Nothing Special   »   [go: up one dir, main page]

JP4650110B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP4650110B2
JP4650110B2 JP2005163606A JP2005163606A JP4650110B2 JP 4650110 B2 JP4650110 B2 JP 4650110B2 JP 2005163606 A JP2005163606 A JP 2005163606A JP 2005163606 A JP2005163606 A JP 2005163606A JP 4650110 B2 JP4650110 B2 JP 4650110B2
Authority
JP
Japan
Prior art keywords
axis
value
axis current
command value
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005163606A
Other languages
Japanese (ja)
Other versions
JP2006340530A (en
Inventor
覚 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005163606A priority Critical patent/JP4650110B2/en
Publication of JP2006340530A publication Critical patent/JP2006340530A/en
Application granted granted Critical
Publication of JP4650110B2 publication Critical patent/JP4650110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は電動機の制御装置に関し、特に非干渉制御における補償の遅れを抑制する技術に関する。   The present invention relates to a motor control device, and more particularly to a technique for suppressing a delay in compensation in non-interference control.

同期電動機のdq軸ベクトル変換による電流制御では、電流応答性能を向上させる手段として、d軸電流値およびq軸電流値に応じた相互干渉成分を打ち消す非干渉制御が用いられている。非干渉制御における相互干渉成分の演算については、以前は発生しているd軸電流値およびq軸電流値から相互干渉成分を演算していたのに対して、下記特許文献1に記載の従来例では、d軸電流指令値およびq軸電流指令値から演算することにより非干渉制御部の動作を安定させる技術が記載されている。   In current control by dq axis vector conversion of a synchronous motor, non-interference control that cancels mutual interference components according to the d axis current value and the q axis current value is used as means for improving current response performance. Regarding the calculation of the mutual interference component in the non-interference control, the mutual interference component was previously calculated from the d-axis current value and the q-axis current value that have been generated, whereas the conventional example described in Patent Document 1 below. Describes a technique for stabilizing the operation of the non-interference control unit by calculating from the d-axis current command value and the q-axis current command value.

特開2004−40861号公報JP 2004-40861 A

上記のように従来技術においては、相互干渉成分の演算が、主にd軸電流値Idおよびq軸電流値Iqまたはd軸電流指令値Idおよびq軸電流指令値Iqとd軸インダクタンスLdおよびq軸インダクタンスLqとの積から算出する構成になっており、仮にこの相互干渉成分演算結果でズレが生じた場合は、非干渉制御部の前段または後段に設けた比例積分制御部の積分項で主にズレ分を補う、という構成になっていた。そのため相互干渉成分演算結果でズレが生じ、比例積分制御部の積分項で主にズレ分を補償している時に、トルク指令値が急峻に変動し、それに応じてq軸電流値Iqが急峻に変化すると、相互干渉成分も比例して変動するが、比例積分制御の積分項で補償している項は即応しないため、電流応答が悪くなる、という問題があった。
つまり、q軸インダクタンスLqが一定値の場合は、実際のq軸インダクタンスLqと演算に用いるq軸インダクタンスLqによる相互干渉成分の誤差は、比例積分制御の積分項で補償される。しかし、トルク指令値の変化に応じてq軸電流値Iqが変化するとq軸電流値Iqに比例する相互干渉成分も変化するが、その誤差分を補償している比例積分制御の積分項は、積分演算の遅れをもっているため、応答遅れが大きくなる、という問題があった。
本発明は上記のごとき問題を解決するためになされたものであり、q軸電流値やq軸電流指令値が急峻に変動した場合でも電流応答性能の悪化を防止することの出来る電動機の制御装置を提供することを目的とする。
As described above, in the conventional technique, the calculation of the mutual interference component is mainly performed by the d-axis current value Id and the q-axis current value Iq or the d-axis current command value Id * and the q-axis current command value Iq * and the d-axis inductance Ld. And the q-axis inductance Lq. If there is a deviation in the mutual interference component calculation result, the integral term of the proportional-integral control unit provided before or after the non-interference control unit. It was configured to compensate for the misalignment. For this reason, a deviation occurs in the calculation result of the mutual interference component, and when the deviation is mainly compensated by the integral term of the proportional integral control unit, the torque command value fluctuates sharply, and the q-axis current value Iq steeply changes accordingly. When it changes, the mutual interference component fluctuates proportionally, but the term compensated by the integral term of the proportional integral control does not respond immediately, and there is a problem that the current response is deteriorated.
That is, when the q-axis inductance Lq is a constant value, the error of the mutual interference component between the actual q-axis inductance Lq and the q-axis inductance Lq used for the calculation is compensated by the integral term of the proportional integral control. However, when the q-axis current value Iq changes in accordance with the change of the torque command value, the mutual interference component proportional to the q-axis current value Iq also changes, but the integral term of the proportional integral control that compensates for the error is Since there is a delay in the integral calculation, there is a problem that the response delay becomes large.
The present invention has been made to solve the above-described problems, and an electric motor control device capable of preventing deterioration of current response performance even when the q-axis current value or the q-axis current command value fluctuates sharply. The purpose is to provide.

上記の目的を達成するため、本発明においては、d軸電圧指令値を非干渉制御によって補償するq軸干渉成分の演算に用いるq軸インダクタンスLqの値を、q軸電流値または前記q軸電流指令値と比例積分制御におけるd軸積分項出力とに基づいて補正する補正手段を設けるように構成している。   In order to achieve the above object, in the present invention, the value of the q-axis inductance Lq used for the calculation of the q-axis interference component for compensating the d-axis voltage command value by non-interference control is set as the q-axis current value or the q-axis current value. Correction means for correcting based on the command value and the d-axis integral term output in proportional integral control is provided.

なお、上記補正手段は、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iq、電動機巻き線抵抗値Raおよび電動機角速度ωとした場合に、下記(数1)式の演算により補正量αを算出し、前記q軸インダクタンスLqに前記補正量αを加算した値を補正後のq軸インダクタンスLq’とする。   When the d-axis integral term output Sd, the d-axis current value Id, the q-axis current value Iq, the motor winding resistance value Ra, and the motor angular velocity ω are calculated, the correction means performs the following equation (1). A correction amount α is calculated, and a value obtained by adding the correction amount α to the q-axis inductance Lq is defined as a corrected q-axis inductance Lq ′.

α=(Sd−Id×Ra)/(Iq×ω) …(数1)
Lq’=Lq+α
α = (Sd−Id × Ra) / (Iq × ω) (Equation 1)
Lq ′ = Lq + α

本発明においては、非干渉制御において、d軸電圧指令値を補正するq軸干渉成分の基礎となるq軸インダクタンスLqの値を、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iqおよび電動機角速度ωに基づいて算出した補正量αに基づいて常に補正しており、比例積分制御の積分項で干渉成分のズレを定常的に補償する構成ではないので、トルク指令値Tの急変時にq軸電流指令値が急峻に変動した場合でも電流応答性能が悪化が抑制される、という効果がある。 In the present invention, in non-interference control, the value of the q-axis inductance Lq, which is the basis of the q-axis interference component for correcting the d-axis voltage command value, is expressed as d-axis integral term output Sd, d-axis current value Id, q-axis current. Since the correction is always performed based on the correction amount α calculated based on the value Iq and the motor angular velocity ω, and the configuration is not such that the deviation of the interference component is steadily compensated by the integral term of the proportional integral control, the torque command value T * Even when the q-axis current command value fluctuates sharply at the time of sudden change, there is an effect that deterioration of current response performance is suppressed.

図1は、本発明を適用する3相同期電動機のベクトル制御による電流フィードバック制御ブロック図を示す。
図1において、外部に設けられたトルク指令値算出部1は、アクセル開度などからトルク指令値Tを決定する。
角度検出器10(レゾルバやエンコーダ等)は電動機9の電機子の回転角度θ(回転位相:電気角)を検出し、回転速度算出部11で回転角度θを微分することにより電動機9の回転速度ω(電機子角速度:電気角)を算出する。
電流指令値算出部2は、上記のトルク指令値Tと回転速度ωからd軸電流指令値Idおよびq軸電流指令値Iqを算出する。なお、以下において両者をまとめて表現する場合にはd−q軸電流指令値Id、Iqと表示する場合もある。
FIG. 1 shows a current feedback control block diagram by vector control of a three-phase synchronous motor to which the present invention is applied.
In FIG. 1, a torque command value calculation unit 1 provided outside determines a torque command value T * from an accelerator opening or the like.
The angle detector 10 (resolver, encoder, etc.) detects the rotation angle θ (rotation phase: electrical angle) of the armature of the electric motor 9, and the rotation speed calculation unit 11 differentiates the rotation angle θ to thereby rotate the rotation speed of the electric motor 9. ω (armature angular velocity: electrical angle) is calculated.
The current command value calculation unit 2 calculates a d-axis current command value Id * and a q-axis current command value Iq * from the torque command value T * and the rotation speed ω. In the following, when both are expressed together, they may be displayed as dq-axis current command values Id * and Iq * .

一方、電流センサ12は、電動機9のu、v、w各相に流れるu相電流Iu、v相電流Iv、w相電流Iwを検出し、それらから3相2相変換部4でd軸電流値Id、q軸電流値Iqを算出する。
電流PI制御部3は、上記のd−q軸電流指令値Id、Iqとd−q軸電流値Id、Iqとのそれぞれの偏差(Id−Id、Iq−Iq)を求め、それらを比例積分制御することにより、d軸電圧指令値Vdおよびq軸電圧指令値Vqを算出する。
On the other hand, the current sensor 12 detects the u-phase current Iu, the v-phase current Iv, and the w-phase current Iw flowing in the u, v, and w phases of the electric motor 9, and the d-axis current is detected by the three-phase to two-phase conversion unit 4 therefrom. A value Id and a q-axis current value Iq are calculated.
Current PI control unit 3, the above-described d-q axis current command value Id *, Iq * and the d-q axis current value Id, each of the deviation between Iq (Id * -Id, Iq * -Iq) asking, By performing proportional-integral control on them, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * are calculated.

非干渉制御部5は、上記のd軸電圧指令値Vdとq軸電圧指令値Vqについてd−q軸の相互干渉成分を除去し、干渉成分除去後のd軸電圧指令値Vd’、q軸電圧指令値Vq’を算出する。 The non-interference control unit 5 removes the d-q axis mutual interference component from the d-axis voltage command value Vd * and the q-axis voltage command value Vq * , and the d-axis voltage command value Vd * ′ after removing the interference component. Q-axis voltage command value Vq * ′ is calculated.

q軸干渉成分は、基本的には「q軸干渉成分=Lq×Iq×ω」であるが、従来例の構成では、実際のq軸インダクタンスLqと演算に用いるq軸インダクタンスLqとの誤差を比例積分制御の積分項出力Sdで補償するので、「q軸干渉成分=Lq×Iq×ω+Sd」となっていた。つまり、定常時には相互干渉成分の誤差は、比例積分制御の積分項で補償されている。しかし、トルク指令値の変化に応じてq軸電流値Iqが変化するとq軸電流値Iqに比例するq軸インダクタンスLqも変化するが、その誤差分を補償している比例積分制御の積分項Sdは、積分演算の遅れをもっているため、応答が遅れてしまうという問題が有った。
そのため本発明においては、積分項出力Sdとq軸電流値Iq(またはq軸電流指令値)とに基づいてq軸インダクタンスLqの誤差を演算してLq自体を常に補正するように構成している(詳細後述)。
The q-axis interference component is basically “q-axis interference component = Lq × Iq × ω”, but in the configuration of the conventional example, an error between the actual q-axis inductance Lq and the q-axis inductance Lq used in the calculation is calculated. Since compensation is performed using the integral term output Sd of the proportional integral control, “q-axis interference component = Lq × Iq × ω + Sd”. That is, during steady state, the error of the mutual interference component is compensated by the integral term of proportional integral control. However, when the q-axis current value Iq changes according to the change of the torque command value, the q-axis inductance Lq proportional to the q-axis current value Iq also changes, but the integral term Sd of proportional integral control that compensates for the error. Has a problem that the response is delayed because of the delay of the integral operation.
Therefore, the present invention is configured to always correct Lq itself by calculating the error of the q-axis inductance Lq based on the integral term output Sd and the q-axis current value Iq (or q-axis current command value). (Details will be described later).

なお、上記の構成では、電流PI制御部3が非干渉制御部5の前段に設けられているが、逆に電流PI制御部3を非干渉制御部5の後段に設けても良い。つまり電流指令値算出部2からのd−q軸電流指令値Id、Iqに非干渉制御を施した結果に比例積分制御を行うように構成しても良い。 In the above configuration, the current PI control unit 3 is provided before the non-interference control unit 5. However, the current PI control unit 3 may be provided after the non-interference control unit 5. In other words, the proportional-integral control may be performed on the result of performing non-interference control on the dq-axis current command values Id * and Iq * from the current command value calculation unit 2.

上記干渉成分除去後のd軸電圧指令値Vd’、q軸電圧指令値Vq’は、2相3相変換部6で3相の電圧指令値Vu、Vv、Vwに変換され、PWM制御部7でPWM信号に変換される。
このPWM信号によってインバータ8を制御し、図示しない直流電源の電力を3相交流電力に変換して電動機9を駆動する。
以上の処理を繰り返して電動機の電流フィードバックによるベクトル制御を行う。
The d-axis voltage command value Vd * ′ and q-axis voltage command value Vq * ′ after the interference component removal is converted into three-phase voltage command values Vu * , Vv * , Vw * by the two-phase / three-phase converter 6. The PWM control unit 7 converts the signal into a PWM signal.
The inverter 8 is controlled by this PWM signal, and the electric motor 9 is driven by converting the power of a DC power source (not shown) into three-phase AC power.
The above process is repeated to perform vector control by current feedback of the motor.

図2は、図1における電流PI制御部3の基本的なブロック図である。
図2の電流PI制御部3では、dq軸各々でPI(比例積分)演算を以下のように実施する。
まず、d軸については、d軸電流指令値Idからd軸電流値Idを減算して電流偏差(Id−Id)を算出し、これに比例ゲインKpdを乗算したものと上記電流偏差(Id−Id)に積分ゲインKidを乗算して積分(1/s)したものとを加算して、d軸電圧指令値Vdとする。
q軸についても同様に、q軸電流指令値Iqからq軸電流値Iqを減算して電流偏差(Iq−Iq)を算出し、これに比例ゲインKpqを乗算したものと上記電流偏差(Iq−Iq)に積分ゲインKiqを乗算して積分(1/s)したものとを加算して、q軸電圧指令値Vqとする。
FIG. 2 is a basic block diagram of current PI control unit 3 in FIG.
In the current PI control unit 3 of FIG. 2, PI (proportional integration) calculation is performed for each of the dq axes as follows.
First, for the d-axis, a current deviation (Id * −Id) is calculated by subtracting the d-axis current value Id from the d-axis current command value Id * , and this is multiplied by the proportional gain Kpd and the current deviation ( Id * −Id) multiplied by integral gain Kid and integrated (1 / s) is added to obtain d-axis voltage command value Vd * .
Similarly for the q-axis, the current deviation (Iq * −Iq) is calculated by subtracting the q-axis current value Iq from the q-axis current command value Iq *, and the current deviation (Iq * −Iq) multiplied by the proportional gain Kpq. Iq * −Iq) multiplied by integral gain Kiq and integrated (1 / s) is added to obtain q-axis voltage command value Vq * .

図3は、図1における非干渉制御部5の基本的なブロック図である。
非干渉制御部5では、dq軸相互干渉成分の除去を以下のようにして実施する。
まず、d軸については、q軸電流値Iqに電動機9のq軸インダクタンスLq(基本値として所定値を設定しておく)を乗算し、さらに電動機の回転角速度(回転速度)ωを乗算してq軸干渉成分を算出し、このq軸干渉成分をd軸電圧指令値Vdに加算して、干渉成分除去後のd軸電圧指令値Vd’を算出する。つまり、Vd’=Vd+(Lq×Iq×ω)である。
FIG. 3 is a basic block diagram of the non-interference control unit 5 in FIG.
The non-interference control unit 5 performs the removal of the dq axis mutual interference components as follows.
First, for the d-axis, the q-axis current value Iq is multiplied by the q-axis inductance Lq of the electric motor 9 (a predetermined value is set as a basic value), and further multiplied by the rotational angular velocity (rotational velocity) ω of the electric motor. calculating a q-axis interference component, the q-axis interference component is added to the d-axis voltage command value Vd *, and calculates a d-axis voltage command value Vd after the interference component removal * '. That is, Vd * ′ = Vd * + (Lq × Iq × ω).

q軸については、d軸電流値Idに電動機のd軸インダクタンスLdを乗算した値に、電動機の磁束φaを加算し、さらに電動機の回転速度ωを乗算してd軸干渉成分を算出し、このd軸干渉成分をq軸電圧指令値Vqから減算することにより、干渉成分除去後のq軸電圧指令値Vq’を算出する。つまり、Vq’=Vq−〔(Ld×Id)+φa〕×ωである。
本発明は、非干渉演算に用いる演算用のq軸インダクタンスLqと実際のq軸インダクタンスLqとの誤差を、積分項出力Sdとq軸電流値Iq(またはq軸電流指令値)に基づいて常に補正する非干渉項補正演算部13を設けたものである。
For the q-axis, the d-axis interference component is calculated by adding the magnetic flux φa of the motor to the value obtained by multiplying the d-axis current value Id by the d-axis inductance Ld of the motor, and further multiplying the rotation speed ω of the motor. By subtracting the d-axis interference component from the q-axis voltage command value Vq * , the q-axis voltage command value Vq * ′ after removing the interference component is calculated. That is, Vq * ′ = Vq * − [(Ld × Id) + φa] × ω.
In the present invention, the error between the calculation q-axis inductance Lq used for non-interference calculation and the actual q-axis inductance Lq is always calculated based on the integral term output Sd and the q-axis current value Iq (or q-axis current command value). A non-interference term correction calculation unit 13 for correction is provided.

(実施例)
図4は、非干渉項補正演算部13を設けた電流PI制御部の実施例を示すブロック図である。
図4において、Kpd、KId、1/sの部分およびKpq、KIq、1/sの部分は、前記図2に示した電流PI制御部3に相当する。つまり、図4においては、図2の電流PI制御部3のおけるd軸側とq軸側が上下に二つに別れて表示され、その間に非干渉項補正演算部13が設けられた形になっている。
基本的な制御は、図2で説明した電流PI制御部3と同様に、dq軸各々でPI演算を実施し、d軸電圧指令値Vdとq軸電圧指令値Vqを出力する。
(Example)
FIG. 4 is a block diagram showing an embodiment of the current PI control unit provided with the non-interference term correction calculation unit 13.
In FIG. 4, the portions of Kpd, KId, 1 / s and the portions of Kpq, KIq, 1 / s correspond to the current PI control unit 3 shown in FIG. That is, in FIG. 4, the d-axis side and the q-axis side in the current PI control unit 3 of FIG. 2 are displayed separately in two vertically, and a non-interference term correction calculation unit 13 is provided between them. ing.
As in the current PI control unit 3 described with reference to FIG. 2, the basic control performs PI calculation for each dq axis and outputs a d-axis voltage command value Vd * and a q-axis voltage command value Vq * .

非干渉項補正演算部13は、d軸電流指令値Idからd軸電流値Idを減算して算出されたd軸の電流偏差(Id−Id)を入力とするd軸状態判定部14において、例えば「d軸電流指令値Idの変動が10ms間に10A以内」であり、かつ、「d軸の電流偏差がd軸電流指令値Idの10%以内の状態が10ms以上継続したとき」つまりd軸電流指令値の変動が小さく、かつ電流偏差が小さい安定した状態の場合に演算指令信号Sc1を出力する。この演算指令信号Sc1のタイミングで補正量αの演算を行う。 The non-interference term correction calculation unit 13 receives the d-axis current deviation (Id * −Id) calculated by subtracting the d-axis current value Id from the d-axis current command value Id * as a d-axis state determination unit 14. For example, “the fluctuation of the d-axis current command value Id * is within 10 A within 10 ms” and “the d-axis current deviation is within 10% of the d-axis current command value Id * continues for 10 ms or more. In other words, the calculation command signal Sc1 is output when the d-axis current command value fluctuation is small and the current deviation is small. The correction amount α is calculated at the timing of the calculation command signal Sc1.

補正量演算部15では、演算指令信号Sc1、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iqおよび電動機角速度ω(回転速度:電気角)を入力とし、演算指令信号Sc1が出された時に、下記(数5)式(=数1式)の演算により補正量αを算出する。なお、Id×Raはd軸制御電圧である。
α=(Sd−Id×Ra)/(Iq×ω) …(数5)
ここでRaは電動機巻き線抵抗値で定数とする。
The correction amount calculation unit 15 receives the calculation command signal Sc1, the d-axis integral term output Sd, the d-axis current value Id, the q-axis current value Iq, and the motor angular velocity ω (rotation speed: electrical angle), and the calculation command signal Sc1 When the correction amount is issued, the correction amount α is calculated by the following equation (Equation 5) (= Equation 1). Note that Id × Ra is a d-axis control voltage.
α = (Sd−Id × Ra) / (Iq × ω) (Equation 5)
Here, Ra is a motor winding resistance value and is a constant.

或いは下記(数6)式(=数2式)に示すように、上記のd軸電流値Id、q軸電流値Iqをd軸電流指令値Id、q軸電流指令値Iqに置き換え、
α=(Sd−Id×Ra)/(Iq×ω) …(数6)
としてもよい。
Alternatively, as shown in the following formula (6) (= formula 2), the d-axis current value Id and the q-axis current value Iq are replaced with a d-axis current command value Id * and a q-axis current command value Iq * ,
α = (Sd−Id * × Ra) / (Iq * × ω) (Expression 6)
It is good.

なお、Id×RaやId×Raの値は、d軸積分項出力Sdに比べて大幅に小さいので、上記(数5)式、(数6)式において、Id×RaやId×Raを省略し、下記(数7)式(=数3式)、(数8)式(=数4式)に示すようにしても、多少の誤差は生じるが使用することは可能である。
α=Sd/(Iq×ω) …(数7)
α=Sd/(Iq×ω) …(数8)
次に、フィルタ処理部16では、上記のように算出した補正量αを例えばローパスフィルタ処理を行うことにより、非干渉補正値Xを算出する。
Since the values of Id × Ra and Id * × Ra are significantly smaller than the d-axis integral term output Sd, in the above formulas (5) and (6), Id × Ra and Id * × Ra Is omitted, and it can be used even if some errors occur even if it is expressed by the following equation (equation 7) (= equation 3) and equation (8) (= equation 4).
α = Sd / (Iq × ω) (Expression 7)
α = Sd / (Iq * × ω) (Equation 8)
Next, the filter processing unit 16 calculates the non-interference correction value X by performing, for example, a low-pass filter process on the correction amount α calculated as described above.

図5は、非干渉項補正を付加した非干渉制御部5の実施例を示すブロック図である。 図5における基本的動作は前記図3と同様であるが、図5においては、q軸電流値Iqに電動機9のq軸インダクタンスLqを乗算し、さらに電動機の回転速度ωを乗算してq軸干渉成分を算出する際に、Lq補正部17において、q軸インダクタンスLq(基本値)の代わりに、Lqを非干渉補正値X(図4のフィルタ処理部16の出力)で補正した値Lq’(Lq’=Lq+X)を用いる。なお、補正量αをフィルタ処理した非干渉補正値Xの代わりに補正量αをそのまま用いても良い。
したがって非干渉制御後のd軸電圧指令値Vd’は、
Vd’=Vd+(Lq’×Iq×ω)=Vd+〔(Lq+X)×Iq×ω〕となる。
FIG. 5 is a block diagram showing an embodiment of the non-interference control unit 5 to which non-interference term correction is added. The basic operation in FIG. 5 is the same as that in FIG. 3, but in FIG. 5, the q-axis current value Iq is multiplied by the q-axis inductance Lq of the electric motor 9, and further multiplied by the rotational speed ω of the electric motor. When calculating the interference component, the Lq correction unit 17 corrects Lq with a non-interference correction value X (output of the filter processing unit 16 in FIG. 4) instead of the q-axis inductance Lq (basic value). (Lq ′ = Lq + X) is used. The correction amount α may be used as it is instead of the non-interference correction value X obtained by filtering the correction amount α.
Therefore, the d-axis voltage command value Vd * ′ after non-interference control is
Vd * ′ = Vd * + (Lq ′ × Iq × ω) = Vd * + [(Lq + X) × Iq × ω].

上記のように、q軸電流指令値やq軸電流値が安定している状態において、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iqおよび電動機角速度ωに基づいて補正量α(非干渉補正値X)を算出し、その値でq軸インダクタンスLqの値を常に補正していることにより、電流応答性能を良好に保つことが出来る。   As described above, when the q-axis current command value and the q-axis current value are stable, the correction amount is based on the d-axis integral term output Sd, the d-axis current value Id, the q-axis current value Iq, and the motor angular velocity ω. By calculating α (non-interference correction value X) and always correcting the value of the q-axis inductance Lq with this value, the current response performance can be kept good.

図6は、上記のような本発明を適用した場合に、トルク指令値Tをステップ状に0Nmから100Nmに変化(STEP指令0→100Nm)させた場合のシミュレーション結果を示す図である。 FIG. 6 is a diagram showing a simulation result when the torque command value T * is changed stepwise from 0 Nm to 100 Nm (STEP command 0 → 100 Nm) when the present invention as described above is applied.

図6において、実線は上記本発明の非干渉項の補正を行った場合の特性、破線は補正を行わなかった場合の特性を示し、時間1.00secにおいてトルク指令値Tがステップ状に急変し、一点鎖線で示すようにId、Iqの指令値が急変した場合を示す。 In FIG. 6, the solid line indicates the characteristic when the non-interference term of the present invention is corrected, the broken line indicates the characteristic when the correction is not performed, and the torque command value T * suddenly changes stepwise at time 1.00 sec. The case where the command values of Id and Iq change suddenly as shown by the alternate long and short dash line is shown.

図6に示すように、補正によって、実線で示した適用時の値は、破線で示した非適用時の値に比べて、立ち上がり、収束とも早くなり、d軸電流Idの応答も非適応時に比べて適応時の方が改善されている。   As shown in FIG. 6, due to the correction, the value at the time of application indicated by the solid line is faster in rising and convergence than the value at the time of non-application indicated by the broken line, and the response of the d-axis current Id is also non-adaptive. Compared with adaptation, it is improved.

上記のように本発明においては、非干渉制御において、d軸電圧指令値を補正するq軸干渉成分の基礎となるq軸インダクタンスLqの値を、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iqおよび電動機角速度ωに基づいて算出した補正量αに基づいて常に補正しており、比例積分制御の積分項で干渉成分のズレを定常的に補償する構成ではないので、トルク指令値Tの急変時にq軸電流指令値が急峻に変動した場合でも電流応答性能が悪化が抑制される、という効果がある。 As described above, in the present invention, in the non-interference control, the value of the q-axis inductance Lq serving as the basis of the q-axis interference component for correcting the d-axis voltage command value is set as the d-axis integral term output Sd and the d-axis current value Id. , The correction is always made on the basis of the correction amount α calculated based on the q-axis current value Iq and the motor angular velocity ω, and is not configured to steadily compensate for the deviation of the interference component with the integral term of the proportional integral control. Even if the q-axis current command value fluctuates sharply when the command value T * changes suddenly, there is an effect that the current response performance is prevented from deteriorating.

本発明を適用する3相同期電動機のベクトル制御による電流フィードバック制御のブロック図。The block diagram of the current feedback control by vector control of the three-phase synchronous motor to which this invention is applied. 図1における電流PI制御部3の基本的なブロック図。FIG. 2 is a basic block diagram of a current PI control unit 3 in FIG. 1. 図1における非干渉制御部5の基本的なブロック図。The basic block diagram of the non-interference control part 5 in FIG. 非干渉項補正演算部を設けた電流PI制御部の実施例を示すブロック図。The block diagram which shows the Example of the electric current PI control part which provided the non-interference term correction | amendment calculating part. 非干渉項補正を行う非干渉制御部5の実施例を示すブロック図。The block diagram which shows the Example of the non-interference control part 5 which performs non-interference term correction. トルク指令値Tをステップ状に変化させた場合のシミュレーション結果を示す図。The figure which shows the simulation result at the time of changing torque command value T * in step shape.

符号の説明Explanation of symbols

1…トルク指令値算出部 2…電流指令値算出部
3…電流PI制御部 4…3相2相変換部
5…非干渉制御部 6…2相3相変換部
7…PWM制御部 8…インバータ
9…電動機 10…角度検出器
11…回転速度算出部 12…電流センサ
13…非干渉項補正演算部 14…d軸状態判定部
15…補正量演算部 16…フィルタ処理部
17…Lq補正部
DESCRIPTION OF SYMBOLS 1 ... Torque command value calculation part 2 ... Current command value calculation part 3 ... Current PI control part 4 ... Three phase two phase conversion part 5 ... Non-interference control part 6 ... Two phase three phase conversion part 7 ... PWM control part 8 ... Inverter DESCRIPTION OF SYMBOLS 9 ... Electric motor 10 ... Angle detector 11 ... Rotation speed calculation part 12 ... Current sensor 13 ... Non-interference term correction calculating part 14 ... d-axis state determination part 15 ... Correction amount calculating part 16 ... Filter processing part 17 ... Lq correction part

Claims (5)

トルク指令値と電動機の回転速度からd軸電流指令値およびq軸電流指令値を求め、該d軸電流指令値およびq軸電流指令値とd軸電流値およびq軸電流値とのそれぞれの偏差に対して比例積分制御を施してd軸電圧指令値およびq軸電圧指令値を算出し、かつ、d軸電流値とq軸電流値の相互干渉成分を打ち消す非干渉制御を行い、前記d軸電圧指令値およびq軸電圧指令値を2相3相変換して3相電圧指令値とし、該3相電圧指令値をPWM変換したPWM信号でインバータを制御することにより、電動機に3相交流電力を供給して駆動する電動機の制御装置において、
前記d軸電圧指令値を非干渉制御によって補償するq軸干渉成分の演算に用いるq軸インダクタンスLqの値を、前記q軸電流値または前記q軸電流指令値と前記比例積分制御におけるd軸積分項出力とに基づいて補正する補正手段を設けたことを特徴とする電動機の制御装置。
The d-axis current command value and the q-axis current command value are obtained from the torque command value and the rotation speed of the motor, and the respective deviations of the d-axis current command value, the q-axis current command value, the d-axis current value, and the q-axis current value are obtained. Is applied with proportional-integral control to calculate a d-axis voltage command value and a q-axis voltage command value, and performs non-interference control for canceling a mutual interference component between the d-axis current value and the q-axis current value. The voltage command value and the q-axis voltage command value are converted into a three-phase voltage command value by two-phase and three-phase conversion, and the inverter is controlled by a PWM signal obtained by PWM-converting the three-phase voltage command value, whereby three-phase AC power is supplied to the motor. In a control device for an electric motor that supplies and drives
The value of the q-axis inductance Lq used for the calculation of the q-axis interference component for compensating the d-axis voltage command value by non-interference control is the q-axis current value or the q-axis current command value and the d-axis integral in the proportional integral control. A control device for an electric motor, comprising correction means for correcting based on a term output.
前記補正手段は、d軸積分項出力Sd、d軸電流値Id、q軸電流値Iq、電動機巻き線抵抗値Raおよび電動機角速度ωとした場合に、下記(数1)式の演算により補正量αを算出し、前記q軸インダクタンスLqに前記補正量αを加算した値を補正後のq軸インダクタンスLq’とすることを特徴とする請求項1に記載の電動機の制御装置。
α=(Sd−Id×Ra)/(Iq×ω) …(数1)
Lq’=Lq+α
When the d-axis integral term output Sd, the d-axis current value Id, the q-axis current value Iq, the motor winding resistance value Ra, and the motor angular velocity ω are used as the correction means, the correction amount is calculated by the following equation (1). The motor control apparatus according to claim 1, wherein α is calculated, and a value obtained by adding the correction amount α to the q-axis inductance Lq is defined as a corrected q-axis inductance Lq ′.
α = (Sd−Id × Ra) / (Iq × ω) (Equation 1)
Lq ′ = Lq + α
請求項2に記載のd軸電流値Idまたはq軸電流値Iqをそれぞれd軸電流指令値Idまたはq軸電流指令値Iqに置き換えた下記(数2)式の演算により補正量αを算出すること特徴とする請求項1に記載の電動機の制御装置。
α=(Sd−Id×Ra)/(Iq×ω) …(数2)
The correction amount α is calculated by the following equation (Equation 2) in which the d-axis current value Id or the q-axis current value Iq according to claim 2 is replaced with a d-axis current command value Id * or a q-axis current command value Iq * , respectively. The motor control device according to claim 1, wherein the motor control device is calculated.
α = (Sd−Id * × Ra) / (Iq * × ω) (Equation 2)
請求項2の(数1)式におけるId×Raまたは請求項3の(数2)式におけるId×Raを省略した下記(数3)式または(数4)式の演算により補正量αを算出することを特徴とする請求項1に記載の電動機の制御装置。
α=Sd/(Iq×ω) …(数3)
α=Sd/(Iq×ω) …(数4)
The correction amount α is calculated by the following equation (3) or equation (4) in which Id × Ra in the equation (2) or Id * × Ra in the equation (3) is omitted. The motor control device according to claim 1, wherein the motor control device is calculated.
α = Sd / (Iq × ω) (Equation 3)
α = Sd / (Iq * × ω) (Expression 4)
d軸電流指令値Idとd軸電流値Idとの偏差(Id−Id)を検出し、d軸電流指令値Idの変動が予め定めた所定値より小さく、かつ、前記偏差の値が予め定めた所定値より小さい場合に、前記補正量αを算出することを特徴とする請求項1乃至請求項4の何れかに記載の電動機の制御装置。 The deviation (Id * −Id) between the d-axis current command value Id * and the d-axis current value Id is detected, the fluctuation of the d-axis current command value Id * is smaller than a predetermined value, and the deviation value 5. The motor control device according to claim 1, wherein the correction amount α is calculated when the value is smaller than a predetermined value. 6.
JP2005163606A 2005-06-03 2005-06-03 Electric motor control device Expired - Fee Related JP4650110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163606A JP4650110B2 (en) 2005-06-03 2005-06-03 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163606A JP4650110B2 (en) 2005-06-03 2005-06-03 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2006340530A JP2006340530A (en) 2006-12-14
JP4650110B2 true JP4650110B2 (en) 2011-03-16

Family

ID=37560581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163606A Expired - Fee Related JP4650110B2 (en) 2005-06-03 2005-06-03 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4650110B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228436B2 (en) * 2007-10-18 2013-07-03 株式会社安川電機 Motor control device and control method thereof
JP5156352B2 (en) * 2007-11-30 2013-03-06 株式会社日立製作所 AC motor control device
JP5397664B2 (en) * 2008-07-23 2014-01-22 株式会社ジェイテクト Motor control device
JP4927052B2 (en) * 2008-09-22 2012-05-09 日立アプライアンス株式会社 Refrigeration equipment
JP2010119245A (en) * 2008-11-14 2010-05-27 Toyota Central R&D Labs Inc Controller of ac motor
JP5924870B2 (en) * 2011-04-05 2016-05-25 三菱重工業株式会社 Motor control device and motor control method
KR101549283B1 (en) 2011-10-12 2015-09-01 엘에스산전 주식회사 Parameter estimating apparatus for permanent magnet synchronous motor driving system
CN112701979A (en) * 2020-12-22 2021-04-23 华南理工大学 Torque control device of permanent magnet synchronous motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435975B2 (en) * 1996-04-10 2003-08-11 株式会社明電舎 Current control unit of rotating electric machine and control device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor

Also Published As

Publication number Publication date
JP2006340530A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4082444B1 (en) Vector controller for permanent magnet synchronous motor
US8285451B2 (en) Method and apparatus for controlling electric power steering system
JP5130716B2 (en) Motor control device and electric power steering device
JP4881635B2 (en) Vector controller for permanent magnet motor
JP4650110B2 (en) Electric motor control device
WO2018230541A1 (en) Motor control device and electric power steering device equipped with same
EP2899876B1 (en) Inverter control device and inverter control method
JP5412820B2 (en) AC motor control device and control method
JP5278326B2 (en) Inverter control device and control method thereof
JP5397664B2 (en) Motor control device
JP2005027379A (en) Motor driver
JP5808199B2 (en) Motor control device and motor drive system
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
JP2015126641A (en) Controller of motor
JP2008154308A (en) Controller of motor-driven power steering system
JP2011250616A (en) Motor drive device and motor driven vehicle
JP2010252492A (en) Motor system
JP5262267B2 (en) Three-phase AC motor drive device
JP2008068666A (en) Electric power steering device
JP2019050684A (en) Controller of power steering device
JP4639970B2 (en) Electric motor control device
JP2012235556A (en) Motor controller
JP2012175776A (en) Motor controller and motor drive system
JP5517983B2 (en) AC rotating machine control device
JP2009081915A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees