JP4503248B2 - Wastewater treatment method - Google Patents
Wastewater treatment method Download PDFInfo
- Publication number
- JP4503248B2 JP4503248B2 JP2003209775A JP2003209775A JP4503248B2 JP 4503248 B2 JP4503248 B2 JP 4503248B2 JP 2003209775 A JP2003209775 A JP 2003209775A JP 2003209775 A JP2003209775 A JP 2003209775A JP 4503248 B2 JP4503248 B2 JP 4503248B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- activated sludge
- amount
- treatment
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
Description
【0001】
本発明は、有機性排水等を生物処理するための排水処理方法に関する。
【0002】
【従来の技術】
従来、下水、産業廃水等の有機性排水(排水、汚水)の処理には、活性汚泥法が代表的な方法として用いられている。このような方法を用いた生物処理においては、排水中の有機物の処理に伴って余剰汚泥が大量に発生する傾向にある。通常、この余剰汚泥は、脱水された後、そのままの状態で投棄・廃棄処分されるか、焼却処分されている。しかし、近年、廃棄物処分場不足、燃焼に伴うダイオキシン等の有害な有機性塩素化合物の発生等が大きな問題となっており、余剰汚泥の排出量が少ない排水処理技術が切望されている。
【0003】
このような要求に応えるべく、(1)嫌気性微生物によって汚泥を可溶化するいわゆる嫌気性消化を用いた方法、(2)汚泥に酸やアルカリ等を添加して可溶化する方法、(3)汚泥をオゾン酸化によって可溶化する方法、(4)好気性微生物が有する溶菌作用を用いて汚泥を分解・可溶化する方法といった余剰汚泥の減容化方法を組み合わせた排水処理方法が採用又は提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−327998号公報(段落0023〜0029、図1)
【0005】
【発明が解決しようとする課題】
しかし、これら従来の各方法を用いた排水処理においては、以下に示すような問題点がある。すなわち、汚泥減容化方法として上記(1)の嫌気性消化を用いた排水処理方法は、エネルギー消費を抑えてメタンガスのような有用な副生物を産出する点で有利ではあるが、消化反応の反応速度が遅いため、余剰汚泥の処理効率が極めて悪くなる傾向にある。また、この場合、大型の反応槽を用いて汚泥の滞留時間を非常に長くする必要があり、装置設備の大型化に加え、結局のところ経済性が悪化してしまうおそれがある。また、上記(2)の酸又はアルカリ等を用いる方法では、大量の薬剤及びそれらの供給系が必要であり、経済性が必ずしも十分ではない。
【0006】
一方、上記(3)のオゾン酸化を用いる方法は、大量の薬剤や熱源等が不要である。しかし、一般的なオゾン酸化槽は、水槽にオゾンを単に吹き込む簡略な装置であり、オゾンの利用効率が高いとは言い難い。これを改善すべく、散気板等を用いてオゾンの微細気泡を供給する手法が考えられるものの、この場合には散気板の目詰まりが生じ易く、よって頻繁な保守(メンテナンス)が必要となる傾向にある。
【0007】
他方、上記(4)の好気性微生物を用いる方法は、大量の薬剤やオゾンガスを用いない反面、大型の処理槽が必要となる傾向にあり、その結果、排水処理装置又は設備全体が大規模となってしまう。また、微生物として好熱性菌体を使用して加温状態(例えば50〜70℃)で処理すれば、その溶菌作用によって汚泥の可溶化効率を高め、且つ、加熱による汚泥の熱変性効果が期待され得るが、温度の上昇に伴って酸素の溶解効率が更に低下してしまい、上記の有用な効果が相殺されてしまうおそれがある。また、このような溶解効率の低下を防止すべく大量のガス(空気)を曝気すると、外部への放熱量が増大してしまい、加温及び保温のための熱エネルギーを浪費してしまうといった不都合がある。
【0008】
そこで、本発明はこのような事情に鑑みてなされたものであり、有機性排水の処理に際し、エネルギー消費量の増大といった従来の不都合を解消しつつ、余剰汚泥の発生を防止することができる排水処理方法を提供することを目的とする。
【0018】
上記課題を解決するため、本発明の排水処理方法は、有機性排水を活性汚泥により生物処理する生物処理工程と、その有機性排水の生物処理で得られた処理済水と活性汚泥とを分離する固液分離工程とを備える方法であって、活性汚泥の少なくとも一部に酸素(O2)、オゾン(O3)、又は過酸化水素(H2O2)を供給し、この活性汚泥の少なくとも一部を、厚み方向に貫通する複数の孔を有する複数の多孔板に対して相対的に流動させる汚泥処理工程を更に備えるものである。このように、多孔板に対して活性汚泥の少なくとも一部つまり余剰汚泥を相対的に流動させることにより、余剰汚泥の攪拌・混合が十分に促進される。なお、活性汚泥への酸素(O2)、オゾン(O3)、又は過酸化水素(H2O2)の供給は、これらを直接、活性汚泥と接触させてもよいし、例えばこれらの溶解液(水)や混合液(水)と活性汚泥を混合する等、間接的に行ってもよい。
【0019】
ここで、汚泥処理工程においては、少なくとも、当該汚泥処理工程における活性汚泥の可溶化量と、生物処理工程に供給される有機性排水中の有機物量と、有機性排水中に含まれる有機物の活性汚泥への転換率とに基づいて、汚泥処理工程に供給される活性汚泥量と汚泥処理工程において可溶化される活性汚泥量とが実質的に等しくなるように、汚泥処理工程に供給する活性汚泥の供給量(投入量)、及び/又は、酸素(O2)、オゾン(O3)、又は過酸化水素(H2O2)の供給量を調整する。また、このような排水処理方法は、生物処理工程における活性汚泥中の菌体濃度、具体的にはMLVSS(Mixed Liquor Volatile Suspended Solid)濃度が略一定に保持される生物処理の場合に特に有効である。
【0020】
このような排水処理方法を用いれば、汚泥処理工程からの余剰汚泥の排出量を実質的にゼロとし得る。殊に、本方法によれば、汚泥処理工程における活性汚泥の可溶化量と、生物処理工程に供給される有機性排水中の有機物量と、その有機物の活性汚泥への転換率とに基づいて、汚泥処理工程における余剰汚泥の物質収支(マスバランス)を簡易且つ確実に制御又は把握することが可能となり、これにより、工程制御を容易ならしめ、余剰汚泥の処理性が向上される。
【0021】
より好ましくは、汚泥処理工程においては、下記式(1);
E=Sinb1+E(1−α)a×b2−βΧ …(1)
で表される関係を満たすように活性汚泥を可溶化処理すると好適である。ここで、式中、Eは汚泥処理工程における活性汚泥の可溶化量を、Sinは生物処理工程に供給される有機性排水中の有機物量を、αは汚泥処理工程に供給された活性汚泥のうち完全酸化される活性汚泥の割合を、aは生物処理工程へ活性汚泥の一部を返送する場合に、返送された活性汚泥の有機物への換算係数を、b1は、有機性排水中に含まれる有機物の活性汚泥への変換率を、b2は、当該汚泥処理工程において可溶化し、可溶化処理液中に溶出した有機物の活性汚泥への転換率を、βは、汚泥の自己分解係数を、Χは、生物処理工程中の汚泥量をそれぞれ示している。なお、E及びSinの単位としては、例えばkg/dayといった時間負荷を用いることができる。
【0022】
こうすることにより、汚泥処理工程における活性汚泥の可溶化量を、汚泥処理工程に余剰汚泥として供給される活性汚泥量と相等しくできるので、余剰汚泥の発生が実質的になくなる。また、前述したように、通常、生物処理工程では活性汚泥が循環使用されるのに対し、上記式(1)においては、処理済水と分離されて生物処理工程へ返送された活性汚泥中の有機物への変換分を考慮するので、汚泥処理工程における活性汚泥のマスバランスの調節をより確実ならしめ得る。
【0023】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限られるものではない。
【0024】
図1は、本発明による排水処理方法を実施する排水処理装置の第1実施形態を模式的に示す構成図である。排水処理装置10は、有機性排水としての原水Wが配管ライン(以下、ラインという)L1を介して供給される生物処理槽1(生物処理部)と、この生物処理槽1にラインL2を介して接続された固液分離槽2(固液分離部)とを備えるものである。この生物処理槽1は、活性汚泥を含んでおり、ブロアVに接続された散気管等の曝気機1aが内部に設けられている。ブロアVからは空気等の酸素ガスを含むガスが曝気機1aを通して生物処理槽1内に供給されるようになっている。さらに、生物処理槽1と固液分離槽2とは、ラインL4によっても接続されている。
【0025】
また、固液分離槽2には、空気等の酸素ガスを含むガス又はオゾンを含むガスGoを貯留又は発生させるガス供給源11(ガス供給部)が接続された汚泥減容装置3(汚泥処理部)が、ラインL5を介して接続されている。この汚泥減容装置3は、両端部が略気密に閉止されて成る略円筒形状の処理タンク31(汚泥処理槽)内に、複数の多孔板33が一定の間隔で配設されたものである。各多孔板33は、ディスク状を成しており、その厚み方向に貫通する複数の孔が穿設されている。
【0026】
これらの複数の多孔板33は、互いに隣設する一方の多孔板33に設けられた複数の孔(第1の孔)と他方の多孔板33に設けられた複数の孔(第2の孔)とが、互いに平面位置が異なって配置されるように設けられている。すなわち、隣設する多孔板毎に、孔の中心(軸)位置が交互に異なるように千鳥格子状(千鳥模様状、千鳥足状)に配列されている。さらに換言すれば、複数の多孔板33のうち、任意に選択される隣設配置された二つの多孔板のうち一方の多孔板33に形成された孔(第1の孔)と、他方の多孔板33に形成された孔のうちその第1の孔と最短距離に位置する孔(第2の孔)とが、非同軸状(孔が円形孔であれば、非同心状)に設けられている。
【0027】
なお、これらの孔の配列間隔(設置間隔)は、全ての孔に対して一定の間隔としてもよく、或いは、多孔板33における孔位置によって適宜且つ任意に調整してもよい。また、多孔板33の材質、孔径、孔数量、孔配置等は特に限定されない。
【0028】
また、これらの多孔板33は、処理タンク31外に設けられた駆動装置M(駆動部)に結合されたシャフト35によって同軸状に貫通固定されており、これにより、多孔板33間の間隔が保持されると共に、上下に駆動(往復運動)されるようになっている。またさらに、汚泥減容装置3は、ラインL10を介して生物処理槽1に接続されている。
【0029】
このように構成された排水処理装置10を用いた本発明の排水処理方法の一実施形態について以下に説明する。まず、生物処理槽1にラインL1を通して有機性排水の原水Wを供給すると共に、ブロアVを運転して生物処理槽1内に空気等を供給し、原水Wと活性汚泥との混合液である被処理水Wkを攪拌曝気しながら好気性処理する(生物処理工程)。
【0030】
次に、被処理水Wkを、ラインL2を通して固液分離槽2へ移送し、液分である処理済水Wsと、固形分としての活性汚泥Sとに分離する(固液分離工程)。この処理済水Wsは、清澄水としてラインL3を通して外部へ取り出す。一方、処理済水Wsと分離した活性汚泥Sを、固液分離槽2の底部から引き抜き、その一部を返送汚泥としてラインL4を通して生物処理槽1へ返送する。
【0031】
他方、固液分離槽2で分離された活性汚泥Sの残部を濃縮された余剰汚泥として、ラインL5を通して汚泥減容装置3における例えば処理タンク31の下部へ供給(導入)する。それから、活性汚泥Sが滞留する処理タンク31内の例えば下部に、ガス供給源11からガスGoを供給する。また、駆動装置Mを運転し、シャフト35を上下に駆動することにより、複数の多孔板33を上下に往復運動させる。このときの駆動周期及び駆動ストロークは特に制限されず、例えば、それぞれ数rpm〜数百rpm、及び、数cm〜数十cmとすることができる。
【0032】
このような多孔板33の上下運動により、多孔板33間にはガスGoを含む混相状態の渦流が絶え間なく形成される。また、多孔板33に設けられた孔を通過する流速が極めて大きなジェット流のような高速流が発生し得る。そして、このような流れを引き起こす多孔板33が所定間隔で多数配置されているので、処理タンク31内では、激流による混合状態とも言うべき略完全な攪拌状態が実現される。これにより、活性汚泥S及びガスGoの気泡は極めて微細化されると共に、これらが強力に攪拌・混合される。
【0033】
その結果、気泡から液相へ、また、液相から活性汚泥Sへの酸素又はオゾンの移動速度(効率)が劇的に増大する。具体例を挙げれば、このときの酸素移動容量係数KLaは、400h-1にも達する。これに対し、従来から用いられている通常の曝気槽では、一般にKLaが10h-1に満たない程度である。すなわち、ガスGoに含まれる酸素又はオゾンの液相への溶解効率が、従来に比して格段に高められ、極めて高いBOD負荷が実現される。よって、活性汚泥Sを構成する微生物菌体の酸化分解反応の効率が飛躍的に向上され、活性汚泥Sを高効率で可溶化できる(汚泥処理工程)。
【0034】
また、本発明者らの知見によれば、このような汚泥減容装置3内における酸素又はオゾンの高移動効率は、低温域から高温域にわたる広い温度領域で発現されるため、温度条件に左右されずに、ガスGoの処理タンク31への供給量(曝気量)が少なくても活性汚泥Sの可溶化率の低下が抑止される。よって、ガスGoの供給量を低減できるため、ガスGoによって汚泥減容装置3の外部へ放出されてしまう熱量、つまり放熱量を軽減できる。その結果、汚泥減容装置3に熱源を設けて処理タンク31内の活性汚泥Sを加温又は加熱する場合に、熱エネルギーの消費量を低下させて省力化を図り得る。
【0035】
さらに、汚泥減容装置3内で、活性汚泥SとガスGoとの十分な攪拌・混合が行われるため、溶解した酸素又はオゾンと活性汚泥Sを構成する微生物菌体との接触頻度(確率)、接触時間、接触量等が格別に増大される。しかも、多孔板33間の強高速流によるせん断力、多孔板33間で生じる圧縮及び膨張の繰返しによるキャビテーション効果によって微生物菌体の細胞を機械的に破砕する効果も奏される。したがって、これらにより、微生物菌体の酸化分解反応が更に促進され、活性汚泥Sの可溶化が殊更に増進される。
【0036】
また、処理タンク31内壁によって多孔板33の周囲が覆われているので、上述したような気液及び固液混相流が多孔板33の径方向(外周へ向かう方向)へ拡散又は放散することが強制的に妨げられる。よって、混相流の流圧の低下が抑止されるどころか更に高められ、活性汚泥SとガスGoとが一層強力に攪拌・混合される。よって、活性汚泥Sの可溶化が更に一層増強される利点がある。
【0037】
このような汚泥減容装置3内での活性汚泥Sの十分な可溶化に伴い、微生物菌体は、水、二酸化炭素、その他の低級炭水化物、有機酸等へと変換され、これらを含む液分(溶液)を、ラインL10を通して生物処理槽1へ移送する。これらの有機分、特にBOD成分は、生物処理槽1における汚泥処理における栄養分となり、生物処理に循環使用される。
【0038】
ここで、汚泥減容装置3内での汚泥処理工程においては、下記式(1);
E=Sinb1+E(1−α)a×b2−βΧ …(1)
で表される関係を満たすように活性汚泥Sを処理すると好適である。ここで、Eは汚泥減容装置3内における活性汚泥Sの可溶化量を、Sinは生物処理槽1に供給される原水W中の有機物量を、αは汚泥減容装置3に供給された活性汚泥Sのうち完全酸化される活性汚泥Sの割合を、aは生物処理槽1へ返送された活性汚泥Sの有機物への換算係数を、b1は原水W中に含まれる有機物の活性汚泥Sへの変換率を、b2は汚泥処理工程において可溶化し、可溶下処理液中に溶出した有機物の活性汚泥Sへの変換率を、βは汚泥の自己分解係数を、Χは、生物処理部1中の汚泥量をそれぞれ示している。なお、βの値が小さいときは、βΧの項を無視してもよい。
【0039】
余剰汚泥の系外への排出量に対しては、極力少量とすることが要求され、排出が全くないことが理想的である。そこで、このような理想的な条件を仮定すると、活性汚泥S中の菌体濃度(ここでは、MLVSS濃度とする。)の物質収支に関して下記式(2);
V・dx/dt=V・(dx/dt)g−E …(2)、
で表される関係が満たされる。式中、Vは生物処理槽1の有効容積を示し、dx/dtはMLVSS濃度の変化速度を示し、(dx/dt)gはMLVSSの増殖速度を示し、Eは汚泥減容装置3内での活性汚泥の可溶化量(単位は、例えばkg/day)を示す。
【0040】
また、生物処理槽1内で定常的な生物処理が行われ、生物処理槽1内のMLVSS濃度が略一定に保持されている状態(定常状態)では、式(1)の左辺におけるMLVSS濃度の変化速度dx/dtは実質的にゼロとなる。よって、この場合、下記式(3);
V・(dx/dt)g−βΧ=E …(3)、
で表される関係が成立する。
【0041】
つまり、定常的な生物処理を実施している状態で、汚泥減容装置3における活性汚泥Sの可溶化量が、活性汚泥Sの発生量と等価となるようにすれば、余剰汚泥の系外への排出量を可及的少量に、ひいては排出量をゼロとすることが可能となる。より具体的には、活性汚泥Sの削減は、可溶化と無機化(水、炭酸ガスへの変換)によって達成される。
【0042】
ここで、一例を述べると、汚泥減容装置3に投入される活性汚泥Sの量をSG(kg/day)とし、汚泥減容装置3での単一サイクル処理における減容化率を35%とすると、活性汚泥Sの可溶化量Eは、下記式(4);
E=SG×0.35 …(4)、
で表される。このうち、酸化されてガス化される活性汚泥Sの割合、つまり式(1)におけるαを0.2(20%)とすれば、ガス化されない残りの80%(つまり、SG×0.28)が次の処理サイクルに追加される有機物(特にCOD成分)となる。
【0043】
また、aを0.6、b1を0.3、b2を0.1とし、βが十分小さいとして第3項を無視すると、式(1)から下記式(5);
E=Sin×0.3+E×(1−0.2)×0.6×0.1 …(5)、
に示す関係が得られる。これをEについて解くと、下記式(6);
E=Sin×0.3/0.952 …(6)、
で表される関係が得られる。このとき、生物処理槽1に投入される主にCOD成分の増分は、式(1)の右辺中の第2項である「E・(1−α)・a・b2」、具体的には、E×(1−0.2)×0.6×0.1(=0.048・E)となる。
【0044】
よって、原水Wの負荷に応じて使用する活性汚泥Sの量及びその引抜量(つまり汚泥減容装置3への活性汚泥Sの供給量)に対応して式(1)で表される関係を満たすように、汚泥減容装置3を構成し、或いは、汚泥減容装置3の容量や性能に応じて式(1)の関係が満たされるように、汚泥減容装置3への活性汚泥Sの供給量及び/又はガスGoの供給量を調節する運転を行うことにより、余剰汚泥である活性汚泥S中に含まれる有機物(MLVSS)の見かけ上の酸化分解率を略100%とし得る。これにより、系外への余剰汚泥の排出量を実質的にゼロとすることが可能となる。
【0045】
また、式(1)に示す係数b1は、処理対象の有機性排水の性状等によって値が若干変動するものの、一般的に0.3近傍の値をとる傾向にある。これに対して、係数aと係数b2は、可溶化方法によって種々の値を示し、また、係数αは、汚泥減容装置3の構成条件、ガスGoの供給量等に応じて定まるパラメータである。よって、これらの係数については、試運転時等に予めデータを取得しておくことにより、上述した余剰汚泥の実質的な完全可溶化処理を円滑に実施できる。
【0046】
したがって、本発明の排水処理方法によれば、有機性排水の原水Wを生物処理する際に余剰汚泥が発生することを十分に防止でき、特に、上述したような汚泥減容装置3における活性汚泥Sの可溶化量等に基づく制御運転を実施すれば、余剰汚泥の排出量を殆どゼロとすることができる。また、汚泥減容装置3において汚泥処理工程を実施するときに、広い温度域で酸素の移動効率ひいては菌体の酸化分解効率が格段に高められるので、ガスGoの供給量を軽減しても、活性汚泥Sの可溶化量を従来に比して格別に増大できる。さらに、無機化された汚泥の割合が従来に比して高められ、COD成分を低減できる。またさらに、ガスGoによる熱量の散逸を十分に抑制でき、その結果、エネルギー消費量の増大を防止できる。
【0047】
さらに、活性汚泥Sの可溶化にあたって薬剤を使用しないことと相俟って、経済性の向上を図ることが可能となる。またさらに、活性汚泥Sの処理効率の増大により、工程全体の効率が高められて迅速な排水処理の実現に資することが可能となる。加えて、ガスGoとしてオゾンを用いると、空気等の酸素を含有するガスを用いる場合に比して、菌体の酸化能が高まるが、この場合にも、オゾンの溶解効率が従来に比して格段に向上されるので、オゾンの使用量を低減しても十分な活性汚泥Sの可溶化処理が可能となる。よって、オゾンの消費量を軽減し、更には、ガス供給源11の規模を縮小し得るので、経済性を一層向上することが可能となる。
【0048】
この場合、好ましくは、汚泥減容装置3に導入される活性汚泥S中のMLVSS濃度をオンライン又はオフラインで計測し、その実測値に基づいて汚泥減容装置3への活性汚泥Sの供給量、及び/又は、ガスGoの供給量を調節するように制御運転を行うと有用である。また、活性汚泥S中の有機物濃度を求めるにあたっては、活性汚泥Sに含まれるMLSS(Mixed Liquor Suspended Solid)中のMLVSSの比率を予め実測しておき、MLSS濃度の実測値にその比率を乗じても好適である。さらに、そのような制御運転は、手動でも自動でもよく、連続的でも断続的に行ってもよい。
【0049】
図2は、本発明による排水処理方法を実施する排水処理装置の第2実施形態を模式的に示す構成図であり、上記の制御運転を有効に実施するための装置の一例である。排水処理装置100は、ラインL5にスラリーポンプ61及びMLSS計62が設けられ、且つ、汚泥減容装置3とガス供給源11との間にコントロールバルブ63が設けられており、これらが制御部64に接続されたこと以外は、図1に示す排水処理装置10と同様の構成を有するものである。
【0050】
この排水処理装置100では、MLSS計62により、固液分離槽2から汚泥減容装置3へ送出される活性汚泥S中のMLSS濃度をオンライン計測し、その値が制御部64へ出力される。制御部64は、メモリ、CPU等の機能部を有しており、MLSS濃度の実測値からMLVSS濃度を算出する。次いでその濃度値に基づいて、ポンプのON/OFF信号をスラリーポンプ61へ出力することにより、活性汚泥Sの移送量を調整する。それと共に、活性汚泥Sの供給量に応じた量のガスGoを汚泥減容装置3へ送給すべく、制御部64からコントロールバルブ63へバルブの開度調節信号を出力する。このような制御運転により、負荷変動等に応じた活性汚泥Sの処理運転を良好に且つ効率よく実施できる。
【0051】
図3は、本発明による排水処理方法を実施する排水処理装置の第3実施形態を模式的に示す構成図である。排水処理装置20は、汚泥減容装置3の代りに、汚泥処理部としての汚泥減容システム4が、ラインL6を介して固液分離槽2に接続され、且つ、ラインL8を介して生物処理槽1に接続されたこと以外は、図1に示す排水処理装置10と同様に構成されたものである。
【0052】
この汚泥減容システム4は、汚泥処理槽41が隔壁43によって液分が流通可能に分画されており、駆動装置Mに結合されたシャフト55(シャフト部)によって同軸状に貫通固定され、且つ、一定の間隔で配設された複数の多孔板53(多孔板)が、各区画内に設けられたものである。各多孔板53は、多孔板33と同様に構成されたものである。また、多孔板53の周囲には、多孔板53の外径よりも、やや大きな内径を有する円筒51(筒状部材)が配置されている。さらに、ガス供給源11が、配管を介して各区画に接続されている。つまり、汚泥減容システム4は、図1に示す汚泥減容装置3と略同等の構成を有する汚泥減容ユニットが複数連設されて成るものである。
【0053】
このように構成された排水処理装置20では、余剰汚泥としての活性汚泥Sが固液分離槽2からラインL6を介して、また、ガスGoがガス供給源11から、汚泥減容システム4の各区画に供給される。活性汚泥Sは、各区画において、汚泥減容ユニットの強力な攪拌作用によって、ガスGoと十分に混合され、可溶化されながら前段の区画から後段の区画に流通する。可溶化された活性汚泥Sは、ラインL8を介して生物処理槽1へ戻入される。
【0054】
このような排水処理装置20によれば、汚泥減容ユニットが複数設けられて成る汚泥減容システム4を有するので、大容量の余剰汚泥処理に特に有効である。また、図1に示す汚泥減容装置3と同様に、極めて高いガス移動効率が各区画内で達成されるので、活性汚泥Sの可溶化を十分に且つ迅速に実施できる。特に、汚泥減容システム4全体として先述した式(1)で表される関係を満たすように運転すれば、略完全な可溶化を確実に遂行し易く、処理済水Wsの水質の悪化を招くことを十分に抑制できる。
【0055】
また、汚泥減容システム4では、多孔板53の周囲を円筒51で囲むようにしているので、多孔板53の上下動で生じた強力な混相流が円筒51の外部へ散逸してしまうことが防止されるので、ガスGoの高移動効率を好適に維持できる利点がある。さらに、汚泥処理槽41を用いて各区画内に多孔板53を配設したので、複数の汚泥減容装置3を装備するよりも、簡略化された設備構成で大容量処理に対応できる。またさらに、余剰汚泥としての活性汚泥Sが汚泥減容システム4の各区画に供給されるので、最前段の区画にのみ供給する場合に比して、その最前段の区画における処理負荷を低減でき、かかる並列処理によりシステム全体の処理効率を向上できる。
【0056】
図4は、本発明による排水処理方法を実施する排水処理装置の第4実施形態を模式的に示す構成図である。排水処理装置30は、汚泥減容装置3、及び、その後段にそれぞれラインL6、L7を介して順次設けられた固液分離槽6及び仕上処理槽7を有すること、並びに、ラインL8がラインL3に接続されたこと以外は、図1に示す排水処理装置10と同様に構成されたものである。
【0057】
固液分離槽6は、原水Wに難分解性の無機固形分が含まれていたり、或いは、汚泥減容装置3で活性汚泥Sの全部が可溶化されないような処理条件のときに、それらの固形分や残留汚泥を液分と分離するためのものであり、排水処理装置30における第2沈殿槽として機能する。また、仕上処理槽7としては、UASB(Upflow Anaerobic Sludge Blanket)等のメタン菌等を用いた嫌気性処理槽を使用すると好ましい。
【0058】
このような構成を有する排水処理装置30によれば、排水処理装置10、20と同様に、活性汚泥Sの十分な可溶化が達成されるとともに、上述の如く、汚泥減容装置3を経た溶液中に固形分や残留汚泥が含まれている場合に、それらを有効に除去できる。また、固形分を除去した液分を仕上処理槽7において更に生物処理等した後にラインL3へ送出するので、処理済水Wsの性状・水質を良好に維持することができる。
【0059】
なお、本発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、汚泥減容装置3又は汚泥減容システム4に供給するガスGoとしてオゾン含有ガスを用いる場合には、未反応のオゾンが汚泥処理槽41外へ漏出することを防止するため、汚泥処理槽41の上部を天蓋等で閉止又は封止してもよい。ただし、本発明によれば、オゾンの使用量を軽減しても活性汚泥Sの可溶化を十分に達成でき、しかも、その使用量を最適化するような制御運転も可能であるので、未反応オゾン自体を低減できる利点がある。また、ガスGoの代わりに、過酸化水素を用いてよく、その酸化能により菌体の酸化分解ひいては活性汚泥Sの可溶化が促進される。
【0060】
また、排水処理装置10において汚泥減容装置3で得られた液分をラインL3に導入して処理済水Wsと共に系外に排出してもよい。さらに、排水処理装置20における汚泥減容システム4、又は、排水処理装置30における仕上処理槽7で得られた液分を生物処理槽1へ返送してもよい。またさらに、汚泥減容システム4の区画数は図示のものに限られず、区画しなくても構わない。またさらに、排水処理装置20において、汚泥減容システム4の汚泥処理槽41の各区画から可溶化された活性汚泥Sを生物処理槽1へ送出してもよい。或いは、汚泥処理槽41における最前段の区画にのみラインL6を接続してもよく、この場合にも各区画から可溶化された活性汚泥Sを生物処理槽1へ送出してもよい。
【0061】
さらにまた、排水処理装置10、20においても、固液分離槽6を設けてもよい。また、生物処理槽1の原水Wに各種凝集剤を添加してもよい。これにより、原水Wに含まれる難分解性の固形分等の除去が簡易となり、この場合、固液分離槽6を有すると一層有用である。加えて、排水処理装置100では、コントロールバルブ63に代えてマスフローコントローラー(MFC)や他の流量調整弁等を用いてもよい。また、処理対象である活性汚泥Sに、例えばバチルス(Bacillus)属に属する細菌のような好熱菌や好熱性耐熱菌といった菌体が存在していれば、COD除去の効果も得られる。
【0062】
以下、本発明に係る具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
【0063】
【実施例1】
図1に示す排水処理装置10と同等の構成を有する装置を準備した。この排水処理装置は、有効容積20L(リットル;以下同様)のリアクター(処理タンク)内に、多孔板(直径13cmφ、孔径は8mmφ)が6cm間隔で16枚設けられた汚泥減容装置3を備えるものである。そして、この汚泥減容装置3に、余剰汚泥として活性汚泥を10000mg/Lの濃度で含む被処理液を、30L/hの流量で供給した。それと共に、多孔板を60、80、100、120rpmと異なる駆動周期で上下動させつつ、リアクター内に空気を5、7.5、10L/min(すなわち15、22.5、30VVH)と異なる流量で供給した。
【0064】
ここで、単位「VVH」は、ガス供給量(Vol.)/汚泥減容装置3の有効容積(Vol.)/hなる物理量を示し、水処理技術、発酵技術、等の分野で一般に用いられる単位であり、リアクターへの空気供給量をリアクター容積で規格化した値に相当する。なお、処理に際し、汚泥減容装置3内の被処理液の温度を60℃に保持した。
【0065】
その結果、いずれの条件においても、活性汚泥に対する所望の減容化率(30〜50%)が得られ、新たな活性汚泥の生成量(菌体の増殖量)が可溶化による削減量(菌体の分解量)と略等しくなり、余剰汚泥の発生は認められなかった。また、亜硫酸ソーダによる酸素吸収法を用いて、被処理液中に溶解した酸素量を計測し、空気の供給流量に基づいて、酸素の溶解速度を算出した。各処理条件における結果を表1に示す。これより、本発明によれば、活性汚泥を含む溶液に対して、60℃程度の加温条件においても極めて高い酸素溶解速度が得られることが判明した。
【0066】
【表1】
【0067】
【実施例2】
空気の代りにオゾン含有ガス(オゾン濃度:40g/Nm3)を用い、これを10、12.5、15VVHの流量で処理タンク内に供給し、多孔板の駆動ストロークを80、100、120rpmとしたこと、及び、被処理液の処理温度を20〜24℃としたこと以外は、実施例1と同様にして排水処理を実施した。その結果、いずれの条件においても、活性汚泥に対する所望の減容化率(30〜50%)が得られ、新たな活性汚泥の生成量(菌体の増殖量)が可溶化による削減量(菌体の分解量)と略等しくなり、余剰汚泥の発生は認められなかった。また、被処理液中に溶解したオゾン量を計測し、オゾン含有ガスの供給流量に基づいて、オゾンの溶解速度を算出した。各処理条件における結果を表2に示す。これより、本発明によれば、活性汚泥を含む溶液に対して極めて高いオゾン溶解速度が得られることが判明した。
【0068】
【表2】
【0069】
【実施例3】
リアクターの有効容積を1.5Lとし、それに応じた形状の多孔板を用いたこと、汚泥減容装置3内の被処理液の温度を70℃に保持したこと、リアクター内への空気の供給量を0.3L/min(すなわち12VVH)としたこと、及び、多孔板の駆動周期を25、50、100rpmとしたこと以外は、実施例1と同様にして排水処理を実施した。各条件における酸素移動容量係数KLa及び活性汚泥の減容化率を表3に示す。これより、本実施例の条件では、20(h-1)以上の酸素移動容量係数KLaが得られ、少なくともKLaが100(h-1)以上であれば、約50%近い高い減容化率を達成できることが確認された。
【0070】
【表3】
【0071】
【実施例4】
多孔板の駆動周期を100rpmとし、且つ、汚泥減容装置3内の被処理液の温度を25、60、70℃に保持したこと以外は、実施例3と同様にして排水処理を行った。なお、温度70℃での実施例は、実施例3における温度70℃の実施例と同一条件であるが、説明の便宜上、ここで再掲する。各条件における活性汚泥の減容化率を表4に示す。これより、先述したように、従来の方法では、処理温度の上昇に伴って酸素溶解効率が低下し、これに起因して処理効率(つまり減容率)の低下が懸念されるのに対し、本発明では、同じ空気供給量において処理温度の上昇と共に減容化率が増加する傾向が確認された。これにより、熱エネルギーを減容処理に有効に活用でき、しかも外部への放熱量の増大を抑止できることが確認された。
【0072】
【表4】
【0073】
本発明の排水処理方法によれば、有機性排水の生物処理に伴う余剰汚泥の発生を防止することができ、しかも、その際にエネルギー消費量の増大を十分に抑え、有機性排水の処理効率及び経済性の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】 本発明による排水処理方法を実施する排水処理装置の第1実施形態を模式的に示す構成図である。
【図2】 本発明による排水処理方法を実施する排水処理装置の第2実施形態を模式的に示す構成図である。
【図3】 本発明による排水処理方法を実施する排水処理装置の第3実施形態を模式的に示す構成図である。
【図4】 本発明による排水処理方法を実施する排水処理装置の第4実施形態を模式的に示す構成図である。[0001]
The present invention is for biological treatment of organic wastewater and the like. of It relates to a wastewater treatment method.
[0002]
[Prior art]
Conventionally, the activated sludge method has been used as a representative method for treating organic wastewater (drainage, sewage) such as sewage and industrial wastewater. In biological treatment using such a method, excess sludge tends to be generated in large quantities with the treatment of organic matter in wastewater. Usually, this excess sludge is dehydrated and then dumped and disposed of as it is or incinerated. Recently, however, waste disposal sites are scarce and the generation of harmful organic chlorine compounds such as dioxins due to combustion has become a major problem, and wastewater treatment technology that reduces the amount of excess sludge is eagerly desired.
[0003]
In order to meet such demands, (1) a method using so-called anaerobic digestion in which sludge is solubilized by anaerobic microorganisms, (2) a method in which acid or alkali is added to the sludge and solubilized, (3) Wastewater treatment methods that combine sludge volume reduction methods such as a method of solubilizing sludge by ozone oxidation and (4) a method of decomposing and solubilizing sludge using the lytic action of aerobic microorganisms have been adopted or proposed. (For example, refer to Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-327998 A (paragraphs 0023-0029, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in the waste water treatment using these conventional methods, there are the following problems. That is, the wastewater treatment method using anaerobic digestion (1) as a sludge volume reduction method is advantageous in that it reduces energy consumption and produces useful by-products such as methane gas. Since the reaction rate is slow, the treatment efficiency of excess sludge tends to be extremely poor. Further, in this case, it is necessary to make the sludge residence time very long using a large reaction tank, and in addition to the increase in the size of the equipment, there is a possibility that the economy will deteriorate in the end. In addition, the method (2) using an acid or alkali requires a large amount of chemicals and their supply system, and is not necessarily economical.
[0006]
On the other hand, the method using ozone oxidation (3) does not require a large amount of chemicals, heat sources, and the like. However, a general ozone oxidation tank is a simple device that simply blows ozone into a water tank, and it is difficult to say that the utilization efficiency of ozone is high. In order to improve this, a method of supplying fine bubbles of ozone using a diffuser plate can be considered. However, in this case, the diffuser plate is likely to be clogged, and thus frequent maintenance is required. Tend to be.
[0007]
On the other hand, the method using the aerobic microorganism of (4) above does not use a large amount of chemicals or ozone gas, but tends to require a large treatment tank. turn into. Moreover, if a thermophilic microbial cell is used as a microorganism and treated in a heated state (for example, 50 to 70 ° C.), the lysis action increases the sludge solubilization efficiency, and heat sludge heat denaturation effect is expected. However, as the temperature rises, the dissolution efficiency of oxygen further decreases, and the above-mentioned useful effects may be offset. Further, if a large amount of gas (air) is aerated to prevent such a decrease in dissolution efficiency, the amount of heat released to the outside increases, and heat energy for heating and heat retention is wasted. There is.
[0008]
Therefore, the present invention has been made in view of such circumstances, and in the treatment of organic wastewater, wastewater that can prevent the generation of excess sludge while eliminating the conventional inconvenience such as an increase in energy consumption. processing Method The purpose is to provide.
[0018]
To solve the above problem, The wastewater treatment method of the present invention , A method comprising a biological treatment process for biologically treating organic wastewater with activated sludge, and a solid-liquid separation process for separating treated water and activated sludge obtained by biological treatment of the organic wastewater. Oxygen (O 2 ), Ozone (O Three ) Or hydrogen peroxide (H 2 O 2 And a sludge treatment step of causing at least a part of the activated sludge to flow relative to a plurality of perforated plates having a plurality of holes penetrating in the thickness direction. Is a thing . In this way, the agitation / mixing of the excess sludge is sufficiently promoted by causing at least a part of the activated sludge, that is, the excess sludge to flow relative to the perforated plate. In addition, oxygen to activated sludge (O 2 ), Ozone (O Three ) Or hydrogen peroxide (H 2 O 2 ) May be directly brought into contact with the activated sludge, or may be indirectly performed, for example, by mixing these dissolved solution (water) or mixed solution (water) with activated sludge.
[0019]
here In the sludge treatment step, at least the solubilized amount of activated sludge in the sludge treatment step, the amount of organic matter in the organic wastewater supplied to the biological treatment step, and the activated sludge of the organic matter contained in the organic wastewater Supply of activated sludge to be supplied to the sludge treatment process so that the amount of activated sludge to be supplied to the sludge treatment process is substantially equal to the amount of activated sludge to be solubilized in the sludge treatment process. Amount (input amount) and / or oxygen (O 2 ), Ozone (O Three ) Or hydrogen peroxide (H 2 O 2 ) . Moreover, such a wastewater treatment method is particularly effective in the case of biological treatment in which the bacterial cell concentration in the activated sludge in the biological treatment process, specifically, the MLVSS (Mixed Liquor Volatile Suspended Solid) concentration is maintained substantially constant. is there.
[0020]
If such a wastewater treatment method is used, the amount of excess sludge discharged from the sludge treatment process can be made substantially zero. In particular, according to this method, based on the amount of solubilized activated sludge in the sludge treatment process, the amount of organic matter in the organic wastewater supplied to the biological treatment process, and the conversion rate of the organic matter to activated sludge. In addition, the mass balance of the excess sludge in the sludge treatment process can be controlled or grasped easily and reliably, thereby facilitating the process control and improving the surplus sludge processability.
[0021]
More preferably, in the sludge treatment step, the following formula (1);
E = S in b 1 + E (1-α) a × b 2 -ΒΧ (1)
It is preferable to solubilize the activated sludge so as to satisfy the relationship expressed by Here, E represents the solubilized amount of activated sludge in the sludge treatment step, S in Is the amount of organic matter in the organic wastewater supplied to the biological treatment process, α is the percentage of activated sludge that is completely oxidized in the activated sludge supplied to the sludge treatment process, and a is the activated sludge to the biological treatment process. Conversion factor for returning activated sludge to organic matter when b 1 Shows the conversion rate of organic matter contained in organic wastewater into activated sludge, b 2 Is the conversion rate of organic matter solubilized and solubilized in the sludge treatment process into activated sludge, β is the self-degradation coefficient of sludge, and Χ is the amount of sludge in the biological treatment process. Each is shown. E and S in For example, a time load such as kg / day can be used.
[0022]
By so doing, the amount of activated sludge solubilized in the sludge treatment step can be made equal to the amount of activated sludge supplied as excess sludge to the sludge treatment step, so that excess sludge generation is substantially eliminated. In addition, as described above, activated sludge is usually circulated and used in the biological treatment process, whereas in the above formula (1), the activated sludge separated from the treated water and returned to the biological treatment process Since the conversion to organic matter is taken into account, the adjustment of the mass balance of activated sludge in the sludge treatment process can be made more reliable.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
[0024]
FIG. 1 is according to the invention. Implement wastewater treatment methods It is a block diagram which shows typically 1st Embodiment of a waste water treatment equipment. The
[0025]
The solid-
[0026]
The plurality of
[0027]
The arrangement interval (installation interval) of these holes may be a constant interval for all the holes, or may be appropriately and arbitrarily adjusted depending on the hole position in the
[0028]
Further, these
[0029]
An embodiment of the wastewater treatment method of the present invention using the
[0030]
Next, the to-be-processed water Wk is transferred to the solid-
[0031]
On the other hand, the remainder of the activated sludge S separated in the solid-
[0032]
Due to the vertical movement of the
[0033]
As a result, the transfer rate (efficiency) of oxygen or ozone from the bubbles to the liquid phase and from the liquid phase to the activated sludge S increases dramatically. As a specific example, the oxygen transfer capacity coefficient K at this time La Is 400h -1 Also reach. On the other hand, in the conventional aeration tank used conventionally, generally K La 10h -1 Is less than That is, the dissolution efficiency of oxygen or ozone contained in the gas Go into the liquid phase is significantly increased as compared with the conventional case, and an extremely high BOD load is realized. Therefore, the efficiency of the oxidative decomposition reaction of the microbial cells constituting the activated sludge S is dramatically improved, and the activated sludge S can be solubilized with high efficiency (sludge treatment step).
[0034]
Further, according to the knowledge of the present inventors, such a high oxygen or ozone transfer efficiency in the sludge volume reducing device 3 is expressed in a wide temperature range from a low temperature range to a high temperature range, and therefore depends on temperature conditions. Instead, even if the supply amount (aeration amount) of the gas Go to the
[0035]
Furthermore, since sufficient stirring and mixing of the activated sludge S and the gas Go are performed in the sludge volume reducing device 3, the contact frequency (probability) between the dissolved oxygen or ozone and the microbial cells constituting the activated sludge S , Contact time, contact amount, etc. are significantly increased. Moreover, the effect of mechanically crushing the cells of the microbial cells by the shearing force caused by the strong high-speed flow between the
[0036]
Further, since the periphery of the
[0037]
As the activated sludge S is sufficiently solubilized in the sludge volume reducing device 3, the microbial cells are converted into water, carbon dioxide, other lower carbohydrates, organic acids, etc. (Solution) is transferred to the
[0038]
Here, in the sludge treatment process in the sludge volume reducing device 3, the following formula (1);
E = S in b 1 + E (1-α) a × b 2 -ΒΧ (1)
It is preferable to treat the activated sludge S so as to satisfy the relationship represented by: Here, E is the amount of solubilized activated sludge S in the sludge volume reducing device 3, S in Is the amount of organic matter in the raw water W supplied to the
[0039]
The amount of excess sludge discharged outside the system is required to be as small as possible, and ideally there is no discharge. Therefore, assuming such an ideal condition, the following equation (2) regarding the mass balance of the bacterial cell concentration in the activated sludge S (here, MLVSS concentration):
V · dx / dt = V · (dx / dt) g -E (2),
The relationship represented by is satisfied. In the formula, V indicates the effective volume of the
[0040]
In a state where steady biological treatment is performed in the
V ・ (dx / dt) g −βΧ = E (3),
The relationship expressed by
[0041]
That is, if the solubilized amount of activated sludge S in the sludge volume reducing device 3 is equivalent to the generated amount of activated sludge S in a state where regular biological treatment is carried out, the excess sludge outside the system. It is possible to reduce the amount of discharge to as little as possible, and hence to zero. More specifically, the reduction of activated sludge S is achieved by solubilization and mineralization (conversion to water and carbon dioxide gas).
[0042]
Here, as an example, the amount of activated sludge S input to the sludge volume reducing device 3 is SG (kg / day), and the volume reduction rate in the single cycle processing in the sludge volume reducing device 3 is 35%. Then, the solubilization amount E of the activated sludge S is the following formula (4);
E = SG × 0.35 (4),
It is represented by Of these, if the ratio of activated sludge S that is oxidized and gasified, that is, α in equation (1) is 0.2 (20%), the remaining 80% that is not gasified (that is, SG × 0.28). ) Becomes an organic substance (particularly a COD component) to be added to the next processing cycle.
[0043]
A is 0.6, b 1 Is 0.3, b 2 Is 0.1 and β is sufficiently small and the third term is ignored, the following formula (5) is obtained from formula (1);
E = S in × 0.3 + E × (1-0.2) × 0.6 × 0.1 (5),
The following relationship is obtained. Solving this for E, the following equation (6);
E = S in × 0.3 / 0.952 (6),
Is obtained. At this time, the increment of the COD component mainly charged into the
[0044]
Therefore, the relationship expressed by the equation (1) corresponding to the amount of activated sludge S used according to the load of the raw water W and the amount of withdrawal (that is, the amount of activated sludge S supplied to the sludge volume reducing device 3) The sludge volume reducing device 3 is configured to satisfy, or the activated sludge S to the sludge volume reducing device 3 is satisfied so that the relationship of the formula (1) is satisfied according to the capacity and performance of the sludge volume reducing device 3. By performing the operation of adjusting the supply amount and / or the supply amount of the gas Go, the apparent oxidative decomposition rate of the organic matter (MLVSS) contained in the activated sludge S that is excess sludge can be made approximately 100%. Thereby, it becomes possible to make the discharge amount of the excess sludge out of the system substantially zero.
[0045]
Further, the coefficient b shown in Equation (1) 1 Although the value varies slightly depending on the properties of the organic wastewater to be treated, it generally tends to take a value in the vicinity of 0.3. In contrast, coefficient a and coefficient b 2 Shows various values depending on the solubilization method, and the coefficient α is a parameter determined according to the configuration conditions of the sludge volume reducing device 3, the supply amount of the gas Go, and the like. Therefore, about these coefficients, by acquiring data beforehand at the time of a trial run etc., the substantially complete solubilization process of the excess sludge mentioned above can be implemented smoothly.
[0046]
Therefore , According to the wastewater treatment method of the present invention, it is possible to sufficiently prevent the generation of excess sludge when biologically treating the raw water W of organic wastewater, and in particular, the activated sludge S in the sludge volume reducing device 3 as described above. If the control operation based on the solubilization amount or the like is performed, the excess sludge discharge amount can be made almost zero. Further, when the sludge treatment process is carried out in the sludge volume reducing device 3, the oxygen transfer efficiency and thus the oxidative decomposition efficiency of the bacterial cells can be remarkably increased in a wide temperature range, so that even if the supply amount of the gas Go is reduced, The solubilization amount of the activated sludge S can be significantly increased as compared with the conventional case. Furthermore, the ratio of the mineralized sludge can be increased as compared with the conventional case, and the COD component can be reduced. Furthermore, the dissipation of heat by the gas Go can be sufficiently suppressed, and as a result, an increase in energy consumption can be prevented.
[0047]
Further, in combination with the use of no chemicals in the solubilization of the activated sludge S, it becomes possible to improve the economic efficiency. Furthermore, by increasing the treatment efficiency of the activated sludge S, the efficiency of the entire process can be increased, which can contribute to the realization of a rapid wastewater treatment. In addition, when ozone is used as the gas Go, the oxidizing ability of the bacterial cells is enhanced as compared with the case where a gas containing oxygen such as air is used. Therefore, the activated sludge S can be sufficiently solubilized even if the amount of ozone used is reduced. Therefore, the consumption of ozone can be reduced, and furthermore, the scale of the
[0048]
In this case, preferably, the MLVSS concentration in the activated sludge S introduced into the sludge volume reducing device 3 is measured online or offline, and the supply amount of the activated sludge S to the sludge volume reducing device 3 based on the measured value, And / or it is useful to perform the control operation so as to adjust the supply amount of the gas Go. Moreover, when calculating | requiring the organic substance density | concentration in the activated sludge S, the ratio of MLVSS in MLSS (Mixed Liquor Suspended Solid) contained in the activated sludge S is measured beforehand, and the measured value of MLSS concentration is multiplied by the ratio. Is also suitable. Further, such a control operation may be manual or automatic, and may be performed continuously or intermittently.
[0049]
FIG. 2 is according to the invention. Implement wastewater treatment methods It is a block diagram which shows typically 2nd Embodiment of a waste water treatment apparatus, and is an example of the apparatus for implementing said control driving | operation effectively. In the
[0050]
In the
[0051]
FIG. 3 is according to the invention. Implement wastewater treatment methods It is a block diagram which shows typically 3rd Embodiment of a waste water treatment equipment. In the
[0052]
The sludge
[0053]
In the
[0054]
According to such a waste
[0055]
Further, in the sludge
[0056]
FIG. 4 is according to the invention. Implement wastewater treatment methods It is a block diagram which shows typically 4th Embodiment of a waste water treatment equipment. The waste
[0057]
The solid-
[0058]
According to the
[0059]
In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible in the range which does not deviate from the summary. For example, when an ozone-containing gas is used as the gas Go supplied to the sludge volume reducing device 3 or the sludge
[0060]
Further, the liquid component obtained in the sludge volume reducing device 3 in the waste
[0061]
Furthermore, the solid-
[0062]
Specific examples according to the present invention will be described below, but the present invention is not limited thereto.
[0063]
[Example 1]
An apparatus having a configuration equivalent to the waste
[0064]
Here, the unit “VVH” indicates a physical quantity of gas supply amount (Vol.) / Sludge volume reduction device 3 effective volume (Vol.) / H, and is generally used in fields such as water treatment technology and fermentation technology. It is a unit and corresponds to a value obtained by normalizing the air supply amount to the reactor by the reactor volume. In addition, the temperature of the to-be-processed liquid in the sludge volume reducing apparatus 3 was hold | maintained at 60 degreeC in the process.
[0065]
As a result, a desired volume reduction rate (30-50%) with respect to activated sludge is obtained under any conditions, and the amount of new activated sludge produced (the amount of bacterial growth) is reduced by solubilization (fungi The amount of decomposition of the body) was almost equal, and no generation of excess sludge was observed. In addition, the oxygen absorption method using sodium sulfite was used to measure the amount of oxygen dissolved in the liquid to be treated, and the oxygen dissolution rate was calculated based on the air supply flow rate. Table 1 shows the results under each processing condition. Thus, according to the present invention, it has been found that a very high oxygen dissolution rate can be obtained even under a heating condition of about 60 ° C. with respect to a solution containing activated sludge.
[0066]
[Table 1]
[0067]
[Example 2]
Gas containing ozone instead of air (ozone concentration: 40 g / Nm Three This is supplied into the processing tank at a flow rate of 10, 12.5, 15 VVH, the driving stroke of the perforated plate is 80, 100, 120 rpm, and the processing temperature of the liquid to be processed is 20-24. Exhaust treatment was carried out in the same manner as in Example 1 except that the temperature was changed to ° C. As a result, a desired volume reduction rate (30-50%) with respect to activated sludge is obtained under any conditions, and the amount of new activated sludge produced (the amount of bacterial growth) is reduced by solubilization (fungi The amount of decomposition of the body) was almost equal, and no generation of excess sludge was observed. Further, the amount of ozone dissolved in the liquid to be treated was measured, and the dissolution rate of ozone was calculated based on the supply flow rate of the ozone-containing gas. Table 2 shows the results under each processing condition. Thus, according to the present invention, it was found that an extremely high ozone dissolution rate can be obtained for a solution containing activated sludge.
[0068]
[Table 2]
[0069]
[Example 3]
The effective volume of the reactor was 1.5 L, a perforated plate having a shape corresponding to the reactor was used, the temperature of the liquid to be treated in the sludge volume reducing device 3 was maintained at 70 ° C., and the amount of air supplied to the reactor Was set to 0.3 L / min (that is, 12 VVH), and the drainage treatment was performed in the same manner as in Example 1 except that the driving cycle of the porous plate was set to 25, 50, and 100 rpm. Oxygen transfer capacity coefficient K under each condition La Table 3 shows the volume reduction rate of activated sludge. From this, under the conditions of this example, 20 (h -1 ) Above oxygen transfer capacity coefficient K La And at least K La Is 100 (h -1 ) Above, it was confirmed that a high volume reduction rate of about 50% can be achieved.
[0070]
[Table 3]
[0071]
[Example 4]
Exhaust water treatment was performed in the same manner as in Example 3 except that the driving cycle of the perforated plate was 100 rpm and the temperature of the liquid to be treated in the sludge volume reducing device 3 was maintained at 25, 60, and 70 ° C. Note that the example at the temperature of 70 ° C. is the same as the example at the temperature of 70 ° C. in the example 3, but for convenience of explanation, it is shown again here. Table 4 shows the volume reduction rate of activated sludge under each condition. Thus, as described above, in the conventional method, the oxygen dissolution efficiency decreases with an increase in the processing temperature, and there is a concern that the processing efficiency (that is, the volume reduction rate) may decrease due to this, In the present invention, it was confirmed that the volume reduction rate tends to increase as the processing temperature rises at the same air supply amount. As a result, it was confirmed that heat energy can be effectively used for volume reduction treatment, and an increase in the amount of heat radiation to the outside can be suppressed.
[0072]
[Table 4]
[0073]
The present invention of According to the wastewater treatment method, it is possible to prevent the generation of excess sludge associated with the biological treatment of organic wastewater, and at the same time, the increase in energy consumption is sufficiently suppressed, and the treatment efficiency and economic efficiency of organic wastewater are reduced. Can be improved.
[Brief description of the drawings]
FIG. 1 is according to the invention. Implement wastewater treatment methods It is a block diagram which shows typically 1st Embodiment of a waste water treatment equipment.
FIG. 2 according to the invention Implement wastewater treatment methods It is a block diagram which shows typically 2nd Embodiment of a waste water treatment equipment.
FIG. 3 according to the invention Implement wastewater treatment methods It is a block diagram which shows typically 3rd Embodiment of a waste water treatment equipment.
FIG. 4 according to the invention Implement wastewater treatment methods It is a block diagram which shows typically 4th Embodiment of a waste water treatment equipment.
Claims (2)
前記活性汚泥の少なくとも一部に酸素(O 2 )、オゾン(O 3 )、又は過酸化水素(H 2 O 2 )を供給し、該活性汚泥の少なくとも一部を、厚み方向に貫通する複数の孔を有する複数の多孔板に対して相対的に流動させる汚泥処理工程を更に備え、
前記汚泥処理工程においては、少なくとも、当該汚泥処理工程における前記活性汚泥の可溶化量と、前記生物処理工程に供給される前記有機性排水中の有機物量と、該有機性排水中に含まれる有機物の活性汚泥への転換率とに基づいて、該汚泥処理工程に供給される活性汚泥量と該汚泥処理工程において可溶化される活性汚泥量とが実質的に等しくなるように、該汚泥処理工程に供給する前記活性汚泥の供給量、及び/又は、前記酸素(O2)、オゾン(O3)、又は過酸化水素(H2O2)の供給量を調整する排水処理方法。 A wastewater treatment method comprising: a biological treatment process for biologically treating organic wastewater with activated sludge; and a solid-liquid separation process for separating treated water obtained by biological treatment of the organic wastewater and the activated sludge. And
Oxygen (O 2 ), ozone (O 3 ), or hydrogen peroxide (H 2 O 2 ) is supplied to at least a part of the activated sludge, and at least a part of the activated sludge penetrates in the thickness direction. Further comprising a sludge treatment step for flowing relative to a plurality of perforated plates having holes;
In the sludge treatment step, at least the solubilized amount of the activated sludge in the sludge treatment step, the amount of organic matter in the organic wastewater supplied to the biological treatment step, and the organic matter contained in the organic wastewater On the basis of the conversion rate to activated sludge, the sludge treatment step so that the amount of activated sludge supplied to the sludge treatment step is substantially equal to the amount of activated sludge solubilized in the sludge treatment step. the supply amount of the activated sludge is supplied to, and / or the oxygen (O 2), ozone (O 3), or waste water treatment method of adjusting the supply amount of hydrogen peroxide (H 2 O 2).
E=Sinb1+E(1−α)a×b2−βΧ …(1)
E:当該汚泥処理工程における活性汚泥の可溶化量、
Sin:前記生物処理工程に供給される前記有機性排水中の有機物量、
α:当該汚泥処理工程に供給された活性汚泥のうち完全酸化される活性汚泥の割合、
a:前記生物処理工程へ前記活性汚泥の一部を返送する場合に、該返送された活性汚泥の有機物への換算係数、
b1:前記有機性排水中に含まれる有機物の活性汚泥への変換率、
b2:当該汚泥処理工程において可溶化し、可溶化処理液中に溶出した有機物の活性汚泥への転換率、
β:汚泥の自己分解係数、
Χ:前記生物処理工程中の汚泥量、
で表される関係を満たすように前記活性汚泥を可溶化処理する、
ことを特徴とする請求項1記載の排水処理方法。In the sludge treatment step, the following formula (1);
E = S in b 1 + E (1−α) a × b 2 −βΧ (1)
E: Solubilized amount of activated sludge in the sludge treatment process,
S in : the amount of organic matter in the organic wastewater supplied to the biological treatment process,
α: Ratio of activated sludge that is completely oxidized in the activated sludge supplied to the sludge treatment process,
a: When returning a part of the activated sludge to the biological treatment process, the conversion factor of the returned activated sludge to organic matter,
b 1 : Conversion rate of organic matter contained in the organic waste water into activated sludge,
b 2 : Conversion rate of the organic matter solubilized in the sludge treatment step and eluted into the solubilized treatment liquid into activated sludge,
β: Sludge self-decomposition coefficient,
Χ: sludge amount in the biological treatment process,
Solubilizing the activated sludge so as to satisfy the relationship represented by
The wastewater treatment method according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209775A JP4503248B2 (en) | 2002-08-30 | 2003-08-29 | Wastewater treatment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002254048 | 2002-08-30 | ||
JP2003209775A JP4503248B2 (en) | 2002-08-30 | 2003-08-29 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004141859A JP2004141859A (en) | 2004-05-20 |
JP4503248B2 true JP4503248B2 (en) | 2010-07-14 |
Family
ID=32472859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003209775A Expired - Fee Related JP4503248B2 (en) | 2002-08-30 | 2003-08-29 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4503248B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4666228B2 (en) * | 2006-07-11 | 2011-04-06 | 株式会社安川電機 | Sludge treatment equipment |
US7309432B1 (en) * | 2006-09-29 | 2007-12-18 | Praxair Technology, Inc. | System and method for eliminating sludge via ozonation |
JP5269331B2 (en) * | 2007-03-15 | 2013-08-21 | 住友重機械工業株式会社 | Waste water treatment equipment |
JP4695177B2 (en) * | 2008-11-26 | 2011-06-08 | 株式会社 小川環境研究所 | Control method of excess sludge volume reduction treatment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05309386A (en) * | 1992-05-11 | 1993-11-22 | Sumitomo Heavy Ind Ltd | Activated sludge treatment apparatus |
JPH06206088A (en) * | 1993-01-11 | 1994-07-26 | Kurita Water Ind Ltd | Aerobic treatment of organic waste liquid |
JPH0760270A (en) * | 1993-08-31 | 1995-03-07 | Sumitomo Heavy Ind Ltd | High load activated sludge apparatus |
JP2000254679A (en) * | 1999-03-10 | 2000-09-19 | Sumitomo Heavy Ind Ltd | Activated sludge processor |
JP2002177981A (en) * | 2000-12-13 | 2002-06-25 | Sumitomo Heavy Ind Ltd | Waste water treatment method and equipment |
-
2003
- 2003-08-29 JP JP2003209775A patent/JP4503248B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05309386A (en) * | 1992-05-11 | 1993-11-22 | Sumitomo Heavy Ind Ltd | Activated sludge treatment apparatus |
JPH06206088A (en) * | 1993-01-11 | 1994-07-26 | Kurita Water Ind Ltd | Aerobic treatment of organic waste liquid |
JPH0760270A (en) * | 1993-08-31 | 1995-03-07 | Sumitomo Heavy Ind Ltd | High load activated sludge apparatus |
JP2000254679A (en) * | 1999-03-10 | 2000-09-19 | Sumitomo Heavy Ind Ltd | Activated sludge processor |
JP2002177981A (en) * | 2000-12-13 | 2002-06-25 | Sumitomo Heavy Ind Ltd | Waste water treatment method and equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2004141859A (en) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4947679B2 (en) | CO2 reduction line atomizing wastewater treatment method | |
JPH1190496A (en) | Apparatus and method for ozone treatment of biological sludge | |
JP2011067730A (en) | Method and apparatus for water treatment | |
JP4503248B2 (en) | Wastewater treatment method | |
JP3731806B2 (en) | Organic wastewater treatment method and apparatus | |
JP4404976B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP4840563B2 (en) | Sewage treatment equipment | |
JP2007275846A (en) | Wastewater treatment system and wastewater treatment method | |
JP4451991B2 (en) | Aeration equipment | |
JPH1085752A (en) | Wastewater treatment method | |
JP2001113150A (en) | Pressurized gas-liquid mixing device and waste liquid treating device using the same | |
JP2004041953A (en) | Method and equipment for treating organic waste water | |
Tyagi et al. | Mesophilic and thermophilic aerobic digestion of municipal sludge in an airlift U-shape bioreactor | |
JP2002001384A (en) | Treating method for organic waste water and treating apparatus for the same | |
JP2006297205A (en) | Processing method of organic waste and its apparatus | |
JP3834275B2 (en) | Sludge volume reduction device | |
JPH09206780A (en) | Aerobic biological treating device | |
JP2007021285A (en) | Method and apparatus for reducing volume of excess sludge | |
JP2002219482A (en) | Wastewater treatment equipment | |
JP2003260491A (en) | Biological treatment method for organic sewage and apparatus therefor | |
KR20040020807A (en) | Apparatus and method for reducing sludge volume, apparatus and method for treating wastewater using the same | |
JP2000185299A (en) | Method for reducing volume of excessive sludge | |
JP2001205291A (en) | Method for treating wastewater containing polyethylene glycol | |
JP4746790B2 (en) | Sludge treatment apparatus and sludge treatment method | |
JP2002186988A (en) | Wastewater treatment device and method for treating wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051118 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070628 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20071011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100421 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |