Nothing Special   »   [go: up one dir, main page]

JP4502828B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP4502828B2
JP4502828B2 JP2005019091A JP2005019091A JP4502828B2 JP 4502828 B2 JP4502828 B2 JP 4502828B2 JP 2005019091 A JP2005019091 A JP 2005019091A JP 2005019091 A JP2005019091 A JP 2005019091A JP 4502828 B2 JP4502828 B2 JP 4502828B2
Authority
JP
Japan
Prior art keywords
fuel injection
valve seat
valve
nozzle
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005019091A
Other languages
Japanese (ja)
Other versions
JP2006207439A (en
Inventor
和彦 佐藤
健一 佐藤
明 赤羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2005019091A priority Critical patent/JP4502828B2/en
Publication of JP2006207439A publication Critical patent/JP2006207439A/en
Application granted granted Critical
Publication of JP4502828B2 publication Critical patent/JP4502828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は,主として内燃機関の燃料供給系に使用される燃料噴射弁に関し,特に,燃料噴射弁の前方に向かって小径となる円錐面で構成されていて弁体が開閉可能に着座する環状の弁座を有する弁座部材に,前記弁座の下流側に位置し,その弁座の中心線周りに配置される複数の燃料噴孔を有するノズルを,前記弁座部材と同一素材で一体に形成すると共に,前記弁座部材の前端面に前記ノズルを受容する凹部を設け,そのノズルの前記各燃料噴孔を,前記弁体の開弁時,その弁体と前記弁座との間を通過した燃料の主流がそれら各燃料噴孔の内面に直接衝突するように形成し,前記燃料噴孔からの噴射燃料をエンジンの吸気ポートに供給するようにした燃料噴射弁の改良に関する。   The present invention relates to a fuel injection valve mainly used in a fuel supply system of an internal combustion engine. A nozzle having a plurality of fuel injection holes located on the downstream side of the valve seat and arranged around the centerline of the valve seat is integrally formed with the same material as the valve seat member. And a recess for receiving the nozzle is provided on the front end surface of the valve seat member, and the fuel injection holes of the nozzle are disposed between the valve body and the valve seat when the valve body is opened. The present invention relates to an improvement in a fuel injection valve in which a main flow of fuel that has passed is formed so as to directly collide with the inner surfaces of the respective fuel injection holes, and fuel injected from the fuel injection holes is supplied to an intake port of an engine.

弁体と,この弁体が開閉可能に着座する環状で円錐状の弁座を有する弁座部材と,弁座の下流側に位置するように弁座部材の前端部に連設され,弁座の中心線周りに配置される複数の燃料噴孔を有するノズルとを備えた電磁式燃料噴射弁は,下記特許文献1及び2に開示されるように既に知られている。   A valve body, a valve seat member having an annular and conical valve seat on which the valve body is seated so as to be openable and closable, and a valve seat member connected to the front end of the valve seat member so as to be positioned downstream of the valve seat; An electromagnetic fuel injection valve including a nozzle having a plurality of fuel injection holes arranged around the center line is already known as disclosed in Patent Documents 1 and 2 below.

ところで,近年の内燃機関では,出力向上と排ガスの低公害化に対する要求が益々増してきている。そこで燃料噴射弁には,出力向上のために,大量の燃料を応答性良く噴射し得る大流量特性が,また排ガスの清浄化のために,噴射燃料を微粒化させながら,その燃料の吸気路内壁への付着を抑制する微粒化・ペネトレーション性が重要となる。
特開2000−97129号公報 特許第3027919号公報
By the way, in recent internal combustion engines, demands for output improvement and low pollution of exhaust gas are increasing. Therefore, the fuel injection valve has a large flow rate characteristic capable of injecting a large amount of fuel with good responsiveness in order to improve the output, and in order to purify the exhaust gas, the injected fuel is atomized and the intake passage of the fuel is injected. Atomization and penetration properties that suppress adhesion to the inner wall are important.
JP 2000-97129 A Japanese Patent No. 3027919

しかしながら,特許文献1及び2の何れに記載されているものも,弁座部及び燃料噴孔間を繋ぐ燃料流路の曲がりが多いため,弁体の開弁時,弁座部を通過した燃料がノズルの燃料噴孔に到達するまでに,その燃料の圧力損失が大きくなり,前述のような大流量特性及び微粒化・ペネトレーション性を満足させることは困難である。   However, since the fuel flow path connecting between the valve seat part and the fuel injection hole is also bent in both of Patent Documents 1 and 2, the fuel that has passed through the valve seat part when the valve body is opened. Before the fuel reaches the fuel nozzle hole of the nozzle, the pressure loss of the fuel increases, and it is difficult to satisfy the above-mentioned large flow characteristics and atomization / penetration.

本発明は,かゝる事情に鑑みてなされたもので,前述のような大流量特性及び微粒化・ペネトレーション性を同時に満足させ得るようにした前記燃料噴射弁を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide the fuel injection valve capable of simultaneously satisfying the large flow rate characteristics and atomization / penetration properties as described above.

上記目的を達成するために,本発明は,燃料噴射弁の前方に向かって小径となる円錐面で構成されていて弁体が開閉可能に着座する環状の弁座を有する弁座部材に,前記弁座の下流側に位置し,その弁座の中心線周りに配置される複数の燃料噴孔を有するノズルを,前記弁座部材と同一素材で一体に形成すると共に,前記弁座部材の前端面に前記ノズルを受容する凹部を設け,そのノズルの前記各燃料噴孔を,前記弁体の開弁時,その弁体と前記弁座との間を通過した燃料の主流がそれら各燃料噴孔の内面に直接衝突するように形成し,前記燃料噴孔からの噴射燃料をエンジンの吸気ポートに供給するようにした燃料噴射弁であって,前記弁体の,前記弁座に着座する環状の封止面より先端側の先端面と,この先端面に対向する前記ノズルの内端面とを,それぞれ燃料噴射弁の前方に向かって小径となり前記燃料噴孔よりも燃料噴射弁の前方にまで延びる円錐面又は球面で構成すると共に,そのノズルの内端面と前記弁座との間に,前記弁体及びノズルの相互接触を回避する環状段部を形成して,それら弁体の先端面とノズルの内端面との間にスペースが形成されるようにし,前記各燃料噴孔を,前記環状段部よりも内周側において前記ノズルの内端面に開口し,且つ前記弁座の母線の延長線がそれら各燃料噴孔の内面と交差するように配置し,前記ノズルを受容する前記凹部の内周面を,前記各燃料噴孔からの噴射燃料により形成される円錐状の噴霧フォームに対してコアンダ効果を発揮して,その噴霧フォームを乱すことなくエンジンEの吸気ポート50aの下流へ指向させるように,前記弁座部材の前端面に向かって拡径する円錐状に形成すると共に,前記凹部の内周面の仮想延長面と前記ノズルの外端面の仮想延長面との交線によって形成される円の直径を前記弁座の有効直径より小さく設定したことを第1の特徴とする。 In order to achieve the above-mentioned object, the present invention provides a valve seat member having an annular valve seat, which is formed of a conical surface having a small diameter toward the front of a fuel injection valve and on which a valve body is slidably seated. A nozzle having a plurality of fuel injection holes located on the downstream side of the valve seat and disposed around the center line of the valve seat is integrally formed of the same material as the valve seat member, and the front end of the valve seat member A concave portion for receiving the nozzle is provided on the surface, and when the valve body is opened, the main flow of the fuel that has passed between the valve body and the valve seat is the fuel injection hole of the nozzle. A fuel injection valve formed so as to directly collide with an inner surface of a hole and supplying fuel injected from the fuel injection hole to an intake port of an engine, wherein the valve body is annularly seated on the valve seat The tip surface on the tip side of the sealing surface of the nozzle and the nozzle facing the tip surface Each of the end surfaces has a conical surface or a spherical surface having a small diameter toward the front of the fuel injection valve and extending to the front of the fuel injection valve from the fuel injection hole, and between the inner end surface of the nozzle and the valve seat. An annular step portion that avoids mutual contact between the valve body and the nozzle is formed so that a space is formed between the front end surface of the valve body and the inner end surface of the nozzle. The nozzles are disposed so as to open to the inner end face of the nozzle on the inner peripheral side with respect to the annular step portion, and so that the extension line of the bus bar of the valve seat intersects the inner surface of each of the fuel injection holes. The inner peripheral surface of the concave portion exerts a Coanda effect on the conical spray foam formed by the fuel injected from each fuel injection hole, so that the intake port 50a of the engine E does not disturb the spray foam. Direct downstream Sea urchin, thereby forming a conical shape whose diameter increases toward the front end face of the valve seat member is formed by intersection of the imaginary extended surface of the outer end face of the nozzle and the virtual extension plane of the inner peripheral surface of said recess The first feature is that the diameter of the circle is set smaller than the effective diameter of the valve seat.

また本発明は,第1の特徴に加えて,前記弁座部材の前端面から前記弁座までの高さを1mm以上に設定したことを第2の特徴とする。   In addition to the first feature, the present invention has a second feature that the height from the front end surface of the valve seat member to the valve seat is set to 1 mm or more.

本発明の第1の特徴によれば,弁体の開弁時,その弁体と弁座との間を通過した燃料の主流が殆ど圧力損失なく燃料噴孔の内面に直接衝突することになり,これにより燃料噴孔からの噴射燃料を効果的に微粒化することができると共に,高速の噴霧フォームを形成することができる。したがって,この噴霧フォームは流速が極めて速く,ペネトレーション性が高いから,エンジンの吸気ポート内壁に付着するものが少なく,また燃料の圧力損失が少ないことから燃料の大流量を確保でき,エンジンの出力向上と排ガスの低公害化に貢献することができる。   According to the first feature of the present invention, when the valve element is opened, the main flow of the fuel passing between the valve element and the valve seat directly collides with the inner surface of the fuel injection hole with almost no pressure loss. Thus, the fuel injected from the fuel injection holes can be effectively atomized and a high-speed spray foam can be formed. Therefore, this spray foam has a very high flow rate and high penetration, so there is little that adheres to the inner wall of the intake port of the engine, and there is little fuel pressure loss, so a large flow rate of fuel can be secured, and engine output is improved. And contribute to lower pollution of exhaust gas.

また,弁座を燃料噴射弁の前方に向かって小径となる円錐面で構成すると共に,弁体の先端面及びノズルの内端面を,燃料噴射弁の前方に向かって小径となる円錐面又は球面とすることにより,弁座部から各燃料噴孔に至る燃料流路の曲がりを少なくして内部圧力損失の低減を図ることができ,高エネルギの燃料の各燃料噴孔への誘導が可能となり,燃料の大流量特性の更なる向上に寄与し得る。   Further, the valve seat is constituted by a conical surface having a small diameter toward the front of the fuel injection valve, and the tip surface of the valve body and the inner end surface of the nozzle are conical or spherical surfaces having a small diameter toward the front of the fuel injection valve. As a result, the bending of the fuel flow path from the valve seat to each fuel injection hole can be reduced to reduce internal pressure loss, and high energy fuel can be guided to each fuel injection hole. , It can contribute to further improvement of the large flow characteristics of fuel.

さらに弁座部材及びノズルの同一素材による一体化により,弁座部材へのノズルの結合工程(溶接)がなくなると共に,溶接による弁座及びノズルの熱歪みの懸念から解放され,したがって弁座の精度,延いては弁密性の向上を図ることができ,またノズルにおける燃料噴孔の位置及び向きの精度の向上をも図ることができるので,燃料噴孔からの噴射燃料で形成される噴霧フォームの安定化をもたらすことができる。しかも内端面を円錐面又は球面としたノズルは剛性が極めて高いので,このノズルの切削による薄肉加工を容易に行うことができる。   Furthermore, the integration of the valve seat member and the nozzle with the same material eliminates the process of joining the nozzle to the valve seat member (welding) and frees you from concerns about thermal distortion of the valve seat and nozzle due to welding. Therefore, it is possible to improve the valve tightness and to improve the accuracy of the position and orientation of the fuel injection hole in the nozzle, so that the spray foam formed by the fuel injected from the fuel injection hole Can bring about stabilization. In addition, since the nozzle whose inner end surface is a conical surface or a spherical surface has extremely high rigidity, it is possible to easily perform thin-wall processing by cutting the nozzle.

さらにまた弁座部材の前端面に形成される凹部にノズルを受容させることで,弁座部材自体により,ノズルを他物との接触から保護することができ,特別な保護キャップが不要となる。その上,上記凹部は,燃料の吹き返しによる液だれを抑制することができる。   Furthermore, by receiving the nozzle in the recess formed in the front end surface of the valve seat member, the valve seat member itself can protect the nozzle from contact with other objects, and a special protective cap becomes unnecessary. In addition, the recess can suppress dripping due to fuel blowback.

また,前記凹部の内周面を,弁座部材の前端面に向かって拡径する円錐状に形成することにより,その凹部がコアンダ効果を発揮して,ノズルからの噴射燃料により形成される円錐状の噴霧フォームを乱すことなく,エンジンEの吸気ポート50aの下流へ的確に指向させることができ,ペネトレーション性の向上に寄与し得る。   Further, by forming the inner peripheral surface of the concave portion into a conical shape whose diameter increases toward the front end surface of the valve seat member, the concave portion exhibits a Coanda effect and is formed by a fuel injected from the nozzle. Without disturbing the spray form, it can be accurately directed downstream of the intake port 50a of the engine E, which can contribute to the improvement of penetration.

さらに,前記凹部の内周面の仮想延長面と前記ノズルの外端面の仮想延長面との交線によって形成される円の直径を,弁座の有効直径より小さく設定することで,弁座部における弁座部材の軸方向肉厚を,前記凹部に殆ど邪魔されることなく充分確保できて,弁座に大なる剛性を付与することができる。したがって,弁座を高精度に容易に加工することができると共に,弁密性を高めることができる。 Furthermore, by setting the diameter of a circle formed by the intersection of the virtual extension surface of the inner peripheral surface of the recess and the virtual extension surface of the outer end surface of the nozzle to be smaller than the effective diameter of the valve seat, The thickness of the valve seat member in the axial direction can be sufficiently secured without being obstructed by the concave portion, and great rigidity can be imparted to the valve seat. Therefore, the valve seat can be easily processed with high accuracy and the valve tightness can be improved.

さらにまた,弁座とノズルの内端面との間に形成された環状段部は,弁体及びノズルの相互干渉を回避して弁密性を高めることができるのみならず,弁座部を通過した燃料の主流の燃料噴孔への直接導入を容易にするので,燃料の大流量特性及びペネトレーション性の向上に大いに寄与する。   Furthermore, the annular step formed between the valve seat and the inner end face of the nozzle can not only prevent the mutual interference between the valve body and the nozzle and improve the valve tightness but also pass through the valve seat. This facilitates the direct introduction of the mainstream fuel into the fuel nozzle, greatly contributing to the improvement of the fuel's large flow characteristics and penetration.

また上記環状段部の存在により,弁体及びノズル間にできたスペースの,燃料噴孔群内側の部分は,燃料流路機能を持つ必要がないデッドスペースであるから,弁体の先端面及びノズルの内端面を構成する円錐面又は球面の円錐角あるいは半径を適切に設定することにより,これを弁体及びノズルの相互干渉を回避する範囲で極力狭めて,デッドスペースを小さくし,温度変化に対する燃料噴射特性の安定化を図ることができる。   In addition, due to the presence of the annular step portion, the space formed between the valve body and the nozzle inside the fuel injection hole group is a dead space that does not need to have a fuel flow path function. By appropriately setting the cone angle or radius of the conical surface or spherical surface constituting the inner end face of the nozzle, this is narrowed as much as possible within the range that avoids mutual interference between the valve body and the nozzle, thereby reducing the dead space and changing the temperature. It is possible to stabilize the fuel injection characteristic against the above.

さらに環状の弁座の加工時には,上記環状段部が,刃具とノズルとの干渉を防ぐことになり,弁座の加工を容易,正確に行うことができる。   Further, when the annular valve seat is processed, the annular step portion prevents interference between the cutting tool and the nozzle, and the valve seat can be processed easily and accurately.

また,本発明の第2の特徴によれば,弁座部材の前端面から弁座までの高さが大きくされることによって弁座部における弁座部材の軸方向肉厚が更に大きくなるので,その肉厚は,弁座の高剛性を付与する上に充分となる。   Further, according to the second feature of the present invention, since the height from the front end surface of the valve seat member to the valve seat is increased, the axial thickness of the valve seat member in the valve seat portion is further increased. The wall thickness is sufficient to give the valve seat high rigidity.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

図1は本発明の第1実施例に係る電磁式燃料噴射弁を装着したエンジンの要部縦断側面図,図2は上記燃料噴射弁の拡大縦断側面図,図3は同燃料噴射弁のノズル周辺部の拡大図,図4は図3の4矢視図,図5は同燃料噴射弁の開弁状態を示す,図3との対応図,図6は本発明の第2実施例に係る燃料噴射弁の要部縦断面図である。   1 is a longitudinal sectional side view of an essential part of an engine equipped with an electromagnetic fuel injection valve according to a first embodiment of the present invention, FIG. 2 is an enlarged longitudinal side view of the fuel injection valve, and FIG. 3 is a nozzle of the fuel injection valve. 4 is an enlarged view of the peripheral portion, FIG. 4 is a view taken in the direction of the arrow 4 in FIG. 3, FIG. 5 is a view showing the opened state of the fuel injection valve, a corresponding view with FIG. It is a principal part longitudinal cross-sectional view of a fuel injection valve.

先ず,図1〜図5に示す本発明の第1実施例の説明から始める。   First, a description will be given of the first embodiment of the present invention shown in FIGS.

図1において,エンジンEのシリンダヘッド50の,吸気ポート50aが開口する側面に吸気マニホールド51が接合されており,この吸気マニホールド51に本発明の電磁式燃料噴射弁Iが装着される。この燃料噴射弁Iの前端面は,吸気ポート50aの下流端に向けられ,吸気ポート50aの下流端を開閉する吸気弁52の開放時,燃料噴射弁Iから噴射される燃料が形成する噴霧フォームFが吸気ポート50aの下流端に向けて供給される。   In FIG. 1, an intake manifold 51 is joined to a side surface of the cylinder head 50 of the engine E where the intake port 50 a is opened, and the electromagnetic fuel injection valve I of the present invention is attached to the intake manifold 51. The front end face of the fuel injection valve I is directed to the downstream end of the intake port 50a, and the spray form formed by the fuel injected from the fuel injection valve I when the intake valve 52 that opens and closes the downstream end of the intake port 50a is opened. F is supplied toward the downstream end of the intake port 50a.

図2において,上記燃料噴射弁Iの弁ハウジング2は,前端に弁座8を有する円筒状の弁座部材3と,この弁座部材3の後端部に同軸状に液密に結合される磁性円筒体4と,この磁性円筒体4の後端に同軸状に液密に結合される非磁性円筒体6と,この非磁性円筒体6の後端に同軸状に液密に結合される固定コア5と,この固定コア5の後端に同軸状に連設される燃料入口筒26とで構成される。   In FIG. 2, the valve housing 2 of the fuel injection valve I is connected to a cylindrical valve seat member 3 having a valve seat 8 at the front end and a rear end portion of the valve seat member 3 coaxially and fluid-tightly. The magnetic cylinder 4, the nonmagnetic cylinder 6 coaxially and liquid-tightly coupled to the rear end of the magnetic cylinder 4, and the coaxial and liquid-tightly coupled to the rear end of the nonmagnetic cylinder 6 The fixed core 5 and the fuel inlet cylinder 26 connected coaxially to the rear end of the fixed core 5 are configured.

弁座部材3は,円筒状のガイド孔9と,このガイド孔9の前端に連なる環状の弁座8(図3参照)とを有しており,この弁座部材3には,弁座8の内周側,即ち下流側に位置するノズル10が一体に形成される。具体的には,同一素材に切削加工を施すことにより,弁座部材3及びノズル10は一体に構成される。また弁座部材3の前端面には,ノズル10を受容する凹部13(図3及び図4参照)が形成される。   The valve seat member 3 has a cylindrical guide hole 9 and an annular valve seat 8 (see FIG. 3) connected to the front end of the guide hole 9. The valve seat member 3 includes a valve seat 8. The nozzle 10 located on the inner peripheral side, that is, on the downstream side is integrally formed. Specifically, the valve seat member 3 and the nozzle 10 are integrally formed by cutting the same material. A recess 13 (see FIGS. 3 and 4) for receiving the nozzle 10 is formed on the front end surface of the valve seat member 3.

図3及び図4に示すように,上記ノズル10には複数の燃料噴孔11,11…が穿設され,それらは弁座8及びノズル10の中心線Y周りに環状に配列される。それらの燃料噴孔11,11…は,後述する環状段部15よりも内周側においてノズル10の内端面10aに開口するように配置される。   As shown in FIGS. 3 and 4, the nozzle 10 is provided with a plurality of fuel injection holes 11, 11..., Which are annularly arranged around the center line Y of the valve seat 8 and the nozzle 10. These fuel injection holes 11, 11... Are arranged so as to open to the inner end surface 10 a of the nozzle 10 on the inner peripheral side with respect to the annular step portion 15 described later.

図2に戻って,非磁性円筒体6の内周面には,その後端側から中空円筒状の固定コア5が液密に圧入され,これによって非磁性円筒体6及び固定コア5は互いに同軸状に結合される。その際,非磁性円筒体6の前端部には,固定コア5と嵌合しない部分が残され,その部分から弁座部材3に至る弁ハウジング2内に弁組立体Vが収容される。   Returning to FIG. 2, a hollow cylindrical fixed core 5 is press-fitted into the inner peripheral surface of the nonmagnetic cylindrical body 6 from the rear end side thereof, whereby the nonmagnetic cylindrical body 6 and the fixed core 5 are coaxial with each other. Combined. At this time, a portion that does not fit with the fixed core 5 remains at the front end portion of the nonmagnetic cylindrical body 6, and the valve assembly V is accommodated in the valve housing 2 extending from the portion to the valve seat member 3.

弁組立体Vは,前記弁座8に対して開閉動作する弁部16及びそれを支持する弁杆部17からなる弁体18と,弁杆部17に連結され,磁性円筒体4から非磁性円筒体6に跨がって,それらに挿入されて固定コア5に同軸上で対置される可動コア12とからなっている。弁杆部17は,前記ガイド孔9より小径に形成されており,その外周には,半径方向に突出して,前記ガイド孔9の内周面に摺動可能に支承されるジャーナル部17aが一体に形成されている。また可動コア12の外周には,磁性円筒体4の内周面に摺動可能に支承されるジャーナル部17bが形成されている。   The valve assembly V is connected to the valve rod portion 17 including a valve portion 16 that opens and closes with respect to the valve seat 8 and a valve rod portion 17 that supports the valve portion 16, and is connected to the valve rod portion 17. It consists of a movable core 12 that straddles the cylindrical body 6 and is inserted into them and placed on the fixed core 5 on the same axis. The valve rod portion 17 is formed to have a smaller diameter than the guide hole 9, and a journal portion 17 a that protrudes in the radial direction and is slidably supported on the inner peripheral surface of the guide hole 9 is integrally formed on the outer periphery thereof. Is formed. In addition, a journal portion 17 b is formed on the outer periphery of the movable core 12 so as to be slidably supported on the inner peripheral surface of the magnetic cylindrical body 4.

弁組立体Vには,可動コア12の後端面から弁部16の手前で終わる縦孔19と,この縦孔19を,可動コア12外周面に連通させる複数の第1横孔20aと,同縦孔19をジャーナル部17aと弁部16との間の弁杆部17外周面に連通させる複数の第2横孔20bとが設けられる。その際,縦孔19の途中には,固定コア5側を向いた環状のばね座24が形成される。   The valve assembly V includes a vertical hole 19 that ends from the rear end surface of the movable core 12 before the valve portion 16, and a plurality of first horizontal holes 20 a that communicate the vertical hole 19 with the outer peripheral surface of the movable core 12. A plurality of second lateral holes 20b are provided that allow the vertical holes 19 to communicate with the outer peripheral surface of the valve rod part 17 between the journal part 17a and the valve part 16. At that time, an annular spring seat 24 facing the fixed core 5 is formed in the middle of the vertical hole 19.

固定コア5はフェライト系の高硬度磁性材製とされる。一方,可動コア12には,固定コア5の吸引面と対向する吸引面に,後述する弁ばね22を囲繞するカラー状の高硬度のストッパ要素14が埋設される。このストッパ要素14は,その外端を可動コア12の吸引面から僅かに突出させていて,通常,弁体18の開弁ストロークに相当する間隙を存して固定コア5の吸引面と対置される。   The fixed core 5 is made of a ferrite-based high hardness magnetic material. On the other hand, in the movable core 12, a collar-like high-hardness stopper element 14 that embeds a later-described valve spring 22 is embedded in a suction surface opposite to the suction surface of the fixed core 5. The stopper element 14 has its outer end slightly protruded from the suction surface of the movable core 12 and is normally opposed to the suction surface of the fixed core 5 with a gap corresponding to the valve opening stroke of the valve body 18. The

固定コア5は,可動コア12の縦孔19と連通する縦孔21を有し,この縦孔21に内部が連通する燃料入口筒26が固定コア5の後端に一体に連設される。燃料入口筒26は,固定コア5の後端に連なる縮径部26aと,それに続く拡径部26bとからなっており,その縮径部26aから縦孔21に圧入されるすり割り付きパイプ状のリテーナ23と前記ばね座24との間に可動コア12を弁体18の閉弁側に付勢する弁ばね22が縮設される。その際,リテーナ23の縦孔21への嵌合深さにより弁ばね22のセット荷重が調整される。拡径部26b内には燃料フィルタ27が装着される。   The fixed core 5 has a vertical hole 21 that communicates with the vertical hole 19 of the movable core 12, and a fuel inlet cylinder 26 that communicates internally with the vertical hole 21 is integrally connected to the rear end of the fixed core 5. The fuel inlet cylinder 26 is composed of a reduced diameter portion 26a connected to the rear end of the fixed core 5 and a subsequent enlarged diameter portion 26b, and a slotted pipe shape press-fitted into the vertical hole 21 from the reduced diameter portion 26a. A valve spring 22 for biasing the movable core 12 toward the valve closing side of the valve body 18 is provided between the retainer 23 and the spring seat 24. At that time, the set load of the valve spring 22 is adjusted by the depth of fitting of the retainer 23 into the vertical hole 21. A fuel filter 27 is mounted in the enlarged diameter portion 26b.

弁ハウジング2の外周には,固定コア5及び可動コア12に対応してコイル組立体28が嵌装される。このコイル組立体28は,磁性円筒体4の後端部から固定コア5にかけてそれらの外周面に嵌合するボビン29と,これに巻装されるコイル30とからなっており,このコイル組立体28を囲繞するコイルハウジング31の前端が磁性円筒体4の外周面に溶接され,その後端は,固定コア5の後端部外周からフランジ状に突出するヨーク5aの外周面に溶接される。コイルハウジング31は円筒状をなし,且つ一側に軸方向に延びるスリット31aが形成されている。   A coil assembly 28 is fitted to the outer periphery of the valve housing 2 so as to correspond to the fixed core 5 and the movable core 12. The coil assembly 28 includes a bobbin 29 fitted to the outer peripheral surface from the rear end portion of the magnetic cylindrical body 4 to the fixed core 5 and a coil 30 wound around the bobbin 29. The front end of the coil housing 31 that surrounds 28 is welded to the outer peripheral surface of the magnetic cylindrical body 4, and the rear end is welded to the outer peripheral surface of the yoke 5 a that protrudes in a flange shape from the outer periphery of the rear end portion of the fixed core 5. The coil housing 31 has a cylindrical shape, and a slit 31a extending in the axial direction is formed on one side.

前記磁性円筒体4の一部,コイルハウジング31,コイル組立体28,固定コア5及び燃料入口筒26の前半部は,射出成形による合成樹脂製の円筒状モールド部32に埋封される。その際,コイルハウジング31内へのモールド部32の充填はスリット31aを通して行われる。またモールド部32の中間部には,一側方に突出するカプラ34が一体に形成され,このカプラ34は,前記コイル30に連なる通電用端子33を保持する。   A part of the magnetic cylinder 4, the coil housing 31, the coil assembly 28, the fixed core 5, and the front half of the fuel inlet cylinder 26 are embedded in a synthetic resin cylindrical mold part 32 by injection molding. At that time, the mold portion 32 is filled into the coil housing 31 through the slit 31a. A coupler 34 protruding in one side is integrally formed in the middle portion of the mold portion 32, and the coupler 34 holds a current-carrying terminal 33 connected to the coil 30.

図3に示すように,前記環状の弁座8は,燃料噴射弁Iの前方に向かって小径となる円錐面で構成され,これに着座する弁部16の環状封止面16aは凸状球面の一部で構成され,この弁部16の先端面16bは,封止面16aの接線を母線とする円錐面に形成される。この先端面16bは,弁部16の弁座8からの離座時にも,燃料噴孔11より燃料噴射弁Iの前方にまで延びるように形成される(図5参照)。   As shown in FIG. 3, the annular valve seat 8 is constituted by a conical surface having a small diameter toward the front of the fuel injection valve I, and the annular sealing surface 16a of the valve portion 16 seated on the annular valve seat 8 is a convex spherical surface. The tip surface 16b of the valve portion 16 is formed in a conical surface having a tangent to the sealing surface 16a as a generating line. The tip surface 16b is formed so as to extend from the fuel injection hole 11 to the front of the fuel injection valve I even when the valve portion 16 is separated from the valve seat 8 (see FIG. 5).

一方,ノズル10は,その内端面10a及び外端面も燃料噴射弁Iの前方に向かって小径となる円錐面で構成され,したがって全体的に燃料噴射弁Iの前方に向かう凸状をなしている。その内端面10aも,燃料噴孔11より燃料噴射弁Iの前方にまで延びるように形成される。また弁座8とノズル10の内端面10aとの間には,ノズル10の内端面10aと弁部16との間に円錐状のスペース25を確保する環状段部15が設けられる。上記スペース25は,弁部16及びノズル10の相互接触を回避して,弁部16の弁座8への着座を確実にし,弁密性の確保に寄与する。   On the other hand, the inner end surface 10a and the outer end surface of the nozzle 10 are also configured as conical surfaces having a small diameter toward the front of the fuel injection valve I, and thus have a generally convex shape toward the front of the fuel injection valve I. . The inner end face 10 a is also formed to extend from the fuel injection hole 11 to the front of the fuel injection valve I. An annular step portion 15 is provided between the valve seat 8 and the inner end surface 10 a of the nozzle 10 to secure a conical space 25 between the inner end surface 10 a of the nozzle 10 and the valve portion 16. The space 25 avoids mutual contact between the valve portion 16 and the nozzle 10, ensures seating of the valve portion 16 on the valve seat 8, and contributes to ensuring valve tightness.

このノズル10に穿設されて前記中心線Y周りに環状配列される複数の燃料噴孔11,11…は,弁部16と弁座8との間を通過した燃料の主流S(図5参照)がそれら各燃料噴孔11の内面に直接衝突するように,それぞれ前方に向かって前記中心線Yから離れる方向に傾斜し,且つ各燃料噴孔11の内面が円錐状の弁座8の母線の延長線Lと交差するように配置される。   The plurality of fuel injection holes 11, 11... Which are formed in the nozzle 10 and are arranged in an annular shape around the center line Y are the main flow S of fuel passing between the valve portion 16 and the valve seat 8 (see FIG. 5). ) Incline in the direction away from the center line Y so as to directly collide with the inner surface of each of the fuel injection holes 11, and the inner surface of each fuel injection hole 11 is the bus bar of the conical valve seat 8. It arrange | positions so that it may intersect with the extended line L.

こゝで,ノズル10の内端面10aの円錐角をα,弁座8の円錐角をβ,弁部16の先端面16bの円錐角をγとしたとき,これらは次式(1)〜(3)が成立するように設定される。   Here, when the cone angle of the inner end surface 10a of the nozzle 10 is α, the cone angle of the valve seat 8 is β, and the cone angle of the tip surface 16b of the valve portion 16 is γ, these are expressed by the following formulas (1) to (1) 3) is established.

α>γ・・・・・・・・・・・(1)
α>β・・・・・・・・・・・(2)
10°≦θ≦30°・・・・・(3)
但し,θ=α−β
また弁座8の有効直径をD1,環状配列の複数の燃料噴孔11,11…のピッチ円直径をD2としたとき,次式が成立するように,弁座8及び燃料噴孔11,11…は相互に近接配置される。
α> γ (1)
α> β (2)
10 ° ≦ θ ≦ 30 ° (3)
Where θ = α-β
Further, when the effective diameter of the valve seat 8 is D1, and the pitch circle diameter of the plurality of annular fuel injection holes 11, 11,... Is D2, the valve seat 8 and the fuel injection holes 11, 11 are established so that the following equation is established. ... are arranged close to each other.

D1/D2≦1.5・・・・・(4)
弁座部材3の前端面に形成されてノズル10を受容する前記凹部13は,その内周面が弁座部材3の前端面に向かって拡径する円錐状に形成される。その際,この凹部13の内周面小径部の直径,即ち前記凹部13の内周面の仮想延長面と前記ノズル10の外端面の仮想延長面との交線によって形成される円の直径D3は,弁座8の有効直径D1より小さく設定される。即ち,
D3<D1・・・・・・・・・(5)
また弁座部材3の前端面から弁座8までの高さHは1mm以上に設定される。
D1 / D2 ≦ 1.5 (4)
The recess 13 that is formed on the front end surface of the valve seat member 3 and receives the nozzle 10 is formed in a conical shape whose inner peripheral surface increases in diameter toward the front end surface of the valve seat member 3. At this time, the diameter D3 of the circle formed by the intersection of the diameter of the inner peripheral surface of the recess 13 with a small diameter , that is, the virtual extension surface of the inner periphery of the recess 13 and the virtual extension surface of the outer end surface of the nozzle 10 Is set smaller than the effective diameter D1 of the valve seat 8. That is,
D3 <D1 (5)
The height H from the front end surface of the valve seat member 3 to the valve seat 8 is set to 1 mm or more.

次に,この第1実施例の作用について説明する。   Next, the operation of the first embodiment will be described.

コイル30を消磁した状態では,弁ばね22の付勢力で弁組立体Vは前方に押圧され,弁体18を弁座8に着座させている。この状態では,図示しない燃料ポンプから燃料入口筒26に圧送された燃料は,パイプ状のリテーナ23内部,弁組立体Vの縦孔19及び第1及び第2横孔20a,20bを通して弁座部材3内に待機させられ,弁組立体Vのジャーナル部17a,17b周りの潤滑に供される。   When the coil 30 is demagnetized, the valve assembly V is pressed forward by the biasing force of the valve spring 22, and the valve body 18 is seated on the valve seat 8. In this state, the fuel pumped from the fuel pump (not shown) to the fuel inlet cylinder 26 passes through the pipe-like retainer 23, the vertical hole 19 of the valve assembly V, and the first and second horizontal holes 20a and 20b. 3 is put on standby and used for lubrication around the journal portions 17a and 17b of the valve assembly V.

コイル30を通電により励磁すると,それにより生ずる磁束が固定コア5,コイルハウジング31,磁性円筒体4及び可動コア12を順次走り,その磁力により弁組立体Vの可動コア12が弁ばね22のセット荷重に抗して固定コア5に吸引され,弁体18の弁部16が図5に示すように弁座部材3の弁座8から離座するので,弁座部材3内の高圧燃料の主流Sは,弁座8の円錐面に沿ってノズル10側に進む。   When the coil 30 is energized by energization, the magnetic flux generated by the coil 30 sequentially travels through the fixed core 5, the coil housing 31, the magnetic cylindrical body 4, and the movable core 12, and the movable core 12 of the valve assembly V is set by the magnetic force. Since the valve portion 16 of the valve body 18 is separated from the valve seat 8 of the valve seat member 3 as shown in FIG. 5, the mainstream of the high-pressure fuel in the valve seat member 3 is sucked by the fixed core 5 against the load. S advances to the nozzle 10 side along the conical surface of the valve seat 8.

ところで,ノズル10の環状配列の複数の燃料噴孔11,11…は,各燃料噴孔11の内面が円錐状の弁座8の母線の延長線Lと交差するように配置されているから,弁部16と弁座8との間から各燃料噴孔11に直接向かう燃料の主流Sは圧力損失することなく各燃料噴孔11の内面に勢いよく衝突し,また他の燃料は,弁部16及びノズル10間の狭小な円錐状のスペース25で素早く合流して最寄りの燃料噴孔11に向かうので,比較的多量の燃料が各燃料噴孔11で絞られることで流れを加速してノズル10の前方に噴射される。   By the way, the plurality of fuel injection holes 11, 11... In the annular arrangement of the nozzle 10 are arranged so that the inner surface of each fuel injection hole 11 intersects with the extension line L of the generatrix of the conical valve seat 8. The main flow S of the fuel directed directly from the valve portion 16 and the valve seat 8 to each fuel injection hole 11 collides with the inner surface of each fuel injection hole 11 without pressure loss, and other fuels The narrow conical space 25 between the nozzle 16 and the nozzle 10 quickly joins toward the nearest fuel injection hole 11, so that a relatively large amount of fuel is squeezed at each fuel injection hole 11 to accelerate the flow and the nozzle 10 is injected forward.

このように,弁座8部を通過した燃料の主流Sが殆ど圧力損失なく燃料噴孔11,11…の内面に直接衝突すること,円錐状のスペース25が狭小で主流S以外の燃料が素早く合流して燃料噴孔11,11…に達し,このときも圧力損失が極めて少ないこと,その結果,燃料噴孔11,11…での燃料の流れが効果的に加速されること等により,環状配列の燃料噴孔11,11…からの噴射燃料を効果的に微粒化することができると共に,高速の噴霧フォームFを形成することができる。したがって,この噴霧フォームFは流速が極めて速く,ペネトレーション性が高いから,エンジンEの吸気ポート50a内壁に付着する燃料のロスが極めて少なく,燃費の低減を図ることができる。また燃料の圧力損失が少ないことは,燃料の大流量を確保できることを意味する。このようにして本発明の電磁式燃料噴射弁Iは,燃料の大流量特性及び微粒化・ペネトレーション性を同時に満足させ得るから,エンジンEの出力向上と排ガスの低公害化に大いに貢献することができる。   In this way, the main flow S of the fuel that has passed through the valve seat 8 directly collides with the inner surface of the fuel injection holes 11, 11,... With almost no pressure loss, the conical space 25 is narrow, and fuel other than the main flow S quickly .., And reaches the fuel injection holes 11, 11..., And at this time, the pressure loss is extremely small. As a result, the fuel flow in the fuel injection holes 11, 11. It is possible to effectively atomize the fuel injected from the fuel injection holes 11, 11..., And to form a high-speed spray foam F. Therefore, since this spray form F has a very high flow rate and high penetration, there is very little loss of fuel adhering to the inner wall of the intake port 50a of the engine E, and fuel consumption can be reduced. In addition, a small fuel pressure loss means that a large flow rate of fuel can be secured. Thus, the electromagnetic fuel injection valve I of the present invention can satisfy the large flow rate characteristics and atomization / penetration properties of the fuel at the same time, so that it can greatly contribute to the improvement of the output of the engine E and the low pollution of the exhaust gas. it can.

特に,弁座8とノズル10の内端面10aとの間に形成された環状段部15は,弁部16及びノズル10の相互干渉を回避するのみならず,弁座8部を通過した燃料の主流Sの各燃料噴孔11への直接導入を容易にし,燃料の大流量特性及びペネトレーション性の向上に大いに寄与する。   In particular, the annular step portion 15 formed between the valve seat 8 and the inner end surface 10a of the nozzle 10 not only avoids mutual interference between the valve portion 16 and the nozzle 10, but also the fuel that has passed through the valve seat 8 portion. This facilitates the direct introduction of the main flow S into each fuel injection hole 11 and greatly contributes to the improvement of the large flow rate characteristic and penetration of the fuel.

また上記環状段部15の存在により,弁部16及びノズル10間にできたスペース25の,燃料噴孔11,11…群内側の部分は,燃料流路機能を持つ必要がないデッドスペースであるから,これを弁部16及びノズル10の相互干渉を回避する範囲で極力狭めて,デッドスペースを小さくし,温度変化に対する燃料噴射特性の安定化を図ることができる。   Further, due to the presence of the annular step portion 15, the space 25 formed between the valve portion 16 and the nozzle 10 is a dead space that does not need to have a fuel flow path function, inside the fuel injection holes 11, 11,. Therefore, this can be narrowed as much as possible within the range in which mutual interference between the valve portion 16 and the nozzle 10 is avoided, the dead space can be reduced, and the fuel injection characteristics against temperature change can be stabilized.

この場合,前記(1)式に示すように,ノズル10の内端面10aの円錐角αより弁部16の先端面16bの円錐角γを小さく設定すれば,弁部16及びノズル10間の間隙がノズル10の中心線Yに近づくにつれて減少することになり,弁部16及びノズル10間にできた,燃料噴孔11,11…群内側のデッドスペースの容積を効果的に小さくすることができて,温度変化に対する燃料噴射特性の更なる安定化を図ることができる。   In this case, as shown in the above equation (1), if the cone angle γ of the tip surface 16b of the valve portion 16 is set smaller than the cone angle α of the inner end surface 10a of the nozzle 10, the gap between the valve portion 16 and the nozzle 10 is set. Is reduced as it approaches the center line Y of the nozzle 10, and the volume of the dead space inside the fuel injection holes 11, 11 ... group formed between the valve portion 16 and the nozzle 10 can be effectively reduced. Thus, the fuel injection characteristics against temperature changes can be further stabilized.

さらに弁部16の先端面16b,弁座8及びノズル10の内端面10aが,燃料噴射弁Iの前方に向かって小径となる円錐面で構成されることにより,弁部16と弁座8との間から各燃料噴孔11に至る燃料流路の曲がりを少なくして内部圧力損失の低減を図り,高エネルギの燃料の各燃料噴孔11への誘導が可能となり,燃料の大流量特性の向上を図ることができる。しかも内端面10aを円錐面としたノズル10は剛性が極めて高いので,このノズル10の切削による薄肉加工を容易に行うことができる。   Further, the front end surface 16b of the valve portion 16, the valve seat 8 and the inner end surface 10a of the nozzle 10 are formed of a conical surface having a small diameter toward the front of the fuel injection valve I, so that the valve portion 16 and the valve seat 8 The internal pressure loss can be reduced by reducing the bending of the fuel flow path from the space to each fuel injection hole 11, and high energy fuel can be guided to each fuel injection hole 11. Improvements can be made. In addition, since the nozzle 10 with the inner end surface 10a having a conical surface has extremely high rigidity, it is possible to easily perform thin-wall processing by cutting the nozzle 10.

また前記(2)及び(3)式に示すように,ノズル10の内端面10aの円錐角αが,弁座8の円錐角βよりも10〜30°大きく設定されることにより,燃料の主流Sの各燃料噴孔11内面への衝突入射角度が90°に近づいて激しい衝撃が生じ,噴射燃料の良好な微粒化と高いペネトレーション性を効果的に得ることができる。   Further, as shown in the above equations (2) and (3), the conical angle α of the inner end surface 10a of the nozzle 10 is set to be 10 to 30 ° larger than the conical angle β of the valve seat 8, thereby allowing the main flow of fuel. When the collision incident angle of S on the inner surface of each fuel injection hole 11 approaches 90 °, a severe impact occurs, and good atomization of the injected fuel and high penetration can be effectively obtained.

尚,ノズル10の内端面10aの円錐角αと,それより小さい弁座8の円錐角βとの差θが30°以上であれば,燃料の主流Sの燃料噴孔11内面への衝突入射角度の減少により,該主流Sの燃料噴孔11軸方向成分が増加して衝突エネルギが低減し,燃料の良好な微粒化を得ることが困難となり,その差θが10°以下であれば,弁座8部を通過した燃料の主流Sの各燃料噴孔11の内面に対する効果的な衝突が発生しない。   If the difference θ between the cone angle α of the inner end surface 10a of the nozzle 10 and the smaller cone angle β of the valve seat 8 is 30 ° or more, collision incidence of the main flow S of fuel on the inner surface of the fuel injection hole 11 occurs. As the angle decreases, the axial component of the fuel injection hole 11 of the main flow S increases to reduce the collision energy, making it difficult to obtain good atomization of the fuel. If the difference θ is 10 ° or less, An effective collision of the main flow S of the fuel that has passed through the valve seat 8 against the inner surface of each fuel injection hole 11 does not occur.

さらに前記(4)式に従い弁座8及び燃料噴孔11,11…群を相互に近接して配置すれば,弁体18の開放から燃料噴射までの応答性を高めることができ,エンジンEの高回転,高出力性能の向上に寄与し得る。D1/D2が1.5を超えると,弁座8及び燃料噴孔11,11…間の距離が大きくなり過ぎ,応答性が低下するのみならず,燃料主流Sの各燃料噴孔11内面への効果的な衝突が得られなくなる。   Further, if the valve seat 8 and the fuel injection holes 11, 11... Are arranged close to each other according to the equation (4), the responsiveness from the opening of the valve body 18 to the fuel injection can be improved. It can contribute to the improvement of high rotation and high output performance. When D1 / D2 exceeds 1.5, the distance between the valve seat 8 and the fuel injection holes 11, 11,... Becomes too large, not only the responsiveness decreases, but also the inner surface of each fuel injection hole 11 of the fuel main flow S. No effective collision can be obtained.

さらにまた弁座部材3及びノズル10を同一素材で一体に形成することにより,弁座部材3へのノズル10の結合工程(溶接)を廃止して,燃料噴射弁Iの組立性を良好にすると共に,溶接による弁座8の熱歪みの懸念から解放される。したがって弁座8の精度,延いては弁密性の向上を図ることができ,またノズル10における燃料噴孔11,11…の位置及び向きの精度の向上をも図ることができるので,燃料噴孔11,11…からの噴射燃料で形成される噴霧フォームFの安定化をもたらすことができる。環状の弁座8の加工時には,弁座8とノズル10の内端面10aとの間の環状段部15が,刃具とノズル10との干渉を防ぐことになり,弁座8の加工を容易,正確に行うことができる。   Furthermore, by integrally forming the valve seat member 3 and the nozzle 10 with the same material, the step of joining the nozzle 10 to the valve seat member 3 (welding) is eliminated, and the assembly of the fuel injection valve I is improved. At the same time, it is freed from concerns about thermal distortion of the valve seat 8 due to welding. Therefore, it is possible to improve the accuracy of the valve seat 8, and thus the valve tightness, and to improve the accuracy of the position and orientation of the fuel injection holes 11, 11,. Stabilization of the spray foam F formed by the injected fuel from the holes 11, 11. When the annular valve seat 8 is processed, the annular step 15 between the valve seat 8 and the inner end surface 10a of the nozzle 10 prevents interference between the cutting tool and the nozzle 10, and the valve seat 8 can be processed easily. Can be done accurately.

弁座部材3の前端面には,弁座部材3と一体のノズル10を受容する凹部13が形成されるので,弁座部材3自体により,ノズル10を他物との接触から保護することができ,特別な保護キャップが不要となる。その上,上記凹部13は,燃料の吹き返しによる液だれを抑制する役割をも果たすことができる。   Since the front end face of the valve seat member 3 is formed with a recess 13 for receiving the nozzle 10 integral with the valve seat member 3, the valve seat member 3 itself can protect the nozzle 10 from contact with other objects. This eliminates the need for a special protective cap. In addition, the recess 13 can also play a role of suppressing dripping due to fuel blowback.

また前記凹部13は,その内周面が弁座部材3の前端面に向かって拡径する円錐状に形成されるので,コアンダ効果を発揮して,ノズル10からの噴射燃料により形成される円錐状の噴霧フォームFを乱すことなく,エンジンEの吸気ポート50aの下流へ的確に指向させることができ,ペネトレーション性の向上にも寄与する。   Further, the concave portion 13 is formed in a conical shape whose inner peripheral surface is enlarged in diameter toward the front end surface of the valve seat member 3, so that a conical effect is exerted and a conical formed by the injected fuel from the nozzle 10. Without disturbing the mist-like spray form F, it can be accurately directed downstream of the intake port 50a of the engine E, contributing to improved penetration.

さらに前記(5)式のように,前記凹部13の内周面小径部の直径D3が弁座8の有効直径D1より小さく設定されることで,弁座8部における弁座部材3の軸方向肉厚を,前記凹部13に殆ど邪魔されることなく充分確保できて,弁座8に大なる剛性を付与することができる。したがって,弁座8を高精度に容易に加工することができると共に,弁密性を高めることができる。その際,前述のように,弁座部材3の前端面から弁座8までの高さを1mm以上に設定すれば,弁座8部における弁座部材3の軸方向肉厚は,弁座8の高剛性を付与する上に充分な大きさとなる。   Furthermore, the axial direction of the valve seat member 3 in the valve seat 8 portion is set by setting the diameter D3 of the inner peripheral surface small diameter portion of the concave portion 13 to be smaller than the effective diameter D1 of the valve seat 8 as shown in the equation (5). The wall thickness can be sufficiently secured without being obstructed by the recess 13, and a great rigidity can be imparted to the valve seat 8. Therefore, the valve seat 8 can be easily processed with high accuracy, and the valve tightness can be enhanced. At this time, as described above, if the height from the front end surface of the valve seat member 3 to the valve seat 8 is set to 1 mm or more, the axial thickness of the valve seat member 3 at the valve seat 8 portion is determined as follows. The size is sufficient to provide high rigidity.

次に図6に示す本発明の第2実施例について説明する。   Next, a second embodiment of the present invention shown in FIG. 6 will be described.

この第2実施例では,弁部16の先端面16bが弁座8に着座する環状封止面16aと同一半径R1の球面で構成され,それに対向するノズル10の内端面10aは,上記半径R1より大きい半径R2の球面で構成される。その他の構成は前実施例と同様であるので,図6中,前実施例と対応する部分には前実施例と同一の参照符号を付して,重複する説明を省略する。この第2実施例によっても,前実施例と同等の作用効果を発揮することができる。   In this second embodiment, the distal end surface 16b of the valve portion 16 is formed of a spherical surface having the same radius R1 as the annular sealing surface 16a seated on the valve seat 8, and the inner end surface 10a of the nozzle 10 opposed thereto has the radius R1. It is composed of a spherical surface having a larger radius R2. Since other configurations are the same as those of the previous embodiment, portions corresponding to those of the previous embodiment in FIG. 6 are denoted by the same reference numerals as those of the previous embodiment, and redundant description is omitted. Also according to the second embodiment, the same operational effects as the previous embodiment can be exhibited.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。   The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention.

本発明の第1実施例に係る電磁式燃料噴射弁を装着したエンジンの要部縦断側面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal side view of a main part of an engine equipped with an electromagnetic fuel injection valve according to a first embodiment of the present invention. 上記燃料噴射弁の拡大縦断側面図。The expanded vertical side view of the said fuel injection valve. 同燃料噴射弁のノズル周辺部の拡大図。The enlarged view of the nozzle peripheral part of the fuel injection valve. 図3の4矢視図。FIG. 4 is a view taken in the direction of arrow 4 in FIG. 3. 同燃料噴射弁の開弁状態を示す,図3との対応図。FIG. 4 is a view corresponding to FIG. 3, showing an open state of the fuel injection valve. 本発明の第2実施例に係る燃料噴射弁の要部縦断面図。The principal part longitudinal cross-sectional view of the fuel injection valve which concerns on 2nd Example of this invention.

3・・・・・弁座部材
8・・・・・弁座
10・・・・ノズル
10a・・・ノズルの内端面
11・・・・燃料噴孔
13・・・・凹部
15・・・・環状段部
16・・・・弁部
16a・・・封止面
16b・・・弁部の先端面
18・・・・弁体
25・・・・スペース
50a・・・吸気ポート
I・・・・・燃料噴射弁
F・・・・・燃料の噴霧フォーム
L・・・・・弁座を構成する円錐面の母線の延長線
S・・・・・燃料の主流
Y・・・・・弁座及びノズルの中心線
D1・・・・弁座の有効直径
D3・・・・円錐状凹部の小径部直径
E・・・・・エンジン
H・・・・・弁座部材前端面から弁座までの高さ
3 ... Valve seat member 8 ... Valve seat 10 ... Nozzle 10a ... Nozzle inner end face 11 ... Fuel injection hole 13 ... Recess 15 ... Annular step portion 16 ... Valve portion 16a ... Sealing surface 16b ... Valve tip end surface 18 ... Valve body 25 ... Space 50a ... Intake port I ... -Fuel injection valve F-Fuel spray foam L-Conical surface bus extension S constituting the valve seat-Fuel flow Y-Valve seat and Nozzle center line D1 ··· Valve seat effective diameter D3 · · · Conical recess small diameter diameter E · Engine H · Height from valve seat member front end surface to valve seat The

Claims (2)

燃料噴射弁(I)の前方に向かって小径となる円錐面で構成されていて弁体(18)が開閉可能に着座する環状の弁座(8)を有する弁座部材(3)に,前記弁座(8)の下流側に位置し,その弁座(8)の中心線(Y)周りに配置される複数の燃料噴孔(11)を有するノズル(10)を,前記弁座部材(3)と同一素材で一体に形成すると共に,前記弁座部材(3)の前端面に前記ノズル(10)を受容する凹部(13)を設け,そのノズル(10)の前記各燃料噴孔(11)を,前記弁体(18)の開弁時,その弁体(18)と前記弁座(8)との間を通過した燃料の主流(S)がそれら各燃料噴孔(11)の内面に直接衝突するように形成し,前記燃料噴孔(11)からの噴射燃料をエンジン(E)の吸気ポート(50a)に供給するようにした燃料噴射弁であって,
前記弁体(18)の,前記弁座(8)に着座する環状の封止面(16a)より先端側の先端面(16b)と,この先端面(16b)に対向する前記ノズル(10)の内端面(10a)とを,それぞれ燃料噴射弁(I)の前方に向かって小径となり前記燃料噴孔(11)よりも燃料噴射弁(I)の前方にまで延びる円錐面又は球面で構成すると共に,そのノズル(10)の内端面(10a)と前記弁座(8)との間に,前記弁体(18)及びノズル(10)の相互接触を回避する環状段部(15)を形成して,それら弁体(18)の先端面(16b)とノズル(10)の内端面(10a)との間にスペース(25)が形成されるようにし,
前記各燃料噴孔(11)を,前記環状段部(15)よりも内周側において前記ノズル(10)の内端面(10a)に開口し,且つ前記弁座(8)の母線の延長線(L)がそれら各燃料噴孔(11)の内面と交差するように配置し,
前記ノズル(10)を受容する前記凹部(13)の内周面を,前記各燃料噴孔(11)からの噴射燃料により形成される円錐状の噴霧フォーム(F)に対してコアンダ効果を発揮して,その噴霧フォーム(F)を乱すことなくエンジン(E)の吸気ポート(50a)の下流へ指向させるように,前記弁座部材(3)の前端面に向かって拡径する円錐状に形成すると共に,前記凹部(13)の内周面の仮想延長面と前記ノズル(10)の外端面の仮想延長面との交線によって形成される円の直径(D3)を前記弁座(8)の有効直径(D1)より小さく設定したことを特徴とする燃料噴射弁。
The valve seat member (3) having an annular valve seat (8), which is configured by a conical surface having a small diameter toward the front of the fuel injection valve (I) and on which the valve body (18) can be opened and closed, A nozzle (10) having a plurality of fuel injection holes (11) located on the downstream side of the valve seat (8) and arranged around the center line (Y) of the valve seat (8) is connected to the valve seat member ( 3), and a recess (13) for receiving the nozzle (10) is provided on the front end surface of the valve seat member (3), and each of the fuel injection holes (10) of the nozzle (10) is provided. 11), when the valve body (18) is opened, the main flow (S) of the fuel that has passed between the valve body (18) and the valve seat (8) is formed in each of the fuel injection holes (11). It is formed so as to directly collide with the inner surface, and the injected fuel from the fuel injection hole (11) is supplied to the intake port (50a) of the engine (E). A fuel injection valve which is adapted,
A tip surface (16b) on the tip side of the annular sealing surface (16a) seated on the valve seat (8) of the valve body (18), and the nozzle (10) facing the tip surface (16b) The inner end surface (10a) of each of these is constituted by a conical surface or a spherical surface having a small diameter toward the front of the fuel injection valve (I) and extending to the front of the fuel injection valve (I) from the fuel injection hole (11). In addition, an annular step (15) is formed between the inner end face (10a) of the nozzle (10) and the valve seat (8) to avoid mutual contact between the valve body (18) and the nozzle (10). Then, a space (25) is formed between the tip end face (16b) of the valve bodies (18) and the inner end face (10a) of the nozzle (10),
Each fuel injection hole (11) opens to the inner end surface (10a) of the nozzle (10) on the inner peripheral side of the annular step portion (15), and is an extension of the bus bar of the valve seat (8) (L) is arranged so as to intersect with the inner surface of each fuel injection hole (11),
The inner peripheral surface of the recess (13) that receives the nozzle (10) exhibits a Coanda effect on the conical spray foam (F) formed by the fuel injected from the fuel injection holes (11). Thus, the spray foam (F) is conically shaped to expand toward the front end surface of the valve seat member (3) so as to be directed downstream of the intake port (50a) of the engine (E) without disturbing the spray foam (F). And forming a diameter (D3) of a circle formed by the intersection of the virtual extension surface of the inner peripheral surface of the recess (13) and the virtual extension surface of the outer end surface of the nozzle (10 ) with the valve seat ( A fuel injection valve characterized in that it is set smaller than the effective diameter (D1) of 8).
請求項1記載の燃料噴射弁において,
前記弁座部材(3)の前端面から前記弁座(8)までの高さ(H)を1mm以上に設定したことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1, wherein
A fuel injection valve characterized in that a height (H) from the front end face of the valve seat member (3) to the valve seat (8) is set to 1 mm or more.
JP2005019091A 2005-01-27 2005-01-27 Fuel injection valve Expired - Fee Related JP4502828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019091A JP4502828B2 (en) 2005-01-27 2005-01-27 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019091A JP4502828B2 (en) 2005-01-27 2005-01-27 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2006207439A JP2006207439A (en) 2006-08-10
JP4502828B2 true JP4502828B2 (en) 2010-07-14

Family

ID=36964576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019091A Expired - Fee Related JP4502828B2 (en) 2005-01-27 2005-01-27 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4502828B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146828A (en) * 2005-10-28 2007-06-14 Hitachi Ltd Fuel injection valve
JP4592793B2 (en) * 2008-09-25 2010-12-08 三菱電機株式会社 Fuel injection valve
JP2011127486A (en) * 2009-12-16 2011-06-30 Denso Corp Fuel injection valve
JP2013139824A (en) * 2013-04-18 2013-07-18 Denso Corp Fuel injection valve
JP6692451B2 (en) * 2016-11-09 2020-05-13 三菱電機株式会社 Fuel injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018933A (en) * 1996-07-02 1998-01-20 Hitachi Ltd Fuel injection valve
JPH10281040A (en) * 1997-04-09 1998-10-20 Toyota Motor Corp Fuel injection nozzle
JP2004521254A (en) * 2001-06-22 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2004204806A (en) * 2002-12-26 2004-07-22 Nippon Soken Inc Fuel injection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018933A (en) * 1996-07-02 1998-01-20 Hitachi Ltd Fuel injection valve
JPH10281040A (en) * 1997-04-09 1998-10-20 Toyota Motor Corp Fuel injection nozzle
JP2004521254A (en) * 2001-06-22 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2004204806A (en) * 2002-12-26 2004-07-22 Nippon Soken Inc Fuel injection device

Also Published As

Publication number Publication date
JP2006207439A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP3751264B2 (en) Fuel injection valve
JP5200047B2 (en) Fuel injection valve
JP5312148B2 (en) Fuel injection valve
US9464612B2 (en) Fuel injection valve
JP5363228B2 (en) Electromagnetic fuel injection valve
JP4502829B2 (en) Fuel injection valve
JP4502828B2 (en) Fuel injection valve
JP2010038126A (en) Fuel injection valve
JP4097056B2 (en) Fuel injection valve
JP2012211532A (en) Fuel injection valve
JP4332124B2 (en) Fuel injection valve
JP4490840B2 (en) Fuel injection valve
JP4511960B2 (en) Fuel injection valve
JP6268185B2 (en) Fuel injection valve
JP4657143B2 (en) Fuel injection valve
JP4053048B2 (en) Fuel injection valve
WO2021075041A1 (en) Fuel injection valve
JP2005325800A (en) Fluid injection valve
JP2008032005A (en) Valve assembly for injection valve and injection valve
JP2020159253A (en) Fuel injection valve
JP4138778B2 (en) Fuel injection valve
CN114087102B (en) Fuel injector
JP2010223154A (en) Pintle type electromagnetic fuel injection valve
JP7224451B2 (en) fuel injector
JP7049925B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees