Nothing Special   »   [go: up one dir, main page]

JP4650219B2 - Intake control device for internal combustion engine - Google Patents

Intake control device for internal combustion engine Download PDF

Info

Publication number
JP4650219B2
JP4650219B2 JP2005322982A JP2005322982A JP4650219B2 JP 4650219 B2 JP4650219 B2 JP 4650219B2 JP 2005322982 A JP2005322982 A JP 2005322982A JP 2005322982 A JP2005322982 A JP 2005322982A JP 4650219 B2 JP4650219 B2 JP 4650219B2
Authority
JP
Japan
Prior art keywords
variable valve
valve mechanism
intake
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005322982A
Other languages
Japanese (ja)
Other versions
JP2007132187A (en
Inventor
南  雄太郎
岩野  浩
大羽  拓
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005322982A priority Critical patent/JP4650219B2/en
Publication of JP2007132187A publication Critical patent/JP2007132187A/en
Application granted granted Critical
Publication of JP4650219B2 publication Critical patent/JP4650219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、内燃機関のシリンダ内に吸入される吸入空気量を制御する吸気制御装置に関し、特に、吸気弁のバルブリフト特性の可変制御によって吸入空気量の制御を達成するようにした内燃機関の吸気制御装置に関する。   The present invention relates to an intake air control device that controls an intake air amount sucked into a cylinder of an internal combustion engine, and more particularly to an internal combustion engine that achieves control of an intake air amount by variable control of valve lift characteristics of an intake valve. The present invention relates to an intake control device.

ガソリン機関においては、一般に吸気通路中に設けたスロットル弁の開度制御によって吸気量を制御しているが、良く知られているように、この種の方式では、特にスロットル弁開度の小さな中低負荷時におけるポンピングロスが大きい、という問題がある。これに対し、吸気弁の開閉時期やリフト量を変化させることで、スロットル弁に依存せずに吸気量を制御しようとする試みが以前からなされており、この技術を利用して、ディーゼル機関と同様に吸気系にスロットル弁を具備しないいわゆるスロットルレスの構成を実現することが提案されている。   In a gasoline engine, the intake air amount is generally controlled by controlling the opening of a throttle valve provided in the intake passage. As is well known, this type of system has a particularly small throttle valve opening. There is a problem that the pumping loss is large at low load. On the other hand, attempts have been made to control the intake air amount without depending on the throttle valve by changing the opening / closing timing of the intake valve and the lift amount. Similarly, it has been proposed to realize a so-called throttle-less configuration in which the intake system is not equipped with a throttle valve.

特許文献1には、本出願人が先に提案した吸気弁のリフト量および作動角さらにはそのリフトの中心角を連続的に可変制御し得る可変動弁機構が開示されている。この種の可変動弁機構によれば、上述のように、スロットル弁の開度制御に依存せずにシリンダ内に流入する空気量を可変制御することが可能であり、特に負荷の小さな領域において、いわゆるスロットルレス運転ないしはスロットル弁の開度を十分に大きく保った運転を実現でき、ポンピングロスの大幅な低減が図れる。
特開2001−263105号公報
Patent Document 1 discloses a variable valve mechanism that can be continuously variably controlled by a lift amount and an operating angle of an intake valve and a central angle of the lift previously proposed by the present applicant. According to this type of variable valve mechanism, as described above, it is possible to variably control the amount of air flowing into the cylinder without depending on the opening degree control of the throttle valve, particularly in a region where the load is small. In other words, so-called throttleless operation or operation with a sufficiently large opening of the throttle valve can be realized, and the pumping loss can be greatly reduced.
JP 2001-263105 A

しかしながら、上記のように吸気弁のリフト特性の可変制御でもって吸入空気量を制御する場合、吸入空気量が少ないアイドル時には必要な吸気弁開口面積が非常に小さくなるため、僅かなリフト特性のばらつきが吸入空気量に大きく影響し、特に、多気筒内燃機関においては、気筒間のリフト特性のばらつきによって各気筒の発生トルクのばらつきや回転変動が生じる、という問題がある。   However, when the intake air amount is controlled by the variable control of the lift characteristic of the intake valve as described above, the required intake valve opening area becomes very small at idling when the intake air amount is small, so that there is a slight variation in the lift characteristic. This greatly affects the amount of intake air. In particular, in a multi-cylinder internal combustion engine, there is a problem in that variation in torque generated in each cylinder and rotational variation occur due to variation in lift characteristics between cylinders.

この発明は、一つの態様では、複数気筒に共通のアクチュエータを有し、内燃機関の複数気筒の吸気弁のリフト特性を同時にかつ連続的に変化させる機械的な構成の可変動弁機構を備え、この可変動弁機構の制御位置を可変制御することにより内燃機関の出力する負荷を制御する内燃機関の吸気制御装置において、上記アクチュエータに与えられる上記可変動弁機構の目標位置をサイクル中の一部区間で補正することで複数気筒の中の特定気筒の吸気弁のリフト特性を相対的に変更する特定気筒リフト特性変更手段を有し、この特定気筒リフト特性変更手段は、特定気筒に対する吸入空気量要求補正量と現在の可変動弁機構の制御位置とに応じて、上記目標位置を補正する上記一部区間の開始時期が可変的に設定される。さらに、上記一部区間における上記目標位置の補正量が、特定気筒に対する吸入空気量要求補正量と現在の可変動弁機構の制御位置とに応じて可変的に設定されるようにしてもよい。 In one aspect, the present invention includes a variable valve mechanism having a mechanical configuration that has an actuator common to a plurality of cylinders, and that simultaneously and continuously changes the lift characteristics of the intake valves of the plurality of cylinders of the internal combustion engine, In an intake control device for an internal combustion engine that controls a load output from the internal combustion engine by variably controlling the control position of the variable valve mechanism, the target position of the variable valve mechanism that is given to the actuator is determined in a part of the cycle. Specific cylinder lift characteristic changing means for relatively changing the lift characteristics of the intake valves of the specific cylinders in the plurality of cylinders by correcting in the section, and the specific cylinder lift characteristic changing means includes the intake air amount for the specific cylinder The start timing of the partial section for correcting the target position is variably set according to the required correction amount and the current control position of the variable valve mechanism. Further, the correction amount of the target position in the partial section may be variably set according to the intake air amount request correction amount for the specific cylinder and the current control position of the variable valve mechanism.

このように特定気筒のリフト特性を変更することで、吸入空気量を変更したい気筒のみ吸入空気量を変更でき、気筒間の吸入空気量のばらつきを抑えることができる。   In this way, by changing the lift characteristics of the specific cylinder, the intake air amount can be changed only for the cylinder for which the intake air amount is desired to be changed, and variations in the intake air amount among the cylinders can be suppressed.

また他の一つの態様では、現在の可変動弁機構位置が、上記反力が大となる位置であるほど、可変動弁機構目標位置の補正タイミングを早くするとともに、その補正量を大きくする。 In another mode , the correction timing of the variable valve mechanism target position is advanced and the correction amount is increased as the current variable valve mechanism position is a position where the reaction force becomes larger.

すなわち、上記可変動弁機構は、例えばリフト量が大となるほどアクチュエータに作用する反力が大となり、その応答性が低下するが、上記構成では、反力の大小による可変動弁機構の応答性違いを考慮に入れた補正ができ、確実に吸入空気量要求補正量を実現できる。   That is, in the variable valve mechanism, for example, as the lift amount increases, the reaction force acting on the actuator increases and the response decreases. However, in the above configuration, the response of the variable valve mechanism due to the magnitude of the reaction force decreases. Corrections taking into account the differences can be made, and the required intake air amount correction amount can be realized with certainty.

さらに他の一つの態様では、上記特定気筒リフト特性変更手段は、所定の条件を満たすように、吸入空気量要求補正量に対する可変動弁機構目標位置の補正パターンを設定することを特徴とする。 In still another aspect , the specific cylinder lift characteristic changing unit sets a correction pattern of a variable valve mechanism target position with respect to a required intake air amount correction amount so as to satisfy a predetermined condition.

例えば、特定気筒の吸気弁開時期が所定の制限値よりも遅角側であることを上記の条件とする。 For example , the above condition is that the intake valve opening timing of a specific cylinder is retarded from a predetermined limit value.

このように吸気弁開時期が所定の制限値よりも常に遅角側になるように可変動弁機構目標位置の補正パターンを設定することにより、燃焼安定性が悪化することを防止できる。   Thus, by setting the correction pattern of the variable valve mechanism target position so that the intake valve opening timing is always retarded from the predetermined limit value, deterioration of combustion stability can be prevented.

上記制限値は、例えば、特定気筒の排気弁閉時期により定まる。つまり、バルブオーバラップが燃焼安定性を確保できる範囲になるように可変動弁機構目標位置の補正パターンを設定するので、燃焼安定性が悪化することを防止できる。 The limit value, For example, determined by the exhaust valve closing timing of the specific cylinder. That is, the correction pattern of the variable valve mechanism target position is set so that the valve overlap is within a range in which the combustion stability can be ensured, so that deterioration of the combustion stability can be prevented.

この発明によれば、例えば可変動弁機構の制御位置をサイクル毎に補正することで、複数気筒の中の特定気筒の吸気弁のリフト特性を相対的に変更するので、各気筒の吸入空気量のばらつきを抑制でき、アイドル時の回転変動や空燃比の気筒間ばらつきなどを抑制できる。   According to the present invention, for example, by correcting the control position of the variable valve mechanism for each cycle, the lift characteristics of the intake valves of the specific cylinders among the plurality of cylinders are relatively changed. Variation, and fluctuations in rotation during idling, variations in air-fuel ratio among cylinders, and the like can be suppressed.

図1は、この発明に係る内燃機関の吸気制御装置のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3の動弁機構として、吸気弁3のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5および作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構(VTC)6を備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される絞り弁2が設けられている。ここで、上記絞り弁2は、吸気通路7内に、ブローバイガスの処理などのために必要な僅かな負圧(例えば−50mmHg)を発生させるために用いられており、吸入空気量の調整は、上記第1、第2可変動弁機構5、6により吸気弁3のリフト特性を変更することで行われる。より詳しくは、所定の低負荷側の領域(第1の領域)では、吸入負圧が一定(例えば−50mmHg)となるように絞り弁2の開度が制御される。そして、この一定の負圧を発生させながらリフト特性の変更で実現できる最大負荷を要求負荷が超える高負荷側の領域(第2の領域)では、その限界となる点のリフト特性に固定され、負荷、例えばアクセル開度APOの増加に伴い、絞り弁2の開度がさらに増加する。つまり、ある負荷までは比較的弱い吸入負圧を維持しつつ吸気弁3のリフト特性を変更することで吸入空気量の調整が行われ、全開領域に近い高負荷側の領域では、吸入負圧を減少させることによって、吸入空気量の調整が行われる。   FIG. 1 is a configuration explanatory view showing the system configuration of an intake control device for an internal combustion engine according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and the valve of the intake valve 3 is operated. As a mechanism, the first variable valve mechanism (VEL) 5 capable of continuously expanding / reducing the lift / operation angle of the intake valve 3 and the center angle of the operation angle can be continuously delayed. A second variable valve mechanism (VTC) 6 is provided. The intake passage 7 is provided with a throttle valve 2 whose opening degree is controlled by an actuator such as a motor. Here, the throttle valve 2 is used to generate a slight negative pressure (for example, −50 mmHg) necessary for the treatment of blow-by gas in the intake passage 7, and adjustment of the intake air amount is performed. The lift characteristics of the intake valve 3 are changed by the first and second variable valve mechanisms 5 and 6. More specifically, the opening degree of the throttle valve 2 is controlled so that the suction negative pressure is constant (for example, −50 mmHg) in a predetermined low load side region (first region). And in the high load side region (second region) where the required load exceeds the maximum load that can be realized by changing the lift characteristic while generating this constant negative pressure, it is fixed to the lift characteristic at the point that becomes the limit, As the load, for example, the accelerator opening APO increases, the opening of the throttle valve 2 further increases. That is, the intake air amount is adjusted by changing the lift characteristic of the intake valve 3 while maintaining a relatively weak intake negative pressure up to a certain load, and in the high load side region close to the fully open region, the intake negative pressure is adjusted. The amount of intake air is adjusted by reducing.

これらの第1、第2可変動弁機構5、6および絞り弁2は、コントロールユニット10によって制御されている。   The first and second variable valve mechanisms 5 and 6 and the throttle valve 2 are controlled by the control unit 10.

また、燃料噴射弁8が吸気通路7に配置されており、上記のように吸気弁3もしくは絞り弁2により調整された吸入空気量に応じた量の燃料が、この燃料噴射弁8から噴射される。従って、内燃機関1の出力は、第1の領域では、第1、第2可変動弁機構5、6により吸入空気量を調整することによって制御され、第2の領域では、絞り弁2により吸入空気量を調整することによって制御される。   Further, a fuel injection valve 8 is disposed in the intake passage 7, and an amount of fuel corresponding to the intake air amount adjusted by the intake valve 3 or the throttle valve 2 as described above is injected from the fuel injection valve 8. The Therefore, the output of the internal combustion engine 1 is controlled by adjusting the amount of intake air by the first and second variable valve mechanisms 5 and 6 in the first region, and is sucked by the throttle valve 2 in the second region. It is controlled by adjusting the amount of air.

上記のコントロールユニット10は、運転者により操作されるアクセルペダルに設けられたアクセル角度センサ11からのアクセル開度信号APOと、エンジン回転数センサ12からのエンジン回転数信号Neと、吸入空気量センサ13からの吸入空気量信号と、を受け取り、これらの信号に基づいて、燃料噴射量、点火時期、第1可変動弁機構目標角度、第2可変動弁機構目標角度をそれぞれ演算する。そして、要求の燃料噴射量および点火時期を実現するように燃料噴射弁8および点火プラグ9を制御するとともに、第1可変動弁機構目標角度、第2可変動弁機構目標角度を実現するための制御信号を、第1可変動弁機構5のアクチュエータおよび第2可変動弁機構6のアクチュエータへそれぞれ出力する。   The control unit 10 includes an accelerator opening signal APO from an accelerator angle sensor 11 provided on an accelerator pedal operated by a driver, an engine speed signal Ne from an engine speed sensor 12, and an intake air amount sensor. The intake air amount signal from 13 is received, and based on these signals, the fuel injection amount, the ignition timing, the first variable valve mechanism target angle, and the second variable valve mechanism target angle are calculated. Then, the fuel injection valve 8 and the spark plug 9 are controlled so as to realize the required fuel injection amount and ignition timing, and the first variable valve mechanism target angle and the second variable valve mechanism target angle are realized. Control signals are output to the actuator of the first variable valve mechanism 5 and the actuator of the second variable valve mechanism 6, respectively.

ここで、上記第1可変動弁機構5および第2可変動弁機構6は、その機械的な構成は公知であり、例えば上述した特許文献1に記載の装置と同様の構成を有している。従って、その詳細な説明は省略するが、上記第1可変動弁機構5は、複数気筒に共通の制御軸の回動位置を電動モータからなるアクチュエータによって変化させることで、複数気筒の吸気弁3のリフト・作動角が一斉に変化するようにしたカム機構を利用した構成であり、吸気弁3はバルブスプリング反力に抗して押し開かれるので、リフト・作動角が大となるほどアクチュエータに作用する反力が大となる特性を有している。   Here, the mechanical configuration of the first variable valve mechanism 5 and the second variable valve mechanism 6 is well known, and for example, has the same configuration as the device described in Patent Document 1 described above. . Therefore, although the detailed description thereof is omitted, the first variable valve mechanism 5 is configured to change the rotation position of the control shaft common to the plurality of cylinders by an actuator made of an electric motor, whereby the intake valves 3 of the plurality of cylinders. Since the intake valve 3 is pushed open against the valve spring reaction force, the higher the lift / operating angle, the more the actuator acts on the actuator. The reaction force is large.

なお、本実施例では、リフト・作動角を変化させる第1可変動弁機構と中心角を変化させる第2可変動弁機構とを備えているが、本発明は、可変動弁機構が1つの場合でも同様に適用でき、また種々の形式の可変動弁機構を利用することができる。   In the present embodiment, the first variable valve mechanism for changing the lift / operating angle and the second variable valve mechanism for changing the central angle are provided. However, the present invention has one variable valve mechanism. Even in this case, the present invention can be similarly applied, and various types of variable valve mechanisms can be used.

図2は、本発明の制御の内容、特に、アイドル時における第1可変動弁機構5の目標値を算出する処理を概略的に示したフローチャートである。この実施例は、複数気筒の吸気弁3のリフト・作動角を同時に可変制御している第1可変動弁機構5(つまり1つのアクチュエータ)のアイドル時の目標位置つまりアイドル時基本目標位置に、回転同期の補正パルスを追加することにより、特定気筒のリフト・作動角を他の気筒に対して変化させ、全気筒の吸入空気量を揃えるようにしたものである。   FIG. 2 is a flowchart schematically showing the contents of the control of the present invention, in particular, the process of calculating the target value of the first variable valve mechanism 5 during idling. In this embodiment, the first variable valve mechanism 5 (that is, one actuator) that variably controls the lift and operating angle of the intake valves 3 of a plurality of cylinders at the same time is set at the idle target position, that is, the idle basic target position. By adding a rotation-synchronized correction pulse, the lift / operating angle of a specific cylinder is changed with respect to other cylinders so that the intake air amounts of all the cylinders are made uniform.

まず、目標アイドルエンジン回転数等から第1可変動弁機構アイドル時基本目標位置を算出する(ステップ01)。そして、例えば気筒間のエンジン回転数ばらつきを検出し、これから、各気筒の吸入空気量偏差を算出する(ステップ02)。次に、例えば排気弁閉時期との関係から燃焼安定性限界となる吸気弁開時期制限値を算出し(ステップ03)、補正後の吸気弁開時期がこの吸気弁開時期制限値より進角側にならないように、各気筒の第1可変動弁機構補正パルスを算出する(ステップ04)。このステップ04で算出した補正パルスを各々の気筒に対応したタイミングで第1可変動弁機構アイドル時基本目標位置に追加することにより、最終的な第1可変動弁機構目標位置を算出する(ステップ05)。   First, the basic target position at the time of idling of the first variable valve mechanism is calculated from the target idle engine speed or the like (step 01). Then, for example, the engine speed variation between the cylinders is detected, and from this, the intake air amount deviation of each cylinder is calculated (step 02). Next, for example, an intake valve opening timing limit value that becomes a combustion stability limit is calculated from the relationship with the exhaust valve closing timing (step 03), and the corrected intake valve opening timing is advanced from this intake valve opening timing limit value. The first variable valve mechanism correction pulse for each cylinder is calculated so as not to be on the side (step 04). The final first variable valve mechanism target position is calculated by adding the correction pulse calculated in step 04 to the first variable valve mechanism idle basic target position at a timing corresponding to each cylinder (step 05).

図3は、この実施例の制御の内容を機能ブロック図として示したものである。なお、対象とする内燃機関は直列4気筒機関であって、1つの第1可変動弁機構5(つまり1つのアクチュエータ)ですべての気筒の吸気弁3のリフト・作動角を可変制御している。また、以下の説明において、「♯n」は気筒番号を意味し、n=1〜4である。   FIG. 3 shows the contents of the control of this embodiment as a functional block diagram. The target internal combustion engine is an in-line four-cylinder engine, and the lift and operating angles of the intake valves 3 of all the cylinders are variably controlled by one first variable valve mechanism 5 (that is, one actuator). . In the following description, “#n” means a cylinder number, and n = 1 to 4.

図3において、tNEは目標アイドルエンジン回転数、tQは目標吸入空気量、NEは実際のエンジン回転数、であり、これらに基づいて、第1可変動弁機構アイドル時基本目標位置演算部101において、全気筒に共通な第1可変動弁機構アイドル時基本目標位置tVEL0が算出される。そして、目標アイドルエンジン回転数tNEと各気筒毎のエンジン回転数NEとに基づいて、各気筒吸入空気量偏差演算部102において各気筒の吸入空気量偏差ΔQ♯nがそれぞれ算出される。なお、各気筒の膨張行程における微小区間でのエンジン回転数に着目することで、各気筒毎にエンジン回転数NEを求めることができる。   In FIG. 3, tNE is the target idle engine speed, tQ is the target intake air amount, and NE is the actual engine speed. Based on these, in the first variable valve mechanism idle basic target position calculation unit 101 The first variable valve mechanism common idling basic target position tVEL0 common to all cylinders is calculated. Then, based on the target idle engine speed tNE and the engine speed NE for each cylinder, the intake air amount deviation ΔQ # n of each cylinder is calculated in each cylinder intake air amount deviation calculation unit 102. Note that the engine speed NE can be obtained for each cylinder by paying attention to the engine speed in a minute section in the expansion stroke of each cylinder.

また、目標吸入空気量tQとエンジン回転数NEと排気弁閉時期EVCとに基づいて、吸気弁開時期制限値演算部103において吸気弁開時期制限値IVOLIMITを算出する。この実施例では、吸気弁開時期制限値IVOLIMITは、全気筒で共通である。そして、第1可変動弁機構アイドル時基本目標位置tVEL0と吸気弁開時期制限値IVOLIMITと各気筒の圧縮TDC信号TDCCOMP♯nと気筒毎の吸入空気量偏差ΔQ♯nとに基づいて、各気筒毎の第1可変動弁機構補正パルス♯n演算部111〜114において、各気筒の第1可変動弁機構補正パルスPULSE♯nをそれぞれ算出する。これら各気筒の第1可変動弁機構補正パルスPULSE♯n(n=1〜4)を加算点104において足し合わせてなる第1可変動弁機構補正パルスPULSEを、加算点105において、第1可変動弁機構アイドル時基本目標位置tVEL0に加えることにより、第1可変動弁機構目標位置tVELが算出される。第1可変動弁機構5のアクチュエータは、この第1可変動弁機構目標位置tVELへ向かって制御され、これにより、1つのアクチュエータでもって、各気筒個別に吸気弁3のリフト特性が変更される。   Further, based on the target intake air amount tQ, the engine speed NE, and the exhaust valve closing timing EVC, the intake valve opening timing limit value calculation unit 103 calculates an intake valve opening timing limit value IVOLIMIT. In this embodiment, the intake valve opening timing limit value IVOLIMIT is common to all cylinders. Based on the first variable valve mechanism idling basic target position tVEL0, the intake valve opening timing limit value IVOLIMIT, the compression TDC signal TDCCOMP # n of each cylinder, and the intake air amount deviation ΔQ # n for each cylinder, In each first variable valve mechanism correction pulse #n calculation unit 111 to 114, the first variable valve mechanism correction pulse PULSE # n of each cylinder is calculated. A first variable valve mechanism correction pulse PULSE, which is obtained by adding the first variable valve mechanism correction pulses PULSE # n (n = 1 to 4) of these cylinders at the addition point 104, is added at the addition point 105. The first variable valve mechanism target position tVEL is calculated by adding to the variable valve mechanism idle basic target position tVEL0. The actuator of the first variable valve mechanism 5 is controlled toward the first variable valve mechanism target position tVEL, whereby the lift characteristic of the intake valve 3 is changed for each cylinder individually with one actuator. .

図4は、図3で示す機能ブロック図におけるある気筒(♯n気筒)の第1可変動弁機構補正パルス♯n演算部111〜114の詳細を示したものである。図示するように、♯n気筒の吸入空気量偏差ΔQ♯nに符号201で示すタイミングゲインGAIN_Tをかけてタイミング補正量HOS_Tnを算出し、これを符号202で示すように順次その前回値に加え、かつ符号203のように絶対値としたものを、補正パルスタイミング初期値演算部204が出力する補正パルスタイミング初期値T0_PULSEから減じて、基本補正パルスタイミングT_PULSE0nを算出する。   FIG. 4 shows details of the first variable valve mechanism correction pulse #n computing units 111 to 114 of a cylinder (#n cylinder) in the functional block diagram shown in FIG. As shown in the figure, the timing correction amount HOS_Tn is calculated by multiplying the intake air amount deviation ΔQ # n of the #n cylinder by the timing gain GAIN_T indicated by reference numeral 201, and this is sequentially added to the previous value as indicated by reference numeral 202. Further, the basic correction pulse timing T_PULSE0n is calculated by subtracting the absolute value as indicated by reference numeral 203 from the correction pulse timing initial value T0_PULSE output from the correction pulse timing initial value calculation unit 204.

また、♯n気筒の吸入空気量偏差ΔQ♯nに、高さゲイン演算部205が出力する高さゲインGAIN_Hをかけて高さ補正量HOS_Hnを算出し、これを符号206で示すように順次その前回値に加えて補正パルス高さH_PULSEnを算出する。同様に、♯n気筒の吸入空気量偏差ΔQ♯nに、幅ゲイン演算部207が出力する幅ゲインGAIN_Wをかけて幅補正量HOS_Wnを算出し、これを符号208で示すように順次その前回値に加え、かつ符号209のように絶対値として補正パルス幅W_PULSEnを算出する。   Also, the height correction amount HOS_Hn is calculated by multiplying the intake air amount deviation ΔQ # n of the #n cylinder by the height gain GAIN_H output from the height gain calculation unit 205, and this is sequentially changed as indicated by reference numeral 206. In addition to the previous value, the correction pulse height H_PULSEn is calculated. Similarly, the width correction amount HOS_Wn is calculated by multiplying the intake air amount deviation ΔQ # n of the #n cylinder by the width gain GAIN_W output from the width gain calculation unit 207, and this is sequentially changed to its previous value as indicated by reference numeral 208. In addition, the correction pulse width W_PULSEn is calculated as an absolute value as indicated by reference numeral 209.

以上のように算出した基本補正パルスタイミングT_PULSE0nと補正パルス高さH_PULSEnと補正パルス幅W_PULSEnとに基づいて、吸気弁開時期推定部210において吸気弁開時期IVO♯nを推定する。そして、これを比較部211で吸気弁開時期制限値IVOLIMITと比較して、IVO♯n≧IVOLIMIT(吸気弁開時期が吸気弁開時期制限値よりも遅角側)であれば、選択部212において、基本補正パルスタイミングT_PULSE0nを補正パルスタイミングT_PULSEnとし、そうでなければ、補正パルスタイミング前回値を補正パルスタイミングT_PULSEnとする(つまり、補正パルスタイミングを早めない)。   Based on the basic correction pulse timing T_PULSE0n, the correction pulse height H_PULSEn, and the correction pulse width W_PULSEn calculated as described above, the intake valve opening timing estimation unit 210 estimates the intake valve opening timing IVO # n. Then, this is compared with the intake valve opening timing limit value IVOLIMIT by the comparison unit 211. If IVO # n ≧ IVOLIMIT (the intake valve opening timing is retarded from the intake valve opening timing limit value), the selection unit 212 is selected. The basic correction pulse timing T_PULSE0n is set as the correction pulse timing T_PULSEn. Otherwise, the previous correction pulse timing value is set as the correction pulse timing T_PULSEn (that is, the correction pulse timing is not advanced).

次に、圧縮上死点信号TDCCOMP♯nと補正パルスタイミングT_PULSEnと補正パルス高さH_PULSEnと補正パルス幅W_PULSEnとに基づいて、補正パルス♯n波形生成部213において、♯n気筒の補正パルスPULSE♯nを算出する。   Next, on the basis of the compression top dead center signal TDCCOMP # n, the correction pulse timing T_PULSEn, the correction pulse height H_PULSEn, and the correction pulse width W_PULSEn, the correction pulse #n waveform generation unit 213 corrects the #n cylinder correction pulse PULSE #. n is calculated.

ここで、上記の補正パルスタイミング初期値T0_PULSE、高さゲインGAIN_H、および幅ゲインGAIN_Wは、それぞれ前述した第1可変動弁機構アイドル時基本目標位置tVEL0に基づいて、テーブル検索により算出される。すなわち、補正パルスタイミング初期値T0_PULSEは、補正パルスタイミング初期値演算部204において、図5(a)に示す補正パルスタイミング初期値算出テーブルを用いて算出され、高さゲインGAIN_Hは、高さゲイン演算部205において、図5(b)に示す高さゲイン算出テーブルを用いて算出され、幅ゲインGAIN_Wは、幅ゲイン演算部207において、図5(c)に示す幅ゲイン算出テーブルを用いて算出される。なお、本実施例では、これらを第1可変動弁機構アイドル時基本目標位置tVEL0のみから算出しているが、タイミングゲインGAIN_Tも含め、エンジン回転数によっても変更する構成としても良い。   Here, the correction pulse timing initial value T0_PULSE, the height gain GAIN_H, and the width gain GAIN_W are each calculated by table search based on the first variable valve mechanism idle basic target position tVEL0 described above. That is, the correction pulse timing initial value T0_PULSE is calculated by the correction pulse timing initial value calculation unit 204 using the correction pulse timing initial value calculation table shown in FIG. 5A, and the height gain GAIN_H is calculated by the height gain calculation. 5 is calculated using the height gain calculation table shown in FIG. 5B, and the width gain GAIN_W is calculated using the width gain calculation table shown in FIG. The In the present embodiment, these are calculated only from the first variable valve mechanism idle basic target position tVEL0. However, it may be changed depending on the engine speed, including the timing gain GAIN_T.

図6は、図4に示したブロック図における補正パルス♯n波形生成部213の詳細を示したタイムチャートであり、(a)圧縮上死点信号、(b)補正パルス、の変化を示している。(a)の符号A1で示す♯n気筒の圧縮上死点信号TDCCOMP♯nを基準にして、(b)の符号B4で示す♯n気筒の補正パルスが出力されるが、この補正パルスB4は、(b)の符号B1、B2、B3で示す大きさが、それぞれ図4で算出した補正パルスタイミングT_PULSEn、補正パルス高さH_PULSEn、補正パルス幅W_PULSEnとなるように出力される。ここで、(b)の符号B0で示す大きさは、補正パルスタイミング初期値T0_PULSEである。   FIG. 6 is a time chart showing details of the correction pulse #n waveform generation unit 213 in the block diagram shown in FIG. 4, and shows changes in (a) compression top dead center signal and (b) correction pulse. Yes. With reference to the compression top dead center signal TDCCOMP # n of the #n cylinder indicated by reference numeral A1 in (a), the correction pulse for the #n cylinder indicated by reference numeral B4 in (b) is output. , (B) are output so that the magnitudes indicated by the symbols B1, B2, and B3 are the correction pulse timing T_PULSen, the correction pulse height H_PULSEn, and the correction pulse width W_PULSen calculated in FIG. 4, respectively. Here, the magnitude indicated by the symbol B0 in (b) is the correction pulse timing initial value T0_PULSE.

次に、図7は、この実施例によるアイドル時定常状態の作用を示すタイムチャートである。これは、一例として、♯1気筒の吸気弁リフトにばらつきが生じて♯1気筒の吸入空気量が他の気筒(♯2〜♯4)の吸入空気量より少ない場合の補正の様子を表しており、(a)各気筒の膨張行程におけるエンジン回転数NEの所定サイクル平均、(b)各気筒の補正パルスタイミングT_PULSE、(c)各気筒の補正パルス高さH_PULSE、(d)各気筒の補正パルス幅W_PULSE、の変化を示している。   Next, FIG. 7 is a time chart showing the operation in the steady state during idling according to this embodiment. As an example, this represents a correction state when the intake valve lift of the # 1 cylinder varies and the intake air amount of the # 1 cylinder is smaller than the intake air amount of the other cylinders (# 2 to # 4). (A) a predetermined cycle average of the engine speed NE in the expansion stroke of each cylinder, (b) a correction pulse timing T_PULSE for each cylinder, (c) a correction pulse height H_PULSE for each cylinder, and (d) a correction for each cylinder. A change in the pulse width W_PULSE is shown.

(a)の符号A1の実線は、♯1気筒の膨張行程におけるエンジン回転数の所定サイクル平均(つまり♯1気筒のエンジン回転数)の変化を示し、同様に、A2、A3、A4の実線は、それぞれ、♯2気筒、♯3気筒、♯4気筒の膨張行程におけるエンジン回転数の所定サイクル平均(つまり♯2〜♯4気筒のエンジン回転数)を示す。なお、この図の例では、♯1気筒のみに補正が加えられるので、その回転数が変化し、他方、♯2〜♯4気筒は補正されないため、回転数は一定である。また、(a)の符号A5の点線は、目標エンジン回転数を表し、A6の点線およびA7の点線は、許容範囲つまり、ばらつき正常判定となる上限回転数および下限回転数をそれぞれ表している。そして、時間t1から第1可変動弁機構目標位置補正を開始するものとする。ここで、所定サイクルの時間は、t2−t1(=t3−t2)である。   The solid line indicated by the symbol A1 in (a) indicates the change in the predetermined cycle average of the engine speed (that is, the engine speed of the # 1 cylinder) during the expansion stroke of the # 1 cylinder. Similarly, the solid lines of A2, A3, and A4 are , Respectively show predetermined cycle averages of engine speeds in the expansion strokes of the # 2, # 3, and # 4 cylinders (that is, engine speeds of the # 2 to # 4 cylinders). In the example of this figure, since correction is applied only to the # 1 cylinder, its rotational speed changes. On the other hand, the # 2 to # 4 cylinders are not corrected, so the rotational speed is constant. Also, the dotted line with the symbol A5 in (a) represents the target engine speed, and the dotted line with A6 and the dotted line with A7 represent the allowable range, that is, the upper limit rotational speed and the lower limit rotational speed that are normally determined as variations. Then, the first variable valve mechanism target position correction is started from time t1. Here, the time of the predetermined cycle is t2-t1 (= t3-t2).

時間t1までの♯1気筒のエンジン回転数は(a)の符号A11で示す値であり、(a)の符号A7で示すばらつき正常判定となる下限回転数を下回っているため、ばらつきありと判定される。従って、(a)の符号A5で示す目標エンジン回転数からの偏差((a)の符号A01で示す)に対応した♯1気筒の吸入空気量偏差ΔQ♯1(目標エンジン回転数≧♯1気筒のエンジン回転数、の場合に正とし、目標エンジン回転数<♯1気筒のエンジン回転数、の場合に負とする)に応じて、♯1気筒の第1可変動弁機構補正パルスパターン(補正パルスタイミングT_PULSE♯1、補正パルス高さH_PULSE♯1、補正パルス幅W_PULSE♯1)が算出される。つまり、時間t1に、♯1気筒の補正パルスタイミングは、(b)の符号B0で示す補正パルスタイミング初期値から(b)の符号B11で示す値へと変更され、同様に、♯1気筒の補正パルス高さと補正パルス幅は、それぞれ(c)の符号C11で示す値、(d)の符号D11で示す値、となる。その結果、時間t1からの所定サイクル期間(時間t1〜t2)の♯1気筒のエンジン回転数は、(a)の符号A12で示す値となる。しかし、この符号A12のエンジン回転数は、やはり(a)の符号A7の下限回転数を下回っているため、再度ばらつきありと判定され、(a)の符号A5で示す目標エンジン回転数からの偏差((a)の符号A02で示す)に対応した♯1気筒の吸入空気量偏差ΔQ♯1に応じて、補正パルスタイミングT_PULSE♯1、補正パルス高さH_PULSE♯1、補正パルス幅W_PULSE♯1、が算出される。これらは、それぞれ(b)の符号B12で示す値、(c)の符号C12で示す値、(d)の符号D12で示す値、となる。その結果、時間t2からの所定サイクル期間(時間t2〜t3)の♯1気筒のエンジン回転数は(a)の符号A13で示す値となり、(a)の符号A7で示すばらつき正常判定となる下限回転数を上回るため、ばらつきは正常範囲内と判定され、時間t3以降は、♯1気筒の第1可変動弁機構補正パルスパターンを変更しない。   The engine speed of the # 1 cylinder up to the time t1 is a value indicated by reference numeral A11 in (a) and is lower than the lower limit rotational speed that is normal determination of fluctuation indicated by reference numeral A7 in (a). Is done. Accordingly, the intake air amount deviation ΔQ # 1 (target engine speed ≧ # 1 cylinder) corresponding to the deviation from the target engine speed indicated by reference numeral A5 in (a) (indicated by reference numeral A01 in (a)). The first variable valve mechanism correction pulse pattern of the # 1 cylinder (correction) according to the target engine speed <the engine speed of the # 1 cylinder, and negative when the engine speed is Pulse timing T_PULSE # 1, correction pulse height H_PULSE # 1, correction pulse width W_PULSE # 1) are calculated. In other words, at time t1, the correction pulse timing of the # 1 cylinder is changed from the initial value of the correction pulse timing indicated by the sign B0 in (b) to the value indicated by the sign B11 in (b). The correction pulse height and the correction pulse width are values indicated by a reference C11 in (c) and values indicated by a reference D11 in (d), respectively. As a result, the engine speed of the # 1 cylinder in a predetermined cycle period (time t1 to t2) from time t1 becomes a value indicated by reference numeral A12 in (a). However, since the engine speed indicated by reference sign A12 is still below the lower limit speed indicated by reference sign A7 in (a), it is determined again that there is a variation, and the deviation from the target engine speed indicated by reference sign A5 in (a). The correction pulse timing T_PULSE # 1, the correction pulse height H_PULSE # 1, the correction pulse width W_PULSE # 1, in accordance with the intake air amount deviation ΔQ # 1 of the # 1 cylinder corresponding to (indicated by reference numeral A02 in (a)) Is calculated. These are the values indicated by the symbol B12 in (b), the values indicated by the symbol C12 in (c), and the values indicated by the symbol D12 in (d). As a result, the engine speed of the # 1 cylinder in a predetermined cycle period (time t2 to t3) from time t2 becomes a value indicated by reference symbol A13 in (a), and a lower limit for determining normality of variation indicated by reference symbol A7 in (a). Since the rotational speed is exceeded, the variation is determined to be within the normal range, and the first variable valve mechanism correction pulse pattern for the # 1 cylinder is not changed after time t3.

このようにして、♯1気筒の補正パルスタイミングT_PULSE♯1、補正パルス高さH_PULSE♯1、補正パルス幅W_PULSE♯1は、それぞれ(b)の符号B1で示す実線、(c)の符号C1で示す実線、(d)の符号D1で示す実線のように変化する。一方、♯2〜♯4気筒のエンジン回転数は、ばらつき正常判定となる上限値と下限値の範囲内にあるので、補正は行わず、各々の気筒の補正パルスタイミングT_PULSE♯2〜4、補正パルス高さH_PULSE♯2〜4、補正パルス幅W_PULSE♯2〜4は、それぞれ(b)の符号B2で示す実線、(c)の符号C2で示す実線、(d)の符号D2で示す実線のように一定値となる。   In this way, the correction pulse timing T_PULSE # 1, the correction pulse height H_PULSE # 1, and the correction pulse width W_PULSE # 1 of the # 1 cylinder are indicated by the solid line indicated by the reference symbol B1 in (b) and the reference symbol C1 in (c), respectively. The solid line changes as shown by the solid line indicated by D1 in FIG. On the other hand, the engine speeds of cylinders # 2 to # 4 are within the range between the upper limit value and the lower limit value for which variation is normally determined. Therefore, correction is not performed, and correction pulse timings T_PULSE # 2 to 4 for each cylinder are corrected. The pulse height H_PULSE # 2 to 4 and the correction pulse width W_PULSE # 2 to 4 are respectively a solid line indicated by a symbol B2 in (b), a solid line indicated by a symbol C2 in (c), and a solid line indicated by a symbol D2 in (d). Thus, it becomes a constant value.

図8は、図7のタイムチャートを、♯1気筒の圧縮上死点から1サイクルずつクランク角度で整理したものであり、(a)第1可変動弁機構位置VEL、(b)吸気弁リフト量、(c)モータリングでの筒内圧、の変化を示している。横軸はクランク角度であり、符号D1、D2、D3、D4、D5で示すクランク角度は、それぞれ♯1気筒の圧縮上死点、下死点、上死点、下死点、圧縮上死点であり、符号D6、D7、D8、D9で示す期間は、それぞれ♯1気筒の膨張行程、排気行程、吸気行程、圧縮行程である。   FIG. 8 is an arrangement of the time chart of FIG. 7 by the crank angle for each cycle from the compression top dead center of the # 1 cylinder. (A) First variable valve mechanism position VEL, (b) Intake valve lift The change in the amount, (c) in-cylinder pressure in motoring is shown. The horizontal axis is the crank angle, and the crank angles indicated by reference signs D1, D2, D3, D4, and D5 are the compression top dead center, bottom dead center, top dead center, bottom dead center, and compression top dead center of the cylinder # 1, respectively. The periods indicated by reference signs D6, D7, D8, and D9 are the expansion stroke, the exhaust stroke, the intake stroke, and the compression stroke of the # 1 cylinder, respectively.

図7の時間t1以前は第1可変動弁機構目標位置補正を行う前なので、第1可変動弁機構目標位置は、(a)の符号A0で示す第1可変動弁機構アイドル時基本目標位置で一定であり、♯1〜♯4気筒の吸気弁のリフトカーブは、それぞれ(b)の符号B10、B2、B3、B4で示す線となる。また、♯1〜♯4気筒のモータリング時筒内圧は、それぞれ(c)の符号C10、C2、C3、C4で示す実線となる。このとき、ばらつきにより♯1気筒のリフトカーブだけ他気筒のリフトカーブよりもリフト・作動角が小さくなっており、♯1気筒の圧縮上死点での筒内圧(最大筒内圧)は、他気筒の最大筒内圧よりも(c)の符号C01で示す分だけ小さくなっている。つまり、♯1気筒の吸入空気量が相対的に少ない。なお、♯2〜♯3気筒の吸入空気量の差は小さいため、図では省略している。   Before the time t1 of FIG. 7 is before the first variable valve mechanism target position correction is performed, the first variable valve mechanism target position is the first variable valve mechanism idle basic target position indicated by reference numeral A0 in FIG. The lift curves of the intake valves of the # 1 to # 4 cylinders are lines indicated by reference numerals B10, B2, B3, and B4 in (b), respectively. Further, the cylinder pressures during the motoring of the # 1 to # 4 cylinders are solid lines indicated by reference numerals C10, C2, C3, and C4 of (c), respectively. At this time, the lift / operating angle is smaller than the lift curve of the other cylinders by the lift curve of the # 1 cylinder due to variations, and the in-cylinder pressure (maximum in-cylinder pressure) at the compression top dead center of the # 1 cylinder is It is smaller than the maximum in-cylinder pressure by the amount indicated by the reference C01 in (c). That is, the intake air amount of the # 1 cylinder is relatively small. Note that the difference in intake air amount between the # 2 and # 3 cylinders is small, and is not shown in the figure.

図7の時間t1〜t2では、図7で示したように♯1気筒の第1可変動弁機構補正パターンが算出されるため、第1可変動弁機構目標位置tVELは、(a)の符号A11で示す実線のように補正され、これに伴って、第1可変動弁機構実位置は、(a)の符号A21で示す実線のように変化する。その結果、♯1気筒のリフトカーブは、(b)の符号B11で示す実線のように変化し、♯1気筒の筒内圧は、(c)の符号C11で示す実線のようになる。従って、♯1気筒の吸入空気量は改善されるが、まだ、♯1気筒の最大筒内圧は、他気筒の最大筒内圧よりも(c)の符号C02で示す分だけ小さい。   7, since the first variable valve mechanism correction pattern for the # 1 cylinder is calculated as shown in FIG. 7, the first variable valve mechanism target position tVEL is represented by the symbol (a). The first variable valve mechanism actual position is changed as indicated by a solid line indicated by reference numeral A21 in FIG. As a result, the lift curve of the # 1 cylinder changes as indicated by the solid line B11 in (b), and the in-cylinder pressure of the # 1 cylinder becomes as indicated by the solid line indicated by C11 in (c). Accordingly, the intake air amount of the # 1 cylinder is improved, but the maximum in-cylinder pressure of the # 1 cylinder is still smaller than the maximum in-cylinder pressure of the other cylinders by the amount indicated by the reference C02 in (c).

図7の時間t2〜t3では、図7で示したように♯1気筒の第1可変動弁機構補正パターンが算出されて、第1可変動弁機構目標位置tVELは、(a)の符号A12で示す実線のように補正され、第1可変動弁機構実位置は、(a)の符号A22で示す実線のように変化する。その結果、♯1気筒のリフトカーブは、(b)の符号B12で示す実線のように変化し、♯1気筒の筒内圧は(c)の符号C12で示す実線のようになり、♯1気筒の吸入空気量は改善されて気筒間ばらつきが解消される。   At time t2 to t3 in FIG. 7, the first variable valve mechanism correction pattern for the # 1 cylinder is calculated as shown in FIG. 7, and the first variable valve mechanism target position tVEL is represented by reference numeral A12 in FIG. The first variable valve mechanism actual position is changed as indicated by a solid line indicated by reference numeral A22 in FIG. As a result, the lift curve of the # 1 cylinder changes as indicated by the solid line B12 in (b), and the in-cylinder pressure of the # 1 cylinder becomes as indicated by the solid line indicated by the reference C12 in (c). The intake air amount is improved and the variation among cylinders is eliminated.

なお、本実施例では、各気筒の吸入空気量偏差を、目標エンジン回転数からの各気筒のエンジン回転数の偏差に応じて定めているが、目標エンジン回転数ではなく、ばらつきのない気筒(図7の例では♯2〜♯4気筒)のエンジン回転数の平均値としても良い。また、各気筒の筒内圧を検出できるセンサを備えている場合には、各気筒の筒内圧から吸入空気量偏差を推定しても良い。   In this embodiment, the intake air amount deviation of each cylinder is determined according to the deviation of the engine speed of each cylinder from the target engine speed. In the example of FIG. 7, the average value of the engine speeds of # 2 to # 4 cylinders may be used. Further, when a sensor capable of detecting the in-cylinder pressure of each cylinder is provided, the intake air amount deviation may be estimated from the in-cylinder pressure of each cylinder.

本発明に係る内燃機関の吸気制御装置のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing which shows the system configuration | structure of the intake control device of the internal combustion engine which concerns on this invention. アイドル時における第1可変動弁機構の目標値算出処理を示すフローチャート。The flowchart which shows the target value calculation process of the 1st variable valve mechanism at the time of idling. この制御の機能ブロック図。The functional block diagram of this control. 第1可変動弁機構補正パルス♯n演算部の詳細を示す機能ブロック図。The functional block diagram which shows the detail of the 1st variable valve mechanism correction pulse #n calculating part. 補正パルスタイミング初期値の特性(a)、高さゲインの特性(b)、および幅ゲインの特性(c)を示す特性図。The characteristic view which shows the characteristic (a) of a correction pulse timing initial value, the characteristic (b) of a height gain, and the characteristic (c) of a width gain. 第1可変動弁機構補正パルスの波形の例を示すタイムチャート。The time chart which shows the example of the waveform of a 1st variable valve mechanism correction pulse. アイドル時における本実施例の作用を示すタイムチャート。The time chart which shows the effect | action of a present Example at the time of idling. 本実施例の補正の作用をクランク角度で整理して示すタイムチャート。The time chart which arrange | positions the effect | action of the correction | amendment of a present Example in order by a crank angle.

符号の説明Explanation of symbols

2…絞り弁
5…第1可変動弁機構
6…第2可変動弁機構
10…コントロールユニット
11…アクセル開度センサ
2 ... Throttle valve 5 ... First variable valve mechanism 6 ... Second variable valve mechanism 10 ... Control unit 11 ... Accelerator opening sensor

Claims (8)

複数気筒に共通のアクチュエータを有し、内燃機関の複数気筒の吸気弁のリフト特性を同時にかつ連続的に変化させる機械的な構成の可変動弁機構を備え、この可変動弁機構の制御位置を可変制御することにより内燃機関の出力する負荷を制御する内燃機関の吸気制御装置において、
上記アクチュエータに与えられる上記可変動弁機構の目標位置をサイクル中の一部区間で補正することで複数気筒の中の特定気筒の吸気弁のリフト特性を相対的に変更する特定気筒リフト特性変更手段を有し、
この特定気筒リフト特性変更手段は、特定気筒に対する吸入空気量要求補正量と現在の可変動弁機構の制御位置とに応じて、上記目標位置を補正する上記一部区間の開始時期が可変的に設定されることを特徴とする内燃機関の吸気制御装置。
A variable valve mechanism with a mechanical structure that has an actuator common to multiple cylinders and changes the lift characteristics of the intake valves of the multiple cylinders of the internal combustion engine simultaneously and continuously, and the control position of this variable valve mechanism In an intake control device for an internal combustion engine that controls a load output from the internal combustion engine by variably controlling,
Specific cylinder lift characteristic changing means for relatively changing the lift characteristic of an intake valve of a specific cylinder in a plurality of cylinders by correcting a target position of the variable valve mechanism given to the actuator in a partial section in the cycle Have
The specific cylinder lift characteristic changing means can vary the start timing of the partial section for correcting the target position in accordance with the intake air amount request correction amount for the specific cylinder and the current control position of the variable valve mechanism. An intake air control apparatus for an internal combustion engine, wherein the intake air control apparatus is set.
さらに、上記一部区間における上記目標位置の補正量が、特定気筒に対する吸入空気量要求補正量と現在の可変動弁機構の制御位置とに応じて可変的に設定されることを特徴とする請求項1に記載の内燃機関の吸気制御装置。 Further, the correction amount of the target position in the partial section is variably set according to the intake air amount request correction amount for the specific cylinder and the current control position of the variable valve mechanism. Item 2. An intake control device for an internal combustion engine according to Item 1. 内燃機関の複数気筒の吸気弁のリフト特性を同時にかつ連続的に変化させる可変動弁機構を備え、この可変動弁機構は、複数気筒に共通のアクチュエータに、バルブスプリング反力に起因した反力がその制御位置に応じて作用する機械的な構成であって、この可変動弁機構の制御位置を可変制御することにより内燃機関の出力する負荷を制御する内燃機関の吸気制御装置において、
複数気筒の中の特定気筒の吸気弁のリフト特性を相対的に変更する特定気筒リフト特性変更手段を有し、
この特定気筒リフト特性変更手段は、特定気筒に対する吸入空気量要求補正量と現在の可変動弁機構位置とに応じて、可変動弁機構目標位置の補正タイミングおよび補正量を決定し、
現在の可変動弁機構位置が、上記反力が大となる位置であるほど、可変動弁機構目標位置の補正タイミングを早くするとともに、その補正量を大きくすることを特徴とする内燃機関の吸気制御装置。
A variable valve mechanism that changes the lift characteristics of the intake valves of multiple cylinders of an internal combustion engine simultaneously and continuously. This variable valve mechanism is a reaction force caused by a valve spring reaction force on an actuator that is common to multiple cylinders. In the intake air control device for an internal combustion engine that controls the load output from the internal combustion engine by variably controlling the control position of the variable valve mechanism,
Specific cylinder lift characteristic changing means for relatively changing the lift characteristic of the intake valve of the specific cylinder among the plurality of cylinders;
The specific cylinder lift characteristic changing means determines the correction timing and correction amount of the variable valve mechanism target position according to the intake air amount request correction amount for the specific cylinder and the current variable valve mechanism position,
The current of the variable valve mechanism position, as is the position where the reaction force becomes large, as well as faster correction timing of the variable valve mechanism target position, the inner combustion engine you characterized by increasing the amount of correction Intake control device.
内燃機関の複数気筒の吸気弁のリフト特性を同時にかつ連続的に変化させる可変動弁機構を備え、この可変動弁機構の制御位置を可変制御することにより内燃機関の出力する負荷を制御する内燃機関の吸気制御装置において、
複数気筒の中の特定気筒の吸気弁のリフト特性を相対的に変更する特定気筒リフト特性変更手段を有し、
この特定気筒リフト特性変更手段は、所定の条件を満たすように、吸入空気量要求補正量に対する可変動弁機構目標位置の補正パターンを設定することを特徴とする内燃機関の吸気制御装置。
An internal combustion engine that includes a variable valve mechanism that simultaneously and continuously changes lift characteristics of intake valves of a plurality of cylinders of an internal combustion engine, and that controls a load output from the internal combustion engine by variably controlling a control position of the variable valve mechanism. In the intake control device of the engine,
Specific cylinder lift characteristic changing means for relatively changing the lift characteristic of the intake valve of the specific cylinder among the plurality of cylinders;
The specific cylinder lift characteristic changing means, so as to satisfy a predetermined condition, the intake control device of the internal combustion engine you and sets the correction pattern of the variable valve mechanism target position relative to the intake air amount required correction amount.
特定気筒の吸気弁開時期が所定の制限値よりも遅角側であることを上記の条件とすることを特徴とする請求項に記載の内燃機関の吸気制御装置。 5. The intake control apparatus for an internal combustion engine according to claim 4 , wherein the intake valve opening timing of the specific cylinder is on the retard side of a predetermined limit value. 上記制限値は、特定気筒の排気弁閉時期により定まることを特徴とする請求項に記載の内燃機関の吸気制御装置。 6. The intake control apparatus for an internal combustion engine according to claim 5 , wherein the limit value is determined by an exhaust valve closing timing of the specific cylinder. 上記特定気筒リフト特性変更手段は、上記可変動弁機構の制御位置をサイクル毎に補正することで、特定気筒のリフト特性を変更することを特徴とする請求項1〜6のいずれかに記載の内燃機関の吸気制御装置。 The said specific cylinder lift characteristic change means changes the lift characteristic of a specific cylinder by correct | amending the control position of the said variable valve mechanism for every cycle, The change characteristic of any one of Claims 1-6 characterized by the above-mentioned. An intake control device for an internal combustion engine. 上記可変動弁機構は、複数気筒に共通の電動アクチュエータの制御位置に応じて、吸気弁のリフト・作動角が連続的に増減変化する構成であることを特徴とする請求項1〜7のいずれかに記載の内燃機関の吸気制御装置。   8. The variable valve mechanism according to any one of claims 1 to 7, wherein the lift / operating angle of the intake valve continuously increases or decreases in accordance with a control position of an electric actuator common to a plurality of cylinders. An intake control device for an internal combustion engine according to claim 1.
JP2005322982A 2005-11-08 2005-11-08 Intake control device for internal combustion engine Expired - Fee Related JP4650219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322982A JP4650219B2 (en) 2005-11-08 2005-11-08 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322982A JP4650219B2 (en) 2005-11-08 2005-11-08 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007132187A JP2007132187A (en) 2007-05-31
JP4650219B2 true JP4650219B2 (en) 2011-03-16

Family

ID=38154064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322982A Expired - Fee Related JP4650219B2 (en) 2005-11-08 2005-11-08 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4650219B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816580B2 (en) * 2007-07-04 2011-11-16 トヨタ自動車株式会社 Control device for internal combustion engine
JP5076856B2 (en) * 2007-12-13 2012-11-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP4876107B2 (en) * 2008-07-18 2012-02-15 日立オートモティブシステムズ株式会社 Diagnostic control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263105A (en) * 2000-03-23 2001-09-26 Nissan Motor Co Ltd Intake valve driving control device for internal combustion engine
JP2004084513A (en) * 2002-08-26 2004-03-18 Denso Corp Control device for internal combustion engine
JP2004197630A (en) * 2002-12-18 2004-07-15 Toyota Motor Corp Controller of internal combustion engine
JP2004308611A (en) * 2003-04-09 2004-11-04 Denso Corp Variable valve control device for internal combustion engine
JP2004332671A (en) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd Variable valve device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263105A (en) * 2000-03-23 2001-09-26 Nissan Motor Co Ltd Intake valve driving control device for internal combustion engine
JP2004084513A (en) * 2002-08-26 2004-03-18 Denso Corp Control device for internal combustion engine
JP2004197630A (en) * 2002-12-18 2004-07-15 Toyota Motor Corp Controller of internal combustion engine
JP2004308611A (en) * 2003-04-09 2004-11-04 Denso Corp Variable valve control device for internal combustion engine
JP2004332671A (en) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd Variable valve device for internal combustion engine

Also Published As

Publication number Publication date
JP2007132187A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP3852303B2 (en) Control device for multi-cylinder internal combustion engine
US8594905B2 (en) Control system for internal combustion engine
JP6071370B2 (en) Control device for internal combustion engine
JP2009068388A (en) Control device for internal combustion engine
JP4218359B2 (en) Control device for internal combustion engine
JP6359594B2 (en) Control device for internal combustion engine
US7328673B2 (en) Valve timing correction control apparatus and method for an internal combustion engine
US7121238B2 (en) Intake valve control system and method for internal combustion engine
JP4650219B2 (en) Intake control device for internal combustion engine
US10502175B2 (en) Control device for internal combustion engine and method of estimating combustion chamber-wall temperature of internal combustion engine
JP4816580B2 (en) Control device for internal combustion engine
JP2004052620A (en) Control device for internal combustion engine
AU2005317727A1 (en) Valve characteristic control apparatus for internal combustion engine
JP2592075B2 (en) Control device for variable compression ratio internal combustion engine
JP4827867B2 (en) Control device for internal combustion engine
JP4841382B2 (en) Internal combustion engine
JP2006057573A (en) Intake control device for internal combustion engine
JP5357848B2 (en) Control device for internal combustion engine
JP5026499B2 (en) Control device for internal combustion engine
JP4127075B2 (en) Intake valve drive control device for internal combustion engine
JP5253239B2 (en) Control device for internal combustion engine
JP4178881B2 (en) Internal combustion engine
JP6815534B2 (en) Internal combustion engine control device
JP7421687B2 (en) Internal combustion engine control device and internal combustion engine control method
JP4254261B2 (en) Intake valve drive control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees