JP4534263B2 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- JP4534263B2 JP4534263B2 JP34288598A JP34288598A JP4534263B2 JP 4534263 B2 JP4534263 B2 JP 4534263B2 JP 34288598 A JP34288598 A JP 34288598A JP 34288598 A JP34288598 A JP 34288598A JP 4534263 B2 JP4534263 B2 JP 4534263B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- negative electrode
- group
- solid phase
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の属する技術分野】
本発明は、非水電解質二次電池の負極材料の改良、および非水電解質として高耐酸化性有機溶媒の適用により充放電容量および充放電サイクル寿命などの電気化学特性が改善された、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、移動体通信機器、携帯電子機器の主電源として利用されているリチウム二次電池は、起電力が高く、高エネルギー密度である特長を有している。負極材料としてリチウム金属を用いたリチウム二次電池は、エネルギー密度は高いが、充電時に負極にデンドライトが析出し、また、放電時にはこのデンドライトが切れることにより、バルクの金属リチウム負極表面上から脱落し、充放電反応に寄与し得ない”死んだ”リチウムを生成する。さらに、充放電を繰り返すことによりデンドライトが成長し、セパレータを突き破って正極側に達し、内部短絡を起こす恐れがあった。また、析出したデンドライトは比表面積が大きいため反応活性度が高く、その表面で電解液中の溶媒と反応して電子伝導性に欠いた固体電解質的な界面皮膜を形成する。そのため電池の内部抵抗が高くなったり、電子伝導のネットワークから孤立した粒子が存在するようになり、これらが充放電効率を低下させる要因となっている。これらの理由で負極材料としてリチウム金属を用いたリチウム二次電池は、低い信頼性、および短いサイクル寿命に課題があった。
【0003】
このようなデンドライトを抑制するために、金属リチウムに代えてリチウム−アルミニウム合金(Li-Al合金)やウッド合金に代表されるリチウム合金が負極材料として提案された。このようなリチウムと合金化が可能な金属およびそれら金属を少なくとも一種含んだ合金の場合、初期の充放電サイクルの段階において電気化学的に比較的高容量な負極材料となりうる。しかしながら、充放電によりリチウムとの合金化とリチウムの脱離の繰り返しにより、元来の骨格合金の結晶構造を維持してはいるが、相変化を生じたり、あるいは元素の骨格合金とは相違する結晶構造に変化してしまう場合がある。この場合、活物質であるリチウムのホスト物質である金属又は合金の粒子が膨張 収縮を起こし、充放電サイクルの進行に伴い、結晶粒にストレスがかかった結果、クラックが生じ、粒子の微細化、ひいては極板からの脱落が進む。粒子が微細化することにより粒界抵抗および粒界接触抵抗が増大する。その結果、充放電時の抵抗分極が増大し、電圧制御した充電時には、充電深度が浅くなり、充電電気量が少ないものとなる。一方、放電時には抵抗分極により電圧降下が起こり、放電終止電圧に早く到達する。したがって、充放電容量・サイクル特性ともに、優れたものとはなり難い。
【0004】
現在、リチウム金属に替わる負極材料として、リチウムイオンを吸蔵・放出できる炭素材料を使用し実用化に至っている。通常、炭素材料負極には金属リチウムは析出しないため、デンドライトによる内部短絡の問題はない。しかし、炭素材料の一つである黒鉛の理論容量は372mAh/gであり、Li金属単体の理論容量の10分の1程度と少ない。また、他の化合物活物質材料として、五酸化二ニオブ(Nb2O5)、二硫化チタン(TiS2)、二酸化モリブデン(MoO2)、チタン酸リチウム(Li4/3Ti5/3O4)等が挙げられる。これらの材料は、リチウムをイオン化した状態でホスト物質中に保持しているために、化学的活性の高い金属リチウムに比して、化学的に安定で、デンドライトの発生もなく、サイクル特性が著しく改善され、炭素系材料のものについては、実用化されている。
【0005】
他の負極材料として、リチウムと化合物を形成する単体金属材料および単体非金属材料が知られている。例えば、ケイ素(Si)、亜鉛(Zn)のリチウムを最も含む化合物の組成式は、それぞれLi22Si5、LiZnであり、この範囲では金属リチウムは通常析出しないため、デンドライトによる内部短絡の問題はない。そして、これら化合物と各単体材料との間の電気化学容量は、それぞれ4199mAh/g、410mAh/gであり、いずれも黒鉛の理論容量よりも大きい。
【0006】
またリチウムと化合物を形成する単体金属材料および単体非金属材料の他に化合物負極材料として、特開平7−240201号公報には遷移元素からなる非鉄金属の珪化物が、特開平9−63651号公報には4B族元素及びP,Sbの少なくとも一つを含む金属間化合物からなり、その結晶構造がCaF2型、ZnS型、AlLiSi型のいずれかからなる負極材料などが提案されている。
【0007】
一方、非水電解質電池に用いられる電解液の溶媒としては、炭酸プロピレン(PC)、炭酸エチレン(EC)に代表される環状炭酸エステルや、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)に代表される鎖状炭酸エステル、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)に代表される環状カルボン酸エステル、ジメトキシメタン(DMM)や1,3-ジメトキシプロパン(DMP)などの鎖状エーテル、テトラヒドロフラン(THF)あるいは1,3-ジオキソラン(DOL)等の環状エステルが多く用いられる。
【0008】
非水電解質二次電池に適用する際には、電気伝導率が高い物が望ましく、そのためには比誘電率が高く、粘度の低い溶媒が好ましく用いられる。しかしながら、比誘電率が高いということは極性が強いことにほかならず、すなわち、粘度も高いものとなる。そのために上述の電解液のうち、炭酸プロピレン(誘電率ε=65)のような高誘電率溶媒と、1,2-ジメトキシエタン(DME、ε=7.2)に代表される低誘電率溶媒とを併用して用いられることが多い。
【0009】
非水電解質電池に用いられる電解液は上述の溶媒に、1モル濃度程度の支持電解質を溶解したものが用いられている。支持電解質としては、過塩素酸リチウム(LiClO4)、ほうふっ化リチウム(LiBF4)、りんふっ化リチウム(LiPF6)に代表される無機酸アニオンリチウム塩や、トリフルオロメタンスルホン酸リチウム(LiSO3CF3)、ビストリフルオロメタンスルホン酸イミドリチウム((CF3SO2)2NLi)等の有機酸アニオンリチウム塩が用いられている。
【0010】
【発明が解決しようとする課題】
しかしながら、上記のような炭素材料よりも高容量の負極材料には、それぞれ以下に示すような課題がある。
【0011】
リチウムと化合物を形成する単体金属材料および単体非金属材料の負極材料は共通して、炭素負極材料にくらべて充放電サイクル特性が悪い。その理由は定かでないが以下のように考えている。
【0012】
例えばケイ素は、その結晶学的な単位格子(立方晶、空間群Fd-3m)に8個のケイ素原子を含んでいる。格子定数a=0.5420nmから換算して、単位格子体積は0.1592nm3であり、ケイ素原子1個の占める体積は19.9×10-3nm3である。ケイ素−リチウム二元系の相図から判断して、室温におけるリチウムとの電気化学的な化合物形成では、その反応の初期にケイ素と化合物Li12Si7との2相が共存しているものと考えられる。Li12Si7の結晶学的な単位格子(斜方晶、空間群Pnma)には56個のケイ素原子が含まれている。その格子定数a=0.8610nm、b=1.9737nm、c=1.4341nmから換算して、単位格子体積は2.4372nm3であり、ケイ素原子1個あたりの体積(単位格子体積を単位格子中のケイ素原子数で除した値)は43.5×10-3nm3である。この値からすると、ケイ素から化合物Li12Si7になるにあたって、材料の体積が2.19倍に膨張することになる。ケイ素と化合物Li12Si7との2相共存状態での反応はケイ素が部分的に化合物Li12Si7に変化するためにこれらの体積差が大きく、材料に大きな歪みが生じ、亀裂を生じやすく、微細な粒子になりやすいことが考えられる。更に電気化学的なリチウムとの化合物形成反応が進行すると、最終的に最もリチウムを多く含む化合物Li22Si5を生じる。Li22Si5の結晶学的な単位格子(立方晶、空間群F23)には80個のケイ素原子が含まれている。その格子定数a=1.8750nmから換算して、単位格子体積は6.5918nm3であり、ケイ素原子1個あたりの体積(単位格子体積を単位格子中のケイ素原子数で除した値)は82.4×10-3nm3である。この値は単体ケイ素の4.14倍であり、材料は大きく膨張している。負極材料にとっての放電反応では、化合物からリチウムが減少してゆく反応が起こり、材料は収縮する。このように充電時と放電時の体積差が大きいため、材料に大きな歪みが生じ、亀裂が発生して粒子が微細化するものと考えられる。さらにこの微細化した粒子間に空間が生じ、電子伝導ネットワークが分断され、電気化学的な反応に関与できない部分が増加し、充放電容量が低下するものと考えられる。
【0013】
また、亜鉛は結晶学的な単位格子(六方晶、空間群P63/mmc)に2個の亜鉛原子を含んでいる。格子定数a=0.2665nm、c=0.4947nmから換算して、単位格子体積は0.030428nm3であり、亜鉛原子1個の占める体積は15.2×10-3nm3である。亜鉛−リチウム二元系の相図から判断すると、いくつかの化合物を経て、最終的に最もリチウムを多く含む化合物LiZnを生じる。LiZnの結晶学的な単位格子(立方晶、空間群Fd-3m)には8個の亜鉛原子が含まれている。その格子定数a=0.6209nmから換算して、単位格子体積は0.2394nm3であり、亜鉛原子1個あたりの体積(単位格子体積を単位格子中の亜鉛原子数で除した値)は29.9×10-3nm3である。この値は単体亜鉛の1.97倍であり、材料は膨張する。
【0014】
このようにスズも亜鉛もケイ素と同様に充放電反応による負極材料の体積変化が大きく、また体積差の大きな2つの相が共存する状態の変化を繰り返すことにより、材料に亀裂を生じ、粒子が微細化するものと考えられる。微細化した材料は、粒子間に空間が生じ、電子伝導ネットワークが分断され、電気化学的な反応に関与できない部分が増加し、充放電容量が低下するものと考えられる。
【0015】
すなわちリチウムと化合物を形成する単体金属材料および単体非金属材料の負極材料に共通した大きな体積変化と、これによる組織変化が、炭素負極材料にくらべて充放電サイクル特性が悪い理由であると推察している。
【0016】
一方、上述の単体材料と異なり、遷移元素からなる非鉄金属の珪化物や4B族元素及びP,Sbの少なくとも一つを含む金属間化合物からなり、その結晶構造がCaF2型、ZnS型、AlLiSi型のいずれかからなる負極材料などは、サイクル寿命特性の改善された負極材料としてそれぞれ特開平7−240201号公報、特開平9−63651号公報に提案されている。
【0017】
特開平7−240201号公報に示された遷移元素からなる非鉄金属の珪化物負極材料を用いた電池は実施例と比較例に示された1サイクル目、50サイクル目、100サイクル目の電池容量から、リチウム金属負極材料と比較して充放電サイクル特性は改善されているが、天然黒鉛負極材料と比較して電池容量は最大でも12%程度しか増加していない。よって、その明細書には明言されていないが、遷移元素からなる非鉄金属の珪化物負極材料は黒鉛負極材料に比べて大幅な容量増加は実施されていないと思われる。
【0018】
また、特開平9−63651号公報に示された材料は、その実施例と比較例にLi-Pb合金負極材料よりも充放電サイクル特性が改善されており、かつ黒鉛負極材料よりも高容量であることが示されている。しかし、10〜20サイクルまでの充放電サイクルで放電容量の減少が著しく、最も良好と思われるMg2Snにおいても約20サイクル後には初期容量の70%程度に減少している。
【0019】
また、金属リチウムを負極として用いた場合には、負極に接触する電解液は極めて強い還元雰囲気にさらされることになり、電解液は金属リチウムと反応し、還元分解しやすい。さらに、Li-Al合金等の内、リチウムが主体となっている合金を負極に用いた場合にでは、負極の電極電位としては金属リチウムとほぼ等しく、電解液の還元分解は、ほぼ同様におこる上、前述のように負極活物質が、充放電の繰り返しによって微細化し、極板から脱落していく。また、合金組成でリチウム以外の金属が主体としてなっている場合には、負極の電極電位が金属リチウムあるいはリチウム合金に比して、貴となり、先に述べた還元分解がおこる電解液の使用も可能となる。しかしながら、これらの合金についてはリチウムと合金化する際に、リチウムを主体としてなる合金より堅く、脆いものとなり、合金の微紛化は著しく、極板からの脱落は避けられない。
【0020】
さらに金属リチウムおよびリチウム合金を負極とした系に、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸プロピレン、γ−ブチロラクトン、γ−バレロラクトンといった溶媒を用いた場合には、充電状態の電池を高温で保存した場合に電解液が分解し、ガスが発生したり、あるいは繰り返し充放電を行った場合には、負極の充放電反応と平行して、電解液のガス化反応がおこり、充放電効率を低下せしめ、結果としてサイクル特性が低下するといった課題がある。
【0021】
一方、黒鉛系炭素材料を負極材料に用いた場合に、炭酸プロピレンを用いた電解液を適用すると、電解液の分解が金属リチウム上よりも貴な電位で起こり、その結果、リチウムイオンが黒鉛の層間にインターカレートせず、電池として動作しない。そこで、現在市販されている黒鉛系の負極材料を用いたリチウム二次電池では炭酸エチレンを含有した電解液が多用されている。しかしながら、炭酸エチレンは融点が37℃と室温より高く、そのために低温下では電解液のリチウムイオン伝導度が急激に低下し、充放電特性が低下する。
【0022】
また、二硫化チタン等の無機化合物材料を負極活物質として用いた場合には、そのインターカレーション・デインターカレーションは金属リチウムやリチウム合金に比して十分貴な電位で起こる。そのために、電解液と接触しても還元分解が起こることはない上、黒鉛系材料で適用できなかった炭酸プロピレンのように電解液が分解によりリチウムの挿入・脱離が阻害されることもなく、用いる電解液の選択の幅は拡大される。しかしながら、これら無機化合物材料負極の電位が貴なため、電池電圧は低いものとなり、高エネルギー密度化には不利なものとなる。
【0023】
また、支持電解質については、過塩素酸リチウム、ほうふっ化リチウム、りんふっ化リチウムはいずれも熱安定性に課題を有していると同時に、含ふっ素無機アニオン塩は(一例としてりんふっ化リチウムの場合を(化1)〜(化3)に示した)電解液中に僅かに含まれる水と反応し、分解するといった課題を有する。
【0024】
【化1】
【0025】
【化2】
【0026】
【化3】
【0027】
また、非水電解質にリチウムイオン導電性ガラス状固体電解質を用い,全固体電池とする場合には、電極中でのイオン伝導性を確保・維持するために電極中に該固体電解質粉末を混合する必要がある。このようにした電極は堅く脆いものであり、電極材料の充放電に伴う膨張・収縮を吸収することができず、電極全体が膨張する一方で、弾性がないために収縮が起こらない。そのために粒子間の接合不良が起こり、充放電に寄与しない電極材料粒子が増大し、その結果、電池特性が低下するといった課題がある。
【0028】
【課題を解決するための手段】
本発明は、固相Aからなる核粒子の周囲の全面または一部を、固相Bによって被覆した複合粒子で、前記固相Aはケイ素、亜鉛の少なくとも一種を構成元素として含み、前記固相Bは固相Aの構成元素であるケイ素、亜鉛のいずれかと、前記構成元素を除いて、周期表の2族元素、遷移元素、12族元素、13族元素、ならびに炭素を除く14族元素からなる群から選ばれた少なくとも一種の元素との固溶体または金属間化合物である材料を用いることで固相Aにより高容量、かつ固相Bが固相Aの充放電でおきる膨張・収縮を抑える役割を担うことで充放電サイクル特性の優れた負極材料を用い、非水電解質に第1の成分として少なくとも硫化リチウムを含み、第2の成分として硫化けい素、硫化りんおよび硫化ほう素からなる群より選ばれる一つまたはそれ以上の化合物と、第3の成分としてりん酸リチウム、硫酸リチウム、ほう酸リチウム、けい酸リチウムからなる群より選ばれる一つまたはそれ以上の化合物の複数の化合物より合成されるリチウムイオン導電性ガラス状固体電解質を用いた場合に、高温保存時にガス発生が極めて少なく、また、くり返し充放電に際しても、負極の充放電効率が低下しないことを見出したことに基づき、広い温度範囲で使用でき、高エネルギー密度かつ電池の繰り返し使用による放電容量の低下が少なく、かつ高率充放電特性に優れた新規な非水電解質二次電池を提供することを目的とする。
【0029】
本発明の負極材料で固相Aは高容量のケイ素、亜鉛の少なくともいずれかを構成元素として含むことから主として充放電容量の高容量化に寄与しているものと考えられる。また固相Aからなる核粒子の周囲の全面または一部を被覆している固相Bは充放電サイクル特性の改善に寄与しているものと考えている。また、該負極材料の固相Bにはリチウムはほとんど吸蔵されず、固相Aにのみ吸蔵される。そのために該負極材料で電解質と接触するのは活性なリチウムを含まない固相Bのみであり、したがって、この相と電解質が接触した場合でも電解質の分解は起こりにくいと考えている。
【0030】
一方、本発明に用いたリチウムイオン導電性ガラス状固体電解質はガラス転移温度が300℃以上、結晶化温度が400℃以上と極めて熱的安定性が高いために、高温保存時におけるガス発生、特性劣化が極めて小さな物となると考えられる。さらに、該固体電解質はガラス状であるがゆえに、リチウムイオンの伝導経路は、結晶質固体電解質と異なり、異方性があり、固体電解質粉末のどの面でも導電性を得ることが可能である。したがって、粉末状の電極材料を混合した場合に、接触面は自由にできるという利点を有する。
【0031】
また、該固体電解質は第3成分のオキソ酸塩を添加することにより、無添加のものに比べて耐酸化分解電圧が著しく高いものとなり、ほぼ10Vを有する。これは無添加の場合、ガラス骨格が-Si-S-Si-のみからなるのに対し、オキソ酸塩を添加することにより局所的にSi-S結合より強固なSi-O結合を有する-Si-O-Si-骨格が混在するようになるためと考えている。従って、該固体電解質を用いた場合には正極材料は4V以上の高電圧を発生させる材料でも使用可能である。
【0032】
また、オキソ酸塩を添加しない場合には金属リチウムと接触した場合には接合界面のインピーダンスが経時的に高くなるといった課題があるが、オキソ酸塩を添加することにより、金属リチウムと接触した場合でも界面インピーダンスの増大は抑制されることから金属リチウムとの接触に対する安定性も向上するといった好ましい作用も有する。
【0033】
上記負極材料と該固体電解質を組み合わせることにより、広い温度範囲での信頼性を確保し、サイクル特性に優れた、高容量の電池を提供することができるものである。
【0034】
【発明の実施の形態】
本発明に用いられる正極及び負極は、リチウムイオンを電気化学的かつ可逆的に挿入・放出できる正極活物質や負極材料に導電剤、結着剤等を含む合剤層を集電体の表面に塗着して作製されたものである。
【0035】
本発明で用いられる負極材料は、固相Aからなる核粒子の周囲の全面または一部を、固相Bによって被覆した複合粒子で、前記固相Aはケイ素、亜鉛の少なくとも一種を構成元素として含み、前記固相Bは固相Aの構成元素であるケイ素、亜鉛のいずれかと、前記構成元素を除いて、周期表の2族元素、遷移元素、12族、13族元素、ならびに炭素を除く14族元素からなる群から選ばれた少なくとも一種の元素との固溶体、または金属間化合物である材料(以下、"複合粒子"と呼ぶ)である。
【0036】
本発明に用いられる複合粒子の製造方法の一つとしては、複合粒子を構成する各元素の仕込み組成分の溶融物を、乾式噴霧法、湿式噴霧法、ロール急冷法及び回転電極法などで急冷、凝固させ、その凝固物を、仕込み組成から決まる固溶体または金属間化合物の固相線温度より低い温度で熱処理するという方法がある。溶融物の急冷凝固により、核粒子として固相A粒子、そしてその固相A粒子の周囲の全面または一部を被覆する固相Bを析出させ、その後の熱処理により、各固相A,Bの均一性を高めることを目的にしているが、熱処理をしない場合でも、請求項1記載の複合粒子を得ることができる。また上記冷却方法以外の方法においても十分に冷却可能な方法であれば用いることができる。
【0037】
その他の製造方法としては、固相Aの粉末の表面に、固相Bを形成するのに必要な固相Aに含まれる元素以外の元素からなる付着層を形成させ、それを、仕込み組成から決まる固溶体または金属間化合物の固相線温度より低い温度で熱処理するという方法がある。この熱処理により、固相A中の成分元素が付着層に拡散して、被覆層として固相Bが形成される。この付着層の形成方法としては、メッキ法またはメカニカルアロイング法などによって行うことができる。その他、付着層を形成可能な方法であれば用いることができる。メカニカルアロイング法においては熱処理を必要としなくてもよい。
【0038】
本発明の請求項1に記載の発明は、上述で得た材料を負極に用い、電解質として高耐酸化性有機溶媒にリチウムイオン導電性ガラス状固体電解質を用いたことを特徴としたものである。
【0039】
前記複合粒子は、高容量で、繰り返し充放電による放電容量の低下が少なく、かつ高率充放電特性が優れたもので、該負極とリチウムの吸蔵・放出が可能な正極と、電解質にリチウムイオン導電性ガラス状固体電解質を用いることで高容量・高エネルギー密度で、かつ広い温度範囲で高い信頼性を有する電池を達成するものである。
【0040】
請求項2に記載の発明は、請求項1記載のリチウムイオン導電性ガラス状固体電解質が、第1の成分として少なくとも硫化リチウムを含み、第2の成分として硫化けい素、硫化りんおよび硫化ほう素からなる群より選ばれる一つまたはそれ以上の化合物と、第3の成分としてりん酸リチウム、硫酸リチウム、ほう酸リチウム、けい酸リチウムからなる群より選ばれる一つまたはそれ以上の化合物の複数の化合物より合成されるリチウムイオン導電性ガラス状固体電解質としたものである。
【0041】
リチウムイオン導電性ガラス状固体電解質を用いて、全固体電池を構成する際には、電極中に該固体電解質を分散させ、イオン伝導経路の確保・維持を図る必要がある。
【0042】
この際に、混合するリチウムイオン導電性ガラス状固体電解質としては粒径が小さいほどよく、0.02〜30μmが好ましい。さらに好ましくは、0.02〜10μmである。また、電極材料との混合比は、特に限定されないが、電極材料に対して、好ましくは5〜80重量%、特に好ましくは、5〜30重量%である。
【0043】
さらに、本発明に用いられる該固体電解質をシート化する際に用いられる結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。本発明に於いて好ましい結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体を挙げる事ができる。特に、この中で最も好ましいのはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。
【0044】
本発明に用いられる負極用導電剤は、電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電剤の添加量は、特に限定されないが、1〜50重量%が好ましく、特に1〜30重量%が好ましい。また、本発明の負極材料はそれ自身電子伝導性を有するため、導電剤を添加しなくても電池として機能させることは可能である。
【0045】
本発明に用いられる負極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。本発明において好ましい結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体を挙げる事ができ、これらの材料を単独又は混合物として用いることができる。また、これらの材料の中でより好ましい材料は、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体である。
【0046】
本発明に用いられる負極用集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂などの他に、銅やステンレス鋼の表面にカーボン、ニッケルあるいはチタンを処理させたものなどが用いられる。特に、銅あるいは銅合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。
【0047】
本発明に用いられる正極材料には、リチウム含有の化合物を用いることができる。例えば、LixCoO2 、LixNiO2、LixMnO2 、LixCoyNi1-yO2、LixCoyM1-yOz、LixNi1-yMyOz、LixMn2O4 、LixMn2-yMyO4 (M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)、(ここで0<x≦1.2、0≦y≦0.9、2.0≦z≦2.3)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。ただし、遷移金属カルコゲン化物、バナジウム酸化物のリチウム化合物、ニオブ酸化物のリチウム化合物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物等の他の正極活物質を用いることも可能である。また、複数の異なった正極活物質を混合して用いることも可能である。正極活物質粒子の平均粒径は、特に限定はされないが、1〜30μmであることが好ましい。
【0048】
本発明で使用される正極用導電剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、銅、ニッケル、アルミニウム、銀等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、ニッケル粉末が特に好ましい。導電剤の添加量は、特に限定されないが、1〜50重量%が好ましく、特に1〜30重量%が好ましい。カーボンやグラファイトでは、2〜15重量%が特に好ましい。
【0049】
本発明に用いられる正極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。本発明に於いて好ましい結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体を挙げる事ができる。特に、この中で最も好ましいのはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。
【0050】
本発明に用いられる正極用集電体としては、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂などの他に、アルミニウムやステンレス鋼の表面にカーボン、あるいはチタンを処理させたものが用いられる。特に、アルミニウムあるいはアルミニウム合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。
【0051】
電極合剤には、導電剤や結着剤の他、フィラー、分散剤、イオン導伝剤、圧力増強剤及びその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。
【0052】
本発明における負極板と正極板の構成は、少なくとも正極合剤面の対向面に負極合剤面が存在していることが好ましい。
【0053】
電池の形状はコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。
【0054】
また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いることができるが、特にこれらに限定されるわけではない。
【0055】
【実施例】
以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0056】
(実施例1)
負極材料の製造方法
(表1)に本実施例で用いた負極材料(材料A〜材料L)の固相Aと固相Bの成分(単体元素、金属間化合物、固溶体)、仕込み時の元素比率、溶融温度、および固相線温度を示す。本実施例で以下に具体的な製造方法を示す。
【0057】
負極材料を構成する各元素の粉体またはブロックを、表1に示す仕込み比率で溶解槽に投入し、(表1)に示す溶融温度で溶解し、その溶融物をロール急冷法で急冷、凝固させ、凝固物を得た。続いて、その凝固物を表1に示す仕込み組成から決まる固溶体または金属間化合物の固相線温度より10℃〜50℃程度低い温度で不活性雰囲気下で20時間熱処理を行った。この熱処理品をボールミルで粉砕し、篩で分級することにより45μm以下の粒子にした材料A〜材料Lを得た。これらの材料は電子顕微鏡観察結果から固相A粒子の周囲の全面または一部が固相Bによって被覆さていることが確認できた。
【0058】
【表1】
【0059】
固体電解質および固体電解質シートの製造法
リチウムイオン導電性ガラス状固体電解質は以下のようにして作製した。
【0060】
りん酸リチウム、硫化リチウム、二硫化けい素をモル比で1:63:36に混合したものをガラス状カーボンるつぼに入れ、乾燥窒素雰囲気中で1000℃で2時間溶融し、その融液を双ローラーで急冷し、作製した。得られた固体電解質ガラスを粉砕し、固体電解質粉末とした。同様の方法で他の原料の組み合わせのリチウムイオン導電性ガラス状固体電解質も合成した結果を、(表2)に示す。なお、表中イオン伝導度は、交流インピーダンス法により測定した結果を、耐酸化分解電圧は電位走査法により測定した結果を示した。
【0061】
【表2】
【0062】
ついで、上記で得られた固体電解質粉末98重量%にポリテトラフルオロエチレン(PTFE)2重量%を加え、乳鉢で十分混合し、弾性体としたものを、ローラーで圧延し、固体電解質シートとした。
【0063】
円筒型電池の製造方法
図1に本発明における円筒型電池の縦断面図を示す。正極板5及び負極板6が固体電解質シート7を介して複数回渦巻状に巻回されて電池ケース1内に収納されている。そして、上記正極板5からは正極リード5aが引き出されて封口板2に接続され、負極板6からは負極リード6aが引き出されて電池ケース1の底部に接続されている。電池ケースやリード板は、電子伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が用いられる。特に、電池ケースはステンレス鋼板、Al−Mn合金板を加工したもの、正極リードはアルミニウム、負極リードはニッケルが最も好ましい。また、電池ケースには、軽量化を図るため各種エンジニアリングプラスチックス及びこれと金属の併用したものを用いることも可能である。8は絶縁リングで極板群4の上下部にそれぞれ設けられている。そして、封口板を用いて電池缶を形成する。このとき、安全弁を封口板として用いることができる。安全弁の他、従来から知られている種々の安全素子を備えつけても良い。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが用いられる。また、安全弁のほかに電池ケースの内圧上昇の対策として、電池ケースに切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは、独立に接続させてもよい。キャップ、電池ケース、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来から知られている化合物や混合物を用いることができる。
【0064】
負極板6は、得られた前記負極材料60重量%に対し、リチウムイオン導電性ガラス状固体電解質粉末15重量%、導電剤である炭素粉末20重量%と結着剤のポリフッ化ビニリデン樹脂5重量%を混合し、これらを脱水N−メチルピロリジノンに分散させてスラリーを作製し、銅箔からなる負極集電体上に塗布し、乾燥後、圧延して作製した。
【0065】
一方、正極板5は、コバルト酸リチウム粉末70重量%に対し、リチウムイオン導電性ガラス状固体電解質粉末15重量%、導電剤の炭素粉末10重量%と結着剤のポリフッ化ビニリデン樹脂5重量%を混合し、これらを脱水N−メチルピロリジノンに分散させてスラリーを作製し、アルミ箔からなる正極集電体上に塗布し、乾燥後、圧延して作製した。
【0066】
以上のようにして、(表3)〜(表14)に示したように、(表1)の材料A〜Lを負極に、(表2)の材料a〜lを固体電解質に用いた電池1〜168を作製した。尚、作製した円筒型電池は直径18mm、高さ650mmである。これらの電池を100mAの定電流で、まず4.1Vになるまで充電した後、同じく定電流100mAで2.0Vになるまで放電する充放電サイクルを繰り返した。尚、充放電は100サイクルまで繰り返し行い、初期の放電容量に対する100サイクル目の放電容量の比を容量維持率として(表3)〜(表14)に示した。
【0067】
更に、(表3)〜(表14)には、同じ構成で100mAの定電流で、4.1Vになるまで充電し、一旦、2.0Vになるまで放電し、初期の電池容量をチェックした後、再度、同条件で4.1Vまで充電した電池を85℃で60日間保存した際の容量維持率として保存前の放電容量に対する保存後の放電容量の比、ならびに保存後の電池に穴を空け、流動パラフィン中でガス捕集を試みたが、いずれの電池からもガスは補集できなかった。
【0068】
【表3】
【0069】
【表4】
【0070】
【表5】
【0071】
【表6】
【0072】
【表7】
【0073】
【表8】
【0074】
【表9】
【0075】
【表10】
【0076】
【表11】
【0077】
【表12】
【0078】
【表13】
【0079】
【表14】
【0080】
なお本実施例で用いた負極材料を構成する元素は、固相AがSiの場合、2族元素としてMg、遷移元素としてCoおよびNi、12族元素としてZn、13族元素としてAl、14族元素としてSnを用いたが、これら以外の各族の元素を用いても同様な効果が得られた。また固相AがZnの場合、2族元素としてMg、遷移元素としてCuおよびV、12族元素としてCd、13族元素としてAl、14族元素としてGeを用いたが、これら以外の各族の元素を用いても同様な効果が得られた。
【0081】
また負極材料構成元素の仕込み比率については、特に限定されたものではなく、相が2相になり、1相(固相A)が主にSn,Znを主体とした相で、もう一つ別の相(固相B)がその周りを一部または全部を被覆するような状態になればよく、仕込み組成を特に限定するものではない。相Bは表1に示した固溶体,金属間化合物のみからなるだけではなく、それぞれの各固溶体,金属間化合物を構成している元素やそれ以外の元素が微量存在している場合も含まれる。
【0082】
また、本実施例に用いたリチウムイオン導電性ガラス状固体電解質の仕込み組成は、特に限定されたものではなく、得られた物質がガラス状であって、かつリチウムイオン伝導性を示し、さらに、酸化分解電圧が5V以上が得られればよく、本実施例におけるリチウムイオン導電性ガラス状固体電解質は仕込み組成を特に限定するものではない。
【0083】
【発明の効果】
以上のように本発明によれば、従来の炭素材料を負極材料としたものよりも高容量で、かつサイクル特性、高率充放電特性および、高温保存特性に優れた非水電解質二次電池が得られる。
【図面の簡単な説明】
【図1】本実施例における円筒型電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 固体電解質シート
8 絶縁リング
Claims (2)
- 非水電解質、セパレータ、およびリチウムの吸蔵・放出が可能な正極と負極を備えた非水電解質二次電池において、前記負極は、固相Aからなる核粒子の周囲の全面または一部を、固相Bによって被覆した複合粒子で、前記固相Aはケイ素、亜鉛のいずれかからなり、前記固相Bは固相Aの構成元素であるケイ素、亜鉛に対しては同じ材料と、前記構成元素を除いて、周期表の2族元素、遷移元素、12族、13族元素、ならびに炭素を除く14族元素からなる群から選ばれた少なくとも一種の元素との固溶体、または金属間化合物である材料を用い、非水電解質としてリチウムイオン導電性ガラス状固体電解質を用いたことを特徴とする非水電解質二次電池。
- 請求項1記載のリチウムイオン導電性ガラス状固体電解質が、第1の成分として少なくとも硫化リチウムを含み、第2の成分として硫化けい素、硫化りんおよび硫化ほう素からなる群より選ばれる一つまたはそれ以上の化合物と、第3の成分としてりん酸リチウム、硫酸リチウム、ほう酸リチウム、けい酸リチウムからなる群より選ばれる一つまたはそれ以上の化合物の複数の化合物より合成されるリチウムイオン導電性ガラス状固体電解質であることを特徴とする請求項1記載の非水電解質二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34288598A JP4534263B2 (ja) | 1998-12-02 | 1998-12-02 | 非水電解質二次電池 |
PCT/JP1999/006686 WO2000033400A1 (fr) | 1998-12-02 | 1999-11-30 | Cellule secondaire d'electrolyte du type non aqueux |
US09/601,234 US6821675B1 (en) | 1998-06-03 | 1999-11-30 | Non-Aqueous electrolyte secondary battery comprising composite particles |
EP99973174A EP1052711A4 (en) | 1998-12-02 | 1999-11-30 | SECONDARY CELL WITH NON-ACID ELECTROLYTES |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34288598A JP4534263B2 (ja) | 1998-12-02 | 1998-12-02 | 非水電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000173587A JP2000173587A (ja) | 2000-06-23 |
JP4534263B2 true JP4534263B2 (ja) | 2010-09-01 |
Family
ID=18357272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34288598A Expired - Fee Related JP4534263B2 (ja) | 1998-06-03 | 1998-12-02 | 非水電解質二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4534263B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4498688B2 (ja) * | 2003-04-24 | 2010-07-07 | 出光興産株式会社 | リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法 |
WO2004095474A1 (ja) * | 2003-04-24 | 2004-11-04 | Idemitsu Kosan Co., Ltd. | リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池 |
JP4535722B2 (ja) * | 2003-12-24 | 2010-09-01 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2008059955A (ja) | 2006-08-31 | 2008-03-13 | Kokusai Kiban Zairyo Kenkyusho:Kk | 二次電池およびその製造方法 |
JP4989183B2 (ja) * | 2006-10-20 | 2012-08-01 | 出光興産株式会社 | 極材及びそれを用いた固体二次電池 |
JP5841420B2 (ja) * | 2010-12-09 | 2016-01-13 | 出光興産株式会社 | リチウム二次電池電極用スラリー組成物及びそれを用いた電池 |
JP2012146479A (ja) * | 2011-01-12 | 2012-08-02 | Idemitsu Kosan Co Ltd | リチウムイオン電池 |
JP5721494B2 (ja) * | 2011-03-25 | 2015-05-20 | 出光興産株式会社 | リチウム二次電池電極用スラリー組成物及びそれを用いた電池 |
JP2014192093A (ja) * | 2013-03-28 | 2014-10-06 | Idemitsu Kosan Co Ltd | 負極合材 |
JP2019067523A (ja) * | 2017-09-28 | 2019-04-25 | 富士フイルム株式会社 | 全固体二次電池、固体電解質含有シート及び固体電解質組成物 |
JP7075006B2 (ja) * | 2018-04-27 | 2022-05-25 | 富士通株式会社 | 固体電解質、及びその製造方法、並びに電池、及びその製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148180A (ja) * | 1994-09-21 | 1996-06-07 | Matsushita Electric Ind Co Ltd | 全固体リチウム二次電池 |
JPH1092424A (ja) * | 1996-09-11 | 1998-04-10 | Mitsubishi Cable Ind Ltd | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3805053B2 (ja) * | 1997-02-10 | 2006-08-02 | 旭化成エレクトロニクス株式会社 | リチウム二次電池 |
JPH1186853A (ja) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | リチウム二次電池 |
JP3994238B2 (ja) * | 1997-12-18 | 2007-10-17 | 宇部興産株式会社 | 非水電解質リチウム二次電池 |
JP3661417B2 (ja) * | 1998-06-18 | 2005-06-15 | 宇部興産株式会社 | 非水二次電池 |
-
1998
- 1998-12-02 JP JP34288598A patent/JP4534263B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148180A (ja) * | 1994-09-21 | 1996-06-07 | Matsushita Electric Ind Co Ltd | 全固体リチウム二次電池 |
JPH1092424A (ja) * | 1996-09-11 | 1998-04-10 | Mitsubishi Cable Ind Ltd | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2000173587A (ja) | 2000-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4399881B2 (ja) | 非水電解質二次電池 | |
US6824920B1 (en) | Non-aqueous electrolyte secondary battery comprising composite particles | |
WO2000033402A1 (fr) | Cellule secondaire d'electrolyte du type non aqueux et son procede de charge | |
JP4635283B2 (ja) | 非水電解質二次電池 | |
JP4534263B2 (ja) | 非水電解質二次電池 | |
JP4487326B2 (ja) | 非水電解質二次電池の充電方法 | |
JP4449094B2 (ja) | 非水電解質二次電池 | |
JP4432129B2 (ja) | 非水電解質二次電池 | |
JP4432130B2 (ja) | 非水電解質二次電池 | |
EP1052714B1 (en) | Non-aqueous electrolyte secondary cell and its charging method | |
JP4399879B2 (ja) | 非水電解質二次電池 | |
JP4534264B2 (ja) | 非水電解質二次電池 | |
JP4432128B2 (ja) | 非水電解質二次電池 | |
JP4449090B2 (ja) | 非水電解質二次電池 | |
JP4487325B2 (ja) | 非水電解質二次電池の充電方法 | |
EP1052711A1 (en) | Non-aqueous electrolyte secondary cell | |
JP4449089B2 (ja) | 非水電解質二次電池 | |
JP2001210323A (ja) | 非水電解質二次電池 | |
JP4399880B2 (ja) | 非水電解質二次電池 | |
JP4432132B2 (ja) | 非水電解質二次電池 | |
JP4399876B2 (ja) | 非水電解質二次電池 | |
JP4432131B2 (ja) | 非水電解質二次電池 | |
JP4399877B2 (ja) | 非水電解質二次電池 | |
JP2000173609A (ja) | 非水電解質二次電池 | |
JP4432133B2 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051013 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090629 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |