JP4515592B2 - 車両の自動変速装置 - Google Patents
車両の自動変速装置 Download PDFInfo
- Publication number
- JP4515592B2 JP4515592B2 JP2000093003A JP2000093003A JP4515592B2 JP 4515592 B2 JP4515592 B2 JP 4515592B2 JP 2000093003 A JP2000093003 A JP 2000093003A JP 2000093003 A JP2000093003 A JP 2000093003A JP 4515592 B2 JP4515592 B2 JP 4515592B2
- Authority
- JP
- Japan
- Prior art keywords
- clutch
- control
- gear
- rotation
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Transmission Device (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Description
【発明の属する技術分野】
本発明は、特にトラクタ等の大型車両に適用される車両の自動変速装置に関する。
【0002】
【従来の技術】
最近ではドライバの負担を軽減するため、トラクタやトラック等の大型車両においても自動変速装置を採用する例が多く見られる。このような大型車両では、メインギヤの他に、副変速機としてのスプリッタ及びレンジギヤを有する多段変速機が装備される。この場合、部品数及びコストの低減を図るため、メインギヤから機械的シンクロ機構を省略し、代わりにシンクロ制御なるものを行ってギヤインの際の同期を図ることが考えられる。ここでシンクロ制御とは、主に、シフトアップのときはカウンタシャフトブレーキ制御を行うことであり、シフトダウンのときはダブルクラッチ制御を行うことである。
【0003】
【発明が解決しようとする課題】
ところで、シフトダウンでダブルクラッチ制御するとき、エンジン回転をシンクロ可能な目標回転まで上昇させ、ドグギヤ回転をスリーブ回転に合わせ込む。このとき、エンジンの劣化や故障その他の原因によりエンジン回転の上昇が遅れると、変速時間が長くなったり、実質的にシンクロ不能、変速不能となる虞もある。
【0004】
そこで、本発明の目的は、ダブルクラッチ制御でエンジン回転の上昇が遅いとき、その回転上昇を早め、変速時間の長期化及び変速不能を防止することにある。
【0005】
【課題を解決するための手段】
本発明に係る車両の自動変速装置は、機械的なシンクロ機構を有しないメインギヤを含む変速機と、変速機の変速制御を実行する変速制御手段と、変速機の変速時に摩擦クラッチの断接制御を実行するクラッチ制御手段と、変速機の変速時に実アクセル開度から独立したエンジン制御を実行するエンジン制御手段とを備え、変速機のシフトダウンの際に所定のダブルクラッチ制御を実行するものであり、ダブルクラッチ制御が、クラッチを断する際に、クラッチが接から半クラッチ領域に入った直後の位置になったときにギヤ抜きとエンジン回転を所定の目標エンジン回転まで上昇させるエンジン制御とを開始し、ギヤ抜き終了後クラッチを接し、目標メインギヤ段におけるドグギヤ回転をスリーブ回転付近まで上昇させる制御を含み、上記ダブルクラッチ制御中、エンジン回転を所定の目標エンジン回転まで上昇させる上記エンジン制御を開始した後にクラッチを接する際に、クラッチが断から半クラッチ領域に入り上記位置に達していてもなおエンジン回転が目標エンジン回転に到達していないときに、目標エンジン回転を高める制御を行うものである。
【0007】
また、上記目標エンジン回転を高める制御が、当初の目標エンジン回転に、制御時間毎に累積増大する所定値を加算して新たな目標エンジン回転とするものであり、該所定値が、制御時間毎に加算されていくカウンタ値にエンジン回転の設定値を乗じて得られる値であるのが好ましい。
【0008】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。
【0009】
図1に本実施形態に係る車両の自動変速装置を示す。ここでは車両がトレーラを牽引するトラクタであり、エンジンがディーゼルエンジンである。図示するように、エンジン1にクラッチ2を介して変速機3が取り付けられ、変速機3のアウトプットシャフト4(図2参照)が図示しないプロペラシャフトに連結されて後輪(図示せず)を駆動するようになっている。エンジン1はエンジンコントロールユニット(ECU)6によって電子制御される。即ち、ECU6は、エンジン回転センサ7とアクセル開度センサ8との出力から現在のエンジン回転速度及びエンジン負荷を読取り、主にこれらに基づいて燃料噴射ポンプ1aを制御し、燃料噴射時期及び燃料噴射量を制御する。
【0010】
一方、変速機の変速時は、アクセル開度センサ8によって検知される実アクセル開度から独立して、ECU6自らが加工した疑似アクセル開度なるものに基づいてエンジン制御を実行する。これは特に後述するダブルクラッチ制御において必要である。
【0011】
図2に示すように、エンジンのクランク軸にフライホイール1bが取り付けられ、フライホイール1bの外周にリングギヤ1cが形成され、リングギヤ1cの歯が通過する度にエンジン回転センサ7がパルスを出力し、ECU6が単位時間当たりのパルス数をカウントしてエンジン回転数を算出する。
【0012】
図1に示すように、ここではクラッチ2と変速機3とがトランスミッションコントロールユニット(TMCU)9の制御信号に基づいて自動制御される。即ちかかる自動変速装置には自動クラッチ装置と自動変速機とが備えられる。ECU6とTMCU9とは互いにバスケーブル等を介して接続され、相互に連絡可能である。
【0013】
図1、図2、図3に示すように、クラッチ2は機械式摩擦クラッチであり、入力側をなすフライホイール1b、出力側をなすドリブンプレート2a、及びドリブンプレート2aをフライホイール1bに摩擦接触或いは離反させるプレッシャプレート2bから構成される。そしてクラッチ2は、クラッチブースタ(クラッチアクチュエータ)10によりプレッシャプレート2bを軸方向に操作し、基本的には自動断接され、ドライバの負担を軽減し得るものとなっている。一方、微低速バックに際しての微妙なクラッチワークや、非常時のクラッチ急断等を可能とするため、ここではクラッチペダル11によるマニュアル断接も可能となっている。所謂セレクティブオートクラッチの構成である。クラッチ位置(即ちプレッシャプレート2bの位置)を検出するためのクラッチストロークセンサ14と、クラッチペダル11の位置を検出するためのクラッチペダルストロークセンサ16とが設けられ、それぞれTMCU9に接続される。
【0014】
図3に分かりやすく示すが、クラッチブースタ10は実線で示す二系統の空圧通路a,bを通じてエアタンク5に接続され、エアタンク5から供給される空圧で作動する。一方の通路aがクラッチ自動断接用、他方の通路bがクラッチマニュアル断接用である。一方の通路aが二股状に分岐され、そのうちの一方に自動断接用の電磁弁MVC1,MVC2が直列に設けられ、他方に非常用の電磁弁MVCEが設けられる。分岐合流部にダブルチェックバルブDCV1が設けられる。他方の通路bに、クラッチブースタ10に付設される油圧作動弁12が設けられる。両通路a,bの合流部にもダブルチェックバルブDCV2が設けられる。ダブルチェックバルブDCV1,DCV2は差圧作動型の三方弁である。
【0015】
上記電磁弁MVC1,MVC2,MVCEはTMCU9によりON/OFF制御され、ONのとき上流側を下流側に連通し、OFF のとき上流側を遮断して下流側を大気開放する。まず自動側を説明すると、電磁弁MVC1は単にイグニッションキーのON/OFFに合わせてON/OFFされるだけである。イグニッションキーOFF 、つまり停車中はOFF となり、エアタンク5からの空圧を遮断する。電磁弁MVC2は比例制御弁で、供給又は排出エア量を自由にコントロールできる。これはクラッチの断接速度制御を行うためである。電磁弁MVC1,MVC2がともにONだとエアタンク5の空圧がダブルチェックバルブDCV1,DCV2をそれぞれ切り換えてクラッチブースタ10に供給される。これによりクラッチが分断される。クラッチを接続するときはMVC2のみがOFF され、これによりクラッチブースタ10の空圧がMVC2から排出されてクラッチが接続される。
【0016】
ところでもし仮にクラッチ分断中に電磁弁MVC1又はMVC2に異常が生じ、いずれかがOFF となると、ドライバの意思に反してクラッチが急接されてしまう。そこでこのような異常がTMCU9の異常診断回路で検知されたら、即座に電磁弁MVCEをONする。すると電磁弁MVCEを通過した空圧がダブルチェックバルブDCV1を逆に切り換えてクラッチブースタ10に供給され、クラッチ分断状態が維持され、クラッチ急接が防止される。
【0017】
次にマニュアル側を説明する。クラッチペダル11の踏込み・戻し操作に応じてマスタシリンダ13から油圧が給排され、この油圧が破線で示す油圧通路13aを介して油圧作動弁12に供給される。これによって油圧作動弁12が開閉され、クラッチブースタ10への空圧の給排が行われ、クラッチ2のマニュアル断接が実行される。油圧作動弁12が開くと、これを通過した空圧がダブルチェックバルブDCV2を切り換えてクラッチブースタ10に至る。
【0018】
図2に詳細に示すように、変速機3は基本的に常時噛み合い式の多段変速機で、前進16段、後進2段に変速可能である。変速機3はメインギヤ18と、その入力側及び出力側にそれぞれ副変速機としてのスプリッタ17及びレンジギヤ19を備える。そして、インプットシャフト15に伝達されてきたエンジン動力をスプリッタ17、メインギヤ18、レンジギヤ19へと順に送ってアウトプットシャフト4に出力する。
【0019】
変速機3を自動変速すべくギヤシフトユニットGSUが設けられ、これはスプリッタ17、メインギヤ18、レンジギヤ19それぞれの変速を担当するスプリッタアクチュエータ20、メインアクチュエータ21及びレンジアクチュエータ22から構成される。これらアクチュエータもクラッチブースタ10同様空圧作動され、TMCU9によって制御される。各ギヤ17,18,19の現在ポジションはギヤポジションスイッチ23(図1参照)で検知される。カウンタシャフト32の回転速度がカウンタシャフト回転センサ26で検知され、アウトプットシャフト4の回転速度がアウトプットシャフト回転センサ28で検知される。これら検知信号はTMCU9に送られる。
【0020】
この自動変速機ではマニュアルモードが設定され、ドライバのシフトチェンジ操作に基づくマニュアル変速が可能である。この場合、図1に示すように、クラッチ2の断接制御及び変速機3の変速制御は運転席に設けられたシフトレバー装置29からの変速指示信号を合図に行われる。即ち、ドライバが、シフトレバー装置29のシフトレバー29aをシフト操作すると、シフトレバー装置29に内蔵されたシフトスイッチが作動(ON)し、変速指示信号がTMCU9に送られ、これを基にTMCU9はクラッチブースタ10、スプリッタアクチュエータ20、メインアクチュエータ21及びレンジアクチュエータ22を適宜作動させ、一連の変速操作(クラッチ断→ギヤ抜き→ギヤ入れ→クラッチ接)を実行する。そしてTMCU9は現在のシフト段をモニター31に表示する。
【0021】
図示するシフトレバー装置29において、Rはリバース、Nはニュートラル、Dはドライブ、UPはシフトアップ、DOWNはシフトダウンをそれぞれ意味する。シフトスイッチはこれら各ポジションに応じた信号を出力する。また運転席に、変速モードを自動とマニュアルに切り換えるモードスイッチ24と、変速を1段ずつ行うか段飛ばしで行うかを切り換えるスキップスイッチ25とが設けられる。
【0022】
自動変速モードのとき、シフトレバー29aをDレンジに入れておけば車速に応じて自動的に変速が行われる。またこの自動変速モードでも、ドライバがシフトレバー29aをUP又はDOWNに操作すれば、マニュアルでのシフトアップ又はシフトダウンが可能である。この自動変速モードにおいて、スキップスイッチ25がOFF (通常モード)なら、シフトレバー29aの1回のUP又はDOWNの操作により、変速は1段ずつ行われる。これはトレーラ牽引時等、積載荷重が比較的大きいときに有効である。またスキップスイッチ25がON(スキップモード)なら変速は1段飛ばしで行われる。これはトレーラを牽引してないときや荷が軽いときなどに有効である。
【0023】
一方、マニュアル変速モードのときは、変速は完全にドライバの意思に従う。シフトレバー29aがDレンジのときは変速は行われず、現在ギヤが保持され、ドライバの積極的な意思でシフトレバー29aをUP又はDOWNに操作したときのみ、シフトアップ又はシフトダウンが可能である。このときも前記同様、スキップスイッチ25がOFF なら1回の操作につき変速は1段ずつ行われ、スキップスイッチ25がONなら変速は1段飛ばしで行われる。このモードではDレンジは現ギヤ段を保持するH(ホールド)レンジとなる。
【0024】
なお、運転席に非常用変速スイッチ27が設けられ、GSUの電磁弁等が故障したときはスイッチ27の手動切換により変速できるようになっている。
【0025】
図2に示すように、変速機3にあっては、インプットシャフト15、メインシャフト33及びアウトプットシャフト4が同軸上に配置され、カウンタシャフト32がそれらの下方に平行配置される。インプットシャフト15がクラッチ2のドリブンプレート2aに接続され、インプットシャフト15とメインシャフト33とが相対回転可能に支持される。
【0026】
まずスプリッタ17とメインギヤ18の構成を説明する。インプットシャフト15にインプットギヤSHが回転可能に取り付けられる。またメインシャフト33にも前方から順にギヤM4,M3,M2,M1,MRが回転可能に取り付けられる。MRを除くギヤSH,M4,M3,M2,M1は、それぞれカウンタシャフト32に固設されたカウンタギヤCH,C4,C3,C2,C1に常時噛合される。ギヤMRはアイドルリバースギヤIRに常時噛合され、アイドルリバースギヤIRはカウンタシャフト32に固設されたカウンタギヤCRに常時噛合される。
【0027】
インプットシャフト15及びメインシャフト33に取り付けられた各ギヤSH,M4…に、当該ギヤを選択し得るようドグギヤ36が一体的に設けられ、これらドグギヤ36に隣接してインプットシャフト15及びメインシャフト33に第1〜第4ハブ37〜40が固設される。第1〜第4ハブ37〜40には第1〜第4スリーブ42〜45が嵌合される。ドグギヤ36及び第1〜第4ハブ37〜40の外周部と、第1〜第4スリーブ42〜45の内周部とにスプラインが形成されており、第1〜第4スリーブ42〜45は第1〜第4ハブ37〜40に常時係合してインプットシャフト15又はメインシャフト33と同時回転すると共に、前後にスライド移動してドグギヤ36に対し選択的に係合・離脱する。この係合・離脱によりギヤイン・ギヤ抜きが行われる。第1スリーブ42の移動をスプリッタアクチュエータ20で行い、第2〜第4スリーブ43〜45の移動をメインアクチュエータ21で行う。
【0028】
このように、スプリッタ17とメインギヤ18とは各アクチュエータ20,21によって自動変速され得る常時噛み合い式の構成とされる。特に、スプリッタ17のスプライン部には通常の機械的なシンクロ機構が存在するものの、メインギヤ18の各スプライン部にはシンクロ機構が存在しない。このため、後述のシンクロ制御なるものを行ってドグギヤ回転とスリーブ回転とを同期させ、シンクロ機構なしで変速できるようにしている。ここではメインギヤ18以外にスプリッタ17にもニュートラルポジションが設けられ、所謂ガラ音対策がなされている(特願平11-319915 号参照)。
【0029】
次にレンジギヤ19の構成を説明する。レンジギヤ19は遊星歯車機構34を採用しており、ハイ・ローいずれかのポジションに切り替えることができる。遊星歯車機構34は、メインシャフト33の最後端に固設されたサンギヤ65と、その外周に噛合される複数のプラネタリギヤ66と、プラネタリギヤ66の外周に噛合される内歯を有したリングギヤ67とからなる。各プラネタリギヤ66は共通のキャリア68に回転可能に支持され、キャリア68はアウトプットシャフト4に連結される。リングギヤ67は管部69を一体的に有し、管部69はアウトプットシャフト4の外周に相対回転可能に嵌め込まれてアウトプットシャフト4とともに二重軸を構成する。
【0030】
第5ハブ41が管部69に一体的に設けられる。また第5ハブ41の後方に隣接して、アウトプットシャフト4にアウトプットシャフトドグギヤ70が一体的に設けられる。第5ハブ41の前方に隣接して、ミッションケース側に固定ドグギヤ71が設けられる。第5ハブ41の外周に第5スリーブ46が嵌合される。これら第5ハブ41、アウトプットシャフトドグギヤ70、固定ドグギヤ71及び第5スリーブ46にも前記同様にスプラインが形成され、第5スリーブ46が第5ハブ41に常時係合すると共に、前後にスライド移動してアウトプットシャフトドグギヤ70又は固定ドグギヤ71に対し選択的に係合・離脱する。第5スリーブ46の移動がレンジアクチュエータ22で行われる。レンジギヤ19のスプライン部には機械的なシンクロ機構が存在する。
【0031】
第5スリーブ46が前方に移動するとこれが固定ドグギヤ71に係合し、第5ハブ41と固定ドグギヤ71とが連結される。これによりリングギヤ67がミッションケース側に固定され、アウトプットシャフト4が1より大きい比較的大きな減速比(ここでは4.5 )で回転駆動されるようになる。これがローのポジションである。
【0032】
一方、第5スリーブ46が後方に移動するとこれがアウトプットシャフトドグギヤ70に係合し、第5ハブ41とアウトプットシャフトドグギヤ70とが連結される。これによりリングギヤ67とキャリア68とが互いに固定され、アウトプットシャフト4が1の減速比で直結駆動されるようになる。これがハイのポジションである。このようにかかるレンジギヤ19ではハイ・ロー間の減速比が比較的大きく異なる。
【0033】
結局、この変速機3では、前進側において、スプリッタ17でハイ・ローの2段、メインギヤ18で4段、レンジギヤ19でハイ・ローの2段に変速可能であり、計2×4×2=16段に変速することができる。また後進側では、スプリッタ17のみでハイ・ローを切り替えて2段に変速することができる。
【0034】
次に、各アクチュエータ20,21,22について説明する。これらアクチュエータはエアタンク5の空圧で作動する空圧シリンダと、空圧シリンダへの空圧の給排を切り替える電磁弁とで構成される。そしてこれら電磁弁がTMCU9で選択的に切り替えられ、空圧シリンダを選択的に作動させるようになっている。
【0035】
スプリッタアクチュエータ20は、ダブルピストンを有した空圧シリンダ47と三つの電磁弁MVH,MVF,MVGとで構成される。スプリッタ17をニュートラルにするときはMVH/ON,MVF/OFF,MVG/ONとされる。スプリッタ17をハイにするときはMVH/OFF,MVF/OFF,MVG/ONとされる。スプリッタ17をローにするときはMVH/OFF,MVF/ON,MVG/OFFとされる。
【0036】
メインアクチュエータ21は、ダブルピストンを有しセレクト側の動作を担当する空圧シリンダ48と、シングルピストンを有しシフト側の動作を担当する空圧シリンダ49とを備える。各空圧シリンダ48及び49に対しそれぞれ複数ずつ電磁弁MVC,MVD,MVE及びMVB,MVAが設けられる。
【0037】
セレクト側空圧シリンダ48は、MVC/OFF,MVD/ON,MVE/OFFのとき図の下方に移動し、メインギヤの3rd、4th又はN3を選択可能とし、MVC/ON,MVD/OFF,MVE/ONのとき中立となり、メインギヤの1st、2nd又はN2を選択可能とし、MVC/ON,MVD/OFF,MVE/OFFのとき図の上方に移動し、メインギヤのRev又はN1を選択可能とする。
【0038】
シフト側空圧シリンダ49は、MVA/ON,MVB/ONのとき中立となり、メインギヤのN1、N2又はN3を選択可能とし、MVA/ON,MVB/OFFのとき図の左側に移動し、メインギヤの2nd,4th又はRevを選択可能とし、MVA/OFF,MVB/ONのとき図の右側に移動し、メインギヤの1st又は3rdを選択可能とする。
【0039】
レンジアクチュエータ22は、シングルピストンを有した空圧シリンダ50と二つの電磁弁MVI,MVJとで構成される。空圧シリンダ50は、MVI/ON,MVJ/OFFのとき図の右側に移動し、レンジギヤをハイとし、MVI/OFF,MVJ/ONのとき図の左側に移動し、レンジギヤをローとする。
【0040】
ところで、後述するシンクロ制御に際してカウンタシャフト32を制動するため、カウンタシャフト32にはカウンタシャフトブレーキ27が設けられる。カウンタシャフトブレーキ27は湿式多板ブレーキであって、エアタンク5の空圧で作動する。この空圧の給排を切り替えるため電磁弁MV BRKが設けられる。電磁弁MV BRKがONのときカウンタシャフトブレーキ27に空圧が供給され、カウンタシャフトブレーキ27が作動状態となる。電磁弁MV BRKがOFFのときにはカウンタシャフトブレーキ27から空圧が排出され、カウンタシャフトブレーキ27が非作動となる。
【0041】
次に、自動変速制御の内容を説明する。TMCU9には図4に示すシフトアップマップと図5に示すシフトダウンマップとがメモリされており、TMCU9は、自動変速モードのとき、これらマップに従って自動変速を実行する。例えば図4のシフトアップマップにおいて、ギヤ段n(nは1から15までの整数)からn+1へのシフトアップ線図がアクセル開度(%)とアウトプットシャフト回転(rpm )との関数で決められている。そしてマップ上では現在のアクセル開度(%)とアウトプットシャフト回転(rpm )とからただ1点が定まる。車両加速中は、車輪に連結されたアウトプットシャフト4の回転が次第に増加していく。そこで通常の自動変速モードでは、現在の1点が各線図を越える度に1段ずつシフトアップを行うこととなる。このときスキップモードであれば線図を交互に1本ずつ飛ばして2段ずつシフトアップを行う。
【0042】
図5のシフトダウンマップにおいても同様に、ギヤ段n+1(nは1から15までの整数)からnへのシフトダウン線図がアクセル開度(%)とアウトプットシャフト回転(rpm )との関数で決められている。そしてマップ上では現在のアクセル開度(%)とアウトプットシャフト回転(rpm )とからただ1点が定まる。車両減速中はアウトプットシャフト4の回転が次第に減少していくので、通常の自動変速モードでは、現在の1点が各線図を越える度に1段ずつシフトダウンを行う。スキップモードであれば線図を交互に1本ずつ飛ばして2段ずつシフトダウンする。
【0043】
一方、マニュアルモードのときは、これらマップと無関係にドライバが自由にシフトアップ・ダウンを行える。通常モードなら1回のシフトチェンジ操作で1段変速でき、スキップモードなら1回のシフトチェンジ操作で2段変速できる。
【0044】
なおTMCU9は、アウトプットシャフト回転センサ28により検知される現在のアウトプットシャフト回転の値から現在の車速を換算し、これをスピードメータに表示する。つまり車速がアウトプットシャフト回転から間接的に検知され、アウトプットシャフト回転と車速とは比例関係にある。
【0045】
次に、シンクロ制御の内容を説明する。
【0046】
図6、図7に示すように、TMCU9には、スプリッタ17及びメインギヤ18における各ギヤの歯数ZSH,Z1 〜Z4 ,ZR ,ZCH,ZC1〜ZC4,ZCRと、レンジギヤ19におけるハイ・ローの減速比とが予め記憶されている。そこでTMCU9は、メインギヤ18のギヤ歯数と、カウンタシャフト回転センサ26によって検知されるカウンタシャフト回転(rpm) とに基づき、次回変速先となるメインギヤ18のギヤ段(目標メインギヤ段)におけるドグギヤ回転(rpm) を算出する。またTMCU9は、次回変速先となるレンジギヤ19のギヤ段(目標レンジギヤ段)の減速比と、アウトプットシャフト回転センサ28によって検知されるアウトプットシャフト回転(rpm) とに基づき、メインギヤ18におけるスリーブ回転(rpm) を算出する。
【0047】
図7の表の左欄において、左端に記載された「1st」、「2nd」…「Rev」の語は目標メインギヤ段を示している。また括弧内の「1st」、「2nd」…の語は各目標メインギヤ段が担当する変速機全体としての目標ギヤ段を示している。例えば、メインギヤ18の「1st」(ギヤM1)が担当する変速機全体のギヤ段は「1st」、「2nd」、「9th」、「10th」である。括弧内の語は最初の二つと後の二つとがレンジギヤ19のロー・ハイで切り分けられる。例えばメインギヤ「1st」だと「1st」、「2nd」がレンジギヤロー、「9th」、「10th」がレンジギヤハイである。そして最初の二つ又は後の二つの中において、先と後とがスプリッタ17のロー・ハイで切り分けられる。例えばメインギヤ「1st」でレンジギヤローだと、スプリッタローで変速機は「1st」、スプリッタハイで変速機は「2nd」となる。またメインギヤ「1st」でレンジギヤハイだと、スプリッタローで変速機は「9th」、スプリッタハイで変速機は「10th」となる。目標メインギヤ段の「2nd」、「3rd」、「4th」についても同様である。
【0048】
目標メインギヤ段「Rev」ではレンジギヤ19による切り分けは行われず、スプリッタ17のみで切り分けがなされる。スプリッタハイでリバース「high」、スプリッタローでリバース「low」となる。
【0049】
図7の表の右欄はドグギヤ回転(rpm) の算出式を示している。例えば目標メインギヤ段「1st」だと、カウンタシャフト回転センサ26による検出値(カウンタシャフト回転(rpm) )に、ギヤ比ZC1/Z1 を乗じた値が、ギヤM1に固設されたドグギヤ36の回転即ちドグギヤ回転(rpm) となる。目標メインギヤ段 「Rev」では、カウンタシャフト回転(rpm) に減速比CRev を乗じた値がドグギヤ回転(rpm) となる。
【0050】
一方、図7の下段は、メインギヤ18のスリーブ43、44、45の回転即ちスリーブ回転(rpm) の算出式を示している。次回変速先の目標レンジギヤ段がHighのときは、減速比が1なので、アウトプットシャフト回転センサ28の検出値(アウトプットシャフト回転(rpm) )がそのままスリーブ回転(rpm) となる。また目標レンジギヤ段がLow のときは、減速比がCRG=4.5 なので、アウトプットシャフト回転(rpm) に減速比CRGを乗じた値がスリーブ回転(rpm) となる。
【0051】
シンクロ制御では、これらドグギヤ回転とスリーブ回転とをギヤイン可能な範囲内に近付ける制御を行う。具体的には回転差Δ=(ドグギヤ回転−スリーブ回転)を計算し、この値をギヤイン可能な範囲に入れる制御を行う。シフトアップでは、通常ギヤイン直前でドグギヤ回転>スリーブ回転となっているので、カウンタシャフトブレーキ(以下CSBという)制御を行い、ドグギヤ回転を下げる。逆に、シフトダウンでは、通常ギヤイン直前でドグギヤ回転<スリーブ回転となっているので、ダブルクラッチ制御を行い、ドグギヤ回転を上げる。
【0052】
ダブルクラッチ制御は以下の如きである。図8に示すように、時刻t1 で変速指示信号があった場合、まずクラッチ断し、ギヤ抜きを行う。ギヤ抜きは、クラッチが切れ始めた直後の位置、言い換えれば半クラッチ領域に入った直後の位置p1 で開始する。エンジン制御は、クラッチ位置がp1 となった時点から、実アクセル開度から離れた疑似アクセル開度に基づく制御に移行する。このときエンジン回転は、カウンタシャフトを加速させるのに十分で、且つ目標メインギヤ段においてドグギヤ回転をスリーブ回転に略一致させることができるような回転(これを目標エンジン回転という)まで上昇され、この回転に達すると回転が一定に保持される。
【0053】
ギヤ抜き後、クラッチが接続され、これにより目標メインギヤ段におけるドグギヤ回転がスリーブ回転付近まで上昇し、シンクロが完了する。シンクロ完了後、クラッチが再び断され、ギヤインが実行される。ギヤインは、クラッチ切り終わり直前となる位置、言い換えれば半クラッチ領域から抜け出る直前の位置p2 から開始される。ギヤイン終了後、直ちにクラッチが再接続され、クラッチが完接されると変速終了し、エンジン及びカウンタシャフト回転が実アクセル開度に従った回転に移行する。
【0054】
ところで、このダブルクラッチ制御ではギヤ抜きとギヤインとの間で1回クラッチを接続し、シンクロを行うが、何らかの原因でエンジン回転の上昇が遅れるとシンクロできず、変速時間が長くなったり実質変速不能となるなど不都合が生じる。これは特に車両が長期の使用に亘りエンジンが劣化してきた場合などに予測される。
【0055】
そこで、本装置では、ダブルクラッチ制御開始から所定時間経過してもなおエンジン回転が目標エンジン回転に到達しなかったときは、目標エンジン回転を高めてエンジン回転上昇を促進するようにしている。以下これについて説明する。
【0056】
図9は目標エンジン回転算出フロー、図10は本発明に係るエンジン回転上昇促進制御のフローである。これらフローは所定の制御時間(ここでは32ms)毎に実行される。図10のフローを実行する前に図9のフローが必ず実行される。
【0057】
図9のフローについて、TMCU9はまずステップ101でアウトプットシャフト回転センサ28の出力信号から現アウトプットシャフト回転(rpm) を算出する。次にステップ102で変速機全体の目標ギヤ段のギヤ比を算出する。例えば目標ギヤ段9thだと、図6、図7に従えばスプリッタロー、メインギヤ1st、レンジギヤハイなので、ギヤ比=1/{(Z4 /ZC4)×(ZC1/Z1 )×1}となる。さらにステップ103で現アウトプットシャフト回転とギヤ比とを乗じ、目標エンジン回転(rpm) を算出する。この目標エンジン回転に実際のエンジン回転を合わせれば、クラッチを接したとき、自ずと目標メインギヤ段でシンクロが達成されるのである。
【0058】
次に図10のフローについて。TMCU9はまずステップ201で現在シンクロ制御中か否かを判断する。シンクロ制御中でなければ、シンクロ制御が完了したとしてステップ206に進んで内蔵カウンタをクリアしENDに進む。シンクロ制御中のときはステップ202に進み、現在ダブルクラッチ制御中か否かを判断する。ダブルクラッチ制御中でない、つまりCSB制御中のときはステップ206に進み、ダブルクラッチ制御中のときはステップ203に進む。
【0059】
なお、ダブルクラッチ制御中か否かは、具体的にはカウンタシャフト回転センサ26で検知される実際のカウンタシャフト回転(rpm) が、図9のフローで求められた目標エンジン回転に相当する値になったかどうかで判断する。このとき以下の換算式を用いる。
【0060】
NE =(ZCH/ZSH)×NC (スプリッタハイ時)
NE =(ZC4/Z4 )×NC (スプリッタロー時)
ただしNE :エンジン回転、NC :カウンタシャフト回転
なお、シンクロ制御前はスプリッタが必ずギヤインされる。そうしないとクラッチを接したときカウンタシャフトを加速できないからである。
【0061】
ステップ203では現在クラッチが接されているか否かを判断する。具体的にクラッチストロークセンサ14の出力値が図8の位置p1 より接側の値を示しているか否かを判断する。クラッチが接されていなければステップ206に進み、クラッチが接されていればステップ204に進む。
【0062】
ステップ204では内蔵カウンタをインクリメント(加算)する。初回は1、次回は2といった具合である。そしてステップ204の後ステップ205に進み、(図9のフローで求められた当初の目標エンジン回転)+(カウンタ値)×(設定値)を計算し、これにより得られた値を新たな目標エンジン回転とする。設定値としては例えば10(rpm) 或いは1(rpm) が用いられる。このように、目標エンジン回転が当初の目標エンジン回転より高められ、高められた後の新たな目標エンジン回転は、当初の目標エンジン回転に、制御時間毎に累積増大する所定値を加算した値であり、所定値は、制御時間毎に加算されていくカウンタ値にエンジン回転の設定値を乗じて得られる値となる。
【0063】
こうして新たな目標エンジン回転が決定されたら、その結果をECU6に出力する。するとECU6側で燃料噴射量を増大し、これによりエンジン回転が目標回転に早く到達するようになる。こうして本フローを終える。
【0064】
通常、クラッチが接されれば即ドグギヤ回転がシンクロ回転まで上昇し、シンクロが達成される。従ってステップ203から204、205に移行する制御回数は僅かであり、目標エンジン回転の変更は実質なされない。
【0065】
しかし、何らかの原因でエンジン回転上昇が遅れると、クラッチが接されてもドグギヤ回転がシンクロ回転までなかなか上昇しない。そしてこのときステップ203から204、205へと移行する制御回数は多数に及ぶ。よって、目標エンジン回転が実質的に変更され、目標エンジン回転は時間の経過と共に累積増大され、これに伴って燃料噴射量も増大され、エンジン回転が早期に立ち上がるようになる。
【0066】
こうして、ダブルクラッチ制御でエンジン回転の上昇が遅いとき、その回転上昇を早め、変速時間の長期化及び変速不能を防止することができる。
【0068】
【発明の効果】
本発明によれば、ダブルクラッチ制御でエンジン回転の上昇が遅いとき、その回転上昇を早め、変速時間の長期化及び変速不能を防止することができるという優れた効果が発揮される。
【図面の簡単な説明】
【図1】実施形態に係る車両の自動変速装置を示す構成図である。
【図2】自動変速機を示す構成図である。
【図3】自動クラッチ装置を示す構成図である。
【図4】シフトアップマップである。
【図5】シフトダウンマップである。
【図6】変速機内の各ギヤの歯数を示す。
【図7】ドグギヤ回転及びスリーブ回転の算出式を示す。
【図8】ダブルクラッチ制御の内容を示すタイムチャートである。
【図9】目標エンジン回転の算出方法を示すフローチャートである。
【図10】エンジン回転上昇促進制御の内容を示すフローチャートである。
【符号の説明】
1 エンジン
2 クラッチ
3 変速機
6 エンジンコントロールユニット
8 アクセル開度センサ
9 トランスミッションコントロールユニット
10 クラッチブースタ(クラッチアクチュエータ)
17 スプリッタ
18 メインギヤ
19 レンジギヤ
20 スプリッタアクチュエータ
21 メインアクチュエータ
22 レンジアクチュエータ
26 カウンタシャフト回転センサ
27 カウンタシャフトブレーキ
28 アウトプットシャフト回転センサ
Claims (2)
- 機械的なシンクロ機構を有しないメインギヤを含む変速機と、変速機の変速制御を実行する変速制御手段と、変速機の変速時に摩擦クラッチの断接制御を実行するクラッチ制御手段と、変速機の変速時に実アクセル開度から独立したエンジン制御を実行するエンジン制御手段とを備え、
変速機のシフトダウンの際に所定のダブルクラッチ制御を実行するものであり、
該ダブルクラッチ制御が、クラッチを断する際に、クラッチが接から半クラッチ領域に入った直後の位置になったときにギヤ抜きとエンジン回転を所定の目標エンジン回転まで上昇させるエンジン制御とを開始し、ギヤ抜き終了後クラッチを接し、目標メインギヤ段におけるドグギヤ回転をスリーブ回転付近まで上昇させる制御を含み、
上記ダブルクラッチ制御中、エンジン回転を所定の目標エンジン回転まで上昇させる上記エンジン制御を開始した後にクラッチを接する際に、クラッチが断から半クラッチ領域に入り上記位置に達していてもなおエンジン回転が目標エンジン回転に到達していないときに、目標エンジン回転を高める制御を行うことを特徴とする車両の自動変速装置。 - 上記目標エンジン回転を高める制御が、当初の目標エンジン回転に、制御時間毎に累積増大する所定値を加算して新たな目標エンジン回転とするものであり、該所定値が、制御時間毎に加算されていくカウンタ値にエンジン回転の設定値を乗じて得られる値である請求項1記載の車両の自動変速装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000093003A JP4515592B2 (ja) | 2000-03-28 | 2000-03-28 | 車両の自動変速装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000093003A JP4515592B2 (ja) | 2000-03-28 | 2000-03-28 | 車両の自動変速装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001270347A JP2001270347A (ja) | 2001-10-02 |
JP4515592B2 true JP4515592B2 (ja) | 2010-08-04 |
Family
ID=18608247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000093003A Expired - Fee Related JP4515592B2 (ja) | 2000-03-28 | 2000-03-28 | 車両の自動変速装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4515592B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11215279B2 (en) * | 2019-09-30 | 2022-01-04 | Ferrari S.P.A. | Method to automatically control a drivetrain provided with a servo-assisted transmission |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005049178A1 (de) * | 2005-10-14 | 2007-04-19 | Zf Friedrichshafen Ag | Verfahren und Vorrichtung zur Steuerung eines Gangwechsels eines automatisierten Schaltgetriebes |
KR100793886B1 (ko) | 2006-07-25 | 2008-01-15 | 현대자동차주식회사 | 차량용 듀얼 클러치 변속기의 변속 제어방법 |
JP5115835B2 (ja) | 2007-04-26 | 2013-01-09 | スズキ株式会社 | 車両の変速時制御装置 |
CA2715275C (en) * | 2008-02-28 | 2016-07-05 | Knorr-Bremse Systeme Fur Nutzfahrzeuge Gmbh | Method and device for controlling an output torque of an automated transmission coupled to an internal combustion engine |
JP5063431B2 (ja) * | 2008-03-25 | 2012-10-31 | 三菱農機株式会社 | トラクタ |
WO2010055550A1 (ja) * | 2008-11-11 | 2010-05-20 | トヨタ自動車株式会社 | パワートレーンの制御装置および制御方法 |
US8935063B2 (en) * | 2009-01-29 | 2015-01-13 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for vehicle |
JP5836048B2 (ja) * | 2011-10-11 | 2015-12-24 | アイシン・エーアイ株式会社 | 変速機 |
JP2015025547A (ja) * | 2013-07-29 | 2015-02-05 | アイシン精機株式会社 | クラッチ学習装置 |
JP6474248B2 (ja) * | 2014-12-16 | 2019-02-27 | クノールブレムゼ商用車システムジャパン株式会社 | エンジン回転制御方法及びハイブリット車両 |
JP2019074103A (ja) * | 2017-10-12 | 2019-05-16 | いすゞ自動車株式会社 | デュアルクラッチ式変速機 |
-
2000
- 2000-03-28 JP JP2000093003A patent/JP4515592B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11215279B2 (en) * | 2019-09-30 | 2022-01-04 | Ferrari S.P.A. | Method to automatically control a drivetrain provided with a servo-assisted transmission |
Also Published As
Publication number | Publication date |
---|---|
JP2001270347A (ja) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3945118B2 (ja) | セレクティブクラッチの制御装置 | |
JP4663840B2 (ja) | 自動変速機のエンジンオーバーラン防止装置 | |
JP4092846B2 (ja) | 車両の変速装置 | |
JP4515592B2 (ja) | 車両の自動変速装置 | |
JP4483613B2 (ja) | 変速制御装置及び方法 | |
JP4284820B2 (ja) | 車両の自動変速装置 | |
JP4140188B2 (ja) | 車両の自動変速装置 | |
JP4343415B2 (ja) | 車両の自動変速装置 | |
JP4426051B2 (ja) | 車両の自動変速装置 | |
JP4637996B2 (ja) | 車両の自動変速装置 | |
JP4304928B2 (ja) | 変速制御装置及び方法 | |
JP4470272B2 (ja) | 車両の自動変速装置 | |
JP4415291B2 (ja) | 車両の自動変速装置 | |
JP3888150B2 (ja) | 変速制御装置 | |
JP4284825B2 (ja) | 車両の自動変速装置 | |
JP4314721B2 (ja) | 車両の自動変速装置 | |
JP3893842B2 (ja) | 車両のオートクラッチ制御装置 | |
JP3888153B2 (ja) | 車両の坂道発進補助装置 | |
JP4411826B2 (ja) | 変速制御装置 | |
JP4221957B2 (ja) | 変速制御装置 | |
JP4366902B2 (ja) | 変速制御装置 | |
JP4505935B2 (ja) | 車両の自動変速装置 | |
JP4078783B2 (ja) | 車両の自動クラッチ装置 | |
JP4470919B2 (ja) | 車両のオートクラッチ制御装置 | |
JP4581178B2 (ja) | 車両の自動変速装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080918 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20081114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4515592 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |