Nothing Special   »   [go: up one dir, main page]

JP4529371B2 - Foamed resin core built-in FRP and method for manufacturing the same - Google Patents

Foamed resin core built-in FRP and method for manufacturing the same Download PDF

Info

Publication number
JP4529371B2
JP4529371B2 JP2003116698A JP2003116698A JP4529371B2 JP 4529371 B2 JP4529371 B2 JP 4529371B2 JP 2003116698 A JP2003116698 A JP 2003116698A JP 2003116698 A JP2003116698 A JP 2003116698A JP 4529371 B2 JP4529371 B2 JP 4529371B2
Authority
JP
Japan
Prior art keywords
resin
core
frp
adhesive
nylon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116698A
Other languages
Japanese (ja)
Other versions
JP2004322345A (en
Inventor
尚 三村
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003116698A priority Critical patent/JP4529371B2/en
Publication of JP2004322345A publication Critical patent/JP2004322345A/en
Application granted granted Critical
Publication of JP4529371B2 publication Critical patent/JP4529371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のボディ部品、バンパー、スポイラーなどに適用できる軽量であって、かつ耐たわみ性にも優れた発泡樹脂製コア内蔵のFRPに関する。
【0002】
【従来の技術】
従来より、金属成型材料、特に自動車のボディ、バンパー、スポイラーなどの各種部品の軽量化が検討されてきているが、最近では特に軽量化とともに強靱性をも兼ね備えた樹脂成型品が開発されている。例えばポリスチレンなどからなる発泡樹脂成型品をコアとし、その外側にガラス繊維やカーボン繊維などの繊維基材を被覆したのち、樹脂を含浸、硬化させた繊維強化プラスチック(以下、FRPという。)製のバンパー(特許文献1)や、発泡ポリウレタンコアの表面に不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタンなどの熱硬化性樹脂系塗料あるいはアクリル樹脂などの熱可塑性樹脂の溶剤型塗料を塗布した後、乾燥硬化させた薄い樹脂層を繊維基材とともに成型型内にセットし、FRP用樹脂液を注入硬化させた発泡ポリウレタンコア内蔵のFRP製品の製造方法(特許文献2)などが提案されている。
【0003】
【特許文献1】
特開平2−215519号公報(請求項1、第1〜4図)
【0004】
【特許文献2】
特開平5−147048号公報(請求項1、図1)
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1および2に提案されている発泡樹脂製成型品をコアとするFRPおいては、以下に述べる問題点があった。
【0006】
すなわち、特許文献1においては、前述したとおり発泡樹脂成型品をコアとし、その外側に繊維基材を被覆した後、樹脂を含浸硬化させるものであるが、発泡樹脂成型品コア表面からその内部に樹脂が浸透するため軽量化が損なわれたり、また、かかる場合の浸透斑によって製品の表面が変色して見えたり、極端な場合には凹凸が発生して著しく品位と光沢を低下させたりするため、極めて生産性の悪いものであった。一方、特許文献2においては、その欠点を改良、すなわち発泡ポリウレタンコアの表面に樹脂を塗布して繊維基材を通して注入される樹脂のポリウレタンコアへの浸透を防止するものである。確かに樹脂層形成材料を選択することで内部への浸透をある程度防止できるかも知れないが、塗膜によって形成された層は強度的に不十分であり、通常0.2〜2MPa程度の樹脂注入時の圧力などにより部分的に破壊され、注入樹脂がコアに浸透する可能性を伴うものである。また、注入された樹脂とポリウレタンコアを被覆する薄い樹脂層との接着が不十分な場合には、製品に重力を掛けてたわませた場合、きしみ音がするという問題があった。
【0007】
本発明は、従来技術の上記課題を解決し、樹脂含浸時のコア内部への浸透と浸透斑による変色を防止するとともに、FRP成型体のきしみ音の発生をも防止することにより、軽量化と耐たわみ性の両方に優れた発泡樹脂製コア内蔵のFRPおよびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記した従来技術の課題を解決するために、本発明の発泡樹脂製コア内蔵FRPは、発泡樹脂製コアの表面がナイロンフィルムで被覆され、該フィルムを介して、熱硬化性樹脂が含浸された繊維基材が積層されてなる発泡樹脂製コア内蔵FRPであって、前記ナイロンフィルムの少なくとも片面に、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層が設けられ、該粘接着層が前記発泡樹脂製コア側に位置していることを特徴とする。
【0009】
また、本発明の発泡樹脂製コア内蔵FRPの製造方法は、発泡樹脂製コアの表面をナイロンフィルムで被覆し、該フィルム上を繊維基材で被覆後、成型機のキャビティ内にセットし、熱硬化性樹脂を注入・硬化させる発泡樹脂製コア内蔵FRPの製造方法であって、前記ナイロンフィルムの少なくとも片面に、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層を設け、該粘接着層を前記発泡樹脂製コア側に配置することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に記述する。
【0011】
本発明のFRPで用いる発泡樹脂製コアとは、本発明のFRPのコアをなす発泡樹脂製成型品のことであり、その成型品はポリウレタン、ポリスチレン、ポリオレフィンなどからなる発泡体であって、一般的な製造方法によって製造され、独立あるいは連続気泡を有するものである。その発泡倍率は特に限定するものではないが軽量化を目的とするため、出来る限り発泡倍率は高いものが好ましい。成型体の強度とのバランスを考慮すると5倍から20倍程度の発泡倍率とするのが好ましい。
【0012】
発泡成型の方法としては、特に限定するものではなく、従来公知の方法によって成型することができる。例えば炭酸ガス、フレオン、メチレンジクロライド、ペンタン、空気等の他、熱分解型の有機系発泡剤などを適用することができる。特にポリウレタンのようなポリオールとイソシアネートの反応により副成する炭酸ガスを封入することによって製造する方法が簡易で均一発泡出来る点で好ましい。このような成型方法としては一般的にはワンショット法やプリポリマー法が知られている。本発明で用いるコアは半硬質、硬質発泡体が好ましい。
【0013】
ところで、前述したように本発明では、発泡樹脂成型品の表面をナイロンフィルムで被覆することを特徴とする。
【0014】
ナイロンフィルムとしては、特に限定しないがナイロン6、ナイロン12,ナイロン11,6−6ナイロン、6−10ナイロンなど任意のものを使用することができ、これらの2元、3元以上の共重合体であっても良い。融点は熱硬化性樹脂含浸時の硬化温度に耐えることが必要であり、通常、150℃以上であるのが好ましい。ナイロンフィルムは未延伸、一軸延伸、2軸延伸のいずれのフィルムでも使用することができる。ナイロンフィルムの厚みは3μm以上75μm以下であるのが好ましい。3μm未満の場合には強度が不足し、被覆過程や熱硬化樹脂注入時の圧力によって破れる場合があり、75μmを越える場合にはコアにうまく追従せず製品の表面状態が悪くなる場合がある。ナイロンフィルムの表面は空気中、窒素中、炭酸ガス中などでコロナ処理されたものが、注入する熱硬化性樹脂との接着の点で好ましい。処理は片面であっても両面であっても良いが熱硬化性樹脂と接触する側はコロナ処理面であることが接着性の点で好ましい。このような処理を施すことにより、ナイロンフィルムと熱硬化性樹脂とのより高い接着性を発現することができ、従来品で問題点であったFRPの上から重力をかけた時のきしみ音などを改良することができる。ナイロンフィルムと含浸繊維基材との接着力は180度剥離において100g/cm以上であるのが好ましく、上記の処理を施すことでより強固な接着力を発現することができる。発泡樹脂製成型品をナイロンフィルムで被覆するに際し、その被覆の目的は、発泡樹脂成型品への熱硬化樹脂の浸透防止であるため、浸透を防止できるような被覆方法を採用するのが好ましい。その被覆方法として、繊維基材および熱硬化性樹脂で被覆するまでの過程ではコア材に接着させておく。具体的には、ナイロンフィルムの少なくとも片面に粘着剤、接着剤を積層した複合フィルムの粘接着面をコア側にして被覆する方法を適用する。なお、常温で非粘接着で加熱によって接着するホットメルト型接着剤はコアをフィルムで被覆するときの作業性が良い。加熱はコアの耐熱性に応じて選定すればよいが低温の方がコアの寸法安定性の点で好ましく、ポリウレタン発泡体コアの場合には150℃以下であるのが望ましい。そのためにホットメルト接着剤の融点、もしくは軟化点が80℃以上140℃以下のものが好適である。このようなホットメルト型接着剤は特に限定しないが、例えばポリエステル系、アクリル系、ポリアミド系、ポリオレフィン系およびその共重合体、変性体、アイオノマーなどの市販のものを用いることができる。本発明のナイロンフィルムの場合には、ポリアミド系、変性ポリオレフィン系のものが好ましく、ポリアミド系としては共重合ポリアミドフィルム(例えば熱接着用フィルムタイプCF8000:東レ合成(株)製)をナイロンフィルムと張り合わせたり、変性ポリオレフィン系接着ポリマーであるアドマーNFシリーズ、HBシリーズ、LFシリーズLBシリーズ,VFシリーズ(三井化学(株)製)をエクストルージョンラミネート法でナイロンフィルムと積層するなどの方法が好ましい。接着層の厚みは特に限定しないが、コア材にフィットさせ、かつコアとの接着性を保持する点から1μm以上50μm以下、好ましくは3μm以上30μm以下、更に好ましくは5μm以上20μm以下であるのが望ましい。また、後述する熱硬化性樹脂注入時にナイロンフィルムの隙間から熱硬化性樹脂が浸透しないようにする必要があり、ナイロンフィルム接合部分は接着剤や粘着テープなどで補修するなどの方法を適用するのが好ましい。粘着テープの基材は熱硬化性樹脂が硬化するときの発熱を考慮すると170℃以上の融点を有するフィルムが好ましく、ポリエステル、ナイロンなどが好適である。粘着層はアクリル系、シリコーン系などの耐熱性を有するものが好ましい。
【0015】
上記発泡樹脂成型品をナイロンフィルムで被覆したものは、その上から熱硬化性樹脂が含浸された繊維基材によって被覆される。使用する繊維基材としては、特に限定されず、ガラス繊維、炭素繊維、アラミド繊維、セラミック繊維、金属繊維などの耐熱高強度繊維が好ましく、特に炭素繊維からなる織物が強度と軽量性のバランスから好ましく使用できる。
【0016】
ここで使用する熱硬化性樹脂としては、特に限定しないが、エポキシ樹脂、メラミン樹脂、ウレア樹脂、不飽和ポリエステル樹脂、フェノール樹脂などの使用が可能である。特に成型性、硬化性、ナイロンフィルムとの接着性などからエポキシ樹脂が好ましい。エポキシ樹脂を熱硬化させるためには硬化剤の併用が好ましく、ジエチレントリアミン、トリエチレンテトラミンなどのアミン類、ポリアミド、無水フタル酸、ピロメリット酸無水物、ピロメリット酸無水物−無水マレイン酸混合物、ヘキサヒドロフタル酸無水物、ドデセニルコハク酸無水物、クロレンディン酸無水物、メチルナジン酸無水物などの酸無水物系が好ましく、特に耐熱性などを考慮すると酸無水物系が好ましい。これら樹脂が含浸された繊維基材による被覆は1層でも良いし、目的、用途に応じて2層以上としても良い。層数の増加によってFRPの強度を向上することができる。
【0017】
次に、本発明の発泡樹脂製コア内蔵FRPの製造方法について説明する。
【0018】
まず、前述した発泡樹脂成型品(コア)、少なくとも片面に粘着剤、接着剤を積層したナイロンフィルムおよび繊維基材を用い、「発泡樹脂成型品/少なくとも片面に粘着剤、接着剤を積層したナイロンフィルム/繊維基材」の積層順からなる複合積層体を製作する。次に熱硬化性樹脂の注入・硬化を行うため、上記複合成型体を所定の金型のキャビティ内にセットし、端部から前述した熱硬化性樹脂を注入する。注入圧力としては樹脂が金型全体に均一にいきわたることが必要であり、樹脂の粘度や複合積層体の形状によって任意に設定することができるが通常は注入圧力が0.2〜2MPa、好ましくは0.3〜1MPa、更に好ましくは0.3〜0.7MPaの範囲内であるのが望ましい。金型の温度は使用する熱硬化性樹脂の種類に応じて設定すればよいが、例えばエポキシ樹脂の場合には80℃〜150℃であるのが好ましく、発泡樹脂成型品の耐熱寸法安定性から可能な限り低温であるのが望ましい。熱硬化のための加熱時間も熱硬化性樹脂の種類によって任意に設定できるが通常3分〜60分の範囲が望ましい。
【0019】
硬化完了後は金型から取り外して本発明の発泡樹脂製コア内蔵のFRPを得る。
【0020】
このようにして得られた本発明の発泡樹脂製コア内蔵のFRPは、コアの表面を、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層が該コア側に配置されるようにしてナイロンフィルムで被覆したので、その外部を包埋する熱硬化性樹脂のコア内部への浸透を防止でき、かつ熱硬化性樹脂とナイロンフィルムとの接着にも優れるため、発泡体本来の機能である軽量化およびFRPの耐久性の両機能に優れたものであり、例えば自動車のボディ部品、バンパー、スポイラーなどに適用できる軽量、耐たわみ性に優れたものとすることができる。
【0021】
【実施例】
本発明に関し、以下に実施例を用いて説明する。
【0022】
まず、本発明のコア内蔵FRPの特性の測定方法と効果の評価方法は次の通りとした。
【0023】
【特性の測定方法および効果の評価方法】
(1)熱硬化樹脂含浸繊維基材とナイロンフィルムとの接着力
成型完了後のFRPを分解し、熱硬化樹脂含浸繊維とナイロンフィルム複合部分を取り出し、テンシロン型引っ張り試験機にて180度剥離時の応力を測定した。引っ張り速度は200mm/分とした。
(2)FRP成型体の外観検査
成型完了後のFRPの外観を目視で観察し、色目の斑、表面の形状を評価した。
(3)熱硬化樹脂の発泡成型体への熱硬化樹脂の浸透
成型完了後のFRPの断面を切り出し、発泡体表面の発泡部分への浸透状態を100倍の光学顕微鏡で観察した。
(4)たわみによるきしみ音
成型体をたわませた時のきしみ音の発生する変形量を評価した。変形量は成型体の中央部の無荷重時を0とし、徐々に荷重を掛けて変形させたときにきしみ音が発生した押さえ込み深さを測定した。
【0024】
参考例1」
約10倍に発泡成型されたポリウレタン成型体コア(幅250mm×長さ700mm×厚み30mm)を用い、このコアの表面にスプレー糊55(住友スリーエム(株)製)を吹きつけ、常温で2分間乾燥させた。次いで両面コロナ処理を施した厚み15μmの二軸延伸ナイロンフィルム(エンブレムONBC:ユニチカ(株)製)を用い、コアの表面に貼り付けた。端部はコアが露出しないようにナイロンフィルムで包み込み、ポリエステル製粘着テープを貼り付けた。この成型体のナイロンフィルム上に炭素繊維からなる基布で包み込み、次いでこれを80℃に加熱した樹脂注入成型機の金型にセットした。端部からエポキシ樹脂と無水フタル酸の混合物を注入圧力0.5MPaで圧入し、その後120℃に昇温し、30分間硬化させた。その後、約40℃まで冷却し、成型機を開けて金型から成型品を取り出した。この成型品は外観が極めて美麗でコア部へのエポキシ樹脂の浸透がなく高い接着性(1kg/cm以上)を有しており、10mmの変形でもきしみ音は発生しなかった。
【0025】
「比較例1」
次に、参考例1のナイロンフィルムを使用しない以外は同様にしてFRP製成型体を作成した。この成型体は外観の色目に斑が見られ、部分的に凹みが観察された。また、断面観察で発泡体内部にエポキシ樹脂の浸透が見られた。
【0026】
「比較例2」
参考例1のナイロンフィルムに変えて、厚み15μmの二軸延伸ポリプロピレンフィルムを用いた以外は同様にして成型体を作成した。この成型体はエポキシ樹脂含浸繊維基材とポリプロピレンフィルムとの接着が悪く(50g/cm以下)、10mm未満の変形量できしみ音が発生した。
【0027】
「比較例3」
参考例1のナイロンフィルムに変えてポリエステル樹脂(バイロン200:東洋紡(株)製)100重量部にポリイソシアネート(コロネートL:日本ポリウレタン(株)製)を25重量部添加したトルエン/酢酸エチル(70/30重量%)で25重量%に希釈した塗剤を調合し、発泡ウレタンコア表面に乾燥後の厚みが約15μmとなるように塗布した。
乾燥は120℃で10分とした。これ以外は参考例1と同様にして成型体を作成した。
この成型体は断面観察から発泡体へのエポキシ樹脂の浸透が見られ、外観の色目斑、表面の凹状欠点が観察された。
【0028】
「実施例
参考例1のナイロンフィルムの片面に30μm厚のポリアミド系熱接着フィルムCF8000(東レ合成(株)製)をウレタン接着剤で貼り付けたものを用い、熱接着フィルム側をコア側として参考例1と同様に発泡体コアを被覆した。これを120℃の熱風乾燥機中で5分間放置し、コアとフィルムを熱接着させた。以下、参考例1と同様にして成型品を作成した。この成型品は熱硬化樹脂含浸繊維基材との接着(1kg/cm以上)、外観に優れ、20mmの変形量でもきしみ音の発生が無かった。
【0029】
「実施例
参考例1のナイロンフィルムの片面に10μm厚の変性ポリオレフィン接着ポリマー(アドマーLF300:三井化学(株)製)をエクストルージョンラミネート法により積層した。このフィルムの接着ポリマー層面をコア側として参考例1と同様にして発泡体コアを被覆した。これを130℃の熱風乾燥機中に10分間放置し、コアとフィルムを熱接着させた。
以下、参考例1と同様にして成型品を作成した。この成型品は熱硬化樹脂含浸繊維基材との接着(1kg/cm以上)、外観に優れ、20mmの変形量でもきしみ音の発生がなかった。
【0030】
【発明の効果】
本発明は、発泡樹脂製コア内蔵のFRPにおいて、コア表面を、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層が該コア側に配置されるようにしてナイロンフィルムで被覆させたので、注入樹脂が内部の発泡体コアに浸透せず、したがって変色も生じることがない。また、注入樹脂とナイロンフィルムとの接着性が高いためにたわみによってきしみ音が発生しない優れた発泡樹脂製コア内蔵FRPを得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an FRP with a built-in foamed resin core that is lightweight and applicable to, for example, automobile body parts, bumpers, spoilers, and the like, and has excellent flexibility.
[0002]
[Prior art]
Conventionally, weight reduction of various parts such as metal molding materials, especially automobile bodies, bumpers, spoilers, etc. has been studied, but recently resin molded products that have both toughness and toughness have been developed. . For example, a foamed resin molded product made of polystyrene or the like is used as a core, and a fiber base material such as glass fiber or carbon fiber is coated on the outside, and then the resin is impregnated and cured, which is made of fiber reinforced plastic (hereinafter referred to as FRP). Drying and curing after applying bumper (Patent Document 1) or thermosetting resin-based paint such as unsaturated polyester resin, epoxy resin, polyurethane or thermoplastic resin such as acrylic resin to the surface of foamed polyurethane core A method of manufacturing an FRP product with a foamed polyurethane core in which a thin resin layer is set in a mold together with a fiber base material and an FRP resin solution is injected and cured has been proposed (Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2-215519 (Claim 1, FIGS. 1-4)
[0004]
[Patent Document 2]
Japanese Patent Laid-Open No. 5-147048 (Claim 1, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the FRP having the foamed resin molded product proposed in Patent Documents 1 and 2 as a core has the following problems.
[0006]
That is, in Patent Document 1, as described above, a foamed resin molded product is used as a core, and after the fiber base material is coated on the outside, the resin is impregnated and cured. Because the resin penetrates, weight reduction is impaired, and the surface of the product looks discolored due to the penetration spots in such a case, and in extreme cases, unevenness is generated and the quality and gloss are significantly reduced. It was extremely poor productivity. On the other hand, in Patent Document 2, the drawback is improved, that is, the resin is applied to the surface of the foamed polyurethane core to prevent the resin injected through the fiber base material from penetrating into the polyurethane core. Certainly, it may be possible to prevent penetration into the interior to some extent by selecting the resin layer forming material, but the layer formed by the coating is insufficient in strength, and resin injection of usually about 0.2 to 2 MPa This is partly destroyed by the pressure of the time and the like, with the possibility that the injected resin penetrates into the core. Further, when the injected resin and the thin resin layer covering the polyurethane core are insufficiently bonded, there is a problem that a squeak noise is generated when the product is deflected by gravity.
[0007]
The present invention solves the above-mentioned problems of the prior art, prevents penetration into the core during resin impregnation and discoloration due to penetration spots, and prevents generation of squeak noise in the FRP molded body, thereby reducing weight. An object of the present invention is to provide an FRP with a built-in foam resin core excellent in both flexibility resistance and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the foamed resin core-embedded FRP of the present invention has the surface of the foamed resin core covered with a nylon film, and the film is impregnated with a thermosetting resin. a foamed resin core built FRP fiber base ing is laminated on at least one surface of the nylon film, together with the normal temperature is a non-adhesive property, a resin expressing adhesive property by heating An adhesive layer is provided, and the adhesive layer is located on the foamed resin core side .
[0009]
In addition, the method for producing a foamed resin core-incorporated FRP according to the present invention covers the surface of the foamed resin core with a nylon film, covers the film with a fiber base material, and then sets it in a cavity of a molding machine. a method of manufacturing a foamed resin core built FRP which Ru is injected and curing the curable resin on at least one surface of the nylon film, along with the room temperature is non-adhesive properties, expressed adhesive property by heating An adhesive layer made of resin is provided, and the adhesive layer is disposed on the foamed resin core side .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0011]
The foamed resin core used in the FRP of the present invention is a foamed resin molded product that forms the core of the FRP of the present invention, and the molded product is a foam made of polyurethane, polystyrene, polyolefin, etc. It is manufactured by a general manufacturing method and has independent or open cells. The expansion ratio is not particularly limited, but it is preferably as high as possible in order to reduce the weight. Considering the balance with the strength of the molded body, it is preferable to set the expansion ratio to about 5 to 20 times.
[0012]
The foam molding method is not particularly limited, and can be molded by a conventionally known method. For example, in addition to carbon dioxide, freon, methylene dichloride, pentane, air, etc., a pyrolytic organic foaming agent can be applied. In particular, the production method by enclosing carbon dioxide gas by-produced by the reaction of a polyol such as polyurethane and isocyanate is preferable in that it can be easily and uniformly foamed. As such a molding method, a one-shot method or a prepolymer method is generally known. The core used in the present invention is preferably a semi-rigid or rigid foam.
[0013]
Incidentally, as described above, the present invention is characterized in that the surface of the foamed resin molded product is covered with a nylon film.
[0014]
Although it does not specifically limit as a nylon film, Arbitrary things, such as nylon 6, nylon 12, nylon 11,6-6 nylon, 6-10 nylon, can be used, These binary, ternary or more copolymer It may be. The melting point must withstand the curing temperature when impregnated with the thermosetting resin, and is usually preferably 150 ° C. or higher. The nylon film can be any of unstretched, uniaxially stretched and biaxially stretched. The thickness of the nylon film is preferably 3 μm or more and 75 μm or less. If the thickness is less than 3 μm, the strength may be insufficient and may be broken by the pressure during the coating process or thermosetting resin injection. If the thickness exceeds 75 μm, the core may not follow well and the surface condition of the product may deteriorate. The surface of the nylon film is preferably subjected to corona treatment in air, nitrogen, carbon dioxide, or the like in terms of adhesion to the thermosetting resin to be injected. The treatment may be single-sided or double-sided, but the side that contacts the thermosetting resin is preferably a corona-treated surface in terms of adhesiveness. By applying such a treatment, higher adhesion between the nylon film and the thermosetting resin can be expressed, and squeak noise when gravity is applied over FRP, which was a problem with conventional products, etc. Can be improved. The adhesive force between the nylon film and the impregnated fiber substrate is preferably 100 g / cm or more at 180 ° peeling, and a stronger adhesive force can be expressed by performing the above treatment. When the foamed resin molded product is coated with the nylon film, the purpose of the coating is to prevent the thermosetting resin from penetrating into the foamed resin molded product. Therefore, it is preferable to employ a coating method that can prevent the penetration. . As the coating method, you Ku is adhered to the core material in the process up to coating a fiber base material and a thermosetting resin. Specifically, a method is applied in which the adhesive film of the composite film in which a pressure-sensitive adhesive and an adhesive are laminated on at least one surface of the nylon film is coated on the core side . Incidentally, hot-melt adhesive for bonding by heating in a non-adhesive at ordinary temperature, have good workability when coating the core with a film. Heating may be selected according to the heat resistance of the core, but a lower temperature is preferable from the viewpoint of dimensional stability of the core, and in the case of a polyurethane foam core, it is preferably 150 ° C. or lower. Therefore, a hot melt adhesive having a melting point or softening point of 80 ° C. or higher and 140 ° C. or lower is preferable. Such hot-melt adhesives are not particularly limited, and for example, commercially available products such as polyester-based, acrylic-based, polyamide-based, polyolefin-based and copolymers thereof, modified products, and ionomers can be used. In the case of the nylon film of the present invention, a polyamide type or a modified polyolefin type is preferable. As the polyamide type, a copolymerized polyamide film (for example, heat bonding film type CF8000: manufactured by Toray Synthetic Co., Ltd.) is bonded to the nylon film. Alternatively, Admer NF series, HB series, LF series LB series, and VF series (manufactured by Mitsui Chemicals, Inc.), which are modified polyolefin adhesive polymers, are laminated with a nylon film by the extrusion laminating method. The thickness of the adhesive layer is not particularly limited, but it is 1 μm or more and 50 μm or less, preferably 3 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less from the viewpoint of fitting to the core material and maintaining the adhesion to the core. desirable. In addition, it is necessary to prevent the thermosetting resin from penetrating through the gaps in the nylon film when injecting the thermosetting resin, which will be described later, and the nylon film joint portion is repaired with an adhesive or adhesive tape. Is preferred. The base material of the adhesive tape is preferably a film having a melting point of 170 ° C. or higher in consideration of heat generated when the thermosetting resin is cured, and polyester, nylon, and the like are preferable. The adhesive layer preferably has heat resistance such as acrylic or silicone.
[0015]
The foamed resin molded article coated with a nylon film is covered with a fiber substrate impregnated with a thermosetting resin. The fiber base material to be used is not particularly limited, and heat-resistant and high-strength fibers such as glass fiber, carbon fiber, aramid fiber, ceramic fiber, and metal fiber are preferable. Particularly, a woven fabric made of carbon fiber has a balance between strength and lightness. It can be preferably used.
[0016]
Although it does not specifically limit as a thermosetting resin used here, Use of an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester resin, a phenol resin, etc. is possible. In particular, an epoxy resin is preferable from the viewpoints of moldability, curability, adhesion to a nylon film, and the like. In order to thermally cure the epoxy resin, it is preferable to use a curing agent in combination, such as amines such as diethylenetriamine and triethylenetetramine, polyamide, phthalic anhydride, pyromellitic anhydride, pyromellitic anhydride-maleic anhydride mixture, hexa Acid anhydride systems such as hydrophthalic acid anhydride, dodecenyl succinic acid anhydride, chlorendic acid anhydride, and methyl nadic acid anhydride are preferred, and acid anhydride systems are particularly preferred in view of heat resistance. The coating with the fiber base impregnated with these resins may be a single layer, or two or more layers depending on the purpose and application. The strength of FRP can be improved by increasing the number of layers.
[0017]
Next, the manufacturing method of the FRP built-in core FRP of the present invention will be described.
[0018]
First, using the above-mentioned foamed resin molded product (core), nylon film laminated with adhesive and adhesive on at least one side, and fiber base material, “foamed resin molded product / nylon laminated with adhesive and adhesive on at least one side ” A composite laminate comprising the order of “film / fiber substrate” is manufactured. Next, in order to inject and cure the thermosetting resin, the composite molded body is set in a cavity of a predetermined mold, and the above-described thermosetting resin is injected from the end portion. As the injection pressure, it is necessary that the resin spread uniformly over the entire mold, and it can be arbitrarily set depending on the viscosity of the resin and the shape of the composite laminate, but the injection pressure is usually 0.2 to 2 MPa, preferably It is desirable that the pressure be in the range of 0.3 to 1 MPa, more preferably 0.3 to 0.7 MPa. The temperature of the mold may be set according to the type of the thermosetting resin to be used. For example, in the case of an epoxy resin, it is preferably 80 ° C. to 150 ° C. From the heat resistant dimensional stability of the foamed resin molded product. It is desirable to be as cold as possible. The heating time for thermosetting can be arbitrarily set depending on the type of the thermosetting resin, but it is usually preferably in the range of 3 minutes to 60 minutes.
[0019]
After the curing is completed, it is removed from the mold to obtain the FRP with a foamed resin core according to the present invention.
[0020]
The FRP with a built-in foamed resin core according to the present invention thus obtained has a non-adhesive adhesive surface at room temperature and is made of a resin that exhibits adhesiveness when heated. Since the layer is covered with the nylon film so as to be disposed on the core side, it is possible to prevent the thermosetting resin embedded in the outside from penetrating into the core and to adhere the thermosetting resin and the nylon film. Therefore, it is excellent in both the weight reduction and the durability of FRP, which are the original functions of the foam. For example, it can be applied to automobile body parts, bumpers, spoilers, etc. Can be.
[0021]
【Example】
The present invention will be described below with reference to examples.
[0022]
First, the method for measuring the characteristics of the core-incorporated FRP of the present invention and the method for evaluating the effects were as follows.
[0023]
[Characteristic measurement method and effect evaluation method]
(1) Adhesive force between thermosetting resin-impregnated fiber base material and nylon film FRP after completion of molding is disassembled, the thermosetting resin-impregnated fiber and nylon film composite part is taken out, and peeled 180 degrees with Tensilon type tensile tester The stress of was measured. The pulling speed was 200 mm / min.
(2) Appearance inspection of FRP molded body The appearance of FRP after completion of molding was visually observed to evaluate the color spots and surface shape.
(3) A cross section of the FRP after completion of the penetration molding of the thermosetting resin into the foam molding of the thermosetting resin was cut out, and the penetration state into the foamed portion of the foam surface was observed with a 100 × optical microscope.
(4) The amount of deformation in which a squeak noise was generated when the squeak noise molded body was bent was evaluated. The amount of deformation was set to 0 when no load was applied to the center of the molded body, and the pressing depth at which squeak noise was generated when the load was gradually deformed by applying a load was measured.
[0024]
" Reference Example 1"
Using a polyurethane molding core (width 250 mm x length 700 mm x thickness 30 mm) foamed and molded about 10 times, spray paste 55 (manufactured by Sumitomo 3M Co., Ltd.) is sprayed on the surface of this core, and at room temperature for 2 minutes Dried. Next, a biaxially stretched nylon film (emblem ONBC: manufactured by Unitika Co., Ltd.) having a thickness of 15 μm subjected to double-sided corona treatment was attached to the surface of the core. The end was wrapped with a nylon film so that the core was not exposed, and a polyester adhesive tape was attached. The molded nylon film was wrapped with a carbon fiber base fabric and then set in a mold of a resin injection molding machine heated to 80 ° C. A mixture of epoxy resin and phthalic anhydride was injected from the end with an injection pressure of 0.5 MPa, and then the temperature was raised to 120 ° C. and cured for 30 minutes. Then, it cooled to about 40 degreeC, the molding machine was opened, and the molded product was taken out from the metal mold | die. This molded product was very beautiful in appearance, did not penetrate the epoxy resin into the core, had high adhesiveness (1 kg / cm or more), and no squeak noise was generated even when deformed by 10 mm.
[0025]
"Comparative Example 1"
Next, an FRP molded body was prepared in the same manner except that the nylon film of Reference Example 1 was not used. The molded product was spotted in the color of the appearance, and dents were partially observed. Moreover, the penetration of the epoxy resin was observed inside the foam by cross-sectional observation.
[0026]
“Comparative Example 2”
A molded body was prepared in the same manner except that a biaxially stretched polypropylene film having a thickness of 15 μm was used instead of the nylon film of Reference Example 1. This molded article had poor adhesion between the epoxy resin-impregnated fiber base material and the polypropylene film (50 g / cm or less), and a squeak noise was generated with a deformation amount of less than 10 mm.
[0027]
“Comparative Example 3”
In place of the nylon film of Reference Example 1, toluene / ethyl acetate (70) obtained by adding 25 parts by weight of polyisocyanate (Coronate L: manufactured by Nippon Polyurethane Co., Ltd.) to 100 parts by weight of a polyester resin (Byron 200: manufactured by Toyobo Co., Ltd.) / 30% by weight), and a coating agent diluted to 25% by weight was prepared and applied to the surface of the foamed urethane core so that the thickness after drying was about 15 μm.
Drying was performed at 120 ° C. for 10 minutes. Except for this, a molded body was prepared in the same manner as in Reference Example 1.
From this cross-sectional observation, penetration of the epoxy resin into the foam was observed and cross-section defects on the appearance and concave defects on the surface were observed.
[0028]
"Example 1 "
Using a nylon thermal adhesive film CF8000 (manufactured by Toray Synthetic Co., Ltd.) 30 μm thick on one side of the nylon film of Reference Example 1 with a urethane adhesive, the thermal adhesive film side as the core side and Reference Example 1 Similarly, a foam core was coated. This was left for 5 minutes in a 120 ° C. hot air dryer to thermally bond the core and the film. Thereafter, a molded product was prepared in the same manner as in Reference Example 1. This molded article was excellent in adhesion (1 kg / cm or more) to the thermosetting resin-impregnated fiber base material and appearance, and no squeak noise was generated even with a deformation amount of 20 mm.
[0029]
"Example 2 "
A modified polyolefin adhesive polymer (Admer LF300: manufactured by Mitsui Chemicals, Inc.) having a thickness of 10 μm was laminated on one side of the nylon film of Reference Example 1 by the extrusion laminating method. The foam core was coated in the same manner as in Reference Example 1 with the adhesive polymer layer side of this film as the core side. This was left in a 130 ° C. hot air dryer for 10 minutes to thermally bond the core and the film.
Thereafter, a molded product was prepared in the same manner as in Reference Example 1. This molded article was excellent in adhesion (1 kg / cm or more) to the thermosetting resin-impregnated fiber base material and appearance, and no squeak noise was generated even with a deformation amount of 20 mm.
[0030]
【The invention's effect】
In the FRP with a foam resin core built-in, the core surface is non-adhesive at room temperature, and an adhesive layer made of a resin that exhibits adhesiveness when heated is disposed on the core side. Since it was covered with the nylon film as described above , the injected resin did not penetrate into the inner foam core, and therefore no discoloration occurred. Moreover, since the adhesiveness between the injection resin and the nylon film is high, it is possible to obtain an excellent foamed resin core built-in FRP in which no squeak noise is generated by bending.

Claims (3)

発泡樹脂製コアの表面がナイロンフィルムで被覆され、該フィルムを介して、熱硬化性樹脂が含浸された繊維基材が積層されてなる発泡樹脂製コア内蔵FRPであって、前記ナイロンフィルムの少なくとも片面に、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層が設けられ、該粘接着層が前記発泡樹脂製コア側に位置していることを特徴とする発泡樹脂製コア内蔵FRP。 Surface of the foamed resin core is covered with a nylon film, the film via a fiber substrate thermosetting resin is impregnated a foamed resin core built FRP ing are stacked, the nylon film An adhesive layer made of a resin that is non-adhesive at room temperature and develops adhesive properties when heated is provided on at least one side of the adhesive layer, and the adhesive layer is positioned on the core side made of the foamed resin. FRP with a built-in foam resin core, characterized by ナイロンフィルムと、熱硬化性樹脂が含浸された繊維基材との180度剥離接着力が、100g/cm以上である請求項1に記載の発泡樹脂製コア内蔵FRP。And nylon film, 180 ° peel adhesion between the fiber substrate thermosetting resin is impregnated, it is 100 g / cm or more, a foam core built FRP of Claim 1. 発泡樹脂製コアの表面をナイロンフィルムで被覆し、該フィルム上を繊維基材で被覆後、成型機のキャビティ内にセットし、熱硬化性樹脂を注入・硬化させる発泡樹脂製コア内蔵FRPの製造方法であって、前記ナイロンフィルムの少なくとも片面に、常温では非粘接着性であるとともに、加熱によって粘接着性を発現する樹脂からなる粘接着層を設け、該粘接着層を前記発泡樹脂製コア側に配置することを特徴とする発泡樹脂製コア内蔵FRPの製造方法。 The surface of the foamed resin core is coated with a nylon film, the following coating film on a fiber base material, was set in a cavity of the molding machine, foamed resin core built FRP which Ru is injected and cured with a thermosetting resin A method for producing an adhesive layer, wherein at least one surface of the nylon film is provided with an adhesive layer made of a resin that is non-adhesive at room temperature and develops adhesive properties when heated, the adhesive layer Is disposed on the side of the foamed resin core.
JP2003116698A 2003-04-22 2003-04-22 Foamed resin core built-in FRP and method for manufacturing the same Expired - Fee Related JP4529371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116698A JP4529371B2 (en) 2003-04-22 2003-04-22 Foamed resin core built-in FRP and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116698A JP4529371B2 (en) 2003-04-22 2003-04-22 Foamed resin core built-in FRP and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004322345A JP2004322345A (en) 2004-11-18
JP4529371B2 true JP4529371B2 (en) 2010-08-25

Family

ID=33496816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116698A Expired - Fee Related JP4529371B2 (en) 2003-04-22 2003-04-22 Foamed resin core built-in FRP and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4529371B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134408A1 (en) 2004-12-20 2006-06-22 Mitsubishi Rayon Co., Ltd. Process for producing sandwich structure and adhesive film therefor
JP2008155501A (en) * 2006-12-25 2008-07-10 Daiso Co Ltd Manufacturing method of diallyl phthalate based decorative sheet
JP6582429B2 (en) * 2015-02-09 2019-10-02 日産自動車株式会社 Sandwich molded body, molding method thereof and molding apparatus
CN114801250A (en) * 2021-01-19 2022-07-29 山东源仕新材料有限公司 Continuous machine-made glass fiber reinforced plastic with friendly bonding interface and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112649A (en) * 1989-09-27 1991-05-14 Sekisui Chem Co Ltd Manufacture of composite molding
JPH05147048A (en) * 1991-11-28 1993-06-15 Toyota Motor Corp Production of frp product with built-in foamed polyurethane core
JPH05329976A (en) * 1992-05-27 1993-12-14 Nippon Oil Co Ltd Composite material and production thereof
JPH07195602A (en) * 1993-12-28 1995-08-01 Sumitomo Rubber Ind Ltd Fiber reinforced plastic molded product having foam as core material
JP2003039455A (en) * 2001-08-01 2003-02-13 Toray Ind Inc Rtm holding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112649A (en) * 1989-09-27 1991-05-14 Sekisui Chem Co Ltd Manufacture of composite molding
JPH05147048A (en) * 1991-11-28 1993-06-15 Toyota Motor Corp Production of frp product with built-in foamed polyurethane core
JPH05329976A (en) * 1992-05-27 1993-12-14 Nippon Oil Co Ltd Composite material and production thereof
JPH07195602A (en) * 1993-12-28 1995-08-01 Sumitomo Rubber Ind Ltd Fiber reinforced plastic molded product having foam as core material
JP2003039455A (en) * 2001-08-01 2003-02-13 Toray Ind Inc Rtm holding method

Also Published As

Publication number Publication date
JP2004322345A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP6005911B2 (en) Structure integrated by vacuum / pressure forming or vacuum forming, and manufacturing method thereof
US10369770B2 (en) Molded article covered with film
US20030176128A1 (en) Structurally reinforced panels
CN111246998B (en) Method for manufacturing metal member, resin member, and exterior member
JP2543743B2 (en) Method of making a molded article using a sandwich structure
KR101915971B1 (en) Composite material and manufacturing method of automotive interior material using the same
JP6034440B1 (en) Decorative sheet, manufacturing method of molded product, and molded product
KR20050115261A (en) Structural reinforcement article and process for preparation thereof
JP4529371B2 (en) Foamed resin core built-in FRP and method for manufacturing the same
JP5771061B2 (en) Method for producing thermoplastic carbon fiber composite material having coating
US20030089192A1 (en) Steering wheel and manufacturing method therefor
CN114641398A (en) Transfer film for transferring a coating onto a part
JP4300861B2 (en) Foamed resin core built-in FRP and method for manufacturing the same
US20030084748A1 (en) Steering wheel
EP2170627A1 (en) Method of attaching wheel overlays
US20100176650A1 (en) Method of attaching wheel overlays
JP2002160315A (en) Decorative sheet and decorative molded product using it
US7101610B2 (en) Paint substitute film and method of applying same
GB2428625A (en) A process for the production of a rigid sandwich structure with a foamed epoxy core between two surface layers
JP4460697B2 (en) Manufacturing method of decorative moldings
US20050217112A1 (en) Steering wheel
KR102506569B1 (en) CFRP manufacturing method of in-mold type and hard case made using the same
WO2023062870A1 (en) Metal-prepreg complex
JPH05162191A (en) Production of frp blow molded product
KR101932621B1 (en) Manufacturing method of adhesion film for insert injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees