JP4511911B2 - Electrode for polymer electrolyte fuel cell - Google Patents
Electrode for polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP4511911B2 JP4511911B2 JP2004345627A JP2004345627A JP4511911B2 JP 4511911 B2 JP4511911 B2 JP 4511911B2 JP 2004345627 A JP2004345627 A JP 2004345627A JP 2004345627 A JP2004345627 A JP 2004345627A JP 4511911 B2 JP4511911 B2 JP 4511911B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- fuel cell
- carbon material
- electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、固体高分子型燃料電池用電極に関するものである。 The present invention relates to an electrode for a polymer electrolyte fuel cell.
固体高分子型燃料電池は、水素を燃料とするクリーンな電源として、電気自動車の駆動電源、また、発電と熱供給を併用する定置電源として開発が進められている。また、固体高分子型燃料電池は、リチウムイオン電池等の二次電池と比較して、高いエネルギー密度が特徴であり、携帯用コンピュータあるいは移動用通信機器の電源としても開発が進められている。 The polymer electrolyte fuel cell is being developed as a clean power source using hydrogen as a fuel, a driving power source for an electric vehicle, and a stationary power source using both power generation and heat supply. In addition, solid polymer fuel cells are characterized by high energy density compared to secondary batteries such as lithium ion batteries, and are being developed as power sources for portable computers or mobile communication devices.
固体高分子型燃料電池の電源部分は、アノード(燃料極)とカソード(空気極)、及び、両極間に配したプロトン交換性の固体高分子電解質膜で構成される。アノード及びカソードは、白金等の貴金属を担持した触媒、フッ素樹脂粉等の造孔剤、及び、固体高分子電解質の混合体薄膜である。 The power supply portion of the polymer electrolyte fuel cell is composed of an anode (fuel electrode) and a cathode (air electrode), and a proton exchangeable solid polymer electrolyte membrane disposed between both electrodes. The anode and the cathode are a mixed thin film of a catalyst supporting a noble metal such as platinum, a pore-forming agent such as fluororesin powder, and a solid polymer electrolyte.
固体高分子型燃料電池では、単位電極面積当たりの出力が高いことが求められ、そのため、アノードとカソードを構成する電極触媒の電気化学反応活性が高いことが求められる。ここで、電気化学反応活性とは、水素を燃料としたアノードでは、水素を水素イオンへ酸化する電気化学活性であり、カソードでは酸素を水に還元する電気化学活性であり、いずれも電極触媒表面の反応活性である。かかる固体高分子型燃料電池のアノードとカソードの電極触媒には、白金等の貴金属が用いられる。高価な貴金属の電極単位面積当たりの使用量の低減と高い電気化学活性が求められる。 In the polymer electrolyte fuel cell, a high output per unit electrode area is required, and accordingly, the electrochemical reaction activity of the electrode catalyst constituting the anode and the cathode is required to be high. Here, the electrochemical reaction activity is an electrochemical activity that oxidizes hydrogen to hydrogen ions at the anode using hydrogen as a fuel, and an electrochemical activity that reduces oxygen to water at the cathode. Reaction activity. A noble metal such as platinum is used for the anode and cathode electrode catalyst of such a polymer electrolyte fuel cell. Reduction of the amount of expensive noble metal used per unit area of the electrode and high electrochemical activity are required.
固体高分子型燃料電池では、アノードとカソード触媒層内のガス拡散、水素イオン移動等の物質移動が、電極触媒表面での電気化学反応速度、即ち、燃料電池の出力に大きく影響する。また、固体高分子型燃料電池内には、固体高分子電解質膜のプロトン伝導性を上げるために供給される水と、カソードで生成する水があるが、触媒層内の水蒸気が過飽和になると、これらの水は凝集して液滴となり、ガス拡散経路を遮断し、ガスの供給不足を招き、極度の電圧低下を引き起こす(この現象はフラッディングと呼ばれる)。以上のことから、水素を燃料とした場合、アノードでは水素ガスの電極内拡散、生成した水素イオンのアノードから電解質膜を透過してカソード触媒粒子表面までの移動、更に、カソードでは酸素の電極内拡散と生成した水の排出が効率的に行われなければならない。 In the polymer electrolyte fuel cell, mass transfer such as gas diffusion and hydrogen ion transfer in the anode and cathode catalyst layers greatly affects the electrochemical reaction rate on the electrode catalyst surface, that is, the output of the fuel cell. Further, in the polymer electrolyte fuel cell, there are water supplied to increase proton conductivity of the polymer electrolyte membrane and water generated at the cathode, but when the water vapor in the catalyst layer becomes supersaturated, These water aggregate to form droplets, blocking the gas diffusion path, leading to insufficient gas supply, and causing an extreme voltage drop (this phenomenon is called flooding). From the above, when hydrogen is used as fuel, diffusion of hydrogen gas in the electrode at the anode, movement of the generated hydrogen ions from the anode through the electrolyte membrane to the surface of the cathode catalyst particles, and further, in the cathode, in the oxygen electrode Diffusion and generated water discharge must be done efficiently.
電極触媒の利用効率を向上して貴金属使用量を低減する方法として、特許文献1には、直径8nm以下の細孔が占める容積が0.5cm3/g以下であるカーボンブラックを担体として貴金属を担持することにより、水素イオンの移動経路である高分子電解質が分布できない担体細孔への触媒金属粒子の吸着を制御する方法が記載されている。また、特許文献2には、高分子固体電解質の侵入できない直径6nm以下の細孔が全細孔の20%以下であるカーボンブラックを担体とすることが記載されている。 As a method to improve the utilization efficiency of the electrode catalyst and reduce the amount of noble metal used, Patent Document 1 supports noble metal using carbon black with a volume of 0.5 cm 3 / g or less occupied by pores having a diameter of 8 nm or less as a support. Thus, there is described a method for controlling the adsorption of the catalyst metal particles to the support pores where the polymer electrolyte, which is the migration path of hydrogen ions, cannot be distributed. Patent Document 2 describes that carbon black whose pores having a diameter of 6 nm or less that cannot be penetrated by the polymer solid electrolyte are 20% or less of all pores is used as a carrier.
電極触媒表面への反応ガスの拡散性を向上させる方法として、例えば、特許文献3には、BET法による比表面積が250〜400m2/g、一次粒子径が10〜17nm、表面に開口している半径が10〜30nmである細孔の合計容積が0.40〜2.3cm3/gであるカーボンブラックを触媒担体とすることが記載されている。 As a method for improving the diffusibility of the reaction gas to the electrode catalyst surface, for example, Patent Document 3 discloses that the specific surface area by the BET method is 250 to 400 m 2 / g, the primary particle diameter is 10 to 17 nm, and the surface is open. It is described that carbon black having a total volume of pores having a radius of 10 to 30 nm and 0.40 to 2.3 cm 3 / g is used as a catalyst support.
更に、貴金属使用量を低減するために、貴金属粒子を高度な分散状態で担持し、かつ、ガス拡散性に優れた電極とする方法として、特許文献2には、直径6nm以下の細孔を全細孔の20%以下、DBP吸油量が200〜495mL/100g、比表面積が300〜1270m2/gである炭素微粉末に、貴金属を担持することが記載されている。 Furthermore, in order to reduce the amount of noble metal used, Patent Document 2 discloses a method for forming an electrode having noble metal particles supported in a highly dispersed state and having excellent gas diffusibility. It describes that a noble metal is supported on carbon fine powder having 20% or less of the pores, DBP oil absorption of 200 to 495 mL / 100 g, and specific surface area of 300 to 1270 m 2 / g.
固体高分子型燃料電池を普及するためは、電極触媒における貴金属使用量を0.1mg/cm2以下、望ましくは0.03mg/cm2以下にすることが必要であると言われている。そのためには、高分子固体電解質の侵入できない細孔を減らし、白金触媒の利用率を上昇させることに留まらず、白金微粒子の更なる微細化を進めると共に、白金触媒の利用率を向上させるために、高分子固体電解質の分布状態を変化させる手段が必要である。また、ガス拡散性の向上のためには、これまで以上に炭素材料中の空隙の制御を行う必要がある。 To spread the polymer electrolyte fuel cell, a noble metal usage in electrocatalyst 0.1 mg / cm 2 or less, desirably is it said it is necessary to below 0.03 mg / cm 2. For this purpose, not only to reduce the pores that cannot penetrate the polymer solid electrolyte and increase the utilization rate of the platinum catalyst, but also to further refine the platinum fine particles and improve the utilization rate of the platinum catalyst. A means for changing the distribution state of the solid polymer electrolyte is required. Moreover, in order to improve gas diffusivity, it is necessary to control the voids in the carbon material more than ever.
そこで、本発明は、上記課題を解決し、白金の利用効率を高めると共に、ガス拡散性に優れた固体高分子型燃料電池用電極を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, to increase the utilization efficiency of platinum, and to provide a polymer electrolyte fuel cell electrode excellent in gas diffusibility.
本発明者らは、上記課題を解決するために、電極触媒担体として多種類の炭素粉末を鋭意検討し、貴金属触媒、特に白金微粒子を高密度分散し、且つ、ガス拡散性に優れた本発明の固体高分子燃料電池用電極を得るに至った。 In order to solve the above-mentioned problems, the present inventors diligently studied various types of carbon powders as an electrode catalyst carrier, and the present invention has a high-density dispersion of noble metal catalysts, particularly platinum fine particles, and is excellent in gas diffusibility. The solid polymer fuel cell electrode was obtained.
即ち、本発明は以下の通りである。
(1) 繊維状炭素材料を含むガス拡散層と、その片側に形成した触媒成分、炭素材料と電解質材料を含む触媒層から形成される固体高分子型燃料電池用電極であって、触媒層に含まれる炭素材料の内、触媒を担持している触媒担体炭素材料の2nm以下の細孔容積が0.1mL/g以上であり、前記固体高分子型燃料電池用電極のガス拡散層と触媒層の間にカーボンブラックを含むマイクロポア層を有し、そのマイクロポア層のカーボンブラックにおいて、2 5℃ 、相対湿度90%における水蒸気吸着量が、100mL/g以下であり、且つ、DBP吸油量X(mL/100g)と窒素吸着比表面積Y(m 2 /g)の比X/Yが1以上であることを特徴とする固体高分子型燃料電池用電極。
(2) 前記触媒層に含まれる触媒担体炭素材料のBET法による比表面積が500m2/g以上である(1)に記載の固体高分子型燃料電池用電極。
(3) 前記触媒層に含まれる触媒担体炭素材料のDBP吸油量が300mL/100g以上である(1)又は(2)に記載の固体高分子型燃料電池用電極。
That is, the present invention is as follows.
(1) A polymer electrolyte fuel cell electrode formed from a gas diffusion layer containing a fibrous carbon material, a catalyst component formed on one side of the gas diffusion layer, and a catalyst layer containing a carbon material and an electrolyte material. of the carbon material include, 2 nm or less of the pore volume of the catalyst supporting carbon material carrying the catalyst Ri der least 0.1 mL / g, the gas diffusion layer and the catalyst layer of the electrode for a polymer electrolyte fuel cell In the carbon black of the micropore layer, the water vapor adsorption amount at 25 ° C. and 90% relative humidity is 100 mL / g or less and the DBP oil absorption amount X (mL / 100 g) and nitrogen adsorption specific surface area Y (m 2 / g) of the X / Y ratio is a solid polymer fuel cell electrode, characterized in der Rukoto 1 or more.
(2) The electrode for a solid polymer fuel cell according to (1), wherein a specific surface area of the catalyst support carbon material contained in the catalyst layer is 500 m 2 / g or more by BET method.
(3) The solid polymer fuel cell electrode according to (1) or (2), wherein the DBP oil absorption amount of the catalyst support carbon material contained in the catalyst layer is 300 mL / 100 g or more .
本発明の固体高分子型燃料電池用電極は、炭素担体と高分子固体電解質の親和性の制御によって、白金の利用率が高く、ガス拡散性に優れており、極めて優れた電池性能を発揮することができる。 The electrode for a solid polymer fuel cell of the present invention has a high utilization rate of platinum, excellent gas diffusibility, and exhibits extremely excellent battery performance by controlling the affinity between the carbon support and the solid polymer electrolyte. be able to.
本発明の固体高分子型燃料電池用電極は、ガス拡散層と触媒層の2層、若しくは、ガス拡散層、マイクロポア層、触媒層の3層から成る。 The electrode for a polymer electrolyte fuel cell of the present invention comprises two layers of a gas diffusion layer and a catalyst layer, or three layers of a gas diffusion layer, a micropore layer, and a catalyst layer.
ガス拡散層に求められる特性は、良好なガス透過性と電子伝導性であるが、その主成分として繊維状炭素材料を選んだ理由は、ガスが拡散し易い大きな孔径を形成しつつ、良好な電子伝導性を具備するのに適当な材料なためである。 The properties required for the gas diffusion layer are good gas permeability and electron conductivity, but the reason why the fibrous carbon material was selected as the main component is that it has a good pore size while easily diffusing gas. This is because the material is suitable for having electron conductivity.
本発明では、繊維状炭素材料はガス拡散繊維層の主成分であって、機械的強度を増す目的で高分子材料等のバインダーで補強したり、さらにこれを炭化して用いたりする等、第二、第三の成分を複合しても構わない。さらには、繊維状炭素材料を、フッ素樹脂あるいは界面活性剤、シランカップリング剤等を用いて、繊維状炭素材料の表面をコーティングすることによって、適当な表面特性を具備させて用いることもできる。あるいは、繊維状炭素材料を不活性雰囲気下で熱処理して、適当な表面特性を具備させることもできる。コーティングの手法としては、フッ素樹脂エマルジョンや粉砕したフッ素樹脂を分散した液、あるいはシランカップリング剤を含む液等をガス拡散繊維層に塗布、浸漬、スプレー等により接触させ、乾燥する方法等が挙げられる。フッ素樹脂のような場合、乾燥後に融点以上まで昇温し、溶融あるいは軟化させることによってコーティングを均一化することもできる。 In the present invention, the fibrous carbon material is the main component of the gas diffusion fiber layer, and is reinforced with a binder such as a polymer material for the purpose of increasing the mechanical strength, and is further carbonized and used. The second and third components may be combined. Furthermore, the fibrous carbon material can be used with appropriate surface characteristics by coating the surface of the fibrous carbon material with a fluororesin, a surfactant, a silane coupling agent, or the like. Alternatively, the fibrous carbon material can be heat treated under an inert atmosphere to provide suitable surface properties. Examples of the coating method include a method in which a liquid in which a fluororesin emulsion or a pulverized fluororesin is dispersed or a liquid containing a silane coupling agent is applied to the gas diffusion fiber layer by contact, dipping, spraying, etc., and then dried. It is done. In the case of a fluororesin, the coating can be made uniform by raising the temperature to the melting point or higher after drying and melting or softening.
触媒層は、触媒成分、炭素材料、電解質材料を主成分とする。 The catalyst layer contains a catalyst component, a carbon material, and an electrolyte material as main components.
本発明の触媒層に含有する炭素材料は、触媒担体炭素材料とガス拡散炭素材料に分けて構成させると、より好ましい。触媒成分が担持されていない炭素材料、即ち、ガス拡散炭素材料を触媒層中に含ませることによって、触媒層中にガスが拡散できる経路を発達させることができ、アノードであれば水素あるいは水素を主体とした混合ガス、カソードであれば酸素あるいは空気等が、触媒層中に拡散し易くなり、多くの触媒表面と接触できる。そのため、効率的に触媒層での反応を進行させ、高い電池性能が得られるものである。 The carbon material contained in the catalyst layer of the present invention is more preferably divided into a catalyst carrier carbon material and a gas diffusion carbon material. By including a carbon material in which the catalyst component is not supported, that is, a gas diffusion carbon material, in the catalyst layer, it is possible to develop a path through which the gas can diffuse into the catalyst layer. In the case of a main mixed gas or cathode, oxygen or air easily diffuses into the catalyst layer and can come into contact with many catalyst surfaces. Therefore, the reaction in the catalyst layer is efficiently advanced, and high battery performance can be obtained.
一方、触媒層に含まれる触媒担体炭素材料としては、2nm以下の細孔容積が0.1mL/g以上であることが好ましく、更には、0.3mL/g以上であることが好ましい。これは、極微細な2nm以下の細孔が貴金属微粒子の吸着サイトとして機能するためであり、貴金属微粒子の高分散化に必要な条件である。細孔容積が0.1mL/g未満であると、触媒層中に含まれる白金と触媒担体炭素材料の内、白金の比率が20質量%以下であれば、貴金属微粒子を2nm程度の粒子径で均一に分散させることが可能な炭素材料もあるが、触媒成分の比率が20質量%超では、貴金属微粒子を均一に高分散させることが困難になる。但し、2nm以下の細孔容積は通常2mL/g以下であり、これを超える炭素材料を得ることは困難である。 On the other hand, the catalyst support carbon material contained in the catalyst layer preferably has a pore volume of 2 nm or less of 0.1 mL / g or more, and more preferably 0.3 mL / g or more. This is because extremely fine pores of 2 nm or less function as adsorption sites for the noble metal fine particles, which is a necessary condition for high dispersion of the noble metal fine particles. When the pore volume is less than 0.1 mL / g, the precious metal fine particles are uniform with a particle diameter of about 2 nm if the ratio of platinum in the catalyst layer to platinum contained in the catalyst layer is 20% by mass or less. Although there are carbon materials that can be dispersed in the catalyst, if the ratio of the catalyst component exceeds 20% by mass, it becomes difficult to uniformly and highly disperse the noble metal fine particles. However, the pore volume of 2 nm or less is usually 2 mL / g or less, and it is difficult to obtain a carbon material exceeding this.
更に、極微細な2nm以下の細孔の機能として、電解質材料との親和性を高める効果が挙げられる。燃料電池として効率的に機能するためには、水素酸化、若しくは、酸素還元が起きる触媒、電子伝導に寄与する炭素材料、そして、プロトン伝導に寄与する電解質材料の3つが接する場所を数多く作ることが必要である。と言うのは、水素酸化によって生成されるプロトンと電子は、それぞれ電解質材料と電子伝導性炭素材料が近傍に存在しない限り有効に使われず、酸素還元は3重点のところでしか起こり得ないからである。極微細な2nm以下の細孔の容積が0.1mL/g以上であると、電解質材料との親和性が高まり、電解質材料が触媒担体炭素材料の表面に均一に広がるため、白金の利用率を高めることが可能になる。一方、2nm以下の細孔の容積が0.1mL/g未満の場合には、電解質材料が触媒担体炭素材料の表面に均一に広がらないため、白金微粒子が触媒担体炭素材料の表面に高分散していたとしても、有効に使われる白金微粒子は限られてしまい、結果として、効率的な電池を得ることができない。 Furthermore, the function of ultrafine pores of 2 nm or less includes the effect of increasing the affinity with the electrolyte material. In order to function efficiently as a fuel cell, it is necessary to create a number of places where three parts come into contact: a catalyst that causes hydrogen oxidation or oxygen reduction, a carbon material that contributes to electron conduction, and an electrolyte material that contributes to proton conduction. is necessary. This is because protons and electrons generated by hydrogen oxidation are not used effectively unless an electrolyte material and an electron-conducting carbon material exist in the vicinity, respectively, and oxygen reduction can only occur at three points. . When the volume of ultrafine pores of 2 nm or less is 0.1 mL / g or more, the affinity with the electrolyte material increases, and the electrolyte material spreads evenly on the surface of the catalyst support carbon material, thus increasing the utilization rate of platinum. It becomes possible. On the other hand, when the volume of pores of 2 nm or less is less than 0.1 mL / g, the electrolyte material does not spread uniformly on the surface of the catalyst support carbon material, so that the platinum fine particles are highly dispersed on the surface of the catalyst support carbon material. Even so, platinum particles that are effectively used are limited, and as a result, an efficient battery cannot be obtained.
同様に、貴金属微粒子を2nm程度の粒子径で均一に高分散させるためには、触媒層に含まれる触媒担体炭素材料のBET法による比表面積が500m2/g以上であることが好ましく、更には、800m2/g以上であることが望ましい。但し、BET法による比表面積は、通常2500m2/g以下であり、これを超える炭素材料を得ることは困難である。 Similarly, in order to uniformly and highly disperse the noble metal fine particles with a particle diameter of about 2 nm, the specific surface area by the BET method of the catalyst support carbon material contained in the catalyst layer is preferably 500 m 2 / g or more, 800 m 2 / g or more is desirable. However, the specific surface area by the BET method is usually 2500 m 2 / g or less, and it is difficult to obtain a carbon material exceeding this.
DBP吸油量とは、単位質量の炭素材料にフタル酸ジブチルを接触させたときに、炭素材料に吸収されるフタル酸ジブチルの量のことであり、主に一次粒子の間隙に吸収されるので、一次粒子が複数個融着し、ストラクチャーと呼ばれる二次構造が発達していると、DBP吸油量は大きくなり、ストラクチャーがあまり発達していないと、DBP吸油量は小さくなる傾向にある。ストラクチャーが発達することによって、ガス拡散や生成水除去のためのネットワークが生成され、高電流を取り出したときにもフラッディングが起こり難くなる。そのためには、触媒担体炭素材料のDBP吸油量が300mL/100g以上であることが好ましく、更には、400mL/100g以上であることがより好ましい。但し、DBP吸油量は、通常700mL/100g以下であり、これを超える炭素材料を得ることは困難である。 DBP oil absorption is the amount of dibutyl phthalate absorbed by the carbon material when the unit mass carbon material is contacted with dibutyl phthalate, and is mainly absorbed in the gaps between the primary particles. When a plurality of primary particles are fused and a secondary structure called a structure is developed, the DBP oil absorption increases, and when the structure is not so developed, the DBP oil absorption tends to decrease. By developing the structure, a network for gas diffusion and removal of generated water is generated, and flooding hardly occurs even when a high current is taken out. For this purpose, the DBP oil absorption amount of the catalyst support carbon material is preferably 300 mL / 100 g or more, and more preferably 400 mL / 100 g or more. However, the DBP oil absorption is usually 700 mL / 100 g or less, and it is difficult to obtain a carbon material exceeding this.
触媒層に含まれる触媒成分としては、少なくとも白金を含有し、その白金と触媒担体炭素材料の内、白金の比率が20質量%以上80質量%以下であることが好ましい。この範囲内であれば、少なくとも燃料電池が機能することが可能であり、更に好ましくは、20質量%以上60質量%以下である。この範囲外、例えば、20質量%未満になると、触媒担体炭素材料に担持される触媒成分が少なくなるために、触媒層の単位厚みでの出力が減少する。そのため、高出力を得るには触媒層を厚くする必要があり、生成水の除去が困難になる。一方、80質量%超であると、白金微粒子を高密度分散させることが困難になり、白金微粒子の粒子径が大きくなり、有効に白金を利用することができなくなる。 The catalyst component contained in the catalyst layer preferably contains at least platinum, and among the platinum and the catalyst support carbon material, the ratio of platinum is preferably 20% by mass or more and 80% by mass or less. Within this range, at least the fuel cell can function, and more preferably 20% by mass to 60% by mass. Outside this range, for example, less than 20% by mass, the catalyst component supported on the catalyst-supporting carbon material decreases, and the output per unit thickness of the catalyst layer decreases. Therefore, in order to obtain a high output, it is necessary to thicken the catalyst layer, and it becomes difficult to remove the generated water. On the other hand, if it exceeds 80% by mass, it becomes difficult to disperse the platinum fine particles at a high density, the particle diameter of the platinum fine particles becomes large, and platinum cannot be used effectively.
触媒成分として、白金の他に、鉄、コバルト、ニッケル、銅、ルテニウムから選ばれる1種以上の金属元素をさらに含有することができる。これらの金属は、白金との複合体であっても、合金であっても構わない。更には、これらの金属と有機化合物や無機化合物との錯体であっても構わない。 In addition to platinum, the catalyst component can further contain one or more metal elements selected from iron, cobalt, nickel, copper, and ruthenium. These metals may be a complex with platinum or an alloy. Furthermore, it may be a complex of these metals with an organic compound or an inorganic compound.
マイクロポア層をガス拡散層と触媒層の間に配置する理由は、本発明のガス拡散繊維層が大きな孔径を持つため、構造が粗いので、直接ミクロな構造を持つ触媒層と接触するような構造では、セルを組んだときにガス拡散繊維層と触媒層の間の接触部位が少なかったり、触媒層に加わる面圧に粗い分布ができてしまい、例えば、触媒層内の電子伝導抵抗やガス拡散性、さらには反応性等の分布に繋がり、結果として、十分に電池としての性能が発揮されなくなってしまう恐れが高いためである。つまり、マイクロポア層としては、よりミクロな構造、好ましくは触媒層と同じ構造スケールを持ちつつ、ガス拡散性と電子伝導性を損なわない材料でガス拡散繊維層の構造の粗さを打ち消して、触媒層と接続することができれば、触媒層中の反応分布を抑制することができ、十分に電池性能を発揮させることができる。 The reason why the micropore layer is disposed between the gas diffusion layer and the catalyst layer is that the gas diffusion fiber layer of the present invention has a large pore size, so that the structure is rough, so that it directly contacts the catalyst layer having a micro structure. In the structure, when the cells are assembled, there are few contact sites between the gas diffusion fiber layer and the catalyst layer, or the surface pressure applied to the catalyst layer is roughly distributed. For example, the electron conduction resistance or gas in the catalyst layer This is because it leads to a distribution of diffusivity and further reactivity, and as a result, there is a high possibility that the performance as a battery is not sufficiently exhibited. In other words, the micropore layer has a more micro structure, preferably the same structural scale as the catalyst layer, and cancels the roughness of the structure of the gas diffusion fiber layer with a material that does not impair gas diffusibility and electronic conductivity. If it can be connected to the catalyst layer, the reaction distribution in the catalyst layer can be suppressed, and the battery performance can be sufficiently exhibited.
本発明のマイクロポア層には、カーボンブラックが主成分として用いられる。カーボンブラックが用いられる第一の理由は、触媒層と同じ構造スケールを持ち、優れた電子伝導性を持ち、種類によっては適切な表面特性を具備しているため、水によるガス拡散経路の閉塞を効果的に防ぐことができるためである。 Carbon black is used as a main component in the micropore layer of the present invention. The primary reason carbon black is used is that it has the same structural scale as the catalyst layer, has excellent electronic conductivity, and has appropriate surface characteristics depending on the type, so that the gas diffusion path is blocked by water. This is because it can be effectively prevented.
このようなカーボンブラックは、水蒸気吸着量を指標に選択することができる。具体的には、カーボンブラックの25℃、相対湿度90%における水蒸気吸着量が100mL/g以下であれば、例えば、カソード側で大電流放電時に生成する水によるガス拡散経路の閉塞を抑制でき、安定した電圧で電流を取り出すことができる。100mL/g超であると、電流放電時にマイクロポア層中に凝集水が滞り、ガス拡散経路が遮断され易くなり、電圧挙動が不安定になり易くなる。 Such carbon black can be selected using the water vapor adsorption amount as an index. Specifically, if the water vapor adsorption amount of carbon black at 25 ° C. and a relative humidity of 90% is 100 mL / g or less, for example, it is possible to suppress clogging of the gas diffusion path due to water generated during large current discharge on the cathode side, A current can be taken out with a stable voltage. If it is more than 100 mL / g, the condensed water stays in the micropore layer at the time of current discharge, the gas diffusion path is likely to be blocked, and the voltage behavior tends to become unstable.
さらに高い効果を得るためには、25℃、相対湿度90%における水蒸気吸着量が1mL/g以上50mL/g以下であるカーボンブラックを選択することである。この範囲内であると、カソードの内部で生成する水が少ない小電流放電時においても、カソード中の電解質材料の乾燥を防ぎ、好適な湿潤状態を維持でき、かつ、大電流放電時にも、触媒層内部で生成する水を効率良く電極外へ排出し、ガスの拡散経路を確保できるため、低負荷から高負荷まで負荷条件によらず、全域にわたって効率の良い電池を得ることができる。また、25℃、相対湿度90%における水蒸気吸着量が1mL/g以上50mL/g以下である炭素材料であれば、2種類以上の炭素材料を混合して、ガス拡散炭素材料として使用することもできる。25℃、相対湿度90%における水蒸気吸着量が1mL/g未満であると、撥水性が強くなり過ぎて、セル外部から加湿する効果が得られ難くなり、特に起動時等で、電解質材料が好適な湿潤状態を維持し辛くなり、プロトン伝導性が低下する恐れがある。25℃、相対湿度90%における水蒸気吸着量が50mL/g超になると、大電流を継続的に取り出した時等に、触媒層内部で生成する水の排出が追いつかず、ガス拡散経路を遮断してしまう恐れがある。 In order to obtain a higher effect, it is necessary to select carbon black having a water vapor adsorption amount of 1 mL / g or more and 50 mL / g or less at 25 ° C. and a relative humidity of 90%. Within this range, it is possible to prevent the electrolyte material in the cathode from being dried and maintain a suitable wet state even during a small current discharge with a small amount of water generated inside the cathode. Since water generated inside the layer can be efficiently discharged out of the electrode and a gas diffusion path can be secured, an efficient battery can be obtained over the entire region regardless of load conditions from low load to high load. In addition, if the carbon material has a water vapor adsorption amount of 1 mL / g or more and 50 mL / g or less at 25 ° C. and 90% relative humidity, it can be used as a gas diffusion carbon material by mixing two or more types of carbon materials. it can. If the amount of water vapor adsorption at 25 ° C and 90% relative humidity is less than 1 mL / g, the water repellency becomes too strong and it is difficult to obtain the effect of humidifying from the outside of the cell. It is difficult to maintain a wet state, and proton conductivity may be reduced. If the amount of water vapor adsorbed at 25 ° C and 90% relative humidity exceeds 50 mL / g, when a large current is continuously taken out, water generated inside the catalyst layer cannot catch up, blocking the gas diffusion path. There is a risk that.
ここで、本発明で指標となる25℃、相対湿度90%における水蒸気吸着量は、25℃の環境に置かれた炭素材料1g当りに吸着した水蒸気量を標準状態の水蒸気体積に換算して示した。25℃、相対湿度90%における水蒸気吸着量の測定は、市販の水蒸気吸着量測定装置を用いて測定することができる。あるいは、25℃、相対湿度90%の恒温恒湿槽に既知の質量の乾燥したカーボンブラックを十分な時間静置し、質量変化から測定することもできる。 Here, the amount of water vapor adsorbed at 25 ° C. and 90% relative humidity, which is an index in the present invention, represents the amount of water adsorbed per 1 g of carbon material placed in an environment of 25 ° C. converted into a water vapor volume in a standard state. It was. The measurement of the amount of water vapor adsorption at 25 ° C. and a relative humidity of 90% can be performed using a commercially available water vapor adsorption amount measuring device. Alternatively, dry carbon black having a known mass can be allowed to stand in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 90% for a sufficient period of time, and the change can be measured from the mass change.
本発明のマイクロポア層にカーボンブラックが用いられる第二の理由は、カーボンブラックの立体構造にある。カーボンブラックは、一次粒子が複数個融着し、ストラクチャーと呼ばれる二次構造を形成している。種類によっては、このストラクチャーが発達しており、一次粒子のネットワークが空間を抱え込んだ構造になっている。マイクロポア層では、このような空間をつなぎ合わせることによって一次粒子のネットワークに囲まれたガスの拡散経路を形成させることができる。このように形成されたガス拡散経路は、セルを強く締結したときでも壊れ難く、マイクロポア層形成時の孔径を長期間にわたって保持し易い。また、ストラクチャーを指標にカーボンブラックの種類さえ決定すれば、マイクロポア層に形成されるガス拡散経路の孔径は決まってくるため、制御がし易いと言う利点もある。 The second reason why carbon black is used for the micropore layer of the present invention is the three-dimensional structure of carbon black. In carbon black, a plurality of primary particles are fused to form a secondary structure called a structure. Depending on the type, this structure has developed, and the network of primary particles has a structure that encloses space. In the micropore layer, a gas diffusion path surrounded by a network of primary particles can be formed by connecting such spaces. The gas diffusion path formed in this way is not easily broken even when the cell is strongly fastened, and it is easy to maintain the hole diameter when the micropore layer is formed over a long period of time. Further, if the type of carbon black is determined using the structure as an index, the hole diameter of the gas diffusion path formed in the micropore layer is determined, so there is an advantage that control is easy.
本発明のマイクロポア層には、主成分として、より高ストラクチャーなカーボンブラックが用いられることが好ましい。低ストラクチャーであると、ストラクチャーによるガス拡散経路の形成が期待できなくなるためである。ストラクチャーの程度は、電子顕微鏡で観察して決定する方法もあるが、DBP吸油量と比表面積の関係で判断できる。 In the micropore layer of the present invention, carbon black having a higher structure is preferably used as a main component. This is because if the structure is low, formation of a gas diffusion path by the structure cannot be expected. The degree of structure can be determined by observing with an electron microscope, but can be determined by the relationship between DBP oil absorption and specific surface area.
DBP吸油量とは、単位質量のカーボンブラックにフタル酸ジブチルを接触させたときに、カーボンブラックに吸収されるフタル酸ジブチルの量のことであり、主に一次粒子の間隙に吸収されるので、ストラクチャーが発達しているとDBP吸油量は大きくなり、ストラクチャーがあまり発達していないとDBP吸油量は小さくなる傾向にある。ただし、DBPは、一次粒子の間隙以外に一次粒子内部に形成された微細孔にも吸収されるので、DBP吸油量がそのままストラクチャーの程度を現すとは限らない。窒素吸着量で測定されるような比表面積が大きくなると、微細孔に吸収されるDBPが多くなり、全体のDBP吸油量も大きくなるためである。従って、高ストラクチャーカーボンブラックでは、窒素吸着量の割にはDBP吸油量が大きくなり、逆に低ストラクチャーカーボンブラックでは、窒素吸着量の割にDBP吸湯量が小さくなる。 DBP oil absorption is the amount of dibutyl phthalate absorbed by carbon black when unitary carbon black is brought into contact with dibutyl phthalate, and is mainly absorbed in the gaps between primary particles. When the structure is developed, the DBP oil absorption increases, and when the structure is not so developed, the DBP oil absorption tends to decrease. However, DBP is absorbed not only by the gaps between the primary particles but also by the fine pores formed inside the primary particles, so that the DBP oil absorption amount does not necessarily represent the structure level. This is because when the specific surface area as measured by the nitrogen adsorption amount increases, the DBP absorbed in the micropores increases, and the total DBP oil absorption increases. Therefore, in the high structure carbon black, the DBP oil absorption amount increases with respect to the nitrogen adsorption amount, and conversely, in the low structure carbon black, the DBP hot water absorption amount decreases relative to the nitrogen adsorption amount.
好ましくは、DBP吸油量X(mL/100g)と窒素吸着比表面積Y(m2/g)の比X/Yが1以上であるカーボンブラックを用いると、好ましいガス拡散経路を具備したマイクロポア層が形成できる。X/Yの比が1以上であると、ストラクチャーが大きく、ストラクチャーによるガス拡散経路の形成が期待できるためである。X/Yの比が1未満であると、ストラクチャーによるガス拡散経路形成は期待できず、カーボンブラックの二次粒子間の間隙が主にガス拡散経路を形成することになるので、十分な孔径を確保できない場合や、セル締結時に孔が壊れ易いため、制御し辛く、安定して触媒層の性能を引き出すことが難しくなることがある。より好ましくは、X/Yの比が1.5以上である。1.5以上であると、ストラクチャーによるガス拡散経路のネットワークが十分に発達し、高電流を取り出したときもフラッディングし難くなる。このようなストラクチャーであれば、ガスが拡散し易く、水によるガス拡散経路の閉塞が起こり辛いので、触媒層が有する本来の性能が引き出され易い。但し、X/Yの比は通常5以下であり、これを超える炭素材料を得ることは困難である。 Preferably, when carbon black having a ratio X / Y of DBP oil absorption X (mL / 100 g) and nitrogen adsorption specific surface area Y (m 2 / g) of 1 or more is used, a micropore layer having a preferable gas diffusion path Can be formed. This is because when the X / Y ratio is 1 or more, the structure is large and a gas diffusion path can be expected to be formed by the structure. If the ratio of X / Y is less than 1, formation of a gas diffusion path due to the structure cannot be expected, and the gap between the carbon black secondary particles mainly forms a gas diffusion path. If it cannot be ensured or the holes are easily broken when the cells are fastened, it is difficult to control and it may be difficult to bring out the performance of the catalyst layer stably. More preferably, the X / Y ratio is 1.5 or more. If it is 1.5 or more, the network of gas diffusion paths due to the structure is sufficiently developed, and flooding becomes difficult even when a high current is taken out. With such a structure, gas easily diffuses, and it is difficult to block the gas diffusion path by water, so that the original performance of the catalyst layer is easily extracted. However, the ratio of X / Y is usually 5 or less, and it is difficult to obtain a carbon material exceeding this ratio.
[実施例1]
本実施例では、触媒担体として比較例を含めて、細孔容積、窒素吸着比表面積、DBP吸油量、水蒸気吸着量の異なる炭素材料を用いた。表1に用いた炭素材料の細孔容積、窒素吸着比表面積Y(m2/g)、DBP吸油量X(mL/100g)、X/Y、水蒸気吸着量を示した。
[Example 1]
In this example, carbon materials having different pore volumes, nitrogen adsorption specific surface areas, DBP oil absorption amounts, and water vapor adsorption amounts were used as catalyst carriers, including comparative examples. Table 1 shows the pore volume, nitrogen adsorption specific surface area Y (m 2 / g), DBP oil absorption X (mL / 100 g), X / Y, and water vapor adsorption of the carbon material used.
窒素吸着比表面積は、120℃で真空乾燥したサンプルを自動比表面積測定装置(日本ベル製、BELSORP36)を用いて窒素ガスにて測定し、BET法に基づく1点法にて比表面積を決定した。細孔の評価には、t-プロット解析(吸着膜の平均厚さtに対して吸着量をプロット)を用いた。t-プロットでは、2nm以下の細孔への吸着が終了するt=1nm以上では、t=1nm以下に比べて勾配が小さくなる。この高t領域の直線をt=0に外挿した吸着量から直径2nm以下の細孔容積を求めた。 Nitrogen adsorption specific surface area was measured with nitrogen gas using an automatic specific surface area measurement device (Nippon Bell, BELSORP36) after vacuum drying at 120 ° C, and the specific surface area was determined by a one-point method based on the BET method. . For the evaluation of the pores, t-plot analysis (adsorption amount was plotted against the average thickness t of the adsorption film) was used. In the t-plot, the gradient becomes smaller at t = 1 nm or more where the adsorption to the pores of 2 nm or less is completed compared to t = 1 nm or less. The pore volume with a diameter of 2 nm or less was determined from the adsorption amount obtained by extrapolating the straight line of the high t region to t = 0.
DBP吸油量は、アブソープトメーター(Brabender社製)を用いて、最大トルクの70%の時のDBP添加量を試料100g当りのDBP吸油量に換算して決定した。 The DBP oil absorption amount was determined by converting the DBP addition amount at 70% of the maximum torque into the DBP oil absorption amount per 100 g of sample using an absorber meter (manufactured by Brabender).
水蒸気吸着量は、定容量式水蒸気吸着装置(日本ベル製、BELSORP18)を用いて測定し、120℃、1Pa以下で2時間脱気前処理を行った試料を25℃の恒温中に保持し、真空状態から、25℃における水蒸気の飽和蒸気圧までの間、徐々に水蒸気を供給して段階的に相対湿度を変化させ、水蒸気吸着量を測定した。得られた測定結果から吸着等温線を描き、図から相対湿度90%のときの水蒸気吸着量を読み取った。表1では、読み取った水蒸気量を試料1g当りに吸着した標準状態の水蒸気体積に換算して示した。 The amount of water vapor adsorption was measured using a constant capacity water vapor adsorption device (Nippon Bell, BELSORP18). From the vacuum state to the saturated vapor pressure of water vapor at 25 ° C., water vapor was gradually supplied to gradually change the relative humidity, and the water vapor adsorption amount was measured. An adsorption isotherm was drawn from the obtained measurement results, and the water vapor adsorption amount at a relative humidity of 90% was read from the figure. In Table 1, the read water vapor amount is shown in terms of the water vapor volume in the standard state adsorbed per 1 g of the sample.
以上の炭素材料を触媒担体として用い、固体高分子型燃料電池用電極を以下の方法にて作製した。水中に、触媒担体炭素材料として表1の炭素材料をそれぞれ分散し、50℃に保温し、攪拌しながら塩化白金酸水溶液とホルムアルデヒド水溶液を添加して、触媒前駆体を得た。この触媒前駆体を濾過、水洗、乾燥した後に100%H2気流中、300℃で3時間還元処理を行い、触媒担体炭素材料に白金が20質量%担持された白金触媒を作製した。 Using the above carbon material as a catalyst carrier, a polymer electrolyte fuel cell electrode was produced by the following method. The carbon materials shown in Table 1 were dispersed in water as catalyst support carbon materials, respectively, kept at 50 ° C., and a chloroplatinic acid aqueous solution and a formaldehyde aqueous solution were added with stirring to obtain a catalyst precursor. The catalyst precursor was filtered, washed with water and dried, and then subjected to a reduction treatment in a 100% H 2 stream at 300 ° C. for 3 hours to produce a platinum catalyst in which 20% by mass of platinum was supported on the catalyst support carbon material.
得られた白金触媒の結晶子径を表2に示す。結晶子径は、X線回折装置(理学電機製、RAD-3C)により得られた白金の(111)ピークの半値幅からScherrerの方法を用いて見積った。表2に示すように、炭素材料A、G、Kは、結晶子径が非常に大きくなっており、固体高分子型燃料電池用電極として性能があまり高くないことが予想される。 Table 2 shows the crystallite diameter of the obtained platinum catalyst. The crystallite diameter was estimated using the Scherrer method from the half-value width of the (111) peak of platinum obtained by an X-ray diffractometer (manufactured by Rigaku Corporation, RAD-3C). As shown in Table 2, the carbon materials A, G, and K have a very large crystallite diameter, and it is expected that the performance as a polymer electrolyte fuel cell electrode is not so high.
これらの触媒12種をアルゴン気流中で5%ナフィオン溶液(アルドリッチ製)を白金触媒の質量に対してナフィオン固形分の質量が2倍になるように加え、軽く撹拌後、超音波で触媒を粉砕し、白金触媒とナフィオンを合わせた固形分濃度が6質量%となるように、撹拌しながら酢酸ブチルを加え、触媒スラリー12種を作製した。別容器に、表1で示した炭素材料Aを取り、炭素材料が6質量%になるように酢酸ブチルを加えて、超音波で炭素材料を粉砕し、炭素材料スラリーを作製した。先に作製したそれぞれの触媒スラリー12種と炭素材料スラリーを質量比8:2で混合した後、十分攪拌し、触媒層スラリー12種を作製した。 Add 12 types of these catalysts in an argon stream to a 5% Nafion solution (Aldrich) so that the mass of Nafion solids is twice the mass of the platinum catalyst. Then, butyl acetate was added with stirring so that the solid content concentration of the platinum catalyst and Nafion was 6% by mass to prepare 12 types of catalyst slurry. In a separate container, the carbon material A shown in Table 1 was taken, butyl acetate was added so that the carbon material was 6% by mass, and the carbon material was pulverized with ultrasound to prepare a carbon material slurry. Each of the 12 types of catalyst slurry prepared above and the carbon material slurry were mixed at a mass ratio of 8: 2, and then sufficiently stirred to prepare 12 types of catalyst layer slurry.
市販のカーボンクロス(ElectroChem社製EC-CC1-060)を準備し、これを5%に希釈したテフロン分散液中に浸漬した後、乾燥し、さらにアルゴン気流中で340℃に昇温して、ガス拡散層を作製した。 After preparing a commercially available carbon cloth (EC-CC1-060 manufactured by ElectroChem), dipping it in a Teflon dispersion diluted to 5%, drying it, and further raising the temperature to 340 ° C. in an argon stream, A gas diffusion layer was produced.
触媒層スラリー12種をそれぞれガス拡散層の片面にスプレーで塗布し、80℃のアルゴン気流中で1時間乾燥し、触媒担持炭素材料として炭素材料A〜Lを触媒層に含有した固体高分子型燃料電池用電極12種を得た。なお、それぞれの電極は、白金使用量が0.10mg/cm2となるように、スプレー等の条件を設定した。白金使用量は、スプレー塗布前後の電極の乾燥質量を測定し、その差から計算して求めた。 12 types of catalyst layer slurries are applied to one side of the gas diffusion layer by spraying, dried in an argon stream at 80 ° C. for 1 hour, and a solid polymer type containing carbon materials A to L as catalyst-supporting carbon materials in the catalyst layer 12 types of fuel cell electrodes were obtained. In addition, conditions, such as spray, were set so that each electrode might use platinum usage amount 0.10 mg / cm < 2 >. The amount of platinum used was determined by measuring the dry mass of the electrode before and after spray coating and calculating the difference.
さらに、得られた固体高分子型燃料電池用電極から2.5cm角の大きさで2枚ずつ切り取り、触媒層が電解質膜と接触するように、同じ種類の電極2枚で電解質膜(ナフィオン112)を挟み、130℃、総加圧0.625tで3分間ホットプレスを行い、MEA12種を作製した。 In addition, two pieces of 2.5 cm square were cut from the obtained polymer electrolyte fuel cell electrode, and the electrolyte membrane (Nafion 112) with two electrodes of the same type so that the catalyst layer was in contact with the electrolyte membrane. Then, hot pressing was performed at 130 ° C. and a total pressure of 0.625 t for 3 minutes to produce 12 types of MEA.
得られたMEA12種は、それぞれ燃料電池測定装置に組み込み、電池性能測定を行った。電池性能測定は、セル端子間電圧を開放電圧(通常0.9〜1.0V程度)から0.2Vまで段階的に変化させ、セル端子間電圧が0.8Vと0.5Vのときに流れる電流密度をそれぞれ測定した。ガスは、カソードに空気、アノードに純水素を、利用率がそれぞれ50%と80%となるように供給し、それぞれのガス圧は、セル下流に設けられた背圧弁で0.1MPaに圧力調整した。セル温度は80℃に設定し、供給する空気と純水素は、それぞれ80℃と90℃に保温された蒸留水中でバブリングを行い、加湿した。 Each of the obtained MEA 12 species was incorporated into a fuel cell measurement device, and the cell performance was measured. For battery performance measurement, the voltage between the cell terminals was changed stepwise from the open voltage (usually about 0.9 to 1.0V) to 0.2V, and the current density flowing when the cell terminal voltage was 0.8V and 0.5V was measured respectively. . The gas was supplied to the cathode with air and pure hydrogen to the anode so that the utilization rates would be 50% and 80%, respectively, and each gas pressure was adjusted to 0.1 MPa with a back pressure valve provided downstream of the cell. . The cell temperature was set at 80 ° C., and the supplied air and pure hydrogen were bubbled in distilled water kept at 80 ° C. and 90 ° C., respectively, and humidified.
表3に、MEA12種の電池性能結果を示した。本発明のMEA2、3、4、5、12は、他の比較例に比べて、優れた電池特性を示した。その中でも、2nm以下の細孔容積が0.3mL/g以上であり、且つ、窒素吸着比表面積が800m2/g以上であり、更に、DBP吸油量が400mL/g以上である炭素材料Lを用いたMEA2は0.8Vと0.5Vのいずれの特性も優れている。 Table 3 shows the battery performance results of MEA12. MEA 2, 3, 4, 5, and 12 of the present invention exhibited excellent battery characteristics as compared with other comparative examples. Among them, a carbon material L having a pore volume of 2 nm or less of 0.3 mL / g or more, a nitrogen adsorption specific surface area of 800 m 2 / g or more, and a DBP oil absorption of 400 mL / g or more is used. The MEA2 had excellent characteristics of both 0.8V and 0.5V.
[実施例2]
カーボンクロス(ElectroChem社製EC-CC1-060)を準備し、これを5%に希釈したテフロン分散液中に浸漬した後、乾燥し、さらにアルゴン気流中で340℃に昇温してガス拡散繊維層を作製した。また、炭素材料A、B、D、F、Kをそれぞれ1gにエタノール99gを加え、ボールミルで炭素材料を粉砕し、一次分散液を作った。その後、一次分散液を攪拌しながら30%テフロン分散液0.833gを少しずつ滴下し、マイクロポア層スラリーを作製した。このスラリーを先に作製したガス拡散繊維層の片面にスプレーを用いて塗布し、アルゴン気流中で80℃で乾燥した後に340℃に昇温して、ガス拡散繊維層とマイクロポア層が積層したガス拡散層5種を作製した。
[Example 2]
Prepare carbon cloth (Electro-Chem EC-CC1-060), soak it in a Teflon dispersion diluted to 5%, dry it, and then heat it up to 340 ° C in an argon stream and gas diffusion fiber A layer was made. Further, 99 g of ethanol was added to 1 g of each of the carbon materials A, B, D, F, and K, and the carbon material was pulverized with a ball mill to form a primary dispersion. Thereafter, 0.833 g of 30% Teflon dispersion was dropped little by little while stirring the primary dispersion to prepare a micropore layer slurry. The slurry was applied to one side of the previously prepared gas diffusion fiber layer using a spray, dried at 80 ° C. in an argon stream, then heated to 340 ° C., and the gas diffusion fiber layer and the micropore layer were laminated. Five types of gas diffusion layers were prepared.
触媒担体として炭素材料Lを用い、実施例1と同様の条件で白金触媒を作製した。更に、この白金触媒を用い、実施例1と同様の条件で触媒層スラリーを作製した。この触媒層スラリーを上述したガス拡散層5種の上にスプレーで塗布した後、実施例1と同様の条件で乾燥し、固体高分子型燃料電池用電極5種を得た。更に、この固体高分子型燃料電池用電極5種を用い、実施例1と同様の条件でホットプレスを行い、MEA5種を作製した。 A platinum catalyst was produced under the same conditions as in Example 1 using the carbon material L as the catalyst support. Further, using this platinum catalyst, a catalyst layer slurry was produced under the same conditions as in Example 1. This catalyst layer slurry was applied onto the above-mentioned five gas diffusion layers by spraying and then dried under the same conditions as in Example 1 to obtain five types of polymer electrolyte fuel cell electrodes. Further, using these 5 types of solid polymer type fuel cell electrodes, hot pressing was performed under the same conditions as in Example 1 to prepare 5 types of MEA.
得られたMEA5種は、実施例1と同じ条件で電池性能測定を行った。 The obtained MEA 5 species were subjected to battery performance measurement under the same conditions as in Example 1.
表4に、得られたMEA5種の電池性能結果を示した。その結果は、本発明のMEA13、16、17は、MEA14、15に比べ、優れた電池特性を示した。その中でも、水蒸気吸着量が50mL/g以下であり、且つ、DBP吸油量Xと窒素吸着比表面積Yの比X/Yが1.5以上である炭素材料A、Kをマイクロポア層に用いたMEA13、17は、極めて優れた電池性能を発揮した。 Table 4 shows the battery performance results of the obtained MEA5 types. As a result, MEA13, 16, and 17 of the present invention showed superior battery characteristics compared to MEA14 and 15. Among them, a water vapor adsorption amount of 50 mL / g or less, and a carbon material A having a ratio X / Y of DBP oil absorption amount X and nitrogen adsorption specific surface area Y of 1.5 or more, MEA 13 using K as a micropore layer, 17 exhibited extremely good battery performance.
Claims (3)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004345627A JP4511911B2 (en) | 2004-11-30 | 2004-11-30 | Electrode for polymer electrolyte fuel cell |
EP05736882.1A EP1748509B1 (en) | 2004-04-22 | 2005-04-22 | Fuel cell and gas diffusion electrode for fuel cell |
KR1020067021769A KR100897637B1 (en) | 2004-04-22 | 2005-04-22 | Fuel cell and gas diffusion electrode for fuel cell |
US11/587,175 US9786925B2 (en) | 2004-04-22 | 2005-04-22 | Fuel cell and fuel cell use gas diffusion electrode |
PCT/JP2005/008255 WO2005104275A1 (en) | 2004-04-22 | 2005-04-22 | Fuel cell and gas diffusion electrode for fuel cell |
KR1020087024258A KR100919326B1 (en) | 2004-04-22 | 2005-04-22 | Fuel cell and gas diffusion electrode for fuel cell |
CA2563932A CA2563932C (en) | 2004-04-22 | 2005-04-22 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004345627A JP4511911B2 (en) | 2004-11-30 | 2004-11-30 | Electrode for polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006156154A JP2006156154A (en) | 2006-06-15 |
JP4511911B2 true JP4511911B2 (en) | 2010-07-28 |
Family
ID=36634172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004345627A Expired - Fee Related JP4511911B2 (en) | 2004-04-22 | 2004-11-30 | Electrode for polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4511911B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5021292B2 (en) * | 2006-12-26 | 2012-09-05 | 新日本製鐵株式会社 | Fuel cell |
KR101331389B1 (en) | 2008-10-22 | 2013-11-20 | 신닛테츠스미킨 카부시키카이샤 | Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell |
EP2991142B1 (en) * | 2013-04-25 | 2017-05-03 | Nissan Motor Co., Ltd. | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell |
JPWO2014175097A1 (en) | 2013-04-25 | 2017-02-23 | 日産自動車株式会社 | Catalyst, method for producing the same, and electrode catalyst layer using the catalyst |
CN105163849B (en) * | 2013-04-25 | 2018-10-26 | 日产自动车株式会社 | Catalyst and electrode catalyst layer containing the catalyst |
CN105142784A (en) | 2013-04-25 | 2015-12-09 | 日产自动车株式会社 | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell |
WO2016067876A1 (en) | 2014-10-29 | 2016-05-06 | 日産自動車株式会社 | Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer |
EP3214679B1 (en) | 2014-10-29 | 2019-12-25 | Nissan Motor Co., Ltd | Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same |
JP6187720B1 (en) * | 2015-12-24 | 2017-08-30 | 東レ株式会社 | Gas diffusion electrode |
JP6594786B2 (en) * | 2016-02-04 | 2019-10-23 | 日本製鉄株式会社 | Carbon material for micropore layer, micropore layer, and polymer electrolyte fuel cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050367A (en) * | 2000-08-04 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell and its manufacturing method |
JP2003086190A (en) * | 2001-09-14 | 2003-03-20 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell and method of manufacture |
JP2003201417A (en) * | 2001-10-30 | 2003-07-18 | Ne Chemcat Corp | Carbon black, electrode catalyst carrier formed from the carbon black, electrode catalyst using carrier and electrochemical device using carrier |
-
2004
- 2004-11-30 JP JP2004345627A patent/JP4511911B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050367A (en) * | 2000-08-04 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell and its manufacturing method |
JP2003086190A (en) * | 2001-09-14 | 2003-03-20 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell and method of manufacture |
JP2003201417A (en) * | 2001-10-30 | 2003-07-18 | Ne Chemcat Corp | Carbon black, electrode catalyst carrier formed from the carbon black, electrode catalyst using carrier and electrochemical device using carrier |
Also Published As
Publication number | Publication date |
---|---|
JP2006156154A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1748509B1 (en) | Fuel cell and gas diffusion electrode for fuel cell | |
JP6566331B2 (en) | Electrocatalyst layer for electrochemical device, membrane / electrode assembly for electrochemical device, electrochemical device, and method for producing electrode catalyst layer for electrochemical device | |
KR100761593B1 (en) | Anode for liquid fuel cell, membrane electrode assembly for liquid fuel cell, and liquid fuel cell | |
JP4533108B2 (en) | Electrode for polymer electrolyte fuel cell | |
US8999606B2 (en) | Solid polymer type fuel cell catalyst, solid polymer type fuel cell electrode, and fuel cell | |
JP5213499B2 (en) | Fuel cell | |
JP5021292B2 (en) | Fuel cell | |
CN101808735A (en) | Catalyst | |
JP4960000B2 (en) | Gas diffusion electrode for fuel cell and fuel cell | |
JP5458801B2 (en) | Fuel cell | |
KR20010112639A (en) | Polymer electrolyte fuel cell and method for its production | |
JP2006253030A (en) | Cathode electrode for liquid fuel type solid high polymer fuel cell, and the liquid fuel type solid high polymer fuel cell | |
JP4133654B2 (en) | Polymer electrolyte fuel cell | |
JP2016100262A (en) | Catalyst for solid polymer fuel cell | |
JP4511911B2 (en) | Electrode for polymer electrolyte fuel cell | |
CN113140739A (en) | Fuel cell gas diffusion layer, preparation method thereof, membrane electrode assembly and fuel cell | |
JP4620341B2 (en) | Fuel cell electrode catalyst | |
JP5458799B2 (en) | Fuel cell | |
JP4520815B2 (en) | Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell | |
JP2003151564A (en) | Electrode for solid high polymer fuel cell | |
JP5119486B2 (en) | Electrode for polymer electrolyte fuel cell | |
JP2012000612A (en) | Platinum colloid-carrying carbon | |
EP4421922A1 (en) | Fuel cell catalyst, method for manufacturing same, and fuel cell comprising same | |
JP2008218131A (en) | Membrane-electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100427 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100507 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4511911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |