Nothing Special   »   [go: up one dir, main page]

JP4532864B2 - 3-phase linear motor - Google Patents

3-phase linear motor Download PDF

Info

Publication number
JP4532864B2
JP4532864B2 JP2003308272A JP2003308272A JP4532864B2 JP 4532864 B2 JP4532864 B2 JP 4532864B2 JP 2003308272 A JP2003308272 A JP 2003308272A JP 2003308272 A JP2003308272 A JP 2003308272A JP 4532864 B2 JP4532864 B2 JP 4532864B2
Authority
JP
Japan
Prior art keywords
coil
phase
saddle
portions
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003308272A
Other languages
Japanese (ja)
Other versions
JP2005080415A (en
Inventor
英彦 森
誠 金子
道太郎 臼井
大輔 篠平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003308272A priority Critical patent/JP4532864B2/en
Priority to TW093123945A priority patent/TWI272756B/en
Priority to CN2004100683940A priority patent/CN1592050B/en
Priority to KR1020040069415A priority patent/KR100585184B1/en
Publication of JP2005080415A publication Critical patent/JP2005080415A/en
Application granted granted Critical
Publication of JP4532864B2 publication Critical patent/JP4532864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Linear Motors (AREA)

Description

本発明は3相リニアモータに関する。 The present invention relates to a three- phase linear motor.

リニアモータを構成するためにもっとも一般的に用いられるコイル単体は、図9に示すような、いわゆるレーストラック型と呼ばれるものが知られている。このコイル100は、コイル中心を貫く軸まわりの回転動作によって製作され、平面的な構造をもっている。図中上下方向に伸びる2つの直線部(長辺側部分)101が推力発生に有効な部分である。一方、上下の両端部分(短辺側部分)は2つの直線部101を繋ぐ機能を持つだけであり、短辺部102と呼ぶことにする。また、2つの直線部101の中心間距離をLcとする。   A so-called race track type as shown in FIG. 9 is known as a single coil most commonly used for constituting a linear motor. The coil 100 is manufactured by rotating around an axis passing through the center of the coil, and has a planar structure. Two straight portions (long side portions) 101 extending in the vertical direction in the figure are effective portions for generating thrust. On the other hand, the upper and lower end portions (short-side portions) only have a function of connecting the two straight portions 101 and are referred to as short-side portions 102. The distance between the centers of the two straight portions 101 is Lc.

図9のようなレーストラック型コイルを用いてボイスコイルモータあるいは3相同期型リニアモータを構成する場合の基本的な構成を図10に示す。図10では、図9で説明したようなレーストラック型コイルをボイスコイル200として用いる場合と、同じレーストラック型コイルを3個組み合わせて3相コイル300として用いる場合を平面図の形態にて示している。ボイスコイル200、3相コイル300は、図中コイル設置スペースと記入された空間に収容されるが、図10では便宜上、ボイスコイル200、3相コイル300を外側に示している。   FIG. 10 shows a basic configuration when a voice coil motor or a three-phase synchronous linear motor is configured using a racetrack type coil as shown in FIG. In FIG. 10, the case where the racetrack type coil as described in FIG. 9 is used as the voice coil 200 and the case where the same three racetrack type coils are combined and used as the three-phase coil 300 are shown in the form of a plan view. Yes. The voice coil 200 and the three-phase coil 300 are accommodated in the space indicated as the coil installation space in the figure, but in FIG. 10, the voice coil 200 and the three-phase coil 300 are shown on the outside for convenience.

リニアモータの磁石装置は、一軸方向に延びるコイル設置スペースを間にして複数の永久磁石210を配列して成る。特に、対向し合う永久磁石210の磁極は互いに異なり、隣接し合う永久磁石210の磁極も互いに異なるようにしている。その結果、コイル設置スペースとなる空隙には、強い磁束密度を生ずる。ある永久磁石210のN極中心から隣接する永久磁石210のS極中心までの距離を磁極ピッチと呼ぶ。一つのN極中心を原点とし、磁石列に沿った座標を、磁極ピッチで正規化して位相表示すると図10のようになる。図10では、磁極ピッチはπ(rad)であり、あるN極中心から次のN極中心までの磁気周期長は2π(rad)である。このとき、この座標に沿った磁束密度はその最大値をAとすると、大略Acosθで表される。   The magnet device of the linear motor is formed by arranging a plurality of permanent magnets 210 with a coil installation space extending in one axis direction in between. In particular, the magnetic poles of the opposing permanent magnets 210 are different from each other, and the magnetic poles of the adjacent permanent magnets 210 are also different from each other. As a result, a strong magnetic flux density is generated in the gap serving as the coil installation space. The distance from the N pole center of a certain permanent magnet 210 to the S pole center of the adjacent permanent magnet 210 is called a magnetic pole pitch. FIG. 10 shows a phase display in which one N-pole center is the origin and coordinates along the magnet row are normalized by the magnetic pole pitch. In FIG. 10, the magnetic pole pitch is π (rad), and the magnetic period length from one N-pole center to the next N-pole center is 2π (rad). At this time, the magnetic flux density along the coordinates is approximately represented by A cos θ, where A is the maximum value.

図10において、ボイスコイルモータは、2つのコイル直線部の中心間距離Lcを磁極ピッチπに等しくとり、2つのコイル直線部のそれぞれを隣接し合う永久磁石210のN極及びS極の中心と一致するように配置したモータである。つまり、図10では対向し合う永久磁石210を一対としたものが多数対示されているが、ボイスコイルモータの場合、永久磁石側は少なくとも二対の永久磁石210で構成される。ボイスコイル200の2つの直線部において、電流及び磁束は逆の方向を持つが、ベクトル積によって生ずる推力は同じ方向になる。ボイスコイル200は磁束密度の最大点に設置されているので、発生する推力も最大になる。しかしながら、ストロークは大きく取れない。   In FIG. 10, the voice coil motor has a center-to-center distance Lc between two coil straight portions equal to the magnetic pole pitch π, and each of the two coil straight portions is adjacent to the centers of the N and S poles of the adjacent permanent magnet 210. The motors are arranged so as to match. That is, FIG. 10 shows a large number of pairs of permanent magnets 210 facing each other, but in the case of a voice coil motor, the permanent magnet side is composed of at least two pairs of permanent magnets 210. In the two linear portions of the voice coil 200, the current and magnetic flux have opposite directions, but the thrust generated by the vector product is in the same direction. Since the voice coil 200 is installed at the maximum point of the magnetic flux density, the generated thrust is also maximized. However, the stroke cannot be made large.

図9において説明したように、レーストラック型のコイル100の場合、推力を発生するために寄与するのは直線部101だけであり、上下の短辺部102は関係しない。短辺部102は、図10で示す磁石列の中に入り込むと推進方向に対して垂直なサイドフォースを発生するので、磁石列から外れるようにしなければならない。短辺部102の幅(図中、上下方向のサイズ)は直線部101の幅(図中、左右方向のサイズ)と基本的には同じであり、コイルアセンブリを構成する場合、この短辺部102の収納性が悪いことが問題になる。   As described in FIG. 9, in the case of the racetrack type coil 100, only the straight portion 101 contributes to generate thrust, and the upper and lower short sides 102 are not related. The short side portion 102 generates a side force perpendicular to the propulsion direction when entering the magnet row shown in FIG. 10, so it must be removed from the magnet row. The width of the short side portion 102 (the size in the vertical direction in the figure) is basically the same as the width of the straight portion 101 (the size in the horizontal direction in the drawing). The problem is that the storage property of 102 is poor.

一方、図10における3相同期型リニアモータの場合、U相、W相、V相の順序で3つのコイル300U、300W、300Vを磁気の2周期(4π(rad))の間に一体化して配置する。そして、各コイルには磁気位相に同期するように電流の大きさを調節して流すと、3相コイル300が移動しても、その位置に関わらずほぼ一定の推力が得られる。   On the other hand, in the case of the three-phase synchronous linear motor in FIG. 10, three coils 300U, 300W, and 300V are integrated in two magnetic periods (4π (rad)) in the order of U phase, W phase, and V phase. Deploy. When the current is adjusted to flow in each coil so as to synchronize with the magnetic phase, even if the three-phase coil 300 moves, a substantially constant thrust can be obtained regardless of its position.

図10から明らかなように、3相コイル300では隣接する相におけるコイルの直線部が干渉し合うために、実際にはコイルの直線部の幅はボイスコイル200の場合の半分しかとれない。従って、短辺部の幅もボイスコイル200に比べると半分になるが、やはりこの部分の収納性は問題になる。   As apparent from FIG. 10, in the three-phase coil 300, the linear portions of the coils in adjacent phases interfere with each other, so that the width of the linear portion of the coil is actually only half that of the voice coil 200. Accordingly, the width of the short side portion is also half that of the voice coil 200, but the storage property of this portion also becomes a problem.

上記のようなレーストラック型コイルにおける短辺部の問題を解決する方法として、図11に示すような鞍型コイルと呼ばれるものが提案されている。この鞍型コイル400は、図9に示されたレーストラック型コイル100の短辺部102を、見掛け上、直線部101に対して直角方向に折り返した形状を持つ。この鞍型コイル400の製造方法の一例を以下に説明する。   As a method for solving the problem of the short side in the racetrack coil as described above, a so-called saddle coil as shown in FIG. 11 has been proposed. The saddle type coil 400 has a shape in which the short side portion 102 of the racetrack type coil 100 shown in FIG. An example of a method for manufacturing the saddle coil 400 will be described below.

図11(a)において、幅tを持つ断面矩形状の巻線を同一平面上において所定回数巻回してレーストラック型にしたものが一層分として作られる。この一層分のコイルは、最内側に巻き始め端100sを、最外側に巻き終わり端100eを持つ。次に、一相分のコイルを作るために、図11(a)に示された一層分のコイルは、2つの直線部101の主面が互いに対向し合うように略90度折り曲げて略コ字形状に成形される。   In FIG. 11A, a winding having a rectangular cross section having a width t is wound as a race track type by winding a predetermined number of times on the same plane. This one-layer coil has a winding start end 100s on the innermost side and a winding end end 100e on the outermost side. Next, in order to make a coil for one phase, the coil for one layer shown in FIG. 11A is bent approximately 90 degrees so that the main surfaces of the two linear portions 101 face each other. It is formed into a letter shape.

図11(b)においては、上記のようにして略コ字形状に成形したものが複数個用意され、これらの複数個を積層して一相分の鞍型コイル400が作られる。このような積層のために、上記の折り曲げ工程においては、最も内側になるコイルの2つの直線部の間隔が最も小さく、最も外側になるコイルの2つの直線部の間隔が最も大きくなるようにされることは言うまでも無い。以下では、左右の2つの長辺部分を直線部401、上下の短辺部分を折り返し部402と呼ぶ。勿論、上記の鞍型コイルの製造方法はあくまでも一例であり、要は、略長四角形のコイルの短辺側がそれぞれ長辺側の直線部に対して約90度の角度をなす折り返し部となるように作られているものであれば良い。   In FIG. 11 (b), a plurality of substantially U-shaped shapes are prepared as described above, and a plurality of these are stacked to form a saddle coil 400 for one phase. Due to such lamination, in the above folding process, the interval between the two linear portions of the innermost coil is the smallest and the interval between the two linear portions of the outermost coil is the largest. Needless to say. Hereinafter, the left and right long side portions are referred to as a straight line portion 401, and the upper and lower short side portions are referred to as a folded portion 402. Of course, the above-described saddle coil manufacturing method is merely an example. In short, the short side of the substantially long rectangular coil is a folded portion that forms an angle of about 90 degrees with respect to the straight portion on the long side. Anything that is made in is good.

更にまた、図11に示すような鞍型コイルを2つ組み合わせた、図12に示されるようなコイルが連結鞍型コイル500と呼ばれて提案されている。図12において、2つの鞍型コイル400A、400Bを、折り返し部402A、402Bが互いに反対向きになるようにすると共に、2組の直線部401A、401Bがそれぞれ密着するように組み合わせて成る。そして、密着させた直線部401A、401Bには同じ向きの電流を流すようにする。これにより、密着させた直線部401A、401Bが一体であるかのように結合されたコイルが得られる(例えば、特許文献1、2参照)。
特開2002−95231号公報 特開2001−103725号公報
Furthermore, a coil as shown in FIG. 12 in which two saddle coils as shown in FIG. 11 are combined has been proposed as a connected saddle coil 500. In FIG. 12, two saddle coils 400A and 400B are combined such that the folded portions 402A and 402B are opposite to each other and the two sets of linear portions 401A and 401B are in close contact with each other. Then, currents in the same direction are allowed to flow through the linear portions 401A and 401B that are in close contact with each other. As a result, a coil is obtained in which the linear portions 401A and 401B that are brought into close contact with each other are integrated (see, for example, Patent Documents 1 and 2).
JP 2002-95231 A JP 2001-103725 A

本発明の課題は、上記のような連結鞍型コイルを用いてコイルの発熱の低減化に有効な3相リニアモータを提供することにある。 An object of the present invention is to provide a three- phase linear motor that is effective in reducing the heat generation of a coil by using the above-described connecting saddle type coil.

本発明はまた、上記3相リニアモータにおいてコイルに流す電流を切り替えるためのスイッチングボックスとコイルとの間の配線数の低減化を実現することにある。 The present invention is also to realize a number of wires reduction of between switching boxes and coils for switching a current flowing through the coil in the upper Symbol 3-phase linear motor.

本発明によればまた、3相コイルが配設されるコイル設置スペースを間にして異なる磁極が対向し合う一対の永久磁石が可動部の移動方向に関して磁極ピッチπ(rad)で複数対配列され、前記移動方向に関して隣接する永久磁石の磁極も異なるようにされている3相リニアモータにおいて、前記3相コイルにおける各相のコイルは、略長四角形のコイルの短辺側がそれぞれ長辺側の直線部に対して約90度の角度をなす折り返し部とされている鞍型コイル2つから成り、これら2つの鞍型コイルは、それぞれの鞍型コイルにおける2つの折り返し部が互いに反対向きになるように組み合わされると共に、一方の鞍型コイルにおける前記2つの折り返し部の間の2つの直線部がそれぞれ、他方の鞍型コイルにおける前記2つの折り返し部の間の2つの直線部に密着直線部として密着し、前記一方の鞍型コイルの前記2つの直線部のうちの一方の直線部は前記他方の鞍型コイルの前記2つの折り返し部にも密着し、及び、前記他方の鞍型コイルの前記2つの直線部のうちの一方の直線部は前記一方の鞍型コイルの前記2つの折り返し部にも密着するように連結鞍型コイルとして組み合わされており、しかも前記3相コイルは、第1の相の連結鞍型コイルの一方の密着直線部の外側と第2の相の連結鞍型コイルの一方の密着直線部の外側とが密着し、該第2の相の連結鞍型コイルの他方の密着直線部の外側と第3の相の連結鞍型コイルの一方の密着直線部の外側とが密着しつつ、一軸方向に並ぶように一体化して配置され、しかも、各連結鞍型コイルは、一方の密着直線部における外側または内側と、他方の密着直線部における内側または外側との間の距離が、前記移動方向に関して隣り合う2つの永久磁石の磁極中心間の距離に等しく、かつ3相コイルの1相分のピッチが4π/3(rad)で3相コイル1ユニット当たりの延在長を4π(rad)とし前記一方の密着直線部における内側と前記他方の密着直線部における内側との間に空間ができるようにされ、前記連結鞍型コイルを冷媒の循環可能な冷却用シェルに収容すると共に、前記空間に補強を組み込むようにしたことを特徴とする3相リニアモータが提供される。 According to the present invention, a plurality of pairs of permanent magnets with different magnetic poles facing each other with a coil installation space in which a three-phase coil is disposed are arranged at a magnetic pole pitch π (rad) in the moving direction of the movable part. In the three-phase linear motor in which the magnetic poles of the adjacent permanent magnets are also different with respect to the moving direction, the coils of each phase in the three-phase coil are straight lines in which the short side of the substantially long rectangular coil is the long side. It is composed of two saddle-shaped coils which are folded portions that form an angle of about 90 degrees with respect to the portions, and these two saddle-shaped coils are arranged so that the two folded portions in the respective saddle-shaped coils are opposite to each other. And two linear portions between the two folded portions of one saddle coil are respectively connected to the two folded portions of the other saddle coil. Of close contact as the adhesion straight section into two straight portions, the one of the straight portions of the two straight portions of the one saddle coil also in close contact with the two folded portions of the other saddle coil, And, one of the two straight portions of the other saddle coil is combined as a connecting saddle coil so as to be in close contact with the two folded portions of the one saddle coil, In addition, the three-phase coil is in close contact with the outside of one tight linear portion of the first phase connected saddle coil and the outside of one tight linear portion of the second phase connected saddle coil. The outer side of the other close contact linear part of the connected saddle type coil of the third phase and the outer side of one close contact linear part of the third phase connected saddle type coil are integrally arranged so as to be aligned in a uniaxial direction. In addition, each connecting saddle coil is on the outer side of one of the close contact linear portions. Alternatively, the distance between the inner side and the inner side or the outer side of the other contact straight line portion is equal to the distance between the magnetic pole centers of two adjacent permanent magnets in the movement direction, and the pitch of one phase of the three-phase coil is The extension length per unit of the three-phase coil is 4π (rad) at 4π / 3 (rad), so that a space is created between the inner side of the one close contact straight line portion and the inner side of the other close contact straight line portion. There is provided a three-phase linear motor characterized in that the connecting saddle type coil is accommodated in a cooling shell capable of circulating a refrigerant and a reinforcement is incorporated in the space.

本3相リニアモータにおいても、各相の2つの前記密着直線部には反対向きの電流が流される。   Also in this three-phase linear motor, currents in opposite directions are passed through the two contact linear portions of each phase.

本3相リニアモータにおいてはまた、前記各相のコイルは、2つの前記密着直線部のうちの一方の密着直線部における外側または内側と、他方の密着直線部における内側または外側との間の距離が、前記移動方向に関して隣り合う2つの永久磁石の磁極中心間の距離と等しくなるようにされる。   In the present three-phase linear motor, the coil of each phase is a distance between the outer side or the inner side of one of the two contact linear portions and the inner side or the outer side of the other contact linear portion. Is made equal to the distance between the magnetic pole centers of two permanent magnets adjacent to each other in the moving direction.

本発明による3相リニアモータは、連結鞍型コイルを用いたことにより、コイルの発熱の低減化に有効であり、コイルに流す電流を切り替えるためのスイッチングボックスとコイルとの間の配線数の低減化を実現することができる。また、連結鞍型コイルを冷却用シェルに収容し、減圧雰囲気中で用いる場合に、冷却用シェル内外の圧力差に起因する冷却用シェルの膨張を抑制する補強を容易に実現することができる。 3-phase linear motor that by the present invention, by using a connecting saddle coil is effective in reducing the heat generation of the coil, the number of wiring lines between the switching box and the coil for switching a current flowing through the coil Can be reduced. Further, when the connecting saddle type coil is accommodated in the cooling shell and used in a reduced pressure atmosphere, it is possible to easily realize the reinforcement that suppresses the expansion of the cooling shell due to the pressure difference between the inside and outside of the cooling shell.

図1は、本発明によるボイスコイルモータ及び3相リニアモータを図10と同様の平面図の形態にて示す。ボイスコイルモータの磁石装置の場合、一軸方向に延びるコイル設置スペースを間にして少なくとも二対の永久磁石11を配列して成る。一方、3相リニアモータの場合の磁石装置は、一軸方向に延びるコイル設置スペースを間にして多数対の永久磁石11を配列して成る。特に、各対において対向し合う永久磁石11の磁極は互いに異なり、隣接し合う永久磁石11の磁極も互いに異なるようにしている。その結果、コイル設置スペースとなる空隙には強い磁束密度を生ずる。   FIG. 1 shows a voice coil motor and a three-phase linear motor according to the present invention in the form of a plan view similar to FIG. In the case of a magnet device for a voice coil motor, at least two pairs of permanent magnets 11 are arranged with a coil installation space extending in one axial direction in between. On the other hand, the magnet device in the case of a three-phase linear motor is formed by arranging a plurality of pairs of permanent magnets 11 with a coil installation space extending in one axial direction. In particular, the magnetic poles of the permanent magnets 11 facing each other are different from each other, and the magnetic poles of the adjacent permanent magnets 11 are also different from each other. As a result, a strong magnetic flux density is generated in the gap serving as the coil installation space.

なお、本形態では、コイルとして前述した連結鞍型コイルを用いるが、特に、ボイスコイルモータ用の連結鞍型コイルには、後述するように、直線部の幅の広い連結鞍型コイル50をボイスコイルとして使用する。一方、3相リニアモータ用の連結鞍型コイルには、後述するように、直線部の幅の狭い連結鞍型コイルを使用する。   In this embodiment, the connecting saddle coil described above is used as the coil. In particular, the connecting saddle coil 50 for the voice coil motor is connected to the connecting saddle coil 50 having a wide linear portion as described later. Used as a coil. On the other hand, as will be described later, a connecting saddle coil having a narrow straight portion is used for the connecting saddle coil for the three-phase linear motor.

本形態においても、ある永久磁石11のN極中心から隣接する永久磁石11のS極中心までの距離を磁極ピッチpと呼ぶこととし、一つのN極中心を原点とし、磁石列に沿った座標を、磁極ピッチpで正規化して位相表示すると図1のようになる。つまり、磁極ピッチpはπ(rad)であり、あるN極中心から次のN極中心までの磁気周期長は2π(rad)である。このとき、この座標に沿った磁束密度はその最大値をAとすると、大略Acosθで表されることも図10で説明した通りである。   Also in this embodiment, the distance from the N pole center of a certain permanent magnet 11 to the S pole center of the adjacent permanent magnet 11 is referred to as a magnetic pole pitch p, and the coordinates along the magnet row with one N pole center as the origin. Is normalized by the magnetic pole pitch p and displayed as a phase as shown in FIG. That is, the magnetic pole pitch p is π (rad), and the magnetic period length from one N-pole center to the next N-pole center is 2π (rad). At this time, as described with reference to FIG. 10, the magnetic flux density along the coordinates is approximately represented by Acos θ, where A is the maximum value.

図1において、ボイスコイルモータについて言えば、図10で説明したボイスコイル200を、2つの鞍型コイルから成る連結鞍型コイル50で置き換えている。このボイスコイルモータは、2つの鞍型コイルにおいて直線部が密着している部分間の距離Lpを磁極ピッチpに等しくとり、直線部が密着している部分のそれぞれを、隣接し合う永久磁石11のN極及びS極の中心と一致するように配置したモータである。以下では、2つの直線部が密着して成る直線部を密着直線部と呼ぶ。勿論、密着直線部の電流の向きは同じになるように接続されている。また、一方の密着直線部の電流の向きと、他方の密着直線部の電流の向きは反対であり、磁束も逆の方向を持つが、ベクトル積によって生ずる推力は同じ方向になる。連結鞍型コイル50は磁束密度の最大点に設置されているので、発生する推力も最大になる。   In FIG. 1, regarding the voice coil motor, the voice coil 200 described with reference to FIG. 10 is replaced with a connected saddle coil 50 including two saddle coils. In this voice coil motor, the distance Lp between the portions where the linear portions are in close contact with each other in the two saddle coils is equal to the magnetic pole pitch p, and the portions where the linear portions are in close contact with each other are adjacent to the permanent magnet 11. The motor is arranged so as to coincide with the centers of the north and south poles. Hereinafter, a straight line portion formed by closely contacting two straight line portions is referred to as a close contact straight line portion. Of course, they are connected so that the current direction of the contact straight line portions is the same. In addition, the direction of the current in one contact straight line portion is opposite to the direction of the current in the other contact straight line portion, and the magnetic flux has the opposite direction, but the thrust generated by the vector product is the same direction. Since the connecting saddle coil 50 is installed at the maximum point of the magnetic flux density, the generated thrust is also maximized.

一方、3相リニアモータの場合、図10で説明した3つのレーストラック型コイル300U、300W、300Vを、2つの鞍型コイルから成る連結鞍型コイル60U、60W、60Vの3つで置き換えている。言い換えれば、U相、W相、V相の順序で3つの連結鞍型コイル60U、60W、60Vを磁気の2周期(4π(rad))の間に一体化して配置している。つまり、3つの連結鞍型コイル60U、60W、60Vは、連結鞍型コイル60Uの一方の密着直線部の外側と連結鞍型コイル60Wの一方の密着直線部の外側とが密着し、連結鞍型コイル60Wの他方の密着直線部の外側と連結鞍型コイル60Vの一方の密着直線部の外側とが密着しつつ、一軸方向に並ぶように一体化して配置されている。しかも、連結鞍型コイル60Uについて言えば、一方の密着直線部における外側(または内側)と、他方の密着直線部における内側(または外側)との間の距離が、上記距離Lp、すなわち磁極ピッチpに等しくなるようにしている。連結鞍型コイル60W、60Vについても同様である。   On the other hand, in the case of a three-phase linear motor, the three racetrack type coils 300U, 300W, and 300V described in FIG. 10 are replaced with three connected saddle type coils 60U, 60W, and 60V composed of two saddle type coils. . In other words, three linked saddle-shaped coils 60U, 60W, 60V are arranged in an integrated manner between two magnetic periods (4π (rad)) in the order of U phase, W phase, and V phase. In other words, the three connecting saddle coils 60U, 60W, 60V are in close contact with the outside of one contact straight portion of the connecting saddle coil 60U and the outside of one contact straight portion of the connecting saddle coil 60W. The outside of the other close contact linear part of the coil 60W and the outside of the close contact linear part of the connecting saddle type coil 60V are in close contact with each other so as to be aligned in a uniaxial direction. In addition, with regard to the connecting saddle type coil 60U, the distance between the outside (or inside) of one contact straight line portion and the inside (or outside) of the other contact straight line portion is the distance Lp, that is, the magnetic pole pitch p. To be equal to The same applies to the connecting saddle coils 60W and 60V.

このような3相コイルにおいて、各相のコイルに磁気位相に同期するように電流の大きさを調節して流すと、3相コイルが移動しても、その位置に関わらずほぼ一定の推力が得られる。   In such a three-phase coil, if the current is adjusted to flow in each phase coil so as to be synchronized with the magnetic phase, even if the three-phase coil moves, a substantially constant thrust is generated regardless of its position. can get.

次に、図2、図3を参照して本発明によるボイスコイルモータあるいは3相リニアモータに使用される連結鞍型コイルについて説明する。図2、図3のいずれも、レーストラック型コイルに折り返し部を付けることにより得られた鞍型コイルを2つ連結して成る連結鞍型コイルを示している。   Next, a connecting saddle type coil used in a voice coil motor or a three-phase linear motor according to the present invention will be described with reference to FIGS. Both FIG. 2 and FIG. 3 show a connecting saddle type coil formed by connecting two saddle type coils obtained by attaching a folded portion to a racetrack type coil.

図2の連結鞍型コイル50は、2つの直線部の幅が広いレーストラック型コイルによる鞍型コイル50A、50Bを図12で説明したように2つ組み合わせた例を示す。このような連結鞍型コイル50は、ボイスコイルモータに適しているが、3相リニアモータにも適用され得る。なお、破線で示した部分は、折り返し前の輪郭を示す。   The connection saddle coil 50 of FIG. 2 shows an example in which two saddle coils 50A and 50B formed by racetrack coils having two wide straight portions are combined as described in FIG. Such a connecting saddle coil 50 is suitable for a voice coil motor, but can also be applied to a three-phase linear motor. In addition, the part shown with the broken line shows the outline before folding.

図3の連結鞍型コイル60は、2つの直線部の幅が狭いレーストラック型コイルによる鞍型コイル60A、60Bを図12で説明したように2つ組み合わせた例を示す。このような連結鞍型コイル60は、3相リニアモータに適している。これは、前述したように、隣接する相におけるコイルの直線部が干渉し合うためである。しかし、ボイスコイルモータに適用されても良い。   The connection saddle coil 60 of FIG. 3 shows an example in which two saddle coils 60A and 60B made up of racetrack coils having two narrow linear portions are combined as described in FIG. Such a connecting saddle coil 60 is suitable for a three-phase linear motor. This is because the linear portions of the coils in adjacent phases interfere with each other as described above. However, it may be applied to a voice coil motor.

図2のような連結鞍型コイル50は、鞍型コイル50A、50Bにおいて推力発生に関係する直線部については、幅、厚み及び高さともに同一にとっている。レーストラック型コイルでは、折り返し部の幅(上下方向のサイズ)分だけ上下に延びるが、連結鞍型コイルの構造では、これを左右に振り分けることになる。上下に延びるのが良いか左右に振り分けるのが良いかという選択は、使用形態によるので一概には言えない。しかし、例えば図4に示すような形態で用いる場合は連結鞍型コイルの方が良い。   In the connecting saddle-type coil 50 as shown in FIG. 2, the width, thickness and height of the straight portions related to the thrust generation in the saddle-type coils 50A and 50B are the same. In the racetrack type coil, it extends up and down by the width of the folded portion (size in the vertical direction), but in the structure of the connecting saddle type coil, this is distributed to the left and right. The choice of whether to extend vertically or to distribute to left and right depends on the type of usage and cannot be generally stated. However, for example, when used in the form as shown in FIG.

図4(a)は可動コイル型と呼ばれるリニアモータに連結鞍型コイルを適用した場合の縦断面構造を示す。連結鞍型コイルは、図2、図3のいずれも使用可能であるが、以下では図3の連結鞍型コイル60を使用した場合について説明する。図4(a)において、図示しない固定部に固定され、一軸方向に延びる略U形状のヨーク40の内側壁に、図1で説明したような形態で複数の永久磁石41が固着される。両側の永久磁石41の間に形成されるコイル設置スペースに、図1に示した3個の連結鞍型コイル60U、60W、60Vによる3相コイルが移動可能に配設される。図4(a)では1個の連結鞍型コイルを60で示す。連結鞍型コイル60は、その一方、ここでは上方の折り返し部側にホルダ42が取り付けられる。ホルダ42は、一軸方向に延びる図示しないガイド部材を介して一軸方向に移動可能に支持される。ホルダ42にはまた、通常、被搬送物搭載用のテーブルが設けられる。   FIG. 4A shows a vertical cross-sectional structure when a connecting saddle type coil is applied to a linear motor called a movable coil type. 2 and 3 can be used as the connection saddle coil, but the case where the connection saddle coil 60 of FIG. 3 is used will be described below. In FIG. 4A, a plurality of permanent magnets 41 are fixed to an inner wall of a substantially U-shaped yoke 40 that is fixed to a fixing portion (not shown) and extends in a uniaxial direction in the form described in FIG. In the coil installation space formed between the permanent magnets 41 on both sides, the three-phase coils 60U, 60W, 60V shown in FIG. 1 are movably disposed. In FIG. 4 (a), one connecting saddle coil is indicated by 60. On the other hand, the holder 42 is attached to the upper folded portion side of the connecting saddle type coil 60 here. The holder 42 is supported so as to be movable in the uniaxial direction via a guide member (not shown) extending in the uniaxial direction. The holder 42 is also usually provided with a table for loading an object to be conveyed.

図4(b)は可動磁石型と呼ばれるリニアモータに連結鞍型コイルを適用する場合の縦断面構造を示す。図4(b)において、図1に示した3個の連結鞍型コイル60U、60W、60Vによる3相コイルが多数、直列的に一軸方向に配列され、その両端部が固定部にて固定される。図4(b)では1個の連結鞍型コイルを60で示す。連結鞍型コイル60の周囲を囲むように断面四角形状のヨーク45が一軸方向に移動可能に配置される。つまり、ヨーク45は所定の長さを持ち、一軸方向に延びる図示しないガイド部材を介して一軸方向に移動可能に支持される。ヨーク45の両内側壁にはそれぞれ、複数の永久磁石46が固着される。   FIG. 4B shows a vertical cross-sectional structure in the case where a connecting saddle type coil is applied to a linear motor called a movable magnet type. In FIG. 4B, a large number of three-phase coils composed of the three connecting saddle-shaped coils 60U, 60W, 60V shown in FIG. 1 are arranged in a uniaxial direction in series, and both ends thereof are fixed by fixing portions. The In FIG. 4 (b), one connecting saddle coil is indicated by 60. A yoke 45 having a square cross section is disposed so as to be movable in a uniaxial direction so as to surround the periphery of the connection saddle coil 60. That is, the yoke 45 has a predetermined length and is supported so as to be movable in the uniaxial direction via a guide member (not shown) extending in the uniaxial direction. A plurality of permanent magnets 46 are fixed to both inner side walls of the yoke 45, respectively.

図4(a)、図4(b)のいずれの場合にも連結鞍型コイル60の密着直線部の両脇には永久磁石が入り込むので、その上下にちょうど折り返し部の収納に適当なスペースが生まれる。これに対し、レーストラック型コイルを使用した場合には、上下にもっと長くなり、永久磁石の上下に無駄な空間が生まれることになる。   In either case of FIGS. 4A and 4B, permanent magnets enter both sides of the linear contact portion of the connecting saddle coil 60, so that there is an appropriate space for storing the folded portion above and below the permanent magnet. to be born. On the other hand, when a race track type coil is used, it becomes longer in the vertical direction, and useless spaces are created above and below the permanent magnet.

ボイスコイルモータの場合も、図4(a)、図4(b)と同じ形態となる。つまり、可動コイル型の場合、両側の永久磁石41の間に形成されるコイル設置スペースに、図1に示した連結鞍型コイル50、すなわちボイスコイルが移動可能に配設される。一方、可動磁石型の場合、図1に示した連結鞍型コイル50が多数、直列的に一軸方向に配列され、その両端部が固定部にて固定される。   In the case of a voice coil motor, the form is the same as in FIGS. 4 (a) and 4 (b). That is, in the case of the movable coil type, the connecting saddle type coil 50 shown in FIG. 1, that is, the voice coil, is movably disposed in the coil installation space formed between the permanent magnets 41 on both sides. On the other hand, in the case of the movable magnet type, a large number of connecting saddle type coils 50 shown in FIG. 1 are arranged in series in a uniaxial direction, and both end portions thereof are fixed by fixed portions.

図10に示すボイスコイル200、図1に示す連結鞍型コイル50(ボイスコイル)は、図示の位置(θ=0rad)において推力の最大値をとる。ボイスコイルが移動するにつれて、図5に示すように推力は低下する。一般に、ボイスコイルとしては位置変動に関わらず一定推力を出し続けることが望ましい。例えば、推力低下を10%以内に抑えたいという要求に対しては、θは0.45(rad)までしかとれない。磁極ピッチをp(mm)とするときその正規化座標がπ(rad)であるから、0.45(rad)に相当するストロークL(mm)は、L=(0.45/π)p(mm)となる。   The voice coil 200 shown in FIG. 10 and the connecting saddle type coil 50 (voice coil) shown in FIG. 1 take the maximum value of thrust at the illustrated position (θ = 0 rad). As the voice coil moves, the thrust decreases as shown in FIG. In general, it is desirable for a voice coil to continue to produce a constant thrust regardless of position variations. For example, θ can only be up to 0.45 (rad) for a request to suppress the thrust drop to within 10%. Since the normalized coordinate is π (rad) when the magnetic pole pitch is p (mm), the stroke L (mm) corresponding to 0.45 (rad) is L = (0.45 / π) p ( mm).

ストロークLを大きくするためには、磁極ピッチpを大きくとらなければならない。これに対し、直線部の幅の広いレーストラック型コイルで磁極ピッチpを大きくとると、上下の短辺部の幅(上下方向のサイズ)が大きくなって収納性が悪くなることは前記した通りである。従って、大きなストロークLが要求されるにしたがって、本発明による連結鞍型コイル(ボイスコイル)50の優位性が高まることになることが明らかとなる。   In order to increase the stroke L, the magnetic pole pitch p must be increased. On the other hand, when the magnetic pole pitch p is increased with a racetrack coil having a wide linear portion, the width of the upper and lower short sides (size in the vertical direction) is increased and the storage property is deteriorated as described above. It is. Therefore, it becomes clear that the superiority of the connecting saddle type coil (voice coil) 50 according to the present invention increases as the large stroke L is required.

もっとも、レーストラック型コイルについてもコイルを2つに分けて上下の短辺部の幅を小さくとどめるような工夫もされている。例えば、図10のボイスコイル200の代わりに、図6に示すような2つのレーストラック型ボイスコイル200A、200Bを用いることが考えられる。この場合、推力発生に有効な直線部の体積は図10あるいは図1のボイスコイル(連結鞍型コイル50)と同じに保ちつつ、短辺部の幅は半減できる。また、中央の永久磁石215のN極からS極への磁束密度も同じように取れる。しかしながら、永久磁石215の両側に配置される半分の長さを持つ永久磁石216の磁束密度は中央の磁束密度に比べるとかなり低下する。   However, the racetrack type coil is also devised to divide the coil into two and keep the width of the upper and lower short sides small. For example, instead of the voice coil 200 of FIG. 10, it is conceivable to use two race track type voice coils 200A and 200B as shown in FIG. In this case, the width of the short side portion can be halved while keeping the volume of the straight portion effective for thrust generation the same as that of the voice coil of FIG. 10 or FIG. Further, the magnetic flux density from the north pole to the south pole of the central permanent magnet 215 can be similarly taken. However, the magnetic flux density of the permanent magnet 216 having a half length disposed on both sides of the permanent magnet 215 is considerably lower than the central magnetic flux density.

したがって、図6のボイスコイルモータの場合、総合的には推力が劣る他、ボイスコイルの位置変動に対する推力低下率も大きめになる。加えて、サイズの異なる永久磁石215、216を作らなくてはならないという負担もある。それ故、本発明のような連結鞍型コイル50によるボイスコイルモータは、図6のボイスコイルモータと同じ効果を狙ったものといえるが、性能的にははるかに勝っている。   Therefore, in the case of the voice coil motor shown in FIG. 6, the thrust is generally inferior, and the thrust reduction rate with respect to voice coil position fluctuation is also large. In addition, there is a burden that permanent magnets 215 and 216 of different sizes must be made. Therefore, it can be said that the voice coil motor by the connecting saddle type coil 50 as in the present invention aims at the same effect as the voice coil motor of FIG. 6, but far superior in performance.

本発明による3相リニアモータの優位性を説明するために、図7を参照して、前記した特許文献2に開示されている3相リニアモータについて説明する。図7は、連結鞍型コイルを用いた3相リニアモータを図1と同様の平面図の形態にて示している。   In order to explain the superiority of the three-phase linear motor according to the present invention, the three-phase linear motor disclosed in Patent Document 2 will be described with reference to FIG. FIG. 7 shows a three-phase linear motor using a connecting saddle type coil in the form of a plan view similar to FIG.

図7において、この例では、図11で説明した6個の鞍型コイルを以下のように一軸方向に並べて一体化させて成る。U相の第1の鞍型コイル71−1Uの一方の直線部の内側に、折り返し部を逆向きにしたV相の第1の鞍型コイル71−1Vの一方の直線部の内側を隣接させて配置する。U相の第1の鞍型コイル71−1Uの一方の直線部の外側には、折り返し部を同じ向きにしたW相の第1の鞍型コイル71−1Wの一方の直線部の外側を隣接させて配置する。このW相の第1の鞍型コイル71−1Wの一方の直線部の内側にV相の第1の鞍型コイル71−1Vの他方の直線部の内側を隣接させて配置する。W相の第1の鞍型コイル71−1Wの他方の直線部の内側とV相の第1の鞍型コイル71−1Vの他方の直線部の外側との間に、折り返し部を逆向きにしたU相の第2の鞍型コイル71−2Uの一方の直線部を隣接させて配置する。W相の第1の鞍型コイル71−1Wの他方の直線部の外側とU相の第2の鞍型コイル71−2Uの他方の直線部の内側との間に、折り返し部を同じ向きにしたV相の第2の鞍型コイル71−2Vの一方の直線部を隣接させて配置する。U相の第2の鞍型コイル71−2Uの他方の直線部の外側とV相の第2の鞍型コイル71−2Vの他方の直線部の内側との間に、折り返し部を逆向きにしたW相の第2の鞍型コイル71−2Wの一方の直線部を隣接させて配置する。なお、鞍型コイルの一方の直線部の内側から他方の直線部の外側までの距離を磁極ピッチπと等しくなるようにしている。   7, in this example, the six saddle coils described in FIG. 11 are integrated in a uniaxial direction as follows. The inside of one linear part of the V-phase first saddle coil 71-1V with the folded part reversed is adjacent to the inside of one linear part of the U-phase first saddle coil 71-1U. Arrange. Adjacent to the outside of one straight line portion of the U-phase first saddle coil 71-1U is the outside of one straight line portion of the W-phase first saddle coil 71-1W having the same folded portion. Let them be arranged. The W-phase first saddle coil 71-1W is disposed so that the inside of the other straight line portion of the V-phase first saddle coil 71-1V is adjacent to the inside of one straight line portion of the W-phase first saddle coil 71-1W. Between the inner side of the other straight line portion of the W-phase first saddle coil 71-1W and the outer side of the other straight line portion of the V-phase first saddle coil 71-1V, the folded portion is reversed. One linear portion of the U-phase second saddle coil 71-2U is arranged adjacent to each other. Between the outer side of the other straight line portion of the W-phase first saddle coil 71-1W and the inner side of the other straight line portion of the U-phase second saddle coil 71-2U, the folded portion is oriented in the same direction. One linear portion of the V-shaped second saddle coil 71-2V is arranged adjacent to each other. Between the outside of the other straight line portion of the U-phase second saddle coil 71-2U and the inside of the other straight line portion of the V-phase second saddle coil 71-2V, the folded portion is reversed. The W-phase second saddle coil 71-2W is arranged so that one linear portion is adjacent. The distance from the inner side of one linear part of the saddle coil to the outer side of the other linear part is made equal to the magnetic pole pitch π.

ここで、図10または図1の3相コイルが正規化長さ4πで3相コイル1ユニット分を実装しているのに対して、図7の3相コイルでは(4+2/3)πで2ユニット分を実装している。1ユニット毎の直線部の体積は同じであるから、鞍型コイルを用いた3相コイルは単位長さ当たり、レーストラック型コイルの2倍近いコイルターン数を実装できるといえる。そして、同じ電流を流す場合、図7の3相コイルでは推力が約2倍、発熱量も約2倍になる。   Here, the three-phase coil in FIG. 10 or FIG. 1 has a normalized length of 4π and one unit of the three-phase coil is mounted, whereas in the three-phase coil in FIG. 7, (4 + 2/3) π is 2 The unit is implemented. Since the volume of the linear portion for each unit is the same, it can be said that the three-phase coil using the saddle type coil can mount a coil turn number close to twice that of the racetrack type coil per unit length. When the same current flows, the thrust is approximately doubled and the heat generation amount is approximately doubled in the three-phase coil of FIG.

一方、レーストラック型コイルで2倍の推力を得ようとすると、電流を2倍にすることにより発熱量は4倍になる。したがって、図7の3相コイルの方が同じ推力を発生するのに発熱は約1/2で済むことになる。   On the other hand, if an attempt is made to obtain a double thrust with a racetrack coil, the amount of heat generation is quadrupled by doubling the current. Therefore, the three-phase coil in FIG. 7 generates about half the heat to generate the same thrust.

発生熱量の観点だけからすると、図7の3相コイルが優れているので、図1の3相コイルは不要に思えるかもしれない。しかしながら、実際には図1の3相コイルの方が望ましいケースが多い。例えば、可動磁石型リニアモータで非常に長いストロークが要求されるような場合である。この場合、発熱を抑えるためには各コイルを、多数の切替えスイッチを持つスイッチングボックスに接続し、可動子(3相コイル)が移動するにつれて電流を流すコイルを切替えスイッチにより切り替えていくことが必要になる。   From the viewpoint of the amount of generated heat alone, the three-phase coil in FIG. 7 is superior, so the three-phase coil in FIG. 1 may seem unnecessary. However, in practice, the three-phase coil of FIG. For example, the moving magnet type linear motor requires a very long stroke. In this case, in order to suppress heat generation, it is necessary to connect each coil to a switching box having a large number of changeover switches, and to switch the coil through which a current flows as the mover (three-phase coil) moves by the changeover switch. become.

しかるに、図7の3相コイルではコイル数が約2倍になるので、スイッチングボックスと各コイルとを結ぶ配線の数も2倍になる。配線数は、1コイルユニット毎に3本必要なので、例えば10ユニットを越えるような場合は、30本以上になり困難になる。これに対して、本発明の場合は配線数が半分で済むので楽になる。   However, since the number of coils in the three-phase coil in FIG. 7 is approximately doubled, the number of wires connecting the switching box and each coil is also doubled. Since three wires are required for each coil unit, for example, when it exceeds 10 units, it becomes 30 or more and it becomes difficult. On the other hand, in the case of the present invention, since the number of wirings is half, it becomes easy.

更に、図8は、可動コイル型リニアモータに適用される、コイルの冷却系統を説明するための縦断面図である。鞍型連結コイル60は、これより大き目の断面形状を持つ冷却用シェル80に収容されている。冷却用シェル80内では、液体冷媒の循環が可能であり、鞍型連結コイル60の上側の折り返し部に対応する箇所に上側液溜まり部81を、鞍型連結コイル60の下側の折り返し部に対応する箇所には下側液溜まり部82を有する。83はコイルホルダである。なお、リニアモータの固定子側は図示を省略している。   FIG. 8 is a longitudinal sectional view for explaining a coil cooling system applied to the movable coil linear motor. The saddle-shaped connecting coil 60 is accommodated in a cooling shell 80 having a larger cross-sectional shape. In the cooling shell 80, the liquid refrigerant can be circulated, and the upper liquid reservoir portion 81 is provided at a position corresponding to the upper folded portion of the vertical connection coil 60, and the lower folded portion is disposed on the lower vertical connection coil 60. A corresponding portion has a lower liquid reservoir 82. 83 is a coil holder. The illustration of the stator side of the linear motor is omitted.

図8に示すような冷却用シェル付きリニアモータを真空中で用いる場合、冷却用シェル80の内外の圧力差が大きくなるので、冷却用シェル80の膨張を拘束するような補強を入れることが望ましい。   When a linear motor with a cooling shell as shown in FIG. 8 is used in a vacuum, the pressure difference between the inside and outside of the cooling shell 80 increases, so it is desirable to add reinforcement that restricts the expansion of the cooling shell 80. .

図7の3相コイルでは、巻線がほぼ全長にわたって詰まっているので補強をいれるスペースが無い。これに対し、図1の本発明による3相コイルであれば、図3からも明らかなように、コイルの中央部に大きな空間があるのでここを通して補強を組み込むことができる。従って、本発明による3相モータの方が都合が良い。   In the three-phase coil shown in FIG. 7, there is no space for reinforcement because the windings are almost completely packed. On the other hand, the three-phase coil according to the present invention shown in FIG. 1 has a large space in the central portion of the coil as can be seen from FIG. Therefore, the three-phase motor according to the present invention is more convenient.

本発明による3相リニアモータは、被駆動物を微小移動させるステージ装置や、半導体製造装置、露光装置等のためのステッパ等への適用が可能である。 3-phase linear motor that by the present invention, a stage device and for fine movement of the driven object, a semiconductor manufacturing device, it can be applied to the stepper or the like for such exposure apparatus.

連結鞍型コイルを利用した、本発明によるボイスコイルモータ及び3相リニアモータにおける永久磁石とコイルとの関係を説明するための平面図である。It is a top view for demonstrating the relationship between the permanent magnet and coil in the voice coil motor and three-phase linear motor by this invention using a connection saddle-type coil. 本発明によるボイスコイルモータに使用される連結鞍型コイルの一例を示した図である。It is the figure which showed an example of the connection saddle type coil used for the voice coil motor by this invention. 本発明による3相リニアモータに使用される連結鞍型コイルの一例を示した図である。It is the figure which showed an example of the connection saddle type coil used for the three-phase linear motor by this invention. 図1に示されたボイスコイルモータあるいは3相リニアモータを、可動コイル型モータ(図a)、可動磁石型モータ(図b)として構成した場合の縦断面図である。FIG. 2 is a longitudinal sectional view when the voice coil motor or the three-phase linear motor shown in FIG. 1 is configured as a moving coil type motor (FIG. A) and a moving magnet type motor (FIG. B). 図1に示されたボイスコイルモータにおける変位量−推力特性の一例を示した図である。It is the figure which showed an example of the displacement amount-thrust characteristic in the voice coil motor shown by FIG. 図1に示されたボイスコイルモータとの比較のために、周知のレーストラック型コイルを用いたボイスコイルモータの一例を示した平面図である。It is the top view which showed an example of the voice coil motor using the well-known race track type coil for the comparison with the voice coil motor shown by FIG. 図1に示された3相リニアモータとの比較のために、周知の鞍型コイルを用いた3相リニアモータの一例を示した平面図である。It is the top view which showed an example of the three-phase linear motor using the well-known saddle type coil for the comparison with the three-phase linear motor shown by FIG. 本発明において用いられるボイスコイルあるいは3相コイルを冷却用シェルに収容して使用する場合の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure in the case of accommodating and using the voice coil or three-phase coil used in this invention in the shell for cooling. レーストラック型コイルの一例を示した斜視図である。It is the perspective view which showed an example of the race track type coil. 周知のボイスコイルモータ及び3相リニアモータにおける永久磁石とコイルとの関係を説明するための平面図である。It is a top view for demonstrating the relationship between the permanent magnet and coil in a well-known voice coil motor and a three-phase linear motor. 本発明において用いられる鞍型コイルの製造過程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process of the saddle type coil used in this invention. 図11による鞍型コイルを連結した連結鞍型コイルの例を示した図である。It is the figure which showed the example of the connection saddle type coil which connected the saddle type coil by FIG.

符号の説明Explanation of symbols

11、41、46、75、210、215、216 永久磁石
40、45 ヨーク
42、83 ホルダ
50、60、500 連結鞍型コイル
50A、50B、60A、60B、400A、400B 鞍型コイル
80 冷却用シェル
100、200A、200B レーストラック型コイル
101、401A、401B 直線部
102、402A、402B 折り返し部
200 ボイスコイル
300 3相コイル
11, 41, 46, 75, 210, 215, 216 Permanent magnet 40, 45 Yoke 42, 83 Holder 50, 60, 500 Linked saddle coil 50A, 50B, 60A, 60B, 400A, 400B saddle coil 80 Cooling shell 100, 200A, 200B Race track type coil 101, 401A, 401B Linear portion 102, 402A, 402B Turned portion 200 Voice coil 300 Three-phase coil

Claims (2)

3相コイルが配設されるコイル設置スペースを間にして異なる磁極が対向し合う一対の永久磁石が可動部の移動方向に関して磁極ピッチπ(rad)で複数対配列され、前記移動方向に関して隣接する永久磁石の磁極も異なるようにされている3相リニアモータにおいて、
前記3相コイルにおける各相のコイルは、略長四角形のコイルの短辺側がそれぞれ長辺側の直線部に対して約90度の角度をなす折り返し部とされている鞍型コイル2つから成り、これら2つの鞍型コイルは、それぞれの鞍型コイルにおける2つの折り返し部が互いに反対向きになるように組み合わされると共に、一方の鞍型コイルにおける前記2つの折り返し部の間の2つの直線部がそれぞれ、他方の鞍型コイルにおける前記2つの折り返し部の間の2つの直線部に密着直線部として密着し、前記一方の鞍型コイルの前記2つの直線部のうちの一方の直線部は前記他方の鞍型コイルの前記2つの折り返し部にも密着し、及び、前記他方の鞍型コイルの前記2つの直線部のうちの一方の直線部は前記一方の鞍型コイルの前記2つの折り返し部にも密着するように連結鞍型コイルとして組み合わされており、しかも前記3相コイルは、第1の相の連結鞍型コイルの一方の密着直線部の外側と第2の相の連結鞍型コイルの一方の密着直線部の外側とが密着し、該第2の相の連結鞍型コイルの他方の密着直線部の外側と第3の相の連結鞍型コイルの一方の密着直線部の外側とが密着しつつ、一軸方向に並ぶように一体化して配置され、しかも、各連結鞍型コイルは、一方の密着直線部における外側または内側と、他方の密着直線部における内側または外側との間の距離が、前記移動方向に関して隣り合う2つの永久磁石の磁極中心間の距離に等しく、かつ3相コイルの1相分のピッチが4π/3(rad)で3相コイル1ユニット当たりの延在長を4π(rad)とし前記一方の密着直線部における内側と前記他方の密着直線部における内側との間に空間ができるようにされ、前記連結鞍型コイルを冷媒の循環可能な冷却用シェルに収容すると共に、前記空間に補強を組み込むようにしたことを特徴とする3相リニアモータ。
A plurality of pairs of permanent magnets with different magnetic poles facing each other across a coil installation space in which a three-phase coil is disposed are arranged at a magnetic pole pitch π (rad) in the moving direction of the movable part, and are adjacent to each other in the moving direction. In a three-phase linear motor in which the magnetic poles of the permanent magnets are also different,
The coils of each phase in the three-phase coil are composed of two saddle-shaped coils in which the short side of the substantially long rectangular coil is a folded part that forms an angle of about 90 degrees with respect to the straight part on the long side. These two saddle coils are combined so that the two folded portions in the respective saddle coils are opposite to each other, and the two linear portions between the two folded portions in one saddle coil are Each of the two saddle coils is in close contact with two linear portions between the two folded portions as a tight linear portion, and one of the two linear portions of the one saddle coil is the other linear portion. The two folded portions of the other saddle coil, and one of the two straight portions of the other saddle coil is the two folded portions of the one saddle coil. Connected and combined into a saddle coil, moreover the three phase coils to also close contact, the outer of the one contact linear portion connecting saddle coils of the first phase coupling saddle coils of the second phase The outside of one of the contact linear portions is in close contact, and the outside of the other contact linear portion of the second phase connected saddle coil and the outside of the one contact linear portion of the third phase connected saddle coil are The connecting saddle coils are arranged so as to be aligned in a uniaxial direction while being in close contact with each other, and the distance between the outer side or the inner side of one of the close contact linear portions and the inner side or the outer side of the other close contact linear portion Is equal to the distance between the magnetic pole centers of two permanent magnets adjacent to each other in the moving direction, and the one-phase pitch of the three-phase coil is 4π / 3 (rad), and the extension length per unit of the three-phase coil is 4π (rad) and the one contact straight line portion A space is formed between the inner side of the inner wall and the inner side of the other contact straight line portion, and the connecting saddle coil is accommodated in a cooling shell capable of circulating the refrigerant, and reinforcement is incorporated in the space. A three-phase linear motor characterized by that.
請求項1に記載の3相リニアモータにおいて、各相2つの前記密着直線部には反対向きの電流が流されることを特徴とする3相リニアモータ。   2. The three-phase linear motor according to claim 1, wherein currents in opposite directions are passed through the two contact linear portions of each phase. 3.
JP2003308272A 2003-09-01 2003-09-01 3-phase linear motor Expired - Fee Related JP4532864B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003308272A JP4532864B2 (en) 2003-09-01 2003-09-01 3-phase linear motor
TW093123945A TWI272756B (en) 2003-09-01 2004-08-10 Voice coil motor and three-phase linear motor
CN2004100683940A CN1592050B (en) 2003-09-01 2004-08-31 Voice coil motor and three-phase linear motor
KR1020040069415A KR100585184B1 (en) 2003-09-01 2004-09-01 Voice-coil motor and 3-phase linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308272A JP4532864B2 (en) 2003-09-01 2003-09-01 3-phase linear motor

Publications (2)

Publication Number Publication Date
JP2005080415A JP2005080415A (en) 2005-03-24
JP4532864B2 true JP4532864B2 (en) 2010-08-25

Family

ID=34410786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308272A Expired - Fee Related JP4532864B2 (en) 2003-09-01 2003-09-01 3-phase linear motor

Country Status (4)

Country Link
JP (1) JP4532864B2 (en)
KR (1) KR100585184B1 (en)
CN (1) CN1592050B (en)
TW (1) TWI272756B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731418B2 (en) 2008-01-25 2017-08-15 Systems Machine Automation Components Corporation Methods and apparatus for closed loop force control in a linear actuator
JP5248149B2 (en) * 2008-03-12 2013-07-31 日本トムソン株式会社 Slide device with built-in moving coil type linear motor
JP5248150B2 (en) * 2008-03-12 2013-07-31 日本トムソン株式会社 Slide device with built-in moving coil type linear motor
CN101978585B (en) * 2008-04-18 2013-08-07 株式会社安川电机 Multi-degree-of-freedom actuator and stage device
CN102201713B (en) * 2010-03-22 2015-05-13 直得科技股份有限公司 Linear motor coil assembly structure
DE112011103204T5 (en) * 2010-09-23 2013-08-14 Smac, Inc. Cost-effective multi-reel linear actuator
WO2014004588A1 (en) 2012-06-25 2014-01-03 Neff Edward A Robotic finger
WO2014004589A1 (en) 2012-06-25 2014-01-03 Neff Edward A Low-cost, reduced diameter linear actuator
US9871435B2 (en) 2014-01-31 2018-01-16 Systems, Machines, Automation Components Corporation Direct drive motor for robotic finger
US10807248B2 (en) 2014-01-31 2020-10-20 Systems, Machines, Automation Components Corporation Direct drive brushless motor for robotic finger
CN103934718B (en) * 2014-04-04 2016-08-17 西安交通大学 A kind of harmonic wave driving linear motor of the cutter variant-frequency vibration of stock-removing machine
WO2017011406A1 (en) 2015-07-10 2017-01-19 Systems, Machines, Automation Components Corporation Apparatus and methods for linear actuator with piston assembly having an integrated controller and encoder
US10215802B2 (en) 2015-09-24 2019-02-26 Systems, Machines, Automation Components Corporation Magnetically-latched actuator
EP3440426B1 (en) 2016-04-08 2021-06-30 Renishaw PLC Coordinate positioning machine
US10675723B1 (en) 2016-04-08 2020-06-09 Systems, Machines, Automation Components Corporation Methods and apparatus for inserting a threaded fastener using a linear rotary actuator
US10865085B1 (en) 2016-04-08 2020-12-15 Systems, Machines, Automation Components Corporation Methods and apparatus for applying a threaded cap using a linear rotary actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095231A (en) * 2000-09-12 2002-03-29 Sumitomo Heavy Ind Ltd Two-phase excitation type linear motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744896A (en) * 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
JP3052205B1 (en) 1999-09-28 2000-06-12 住友重機械工業株式会社 Moving coil for linear motor and method of manufacturing the same
JP3955427B2 (en) 2000-06-16 2007-08-08 住友重機械工業株式会社 Single coil of coil unit for linear motor and its winding form
KR100432244B1 (en) * 2001-06-25 2004-05-22 삼익Lms주식회사 Iron core type linear motor for high thrust force

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095231A (en) * 2000-09-12 2002-03-29 Sumitomo Heavy Ind Ltd Two-phase excitation type linear motor

Also Published As

Publication number Publication date
KR20050024212A (en) 2005-03-10
TWI272756B (en) 2007-02-01
KR100585184B1 (en) 2006-05-30
JP2005080415A (en) 2005-03-24
CN1592050A (en) 2005-03-09
CN1592050B (en) 2010-10-27
TW200511689A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP4532864B2 (en) 3-phase linear motor
JP5549567B2 (en) Electric motor device
JP6417018B2 (en) Linear motor
WO2006126552A1 (en) Motor and control device thereof
US7339290B2 (en) Linear motor
JP2004080938A (en) Coreless linear motor
JP3360606B2 (en) Linear motor
US8044543B2 (en) Stator and wire winding method therefor
US6777832B2 (en) High-thrust linear motor and method of producing the same
US10727727B2 (en) Linear motor and apparatus using same
US11955864B2 (en) Linear motor
JP6056571B2 (en) Linear motor
JP2002027729A (en) Linear motor
JP6677048B2 (en) Moving coil type linear motor
JP3855873B2 (en) Linear drive device and manufacturing apparatus using the same
JP4708078B2 (en) Linear motor
JP4846350B2 (en) Linear motor
JP6001828B2 (en) Linear motor stator
US20220302785A1 (en) Rotating electrical machine
TW202347923A (en) Linear motor
JP6058114B2 (en) Linear motor
JP2007143398A (en) Linear motor
JP2007209174A (en) Three-phase linear motor
JP2005176506A (en) Linear motor
JP2007028722A (en) Stator for motor, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees