 10 mm and the sorted water is supplied to the vertical centrifugal water
[0131]
In addition, when crushing with the
[0132]
(Example 15)
As shown in FIG. 18, in the upward direction of the specific
[0133]
Below the raw
[0134]
In addition, the lower discharge part 141a of the
[0135]
Further, a sealed
[0136]
The operation in the above configuration will be described. Resin group and selected water mainly composed of polystyrene resin b that has been subjected to water gravity selection and submerged in water using a float / sink type water specific gravity sorter (not shown) and a vertical centrifugal water specific gravity sorter (not shown). Is separated into a resin group and sorted water by the solid-
[0137]
At this time, the specific gravity liquid passes through the circulation path A of the first specific gravity liquid from the bottom 136a of the
[0138]
Here, in the resin group supplied to the specific
[0139]
The specific gravity liquid separated from the drainage section 139 b of the solid-
[0140]
In addition, the specific gravity liquid separated from the
[0141]
As a result, since the vinyl chloride resin c mixed from the resin group having the styrene resin b separated by the water specific gravity sorting in the previous step as a main constituent can be separated, the resin group having the styrene resin b as the main constituent is It can be provided as a suitable material for a blast furnace reducing material or boiler fuel. The vinyl chloride resin c damages the refractory of the furnace and changes the melt viscosity of iron, so it is used as a fuel material after landfill or dechlorination.
[0142]
(Example 16)
As shown in FIG. 19, the bottom 52a of the
[0143]
Here, the
[0144]
The
[0145]
The operation in the above configuration will be described. When the crushed material of used electrical appliances is sorted by specific gravity, the sorted water becomes contaminated with metal powder, non-ferrous powder, heavy metal powder generated during crushing, and mud, cotton dust, dust, etc. adhering during use. At this time, dirty sorted water (hereinafter referred to as “sewage”) is sent to the
[0146]
Further, sewage from the bottom 53 a of the
[0147]
The treated water in the
[0148]
The
[0149]
The purified water is accumulated in the
[0150]
As a result, it is possible to separate the dirt of the crushed material in the sorted water while performing the water specific gravity sorting of the crushed material of the waste home appliance, and to suppress the dirt of the sorted water. Therefore, it is possible to prevent the plastic sorted by the water specific gravity sorting from being recontaminated by the dirt of the sorted water. In addition, since the specific gravity of the selected water can be used in a closed system until it interferes with the selection of the specific gravity of the water, water resources can be used effectively.
[0151]
In this embodiment, the sedimentation type coagulation separation method is used, but it goes without saying that the same effect can be obtained by a floating type coagulation separation method using pressurized water.
[0152]
(Example 17)
As shown in FIG. 20, the float / sink type water
[0153]
The operation in the above configuration will be described. When the
[0154]
When the
[0155]
As a result, the circulating sorting liquid and sewage are held between PH9 and PH10. Here, heavy metals such as lead brought into the sorting water together with the crushed material are hardly dissolved and exist as undissolved SS (floating particles) in the sorting water, so that most of the heavy metals can be agglomerated and separated. it can. Therefore, since the amount of heavy metals in the sorted water can be reduced, it is possible to prevent heavy metal contamination of the plastic to be separated and recovered.
[0156]
(Example 18)
As shown in FIG. 21, a
[0157]
The operation in the above configuration will be described. Sewage is supplied from the
[0158]
In the heavy
[0159]
As a result, heavy metals dissolved in water that cannot be separated by the coagulation separation method can be separated and removed from the sewage by converting the heavy metals into substances insoluble in water. Therefore, the heavy metal can be completely separated and removed from the sewage more than in Example 17.
[0160]
Example 19
As shown in FIG. 22, the
[0161]
The operation in the above configuration will be described. The first turbidimeter 172 detects the degree of dirt (turbidity) of the sewage supplied to the
[0162]
At this time, the turbidity value a1 of the first turbidimeter 172 and the turbidity value b1 of the
[0163]
When the turbidity value of the first turbidimeter 172 is larger than a1 and the turbidity value of the
[0164]
This is because the amount of the flocculating agent contained in the sewage is reduced by the sewage treatment, and the amount of the flocculant becomes excessive. By supplying bentonite to the flocculating
[0165]
Further, when the turbidity value of the
[0166]
Furthermore, although the salt brought in by the crushed material dissolves in the sorted water and the specific gravity gradually increases, the specific gravity which may cause trouble in sorting the specific gravity of the polypropylene resin a and the styrene resin b is 1. When the hydrometer 176 detects 02, a lamp is displayed on a control device board (not shown) of the waste home appliance recycling processing apparatus to notify that it is time to replace the sorted water. The other operations are the same as those in the above embodiment 17, and the description is omitted.
[0167]
As a result, it is possible to automatically start and stop the addition of the flocculant and bentonite depending on the degree of contamination of the sewage and the progress of the sewage treatment. In addition, it is possible to know the replacement time of the specific gravity sorting water and maintain the sorting accuracy.
[0168]
(Example 20)
As shown in FIG. 23, the
[0169]
The
[0170]
At this time, the liquid discharge part 179a2 of the first solid-liquid separator 179a is circulated to the
[0171]
Further, the upper discharge part 99a1 of the first wind power sorter 97a, the upper discharge part 99a2 of the second wind power sorter 97b, and the upper discharge part 99a3 of the third
[0172]
The operation in the above configuration will be described. Polypropylene resin a obtained by dewatering the crushed material of waste home appliances by water density selection is pneumatically fed into the first wind power sorter 97a through the
[0173]
The polypropylene resin a in the alkali cleaning tank 180 is neutralized by the caustic soda solution while the acid content remaining on the surface of the crushed resin is being stirred by the
[0174]
The polypropylene resin a in the water washing tank 181 is supplied to the
[0175]
At this time, the hydrochloric acid discharged from the
[0176]
Further, the wash water discharged from the
[0177]
【The invention's effect】
As described above, according to the invention described in
[0178]
MaAccording to the invention of
[0179]
According to the invention of
[0180]
According to the invention described in
[0181]
Further, according to the invention described in
[0182]
Further, according to the invention described in
[0183]
According to the seventh aspect of the present invention, the solid-liquid separation means includes a solid-liquid supply means for supplying a mixture of the crushed material and the selected water, and the crushed material and the selected water supplied from the solid-liquid supply means. Solid-liquid separation and conveyance means for conveying the crushed material separated from the separated water and the crushed material conveyed by the solid-liquid separation and conveyance meansBy pneumatic feedingSolid recovery means to recover;SaidSolid-liquid separation transport meansBottom ofProvided inIsCrushed materialAnd a net to separate the sorted waterWhen collecting crushed material containing the selected water selected from the water specific gravity separatorBreakThe crushed material and the sorted water can be separated, and the crushed material with less adherence of the sorted water can be recovered, and the separated sorted water can be circulated to the water specific gravity sorting device via the sorted water circulation means. As a result, an inexpensive solid-liquid separator can continuously collect the crushed material selected from the water specific gravity separator and circulate balance of the selected water in the water specific gravity separator. A resource processing apparatus can be provided.
[0184]
According to the invention described in claim 8, at least the second stage of either the second recovery means or the solid-liquid separation means of the second specific gravity separator, the dewatering means and the dewatered crushed material are recovered. Since the third recovery means is provided, the crushed material recovered from at least the second recovery means or the solid-liquid separation means is dehydrated by the subsequent dewatering means. Thereby, the dehydrated crushed material can be collected. As a result, when a dehydrator is provided at the next stage of the second recovery means, the recovered polypropylene resin can be recovered immediately in a state where repellet processing can be performed. In addition, when a dehydrator is provided in the next stage of the solid-liquid separator, it is possible to collect plastic that can be shipped immediately as a blast furnace reducing material or boiler fuel.
[0185]
According to the ninth aspect of the present invention, the next stage of the dewatering means is provided with the wind conveying means, the wind sorting means, and the third collecting means for collecting the ultralight material separated by the wind sorting means. Therefore, after dewatering the crushed material by the dewatering means, the surface of the crushed material can be air-dried when the crushed material is transported to the wind sorting means by the wind conveying means, and it can be taken in the previous process with an ultralight material such as a condenser film. After separating the foreign matter that could not be removed by the wind power sorting device, the ultra-lightweight material can be recovered by the third recovery means. As a result, it is possible to obtain a polypropylene resin from which the condenser film or the like that clogs the screen of the extruder during re-pellet processing and reduces the productivity is removed.
[0186]
According to the invention described in
[0187]
In addition, according to the invention described in claim 11, there is provided a pressure feeding means / wind power supply means for feeding the crushed material and a wind power of the wind sorting means, the outlet of the pressure feeding means / wind supply means is branched, and one end Is connected to the wind power supply side of the wind sorting means, the other end is vented, and the upper part of the wind sorting means is connected to the air intake port of the pumping means / wind power supply means via a third recovery means, Since the inside of the wind power sorting means is in a negative pressure state, a lower part of the wind power sorting means is configured by configuring a circulation path of pumped air with the pressure feeding means / wind power supply means, the wind power sorting means, and the third recovery means as a loop. The air can be brought into a state of being sucked from the selected material discharge portion that discharges the polypropylene resin by gravity. As a result, it is not necessary to suck the upper part of the wind sorting means that discharges ultralight objects with a dust collector as in the past, and high-performance wind sorting can be performed with an inexpensive device to obtain a polypropylene resin with very little foreign matter contamination. Can do. In addition, since the polypropylene resin collection container can be arranged in a non-contact manner with the wind sorting means, the collection container can be easily replaced..
[Brief description of the drawings]
FIG. 1 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to a first embodiment of the present invention.
[Fig. 2] A longitudinal sectional view of the centrifugal water specific gravity sorter of the waste home appliance recycling system
FIG. 3 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the second embodiment of the present invention.
FIG. 4 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to a third embodiment of the present invention.
FIG. 5 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to a fourth embodiment of the present invention.
FIG. 6 is a partially cutaway side view of the solid-liquid separator of the waste home appliance recycling system.
FIG. 7 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to a fifth embodiment of the present invention.
FIG. 8 is a system configuration diagram of a main part of a waste home appliance recycling processing apparatus according to a sixth embodiment of the present invention.
FIG. 9 is a partially cutaway perspective view of the wind power sorter of the waste home appliance recycling processing apparatus.
FIG. 10 is a system configuration diagram of a main part of a waste home appliance recycling processing apparatus according to a seventh embodiment of the present invention.
FIG. 11 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to an eighth embodiment of the present invention.
FIG. 12 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the ninth embodiment of the present invention.
FIG. 13 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the tenth embodiment of the present invention.
FIG. 14 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the eleventh embodiment of the present invention.
FIG. 15 is a partially cutaway system configuration diagram of a waste home appliance recycling processing apparatus according to a twelfth embodiment of the present invention.
FIG. 16 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the thirteenth embodiment of the present invention.
FIG. 17 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the fourteenth embodiment of the present invention.
FIG. 18 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the fifteenth embodiment of the present invention.
FIG. 19 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the sixteenth embodiment of the present invention.
FIG. 20 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the seventeenth embodiment of the present invention.
FIG. 21 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the eighteenth embodiment of the present invention.
FIG. 22 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the nineteenth embodiment of the present invention.
FIG. 23 is a partially cutaway system configuration diagram of the waste home appliance recycling processing apparatus according to the twentieth embodiment of the present invention.
FIG. 24 is a process flowchart of an example of a conventional waste home appliance recycling processing apparatus.
FIG. 25 is a process flowchart of another example of the conventional waste home appliance recycling processing apparatus.
FIG. 26 is a sectional view of a water specific gravity sorting device of the waste home appliance recycling processing device.
FIG. 27 is a system configuration diagram of a sewage treatment device of the waste home appliance recycling processing device.
[Explanation of symbols]
42 Flotation type water specific gravity sorter (first water specific gravity sorter)
43 1st raw material supply part (1st raw material supply means)
44 Vertical centrifugal water specific gravity sorter (second water specific gravity sorter)
46 1st pump (1st supply means)
51 Second pump (sorted water circulation means)
Claims (11)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000397669A JP4660925B2 (en) | 2000-12-27 | 2000-12-27 | Waste home appliance recycling system |
TW90114990A TWI224983B (en) | 2000-12-27 | 2001-06-20 | Reuse treatment apparatus for waste household electric appliances |
CN01230892U CN2512525Y (en) | 2000-12-27 | 2001-07-26 | Reutilizing and processing device for waste household electric appliance |
CN011247193A CN1216698C (en) | 2000-12-27 | 2001-07-26 | Renewable resources treatment apparatus for waste electric appliances |
KR10-2001-0045941A KR100418234B1 (en) | 2000-12-27 | 2001-07-30 | Material-recycling processing apparatus for waste household electrical appliances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000397669A JP4660925B2 (en) | 2000-12-27 | 2000-12-27 | Waste home appliance recycling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002192138A JP2002192138A (en) | 2002-07-10 |
JP4660925B2 true JP4660925B2 (en) | 2011-03-30 |
Family
ID=18862768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000397669A Expired - Fee Related JP4660925B2 (en) | 2000-12-27 | 2000-12-27 | Waste home appliance recycling system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4660925B2 (en) |
KR (1) | KR100418234B1 (en) |
CN (2) | CN2512525Y (en) |
TW (1) | TWI224983B (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095810A (en) * | 2003-09-26 | 2005-04-14 | Dowa Mining Co Ltd | Method for separating granular mixture |
KR100904303B1 (en) * | 2007-02-12 | 2009-06-29 | 서흥인테크(주) | A wet sorting method for waste plastics using specific gravity difference |
JP4953254B2 (en) * | 2008-08-05 | 2012-06-13 | シャープ株式会社 | Processing methods for LED products |
JP2010120762A (en) * | 2008-11-20 | 2010-06-03 | Kumakura Industry Co Ltd | Pneumatic conveying system |
JP4964256B2 (en) * | 2009-01-19 | 2012-06-27 | 秋田エコプラッシュ株式会社 | Waste plastic recovery method and recovery device |
KR101051989B1 (en) * | 2009-11-10 | 2011-07-26 | 김진수 | Method and apparatus for recovering metal from waste PCB |
KR100948490B1 (en) * | 2009-11-27 | 2010-03-18 | 서흥인테크(주) | The selection method recycling plastic |
CN102198421A (en) * | 2011-03-03 | 2011-09-28 | 株洲长江硬质合金工具有限公司 | Method and device for sorting YG and YT type waste hard alloy |
CN103182345A (en) * | 2011-12-29 | 2013-07-03 | 上海盛致塑胶科技有限公司 | Waste plastic separation system |
CN103213214B (en) * | 2013-01-31 | 2015-07-22 | 冯愚斌 | Cyclone-type waste plastic crushing, sorting, and washing method and system |
KR101579613B1 (en) | 2014-06-12 | 2015-12-22 | 강원대학교 산학협력단 | Stainless steel sorting apparatus for waste electronics goods using magnetic drum |
CN104403125A (en) * | 2014-12-02 | 2015-03-11 | 安徽神剑新材料股份有限公司 | Polyester resin powder raw material recycling device |
CN104403123A (en) * | 2014-12-02 | 2015-03-11 | 安徽神剑新材料股份有限公司 | Device for recycling polyester resin powder raw material |
CN105057084B (en) * | 2015-07-22 | 2017-08-08 | 中钢集团马鞍山矿山研究院有限公司 | Equipment is winnowed in a kind of hollow glass micropearl separation of use aqueous medium sorting |
CN107107073B (en) * | 2015-12-03 | 2018-10-09 | 竹内智治 | Heavy metal piece-rate system |
CN107511945B (en) * | 2016-06-17 | 2023-05-16 | 江西格林循环产业股份有限公司 | Regeneration treatment method and device for electronic waste plastic |
KR101947272B1 (en) | 2017-07-12 | 2019-05-08 | 주식회사 수도권자원순환센터 | Recycling processing system for wastehousehold electrical appliances |
CN107351279A (en) * | 2017-08-14 | 2017-11-17 | 贵州亿博科技有限公司 | For the plastic cleaning device in thermoplastic membrane production equipment |
CN107469980B (en) * | 2017-09-30 | 2019-10-01 | 安徽荣国环保智能科技有限公司 | A kind of waste aluminium alloy crushing washing recyclable device |
CN107837875A (en) * | 2017-12-21 | 2018-03-27 | 广东德新科技孵化器有限公司 | A kind of high performance plastic disintegrator |
CN108046398B (en) * | 2018-01-16 | 2024-02-27 | 青海洁神环境科技股份有限公司 | Sedimentation separation pulping equipment and sedimentation separation pulping system |
JP6938414B2 (en) * | 2018-03-28 | 2021-09-22 | Jx金属株式会社 | How to dispose of parts waste |
CN108786966A (en) * | 2018-06-26 | 2018-11-13 | 重庆米之吉粮食有限公司 | The thresher of Screening Treatment function is handled with paddy |
CN109127111B (en) * | 2018-08-24 | 2020-10-16 | 极简(嘉兴)园林景观设计有限责任公司 | Medicinal aluminum foil waste recovery device |
CN109454095A (en) * | 2018-12-27 | 2019-03-12 | 江苏泓润生物质能科技有限公司 | It is a kind of for source pretreatment after kitchen castoff feed bin |
AT522427B1 (en) * | 2019-04-11 | 2022-07-15 | Erema Eng Recycling Maschinen & Anlagen Gmbh | air granulation |
CN110124848B (en) * | 2019-05-17 | 2021-06-18 | 尹亚龙 | Plastic proportion machine |
CN111330730A (en) * | 2020-03-12 | 2020-06-26 | 金光勇 | Cleaning and pre-sorting treatment device and method for mixed crushed materials |
KR102259527B1 (en) * | 2020-12-31 | 2021-06-02 | 주식회사 한림에스아이엠 | Foreign matter removal apparatus for power transmission system |
CN113209709B (en) * | 2021-03-31 | 2022-08-09 | 青岛康景辉环境科技集团有限公司 | Circulating silt-sinking prevention method for evaporative crystallization mother liquid tank |
KR102369787B1 (en) | 2021-04-15 | 2022-03-03 | (주)영일자원 | crushing devices of disused household electrical appliance |
CN113648676B (en) * | 2021-09-23 | 2022-07-15 | 连云港诺信食品配料有限公司 | Evaporation plant is used in calcium propionate production |
KR102715130B1 (en) * | 2021-10-28 | 2024-10-11 | 주식회사 에스에이치솔루션 | Method and apparatus for providing small home appliance recycling service |
JP7058436B1 (en) | 2021-11-26 | 2022-04-22 | 株式会社ダイトク | Separate collection system and separate collection method for mixed crushed pieces |
CN114918123A (en) * | 2022-06-08 | 2022-08-19 | 刘盼 | Raw material screening device and method for new material manufacturing |
CN115230020B (en) * | 2022-07-19 | 2023-10-03 | 浙江天能电源材料有限公司 | Intelligent sorting system and method for heavy plastic of waste storage battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000246735A (en) * | 1999-03-03 | 2000-09-12 | Hitachi Ltd | Method and apparatus for separating waste plastics |
JP2002011376A (en) * | 2000-06-30 | 2002-01-15 | Matsushita Electric Ind Co Ltd | Crushed scrap sorting device |
-
2000
- 2000-12-27 JP JP2000397669A patent/JP4660925B2/en not_active Expired - Fee Related
-
2001
- 2001-06-20 TW TW90114990A patent/TWI224983B/en not_active IP Right Cessation
- 2001-07-26 CN CN01230892U patent/CN2512525Y/en not_active Expired - Fee Related
- 2001-07-26 CN CN011247193A patent/CN1216698C/en not_active Expired - Fee Related
- 2001-07-30 KR KR10-2001-0045941A patent/KR100418234B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000246735A (en) * | 1999-03-03 | 2000-09-12 | Hitachi Ltd | Method and apparatus for separating waste plastics |
JP2002011376A (en) * | 2000-06-30 | 2002-01-15 | Matsushita Electric Ind Co Ltd | Crushed scrap sorting device |
Also Published As
Publication number | Publication date |
---|---|
TWI224983B (en) | 2004-12-11 |
CN1360978A (en) | 2002-07-31 |
KR100418234B1 (en) | 2004-02-11 |
KR20020053697A (en) | 2002-07-05 |
CN1216698C (en) | 2005-08-31 |
JP2002192138A (en) | 2002-07-10 |
CN2512525Y (en) | 2002-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660925B2 (en) | Waste home appliance recycling system | |
US4830188A (en) | Plastics separation and recycling methods | |
KR101684633B1 (en) | Sorting device and scrap battery recycling system | |
JP2001096261A (en) | Method of recycling waste electric appliance resource | |
EP1711323B1 (en) | A hydrogravity system and process for reclaiming a solid, multiple domain feedstock | |
JP3969048B2 (en) | Recycling method for waste home appliances | |
CN101306560A (en) | High-cleanliness cleaning and treating system for PET recovered bottle pieces | |
CN1903542A (en) | Method and equipment for recycling plastic material | |
CN106180156A (en) | One specific admixture aluminium paper moulds the value-added technique of sub-prime of waste material | |
GB2078138A (en) | "Sink-float" separation of plastics from waste material | |
JP4453190B2 (en) | Wastewater treatment equipment for waste home appliance recycling treatment equipment | |
CN110065177A (en) | electrostatic sorting system | |
JPH1133361A (en) | Process for treating liquid containing fine particle and equipment thereof | |
CN2589466Y (en) | Coal water purification and coal mud reclaiming machine | |
KR20240108735A (en) | Waste home appliances recycling processing equipment | |
CN110039680A (en) | Plastic waste processing system | |
JP6985672B1 (en) | Recycled material manufacturing equipment, waste specific gravity sorting processing equipment | |
US20220001391A1 (en) | System and method for recovering desired materials using a ball mill or rod mill | |
JP4461596B2 (en) | Specific gravity sorter | |
CN113334633A (en) | Cleaning and flotation separation process and equipment for mixed materials | |
KR100956626B1 (en) | Crash facility for recycling construction waste and dredged soil, essence sludge, waste sand | |
JP2010234216A (en) | Powdery particle material treatment system, and powdery particle material treatment method | |
CN209999533U (en) | plastic waste material treatment water circulation system | |
CN207525118U (en) | A kind of processing system of black and odorous water bed mud | |
JP2010234217A (en) | Powdery particle material treatment system, and powdery particle material treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070806 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070912 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |