Nothing Special   »   [go: up one dir, main page]

JP4647330B2 - Manufacturing method of light extraction structure and manufacturing method of organic EL element - Google Patents

Manufacturing method of light extraction structure and manufacturing method of organic EL element Download PDF

Info

Publication number
JP4647330B2
JP4647330B2 JP2005036334A JP2005036334A JP4647330B2 JP 4647330 B2 JP4647330 B2 JP 4647330B2 JP 2005036334 A JP2005036334 A JP 2005036334A JP 2005036334 A JP2005036334 A JP 2005036334A JP 4647330 B2 JP4647330 B2 JP 4647330B2
Authority
JP
Japan
Prior art keywords
light scattering
light
cover film
organic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005036334A
Other languages
Japanese (ja)
Other versions
JP2006222028A (en
Inventor
正美 粂井
真奈美 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2005036334A priority Critical patent/JP4647330B2/en
Publication of JP2006222028A publication Critical patent/JP2006222028A/en
Application granted granted Critical
Publication of JP4647330B2 publication Critical patent/JP4647330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、光取り出し構造の製造方法、及び有機EL(electroluminescence)素子の製造方法に関する。 The present invention relates to a method for manufacturing a light extraction structure and a method for manufacturing an organic EL (electroluminescence) element .

物質に電界を印加したときに発光を生じる現象を利用したEL素子は、自発光型の電子ディスプレイとして注目されている。現在、発光材料として有機化合物と無機化合物の両方が検討されており、それぞれ実用化が進められている。なかでも有機化合物を用いた有機EL素子は、発光のための印加電圧をより低くできるという特徴があり、高輝度、高品質のデバイス開発が活発に行われている。   An EL element using a phenomenon that emits light when an electric field is applied to a substance has attracted attention as a self-luminous electronic display. Currently, both organic compounds and inorganic compounds are being studied as light-emitting materials, and their practical application has been promoted. Among them, an organic EL element using an organic compound has a feature that an applied voltage for light emission can be lowered, and development of a device having high luminance and high quality is being actively conducted.

図6は、有機EL素子の構造を示す概略的な断面図である。透明なガラス基板21上に、たとえばITO(indium tin oxide)で形成される陽極である透明電極22、発光が行われる有機発光層23、たとえばアルミで形成される陰極である背面金属電極24がこの順に積層される。有機発光層23は、透明電極22から注入された正孔と背面金属電極24から注入された電子が再結合し、発光中心である蛍光色素等を励起することによって発光する。有機発光層23で発光した光は、ガラス基板21側を光取り出し面25として外部に放射される。   FIG. 6 is a schematic cross-sectional view showing the structure of the organic EL element. On the transparent glass substrate 21, a transparent electrode 22 that is an anode made of, for example, ITO (indium tin oxide), an organic light emitting layer 23 that emits light, for example, a back metal electrode 24 that is a cathode made of aluminum, is provided. Laminated sequentially. The organic light emitting layer 23 emits light when the holes injected from the transparent electrode 22 and the electrons injected from the back metal electrode 24 are recombined to excite the fluorescent dye or the like that is the emission center. The light emitted from the organic light emitting layer 23 is emitted to the outside with the glass substrate 21 side as the light extraction surface 25.

一般に有機EL素子は、屈折率の異なる材料が組み合わされて構成されている。たとえば有機発光層23が蛍光色素を含む有機蛍光体層である場合、その屈折率は1.6〜1.8、ITO等の透明導電材で形成された透明電極22の屈折率は1.8〜2.2、ガラス基板21の屈折率は約1.5である。なお、空気の屈折率は1.0である。   Generally, an organic EL element is configured by combining materials having different refractive indexes. For example, when the organic light emitting layer 23 is an organic phosphor layer containing a fluorescent dye, the refractive index is 1.6 to 1.8, and the refractive index of the transparent electrode 22 formed of a transparent conductive material such as ITO is 1.8. -2.2, The refractive index of the glass substrate 21 is about 1.5. Note that the refractive index of air is 1.0.

有機発光層23から発せられた光が、有機EL素子内部を伝播する際、屈折率の異なる界面で反射や屈折を生じることで、有機発光層で発光した光のうち大気中に取り出せる光は、2割程度と計算されている。(たとえば、非特許文献1または2参照。)
このように有機EL素子の発光効率は低いものであった。
MRS Bull.,22,39−45(1997) 2000 MRS Fall Meeting,JJ5,27(2000)
When the light emitted from the organic light emitting layer 23 propagates inside the organic EL element, the light that can be extracted into the atmosphere out of the light emitted from the organic light emitting layer is caused by reflection or refraction at the interface having different refractive indexes. It is calculated as about 20%. (For example, see Non-Patent Document 1 or 2.)
Thus, the light emission efficiency of the organic EL element was low.
MRS Bull. , 22, 39-45 (1997) 2000 MRS Fall Meeting, JJ5, 27 (2000)

本発明の目的は、滑らかな表面を備える光散乱膜を有する光取り出し構造の製造方法を提供することである。The objective of this invention is providing the manufacturing method of the light extraction structure which has a light-scattering film | membrane provided with the smooth surface.

さらに、本発明の他の目的は、高品質の有機EL素子の製造方法を提供することである。 Furthermore, the other object of this invention is to provide the manufacturing method of a high quality organic EL element .

本発明の一観点によれば、仮基板上に、半硬化状のカバー膜を形成する工程と、支持基板上に、硬化性材料を含む材料からなる層を形成する工程と、前記支持基板と前記仮基板とを、前記硬化性材料を含む材料からなる層と前記カバー膜とが密着するように重ねて加圧する工程と、前記硬化性材料を含む材料からなる層を、前記仮基板と前記支持基板との間に配置した状態で硬化させ、光散乱構造を形成する工程と、前記仮基板を前記カバー膜から分離する工程とを有する光取り出し構造の製造方法が提供される。
この光取り出し構造の製造方法によれば、高い表面平滑性と、高い光散乱性とがともに実現された光取り出し構造を製造することができる。
さらに、本発明の他の観点によれば、仮基板上に、半硬化状のカバー膜を形成する工程と、透光性基板上に、硬化性材料を含む材料からなる層を形成する工程と、前記透光性基板と前記仮基板とを、前記硬化性材料を含む材料からなる層と前記カバー膜とが密着するように重ねて加圧する工程と、前記硬化性材料を含む材料からなる層を、前記仮基板と前記透光性基板との間に配置した状態で硬化させ、光散乱構造を形成する工程と、前記仮基板を前記カバー膜から分離する工程と、前記光散乱構造と前記カバー膜とからなる光散乱層上に、透光性の第1の電極を形成する工程と、前記第1の電極上に、有機発光層を形成する工程とを有する有機EL素子の製造方法が提供される。
According to one aspect of the present invention, a step of forming a semi-cured cover film on a temporary substrate, a step of forming a layer made of a material containing a curable material on a support substrate, and the support substrate The temporary substrate and the layer made of the material containing the curable material and the step of pressing the layer so that the cover film is in close contact, and the layer made of the material containing the curable material, the temporary substrate and the There is provided a method for manufacturing a light extraction structure, which includes a step of forming a light scattering structure by being cured between a support substrate and a step of separating the temporary substrate from the cover film.
According to this light extraction structure manufacturing method, it is possible to manufacture a light extraction structure in which both high surface smoothness and high light scattering properties are realized.
Furthermore, according to another aspect of the present invention, a step of forming a semi-cured cover film on the temporary substrate, and a step of forming a layer made of a material containing a curable material on the translucent substrate, A step of pressing the light-transmitting substrate and the temporary substrate so that the layer made of the material containing the curable material and the cover film are in close contact with each other, and the layer made of the material containing the curable material Is cured in a state of being disposed between the temporary substrate and the translucent substrate, forming a light scattering structure, separating the temporary substrate from the cover film, the light scattering structure and the An organic EL device manufacturing method comprising a step of forming a translucent first electrode on a light scattering layer comprising a cover film and a step of forming an organic light emitting layer on the first electrode. Provided.

この有機EL素子は、欠陥の発生や性能の低下が防止された、高品質の有機EL素子である。   This organic EL element is a high-quality organic EL element in which occurrence of defects and deterioration in performance are prevented.

滑らかな表面を備える光散乱膜を有する光取り出し構造の製造方法を提供することができる。The manufacturing method of the light extraction structure which has a light-scattering film | membrane provided with a smooth surface can be provided.
さらに、高品質の有機EL素子の製造方法を提供することができる。Furthermore, the manufacturing method of a high quality organic EL element can be provided.

本願発明者らは、先の提案(特願2003−208025号)において、内部に光散乱層を設けた有機EL素子を提案した。(特願2003−208025号 [特許請求の範囲]及び[発明の実施の形態][0020]〜[0085]参照。)この提案によれば、外部への光取り出し効率の向上した有機EL素子を提供することができる。   The inventors of the present application have proposed an organic EL element in which a light scattering layer is provided in the previous proposal (Japanese Patent Application No. 2003-208025). (See Japanese Patent Application No. 2003-208025 [Claims] and [Embodiments of the Invention] [0020] to [0085].) According to this proposal, an organic EL element with improved light extraction efficiency to the outside can be obtained. Can be provided.

図1は、「透光性の基板と、前記基板上に形成された光散乱層であって、該光散乱層に入射する光を複数の方向に散乱する構造を有する光散乱層と、前記光散乱層上に形成された透光性の第1の電極と、前記第1の電極上に形成され、光を発することのできる有機発光層と、前記有機発光層上に形成された第2の電極とを有し、前記有機発光層で発せられた光は前記基板と平行な面から取り出される有機EL素子」(特願2003−208025号 [特許請求の範囲][請求項1])の一実施例を示す概略的な断面図である。   FIG. 1 shows a “translucent substrate, a light scattering layer formed on the substrate, the light scattering layer having a structure for scattering light incident on the light scattering layer in a plurality of directions, A translucent first electrode formed on the light scattering layer, an organic light emitting layer formed on the first electrode and capable of emitting light, and a second formed on the organic light emitting layer The light emitted from the organic light emitting layer is extracted from a plane parallel to the substrate (Japanese Patent Application No. 2003-208025 [Claims] [Claim 1]) It is a schematic sectional drawing which shows one Example.

図6に示した有機EL素子の構造と比較した場合、ガラス基板21と透明電極22との間に、光散乱層26が形成されている。図1に示す構造によれば、ガラス基板21と透明電極22との界面で反射されて透明電極22より内側を伝播する光成分と、ガラス基板21と空気との界面で反射されてガラス基板21内部を多重反射して伝播する光成分の両方を、光散乱層26を設けることによって散乱させることができる。これによって、有機発光層23で発生した光が素子内部に閉じ込められることを防ぎ、これまで外部に取り出せなかった光を大量に外部に取り出すことが可能となった。このため、有機EL素子の発光輝度を向上させることができた。   When compared with the structure of the organic EL element shown in FIG. 6, a light scattering layer 26 is formed between the glass substrate 21 and the transparent electrode 22. According to the structure shown in FIG. 1, the light component reflected at the interface between the glass substrate 21 and the transparent electrode 22 and propagating inward from the transparent electrode 22, and reflected at the interface between the glass substrate 21 and the air, Both light components propagating through multiple reflections inside can be scattered by providing the light scattering layer 26. As a result, the light generated in the organic light emitting layer 23 is prevented from being confined inside the device, and a large amount of light that could not be extracted to the outside can be extracted to the outside. For this reason, the light emission luminance of the organic EL element could be improved.

ところで、有機EL素子の透明電極22(たとえばITOなどで形成される。)の表面は、平滑であることが望ましい。これは、透明電極22の表面凹凸が大きいと、有機EL素子には、ショート(短絡)や輝度むら、ダークスポットと呼ばれる発光しない欠陥領域の発生などの不良や性能低下を引き起こす場合があるためである。
たとえば透明電極22に隣接して形成される有機層(発光層、電荷輸送層など)の膜厚は薄いため、透明電極22表面の平滑性の欠如が、陽陰両極間の電気的ショートにつながりやすい。また、通電した際に、凸部分に電流の集中が生じる結果、面内で均一な発光が得られない場合がある。さらに、大きな電流集中が生じた場合、有機層が焼けたり熱劣化したりして電気的接触が不安定となり、ダークスポットが生じやすくなる。
By the way, it is desirable that the surface of the transparent electrode 22 (formed of, for example, ITO) of the organic EL element is smooth. This is because if the surface irregularities of the transparent electrode 22 are large, the organic EL element may cause defects such as short-circuits, uneven brightness, and defective areas called dark spots that do not emit light, and performance degradation. is there.
For example, since the organic layer (light emitting layer, charge transport layer, etc.) formed adjacent to the transparent electrode 22 is thin, the lack of smoothness on the surface of the transparent electrode 22 leads to an electrical short between the positive and negative electrodes. Cheap. In addition, when current is applied, current concentration may occur in the convex portion, and as a result, uniform light emission may not be obtained in the surface. Furthermore, when a large current concentration occurs, the organic layer is burned or thermally deteriorated, and the electrical contact becomes unstable, and dark spots are likely to occur.

ここで、光散乱性を有する層(膜)を、微粒子状散乱体を含むバインダを、支持体である基板またはフィルム表面に印刷、スプレーなどして形成した場合には、層(膜)表面が荒れることがある。
また、特願2003−208025号の[発明の実施の形態]に記載のある、膜内部の空孔によって光散乱性を実現する膜の場合でも、製造方法によっては、表面に空孔や気道が露出するために、表面が荒れる場合がある。
Here, when a layer (film) having light scattering properties is formed by printing, spraying, etc., on a substrate or film surface that is a support, a binder containing fine particle scatterers, the surface of the layer (film) is May be rough.
Further, even in the case of a film that realizes light scattering properties by vacancies inside the film described in [Embodiment of the invention] of Japanese Patent Application No. 2003-208025, depending on the manufacturing method, there are vacancies and airways on the surface. The surface may become rough due to exposure.

光散乱層の表面に凹凸が多い場合、その上に形成された透明電極は、下地の光散乱層の凹凸を反映するため、導通が不安定となったり、高抵抗化して、素子の点灯不良や輝度低下、寿命劣化の原因となることがある。   If the surface of the light scattering layer has many irregularities, the transparent electrode formed on the surface reflects the irregularities of the underlying light scattering layer. May cause a decrease in brightness and a decrease in service life.

この解決を意図して、本願発明者らは、光散乱層の平滑化のために、光散乱層の表面にトップコーティングを施す試みを行った。
図2(A)〜(D)は、光散乱層のトップコーティングの試みについて説明するための図である。
In order to solve this problem, the inventors of the present application have attempted to apply a top coating on the surface of the light scattering layer in order to smooth the light scattering layer.
2A to 2D are diagrams for explaining an attempt of top coating of the light scattering layer.

図2(A)を参照する。透明、平板なガラス基板21上に溶媒を加えた紫外線硬化樹脂30を適量展開する。
図2(B)を参照する。紫外線硬化樹脂30に高圧水銀ランプの紫外線を照射して硬化させ、室温乾燥で溶媒を蒸発させて、多孔質の光散乱層26を形成する。光散乱層26の表面には凹凸が多数存在する。
Reference is made to FIG. An appropriate amount of an ultraviolet curable resin 30 to which a solvent is added is developed on a transparent, flat glass substrate 21.
Reference is made to FIG. The ultraviolet curable resin 30 is irradiated with ultraviolet rays from a high-pressure mercury lamp and cured, and the solvent is evaporated by drying at room temperature to form the porous light scattering layer 26. Many irregularities exist on the surface of the light scattering layer 26.

図2(C)を参照する。平滑化を意図して、光散乱層26の表面に紫外線硬化性のトップコート液31を塗布する。
図2(D)を参照する。塗布されたトップコート液31が、光散乱層26内部に浸透または拡散し、光散乱層26内部の空孔がトップコート液31で満たされる。光散乱層26に高圧水銀ランプの紫外線を照射して硬化させる。
Reference is made to FIG. An ultraviolet curable topcoat solution 31 is applied to the surface of the light scattering layer 26 for the purpose of smoothing.
Reference is made to FIG. The applied top coat liquid 31 penetrates or diffuses into the light scattering layer 26, and the holes in the light scattering layer 26 are filled with the top coat liquid 31. The light scattering layer 26 is cured by being irradiated with ultraviolet rays from a high-pressure mercury lamp.

このように作製された光取り出し構造を本願発明者らが確認したところ、光散乱層26表面の平滑化は不十分であった。また、内部の空孔の一部が埋まることにより、光散乱特性が劣化することも確認された。   When the inventors of the present invention confirmed the light extraction structure thus manufactured, the surface of the light scattering layer 26 was not sufficiently smoothed. It was also confirmed that the light scattering characteristics deteriorated when a part of the internal vacancies were filled.

本願発明者らは、図2を用いて説明したトップコーティングの試み以外にも、スプレーや蒸着、スピンコートなどの処理方法を用い、内部に空孔が存在し、表面にその気道や空孔が露出する樹脂組成物による光散乱層に実用的なトップコート層を形成する試みを様々に行った。   In addition to the top coating trial described with reference to FIG. 2, the inventors of the present application use a processing method such as spraying, vapor deposition, spin coating, etc., and there are vacancies inside, and the airways and vacancies are present on the surface. Various attempts were made to form a practical topcoat layer on the light scattering layer of the exposed resin composition.

しかし、これらのコーティングの方法は、下地の凹凸に影響を受けやすく、コーティングによる平滑化の効果が得られにくい、また、コーティング成分が光散乱層の内部に浸透または拡散しやすく、そのため散乱膜の内部形状(構造)が変化し、散乱特性に好ましくない影響を与えることがある、等の理由により、有効なトップコート層の形成は困難な場合が多かった。なお、下地である光散乱層が樹脂材料で形成されている場合は、蒸着などの熱的なダメージを与えやすい手法は好ましく用いることはできない。   However, these coating methods are easily affected by the unevenness of the base, and it is difficult to obtain a smoothing effect by the coating, and the coating component easily penetrates or diffuses into the light scattering layer. In many cases, it is difficult to form an effective top coat layer because the internal shape (structure) changes and may adversely affect the scattering characteristics. In addition, when the light-scattering layer which is a foundation | substrate is formed with the resin material, the method which is easy to give a thermal damage, such as vapor deposition, cannot be used preferably.

本願発明者らは、研究を続けた結果、たとえば以下に示す方法で平滑な表面を有する光散乱層(光散乱構造)を形成することに成功した。
図3(A)〜(F)は、実施例による光散乱構造の製造方法を示す概略的な断面図である。
As a result of continuing research, the inventors of the present application have succeeded in forming a light scattering layer (light scattering structure) having a smooth surface by, for example, the following method.
3A to 3F are schematic cross-sectional views illustrating a method for manufacturing a light scattering structure according to an embodiment.

図3(A)を参照する。たとえばガラス板である平滑な支持基板35上に、トップコート液31、たとえば紫外線硬化樹脂(紫外線硬化性材料を含む材料)を塗布する。なお、支持基板35は、シリコン、マイカ、金属、セラミック、樹脂などを用いて形成してもよい。   Reference is made to FIG. For example, a top coat liquid 31, for example, an ultraviolet curable resin (a material including an ultraviolet curable material) is applied onto a smooth support substrate 35 which is a glass plate. The support substrate 35 may be formed using silicon, mica, metal, ceramic, resin, or the like.

図3(B)を参照する。トップコート液31を薄膜化し、その後乾燥させて、支持基板35上に半硬化状のカバー膜36を形成する。ここで「半硬化状」とは、流動性がほとんどなく、溶媒と接触しても膜形態が一定時間保持される状態をさす。自然放置、加熱、真空引きなどによる溶媒の蒸発乾燥処理により、半硬化状態を実現することができる。上記蒸発乾燥処理と紫外線照射処理を併用して、半硬化状態を実現してもよい。   Reference is made to FIG. The top coat liquid 31 is thinned and then dried to form a semi-cured cover film 36 on the support substrate 35. Here, the “semi-cured state” means a state in which there is almost no fluidity and the film form is maintained for a certain period of time even in contact with a solvent. A semi-cured state can be realized by evaporating and drying the solvent by natural standing, heating, evacuation or the like. You may implement | achieve a semi-hardened state using together the said evaporation drying process and an ultraviolet irradiation process.

また、カバー膜36を形成する材料は、光散乱層26の光散乱構造部を形成する材料と同じ組成をもつ材料、または硬化後の屈折率がほぼ等しくなる材料を用いることが望ましい。紫外線硬化樹脂の他に、たとえば放射線、熱、反応開始薬剤の添加により架橋する樹脂組成物を用いることができる。   Further, as the material for forming the cover film 36, it is desirable to use a material having the same composition as the material for forming the light scattering structure portion of the light scattering layer 26, or a material having substantially the same refractive index after curing. In addition to the ultraviolet curable resin, for example, a resin composition that crosslinks by adding radiation, heat, or a reaction initiator can be used.

支持基板35上にトップコート液31をコーティングする際には、光散乱層26の表面が最も平滑になるための最適な膜厚となるように、コーティング条件を変えたり、トップコート液31の粘度を調整したりすることが望ましい。溶媒や添加物を加えてもよい。   When the top coat solution 31 is coated on the support substrate 35, the coating conditions are changed or the viscosity of the top coat solution 31 is adjusted so that the surface of the light scattering layer 26 has an optimum film thickness for the smoothest surface. It is desirable to adjust. Solvents and additives may be added.

図3(C)を参照する。透明、平板なガラス基板21上に溶媒を加えた紫外線硬化樹脂(紫外線硬化性材料を含む材料)30を適量展開する。
図3(D)を参照する。紫外線硬化樹脂30を展開したガラス基板21と、カバー膜36の形成された支持基板35とを、紫外線硬化樹脂30とカバー膜36とが向き合うように対向配置する。
Reference is made to FIG. An appropriate amount of an ultraviolet curable resin (a material containing an ultraviolet curable material) 30 to which a solvent is added is developed on a transparent, flat glass substrate 21.
Reference is made to FIG. The glass substrate 21 on which the ultraviolet curable resin 30 is spread and the support substrate 35 on which the cover film 36 is formed are arranged to face each other so that the ultraviolet curable resin 30 and the cover film 36 face each other.

図3(E)を参照する。ガラス基板21と支持基板35とを、紫外線硬化樹脂30とカバー膜36とが密着するように重ねて加圧処理を行う。
加圧条件を変えることによって、所望の厚さの光散乱層26を形成することができる。光散乱層26は、厚いほど高い光散乱度を有する。均一な加圧を行うことで、膜厚を一定に制御でき、面内で均一な散乱度を備える光散乱層26を形成することができる。
Reference is made to FIG. The glass substrate 21 and the support substrate 35 are stacked so that the ultraviolet curable resin 30 and the cover film 36 are in close contact with each other, and pressure treatment is performed.
The light scattering layer 26 having a desired thickness can be formed by changing the pressing condition. The thicker the light scattering layer 26, the higher the light scattering degree. By performing uniform pressurization, the film thickness can be controlled to be constant, and the light scattering layer 26 having a uniform scattering degree in the surface can be formed.

加圧処理後、紫外線を照射し、両基板に挟まれた紫外線硬化樹脂30を溶媒を含んだまま架橋(硬化)させる。
図3(F)を参照する。支持基板35を除き、内部に含まれる溶媒を蒸発させ、光散乱層26を得る。このようにして形成される光散乱層26は、カバー膜36によって高い表面平滑性をもちながら、微細な内部多孔質構造を備え、高い光散乱性を有している。
After the pressure treatment, ultraviolet rays are irradiated to crosslink (cure) the ultraviolet curable resin 30 sandwiched between both substrates while containing the solvent.
Reference is made to FIG. Except for the support substrate 35, the solvent contained therein is evaporated to obtain the light scattering layer 26. The light scattering layer 26 thus formed has a fine inner porous structure and high light scattering properties while having high surface smoothness due to the cover film 36.

なお、図示するように、内部多孔質領域と表面平滑領域とは、境界の明瞭な2層構造とはならない場合が多い。ただし、材料の選択や、膜厚の設定などにより、2層構造とすることが可能である。   As shown in the figure, the internal porous region and the surface smooth region often do not have a two-layer structure with a clear boundary. However, a two-layer structure can be formed by selecting a material, setting a film thickness, or the like.

ここでは、微細な内部多孔質構造部の表面に平滑部が形成されるとして説明したが、多孔質構造に限らず光散乱構造を備える部分の表面に平滑部を形成することにより、高い表面平滑性と、高い光散乱性とをともに実現することができる。   Here, it has been described that the smooth portion is formed on the surface of the fine internal porous structure portion. And high light scattering properties can be realized.

以下、本願発明者らが、実際に行った実施態様を記す。   Hereinafter, embodiments actually performed by the present inventors will be described.

紫外線アクリレートモノマ16重量部、紫外線アクリレートオリゴマ11重量部、アクリル樹脂10重量部、アミノ樹脂3重量部、トルエン27重量部、酢酸ブチル18重量部、メチルイソブチルケトン8重量部、メタノール5重量部、重合開始剤2重量部を含む紫外線硬化組成物を調製した。トルエンで3倍に希釈し、洗浄したガラス基板に溶液を展開し、1500rpm、20秒間スピンコーティングした。大気中、室温下で3分間乾燥させた後、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光し、カバー膜を得た。カバー膜の膜厚は、約600nmであった。 UV acrylate monomer 16 parts, UV acrylate oligomer 11 parts, acrylic resin 10 parts, amino resin 3 parts, toluene 27 parts, butyl acetate 18 parts, methyl isobutyl ketone 8 parts, methanol 5 parts, polymerization An ultraviolet curable composition containing 2 parts by weight of an initiator was prepared. The solution was developed on a glass substrate that had been diluted 3 times with toluene and washed, and spin-coated at 1500 rpm for 20 seconds. After drying in the atmosphere at room temperature for 3 minutes, 3.5 J / cm 2 (at 365 nm) ultraviolet rays were exposed for 1 minute using a high-pressure mercury lamp to obtain a cover film. The thickness of the cover film was about 600 nm.

次に、透明なPMMA(polymethyl methacrylate;ポリメチルメタクリレート)基板に、調製した紫外線硬化組成物を希釈せずに展開し、先に得たカバー膜を圧着させるように均一に加圧した。さらに、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光した。 Next, the prepared UV curable composition was spread on a transparent PMMA (polymethyl methacrylate) substrate without being diluted, and the cover film obtained previously was uniformly pressed so as to be pressure-bonded. Further, ultraviolet rays of 3.5 J / cm 2 (at 365 nm) were exposed for 1 minute using a high-pressure mercury lamp.

最後に、カバー膜の支持体であるガラス基板をはずし、硬化膜中に含まれる溶媒を揮発させることによって、表面が平滑な多孔質光散乱膜を得た。   Finally, the glass substrate which is a support for the cover film was removed, and the solvent contained in the cured film was volatilized to obtain a porous light scattering film having a smooth surface.

第1の実施形態と同じ組成の紫外線硬化組成物を調製した。トルエンで3倍に希釈し、洗浄したガラス基板に溶液を展開し、2500rpm、20秒間スピンコーティングした。大気中、120℃に加熱したホットプレート上にて1分間加熱し乾燥させた後、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光し、カバー膜を得た。カバー膜の膜厚は、約400nmであった。 An ultraviolet curable composition having the same composition as that of the first embodiment was prepared. The solution was developed on a glass substrate that had been diluted 3-fold with toluene and washed, and spin-coated at 2500 rpm for 20 seconds. After heating and drying for 1 minute on a hot plate heated to 120 ° C. in the atmosphere, UV light of 3.5 J / cm 2 (at 365 nm) is exposed for 1 minute using a high-pressure mercury lamp to obtain a cover film. It was. The thickness of the cover film was about 400 nm.

次に、透明なPMMA基板に、調製した紫外線硬化組成物を希釈せずに展開し、先に得たカバー膜を圧着させるように均一に加圧した。さらに、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光した。 Next, the prepared UV curable composition was spread on a transparent PMMA substrate without being diluted, and the pressure was uniformly applied so that the previously obtained cover film was pressure-bonded. Further, ultraviolet rays of 3.5 J / cm 2 (at 365 nm) were exposed for 1 minute using a high-pressure mercury lamp.

最後に、カバー膜の支持体であるガラス基板をはずし、硬化膜中に含まれる溶媒を揮発させることによって、表面が平滑な多孔質光散乱膜を得た。   Finally, the glass substrate which is a support for the cover film was removed, and the solvent contained in the cured film was volatilized to obtain a porous light scattering film having a smooth surface.

第1及び第2の実施形態と同じ組成の紫外線硬化組成物を調製した。トルエンで3倍に希釈し、洗浄したガラス基板に溶液を展開し、1500rpm、20秒間スピンコーティングした。大気中、120℃に加熱したホットプレート上にて1分間加熱し乾燥させて、カバー膜を得た。   An ultraviolet curable composition having the same composition as in the first and second embodiments was prepared. The solution was developed on a glass substrate that had been diluted 3 times with toluene and washed, and spin-coated at 1500 rpm for 20 seconds. It was heated for 1 minute on a hot plate heated to 120 ° C. in the air and dried to obtain a cover film.

次に、別に用意した洗浄したガラス基板に、調製した紫外線硬化組成物を希釈せずに展開し、先に得たカバー膜を圧着させるように均一に加圧した。さらに、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光した。 Next, the prepared ultraviolet curable composition was spread on a separately prepared glass substrate prepared without being diluted, and the cover film obtained previously was pressed uniformly so as to be pressure-bonded. Further, ultraviolet rays of 3.5 J / cm 2 (at 365 nm) were exposed for 1 minute using a high-pressure mercury lamp.

最後に、カバー膜の支持体であるガラス基板をはずし、硬化膜中に含まれる溶媒を揮発させることによって、表面が平滑な多孔質光散乱膜を得た。   Finally, the glass substrate which is a support for the cover film was removed, and the solvent contained in the cured film was volatilized to obtain a porous light scattering film having a smooth surface.

第1乃至第3の実施形態と同じ組成の紫外線硬化組成物を調製した。トルエンで3倍に希釈し、洗浄したガラス基板に溶液を展開し、1500rpm、20秒間スピンコーティングした。大気中、120℃に加熱したホットプレート上にて1分間加熱し乾燥させて、カバー膜を得た。   An ultraviolet curable composition having the same composition as in the first to third embodiments was prepared. The solution was developed on a glass substrate that had been diluted 3 times with toluene and washed, and spin-coated at 1500 rpm for 20 seconds. It was heated for 1 minute on a hot plate heated to 120 ° C. in the air and dried to obtain a cover film.

次に、架橋PMMA粒子を含む紫外線硬化組成物を調製した。この組成物中には溶媒は含まれないが、架橋PMMA粒子と紫外線硬化組成物との屈折率差によって光散乱性を有する。これを透明PMMA基板に展開し、先に得たカバー膜を圧着させるように均一に加圧した。さらに、高圧水銀ランプを用いて3.5J/cm(at 365nm)の紫外線を1分間露光した。 Next, an ultraviolet curable composition containing crosslinked PMMA particles was prepared. Although this composition does not contain a solvent, it has light scattering properties due to the difference in refractive index between the crosslinked PMMA particles and the ultraviolet curable composition. This was spread on a transparent PMMA substrate and uniformly pressed so that the previously obtained cover film was pressure-bonded. Further, ultraviolet rays of 3.5 J / cm 2 (at 365 nm) were exposed for 1 minute using a high-pressure mercury lamp.

最後に、カバー膜の支持体であるガラス基板をはずし、表面が平滑な光散乱膜を得た。
図4(A)及び(B)は、それぞれ比較例による多孔質光散乱膜の表面SEM(scanning electron microscope;走査電子顕微鏡)像、及び実施例による多孔質光散乱膜の表面SEM像を示す。
Finally, the glass substrate which is the support for the cover film was removed to obtain a light scattering film having a smooth surface.
4A and 4B show a surface SEM (scanning electron microscope) image of the porous light scattering film according to the comparative example and a surface SEM image of the porous light scattering film according to the example, respectively.

ここで、「比較例による多孔質光散乱膜」とは、図3(A)〜(F)を参照して説明した、実施例による光散乱構造の製造方法において、支持基板35上にカバー膜36を形成せず(すなわち図3(A)及び(B)に示す工程を省略し)、図3(D)及び(E)に示した工程において、カバー膜36の形成されない支持基板35と、紫外線硬化樹脂30を展開したガラス基板21とを重ねて加圧処理を行い、作製した多孔質光散乱膜を意味する。   Here, the “porous light scattering film according to the comparative example” refers to the cover film on the support substrate 35 in the method for manufacturing the light scattering structure according to the example described with reference to FIGS. 36 (that is, omitting the steps shown in FIGS. 3A and 3B), and in the steps shown in FIGS. 3D and 3E, the support substrate 35 on which the cover film 36 is not formed, The porous light-scattering film | membrane produced by performing the pressurization process in piles with the glass substrate 21 which expand | deployed the ultraviolet curable resin 30 is meant.

図4(A)を参照する。比較例による多孔質光散乱膜の表面には空孔や気道が露出し、多くの穴構造が観察される。
図4(B)を参照する。実施例による多孔質光散乱膜には目立った穴構造は観察されず、平滑な表面を備えているのが確認される。
Reference is made to FIG. Holes and airways are exposed on the surface of the porous light scattering film according to the comparative example, and many hole structures are observed.
Reference is made to FIG. It is confirmed that the porous light-scattering film according to the example has a smooth surface without any conspicuous hole structure being observed.

図5は、比較例による多孔質光散乱膜と実施例による多孔質光散乱膜とについて、それぞれRa、Rms、Rzの値を示す表である。Ra、Rms、Rzともに、単位「nm」で示した。   FIG. 5 is a table showing Ra, Rms, and Rz values for the porous light scattering film according to the comparative example and the porous light scattering film according to the example. Ra, Rms, and Rz are all expressed in the unit “nm”.

「Ra」は、「JIS B0601」で規定される中心線平均粗さを表す指標である。比較例による多孔質光散乱膜については、Ra=10(nm)であるが、実施例による多孔質光散乱膜については、Ra=5(nm)であった。このように図3(A)〜(F)を参照して説明した方法によれば、Raが10nm未満、たとえば5nm以下の光散乱膜を作製することができる。   “Ra” is an index representing the center line average roughness defined by “JIS B0601”. For the porous light scattering film according to the comparative example, Ra = 10 (nm), but for the porous light scattering film according to the example, Ra = 5 (nm). As described above, according to the method described with reference to FIGS. 3A to 3F, a light scattering film having an Ra of less than 10 nm, for example, 5 nm or less can be produced.

「Rms」は、二乗平均粗さを表す指標である。二乗平均粗さとは、基準面から指定面までの偏差の二乗を平均した値の平方根と定義する。比較例による多孔質光散乱膜については、Rms=15(nm)であるが、実施例による多孔質光散乱膜については、Rms=6(nm)であった。   “Rms” is an index representing the mean square roughness. The root mean square roughness is defined as the square root of a value obtained by averaging the squares of deviations from the reference plane to the designated plane. For the porous light scattering film according to the comparative example, Rms = 15 (nm), but for the porous light scattering film according to the example, Rms = 6 (nm).

「Rz」は、「JIS B0601」で規定される10点平均粗さを表す指標である。比較例による多孔質光散乱膜については、Rz=144(nm)であるが、実施例による多孔質光散乱膜については、Rz=37(nm)であった。   “Rz” is an index representing the 10-point average roughness defined by “JIS B0601”. For the porous light scattering film according to the comparative example, Rz = 144 (nm), but for the porous light scattering film according to the example, Rz = 37 (nm).

これらの指標からも、実施例による多孔質光散乱膜が平滑な表面を備えていることがわかる。
本願発明者らは、実施例による多孔質光散乱膜(光散乱層)を用いて、有機EL素子を作製した。その概略的な構造は図1に示すものと同様である。
Also from these indices, it can be seen that the porous light scattering films according to the examples have a smooth surface.
The inventors of the present application produced an organic EL element using the porous light scattering film (light scattering layer) according to the example. Its schematic structure is the same as that shown in FIG.

点灯試験の結果、ショート(短絡)、輝度むら、ダークスポットが低減し、素子の品質、輝度、寿命特性が向上することが確かめられた。
以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者には自明であろう。
As a result of the lighting test, it was confirmed that short circuit (short circuit), uneven brightness and dark spots were reduced, and that the quality, brightness and life characteristics of the device were improved.
As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

有機LED(light emitting diode;発光ダイオード)、LCD(liquid crystal display;液晶ディスプレイ)、PDP(plasma display panel;プラズマディスプレイ)、FED(field emission display;電界放出ディスプレイ)、バックライト、LED及び封止樹脂、EL、導光板、輝度向上あるいは配光制御用光学フィルム、TV(television;テレビ)、情報表示素子、面光源、太陽電池、受光素子などに好適に応用可能である。     Organic LED (Light Emitting Diode), LCD (Liquid Crystal Display; Liquid Crystal Display), PDP (Plasma Display Panel), FED (Field Emission Display), Backlight, LED and Sealing Resin , EL, light guide plate, brightness enhancement or light distribution control optical film, TV (television), information display element, surface light source, solar cell, light receiving element and the like.

先の提案の一実施例を示す概略的な断面図である。It is schematic sectional drawing which shows one Example of a previous proposal. (A)〜(D)は、光散乱層のトップコーティングの試みについて説明するための図である。(A)-(D) are the figures for demonstrating the trial of the top coating of a light-scattering layer. (A)〜(F)は、実施例による光散乱構造の製造方法を示す概略的な断面図である。(A)-(F) are schematic sectional drawings which show the manufacturing method of the light-scattering structure by an Example. (A)及び(B)は、それぞれ比較例による多孔質光散乱膜の表面SEM(scanning electron microscope;走査電子顕微鏡)像、及び実施例による多孔質光散乱膜の表面SEM像を示す。(A) and (B) show the surface SEM (scanning electron microscope) image of the porous light-scattering film | membrane by a comparative example, and the surface SEM image of the porous light-scattering film | membrane by an Example, respectively. 比較例による多孔質光散乱膜と実施例による多孔質光散乱膜とについて、それぞれRa、Rms、Rzの値を示す表である。It is a table | surface which shows the value of Ra, Rms, and Rz about the porous light-scattering film | membrane by a comparative example, and the porous light-scattering film | membrane by an Example, respectively. 有機EL素子の構造を示す概略的な断面図である。It is a schematic sectional drawing which shows the structure of an organic EL element.

符号の説明Explanation of symbols

21 ガラス基板
22 透明電極
23 有機発光層
24 背面金属電極
25 光取り出し面
26 光散乱層
30 紫外線硬化樹脂
31 トップコート液
35 支持基板
36 カバー膜
21 glass substrate 22 transparent electrode 23 organic light emitting layer 24 back metal electrode 25 light extraction surface 26 light scattering layer 30 ultraviolet curable resin 31 top coat liquid 35 support substrate 36 cover film

Claims (13)

仮基板上に、半硬化状のカバー膜を形成する工程と、
支持基板上に、硬化性材料を含む材料からなる層を形成する工程と、
前記支持基板と前記仮基板とを、前記硬化性材料を含む材料からなる層と前記カバー膜とが密着するように重ねて加圧する工程と、
前記硬化性材料を含む材料からなる層を、前記仮基板と前記支持基板との間に配置した状態で硬化させ、光散乱構造を形成する工程と、
前記仮基板を前記カバー膜から分離する工程と
を有する光取り出し構造の製造方法。
Forming a semi-cured cover film on the temporary substrate;
Forming a layer made of a material containing a curable material on a support substrate;
A step of overlapping and pressing the support substrate and the temporary substrate so that the layer made of a material containing the curable material and the cover film are in close contact with each other;
Curing a layer made of a material containing the curable material in a state of being disposed between the temporary substrate and the support substrate to form a light scattering structure;
And a step of separating the temporary substrate from the cover film.
前記光散乱構造と前記カバー膜とを、同じ組成をもつ材料で形成する請求項1に記載の光取り出し構造の製造方法。 The method for manufacturing a light extraction structure according to claim 1, wherein the light scattering structure and the cover film are formed of a material having the same composition. 前記光散乱構造と前記カバー膜とを、屈折率がほぼ等しい材料で形成する請求項1または2に記載の光取り出し構造の製造方法。 The method for manufacturing a light extraction structure according to claim 1, wherein the light scattering structure and the cover film are formed of a material having substantially the same refractive index. 前記硬化性材料が紫外線硬化性材料であり、前記光散乱構造を形成する工程が、前記硬化性材料を含む材料からなる層に紫外線を照射する工程を含む請求項1に記載の光取り出し構造の製造方法。 2. The light extraction structure according to claim 1, wherein the curable material is an ultraviolet curable material, and the step of forming the light scattering structure includes a step of irradiating the layer made of the material containing the curable material with ultraviolet rays. Production method. 前記支持基板が透明基板である請求項1〜4のいずれか1項に記載の光取り出し構造の製造方法。 The method for manufacturing a light extraction structure according to claim 1 , wherein the support substrate is a transparent substrate. 前記光散乱構造と前記カバー膜とからなる光散乱層は、粗さRaが10nm未満である請求項1〜5のいずれか1項に記載の光取り出し構造の製造方法。 The method for manufacturing a light extraction structure according to any one of claims 1 to 5, wherein the light scattering layer including the light scattering structure and the cover film has a roughness Ra of less than 10 nm. 前記硬化性材料を含む材料からなる層は溶媒を含み、
前記光散乱構造を形成する工程において、前記硬化性材料を含む材料からなる層を、溶媒を含んだまま硬化させる請求項1〜6のいずれか1項に記載の光取り出し構造の製造方法。
The layer made of a material containing the curable material contains a solvent,
The method for producing a light extraction structure according to claim 1 , wherein in the step of forming the light scattering structure, a layer made of a material containing the curable material is cured while containing a solvent.
仮基板上に、半硬化状のカバー膜を形成する工程と、
透光性基板上に、硬化性材料を含む材料からなる層を形成する工程と、
前記透光性基板と前記仮基板とを、前記硬化性材料を含む材料からなる層と前記カバー膜とが密着するように重ねて加圧する工程と、
前記硬化性材料を含む材料からなる層を、前記仮基板と前記透光性基板との間に配置した状態で硬化させ、光散乱構造を形成する工程と、
前記仮基板を前記カバー膜から分離する工程と、
前記光散乱構造と前記カバー膜とからなる光散乱層上に、透光性の第1の電極を形成する工程と、
前記第1の電極上に、有機発光層を形成する工程と
を有する有機EL素子の製造方法。
Forming a semi-cured cover film on the temporary substrate;
Forming a layer made of a material containing a curable material on a light-transmitting substrate;
A step of applying pressure to the translucent substrate and the temporary substrate so that the layer made of a material containing the curable material and the cover film are in close contact with each other;
Curing a layer made of a material containing the curable material in a state of being disposed between the temporary substrate and the translucent substrate to form a light scattering structure;
Separating the temporary substrate from the cover film;
Forming a translucent first electrode on a light scattering layer comprising the light scattering structure and the cover film;
A method for producing an organic EL element, comprising: forming an organic light emitting layer on the first electrode.
前記光散乱構造と前記カバー膜とを、同じ組成をもつ材料で形成する請求項8に記載の有機EL素子の製造方法。 The method for manufacturing an organic EL element according to claim 8, wherein the light scattering structure and the cover film are formed of a material having the same composition. 前記光散乱構造と前記カバー膜とを、屈折率がほぼ等しい材料で形成する請求項8または9に記載の有機EL素子の製造方法。 The method for manufacturing an organic EL element according to claim 8 or 9, wherein the light scattering structure and the cover film are formed of a material having substantially the same refractive index. 前記硬化性材料が紫外線硬化性材料であり、前記光散乱構造を形成する工程が、前記硬化性材料を含む材料からなる層に紫外線を照射する工程を含む請求項8〜10のいずれか1項に記載の有機EL素子の製造方法。 Wherein a curable material is UV-curable material, the step of forming the light scattering structure, any one of claims 8 to 10 comprising the step of irradiating ultraviolet rays to the layer made of a material containing the curable material The manufacturing method of the organic EL element of description . 前記光散乱層は、粗さRaが10nm未満である請求項8〜11のいずれか1項に記載の有機EL素子の製造方法。 The method for producing an organic EL element according to claim 8 , wherein the light scattering layer has a roughness Ra of less than 10 nm. 前記硬化性材料を含む材料からなる層は溶媒を含み、
前記光散乱構造を形成する工程において、前記硬化性材料を含む材料からなる層を、溶媒を含んだまま硬化させる請求項8〜12のいずれか1項に記載の有機EL素子の製造方法。
The layer made of a material containing the curable material contains a solvent,
The method for producing an organic EL element according to claim 8 , wherein in the step of forming the light scattering structure, a layer made of a material containing the curable material is cured while containing a solvent.
JP2005036334A 2005-02-14 2005-02-14 Manufacturing method of light extraction structure and manufacturing method of organic EL element Expired - Fee Related JP4647330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036334A JP4647330B2 (en) 2005-02-14 2005-02-14 Manufacturing method of light extraction structure and manufacturing method of organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036334A JP4647330B2 (en) 2005-02-14 2005-02-14 Manufacturing method of light extraction structure and manufacturing method of organic EL element

Publications (2)

Publication Number Publication Date
JP2006222028A JP2006222028A (en) 2006-08-24
JP4647330B2 true JP4647330B2 (en) 2011-03-09

Family

ID=36984181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036334A Expired - Fee Related JP4647330B2 (en) 2005-02-14 2005-02-14 Manufacturing method of light extraction structure and manufacturing method of organic EL element

Country Status (1)

Country Link
JP (1) JP4647330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460767A (en) * 2009-05-14 2012-05-16 思研(Sri)国际顾问与咨询公司 Improved output efficiency of organic light emitting devices

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114350A1 (en) * 2006-03-31 2007-10-11 Pioneer Corporation Organic el element
CN101766052B (en) * 2007-07-27 2012-07-18 旭硝子株式会社 Translucent substrate, method for manufacturing the translucent substrate, organic led element and method for manufacturing the organic LED element
CN101855939B (en) 2007-11-09 2012-04-25 旭硝子株式会社 Light transmitting substrate, method for manufacturing light transmitting substrate, organic led element and method for manufacturing organic led element
KR20110081968A (en) * 2008-10-06 2011-07-15 아사히 가라스 가부시키가이샤 Substrate for electronic device, method for producing same, electronic device using same, method for producing same and substrate for organic led element
DE102008056370B4 (en) * 2008-11-07 2021-09-30 Osram Oled Gmbh Method for producing an organic radiation-emitting component and organic radiation-emitting component
CN102293054B (en) 2009-01-26 2016-08-03 旭硝子株式会社 Substrate for electronic device and use the electronic device of this substrate
JP5714369B2 (en) * 2011-03-18 2015-05-07 住友化学株式会社 Surface-treated film and method for producing the same
JP5913938B2 (en) * 2011-11-30 2016-05-11 富士フイルム株式会社 Light diffusing transfer material, method of forming light diffusing layer, and method of manufacturing organic electroluminescent device
JP2015018770A (en) * 2013-07-12 2015-01-29 パナソニックIpマネジメント株式会社 Organic electroluminescent element and lighting device
KR101750398B1 (en) 2014-01-02 2017-06-23 삼성전자주식회사 Method of preparing light scattering layers
CN103996797A (en) * 2014-06-11 2014-08-20 广州新视界光电科技有限公司 Organic light emitting device and manufacturing method thereof
KR102566542B1 (en) * 2018-05-15 2023-08-10 코닝 인코포레이티드 Light extraction substrate of organic light emitting device and method of fabricating the same
CN109585685B (en) * 2018-12-07 2021-06-01 纳晶科技股份有限公司 Light extraction structure, manufacturing method thereof and light emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146525A (en) * 1994-11-16 1996-06-07 Sekisui Chem Co Ltd Manufacture of optical diffusion panel
JPH1114983A (en) * 1997-06-25 1999-01-22 Sharp Corp Liquid crystal display element
JP2000227509A (en) * 1999-02-08 2000-08-15 Nitto Denko Corp Light diffusing layer and optical device
JP2003043215A (en) * 2001-07-27 2003-02-13 Toray Ind Inc Optically functional sheet and method for manufacturing the same
JP2003195016A (en) * 2001-12-14 2003-07-09 Eastman Kodak Co Light diffuser
JP2004296438A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element
JP2004296437A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146525A (en) * 1994-11-16 1996-06-07 Sekisui Chem Co Ltd Manufacture of optical diffusion panel
JPH1114983A (en) * 1997-06-25 1999-01-22 Sharp Corp Liquid crystal display element
JP2000227509A (en) * 1999-02-08 2000-08-15 Nitto Denko Corp Light diffusing layer and optical device
JP2003043215A (en) * 2001-07-27 2003-02-13 Toray Ind Inc Optically functional sheet and method for manufacturing the same
JP2003195016A (en) * 2001-12-14 2003-07-09 Eastman Kodak Co Light diffuser
JP2004296438A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element
JP2004296437A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460767A (en) * 2009-05-14 2012-05-16 思研(Sri)国际顾问与咨询公司 Improved output efficiency of organic light emitting devices

Also Published As

Publication number Publication date
JP2006222028A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4647330B2 (en) Manufacturing method of light extraction structure and manufacturing method of organic EL element
KR101114916B1 (en) Substrate for Organic Electronic Devices and Method for Manufacturing Thereof
TWI577523B (en) Mold having an uneven structure on its surface, optical article, and manufacturing method thereof, transparent base material for surface light emitter, and surface light emitter
JP5680742B2 (en) Manufacturing method of substrate having concavo-convex structure and manufacturing method of organic EL element using the same
JP4703107B2 (en) Manufacturing method of organic EL element
TWI471059B (en) Organic EL device
JP2011048937A (en) Organic el light-emitting element
JP5763517B2 (en) Organic EL device
CN106058068B (en) Organic Light Emitting Diode and display base plate and preparation method thereof, display device
US20170170434A1 (en) Method for manufacturing substrate, substrate, method for manufacturing organic electroluminescence device, and organic electroluminescence device
WO2012127916A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same
FR2872341A1 (en) FLUORESCENT LAMP FOR FLAT SCREEN AND METHOD OR METHOD OF MANUFACTURING SAME
JP6437998B2 (en) Coated product and apparatus having an optical output coupling layer stack (OCLS) comprising a vacuum-deposited refractive index matching layer on a scattering matrix and method for manufacturing the same
JP5926709B2 (en) Field electron emission film, field electron emission device, light emitting device, and method for manufacturing the same
KR101114917B1 (en) Substrate for Organic Electronic Devices and Method for Manufacturing Thereof
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
JP5926750B2 (en) Field electron emission film, field electron emission device, light emitting device, and method for manufacturing the same
JP2004303562A (en) Substrate for organic electroluminescent element
JP6130157B2 (en) Field electron emission device and method of manufacturing light emitting device using the same
KR20150061405A (en) Method of manufacturing for substrate, substrate, method of manufacturing for organic electro luminescence device and organic electro luminescence device
TW202015896A (en) Internal light extraction layers cured by near infrared radiation
Kim et al. P‐212: Late‐News Poster: Influence of Index Matching Epoxy Filler at the Encapsulation Part for the Performance of TEOLED with Internal Wrinkle Structure
JP2014011094A (en) Substrate for organic el element and organic el element
KR102704466B1 (en) Quantum Dot Light Emitting Diode Device and Preparing Method of the Same
KR20150089356A (en) Method of manufacturing for organic electro luminescence device and organic electro luminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees