Nothing Special   »   [go: up one dir, main page]

JP4583429B2 - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP4583429B2
JP4583429B2 JP2007267499A JP2007267499A JP4583429B2 JP 4583429 B2 JP4583429 B2 JP 4583429B2 JP 2007267499 A JP2007267499 A JP 2007267499A JP 2007267499 A JP2007267499 A JP 2007267499A JP 4583429 B2 JP4583429 B2 JP 4583429B2
Authority
JP
Japan
Prior art keywords
inner ring
diameter
bearing device
rolling bearing
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007267499A
Other languages
Japanese (ja)
Other versions
JP2008025848A (en
Inventor
晋治 福田
静明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUISEIKI KOGYO KABUSHIKI KAISHA
JTEKT Corp
Original Assignee
MITSUISEIKI KOGYO KABUSHIKI KAISHA
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUISEIKI KOGYO KABUSHIKI KAISHA, JTEKT Corp filed Critical MITSUISEIKI KOGYO KABUSHIKI KAISHA
Priority to JP2007267499A priority Critical patent/JP4583429B2/en
Publication of JP2008025848A publication Critical patent/JP2008025848A/en
Application granted granted Critical
Publication of JP4583429B2 publication Critical patent/JP4583429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6662Details of supply of the liquid to the bearing, e.g. passages or nozzles the liquid being carried by air or other gases, e.g. mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6677Details of supply of the liquid to the bearing, e.g. passages or nozzles from radial inside, e.g. via a passage through the shaft and/or inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、潤滑油によって強制潤滑される転がり軸受装置に関する。   The present invention relates to a rolling bearing device that is forcibly lubricated by lubricating oil.

工作機械の主軸等に使用される軸受のように、高速回転下で使用される転がり軸受では、内輪と外輪との間に潤滑油を噴射、または噴霧させ、軸受内部の潤滑を図っている。主軸の高速回転時においては、遠心力や、転動体や保持器の回転が引き起こす軸受端面付近での高速空気流に抗して確実に軸受内部に供給する必要があり、軸受内部での、特に潤滑不良が生じやすい内輪軌道面での潤滑が問題となっていた。   In a rolling bearing used under high speed rotation, such as a bearing used for a spindle of a machine tool or the like, lubricating oil is injected or sprayed between an inner ring and an outer ring to lubricate the inside of the bearing. During high-speed rotation of the spindle, it is necessary to reliably supply the bearing against the high-speed air flow near the bearing end face caused by centrifugal force or rotation of rolling elements and cages. Lubrication on the inner ring raceway surface where lubrication failure is likely to occur has been a problem.

このような軸受内部の潤滑を行う軸受潤滑として、従来より、内輪に形成された内輪軌道面に開口部を有する給油孔から転動体に向けて潤滑油を噴出する、いわゆるアンダーレース潤滑が種々知られている。このアンダーレース潤滑の具体例として、例えば特許文献1に示されるアンギュラ型軸受装置のように、ノズル等から噴射される潤滑油を内輪間座に設けた環状の空間に溜め、この環状の空間から、同じく内輪間座に形成された給油孔を通して、転動体に向けて潤滑油を噴射させるものがある。   Conventionally, various types of so-called under-lace lubrication, in which lubricating oil is jetted from an oil supply hole having an opening on an inner ring raceway surface formed in an inner ring toward a rolling element, are known as bearing lubrication for lubricating the inside of the bearing. It has been. As a specific example of this underlace lubrication, for example, as in an angular bearing device shown in Patent Document 1, lubricating oil injected from a nozzle or the like is accumulated in an annular space provided in an inner ring spacer, and from this annular space, Similarly, there is one that injects lubricating oil toward a rolling element through an oil supply hole formed in an inner ring spacer.

上記特許文献1では、内輪間座に形成された給油孔の出口をできるだけ転動体に近接させることが必要であり、このため、間座の軸方向寸法を長くすると共に、内輪の軸方向寸法を外輪の軸方向寸法よりも大幅に短くし、内輪間座を外輪の径方向内方まで入り込ませている。しかしながら、このような構造では、下記の(1)〜(4)の欠点があった。
(1)環状の空間を形成するための機構を内輪とは別の部材に設けているため、軸受装置の構造が複雑化し大型化していた。
(2)内外輪で軸方向寸法が大きく異なると、内輪と外輪の軸方向寸法の差(いわゆる差幅)の管理が困難となる。すなわち、差幅が予圧量に相当する従来であれば、定盤上に内輪および外輪を載置し、内外輪の内側端面を基準面として高さの差を求めれば良いのであるが、上記公報のものでは、定盤上に載置した段差を有する治具の上に内外輪を載置して内外輪の高さを揃えた状態で、内外輪の内側端面を基準面として高さの差を求めるか、或いは、各軌道輪の外側端面を基準面とするかしなければならず、何れにしても、手間がかかる。
(3)軸方向寸法が短くなった内輪は、遠心力による膨張変形量が大きくなるので、主軸に対する嵌め合いが緩む結果、クリープ等を生じ易くなる。また、軸方向寸法が短い内輪は、主軸に対して傾斜し易く、ミスアライメントが大きくなる傾向にある。
(4)内輪間座は、軸方向寸法が長く、しかも内輪側の端部が環状溝を設けるために厚肉となるので、特に、内輪間座の内輪側端部が、遠心力によって膨張変形し易くなる。この内輪間座の端部の膨張変形に起因して、内輪間座の軸方向寸法が変化する結果、予圧量が変化してしまう。
In Patent Document 1, it is necessary to make the outlet of the oil supply hole formed in the inner ring spacer as close as possible to the rolling elements. For this reason, the axial dimension of the spacer is increased and the axial dimension of the inner ring is increased. It is significantly shorter than the axial dimension of the outer ring, and the inner ring spacer is inserted inwardly in the radial direction of the outer ring. However, such a structure has the following disadvantages (1) to (4).
(1) Since the mechanism for forming the annular space is provided in a member different from the inner ring, the structure of the bearing device is complicated and enlarged.
(2) If the axial dimensions of the inner and outer rings are greatly different, it becomes difficult to manage the difference (so-called difference width) in the axial dimension between the inner and outer rings. That is, if the difference width corresponds to the preload amount, the inner ring and the outer ring are placed on the surface plate, and the height difference may be obtained using the inner end face of the inner and outer rings as a reference plane. In the case where the inner and outer rings are placed on a jig having a step placed on a surface plate and the heights of the inner and outer rings are aligned, the difference in height with the inner end face of the inner and outer rings as the reference plane Or the outer end face of each track ring should be used as the reference plane.
(3) Since the inner ring whose axial dimension is shortened has a large amount of expansion deformation due to centrifugal force, the fitting to the main shaft is loosened, so that creep or the like is likely to occur. In addition, the inner ring having a short axial dimension tends to be inclined with respect to the main shaft and tends to increase misalignment.
(4) The inner ring spacer has a long axial dimension, and the inner ring side end portion is thick because an annular groove is provided. In particular, the inner ring side end portion of the inner ring spacer is expanded and deformed by centrifugal force. It becomes easy to do. Due to the expansion and deformation of the end portion of the inner ring spacer, the axial dimension of the inner ring spacer changes, and as a result, the preload amount changes.

このような問題点を解決するものとして、例えば特許文献2に示されるように、内輪の一端面に、ノズルから噴出される潤滑油を溜めておくための環状溝を設け、この環状溝の底部を内輪の軸方向に貫通する複数の冷却用貫通孔を設け、これらの冷却用貫通孔のうちの一つの途中部と内輪軌道面側の開口部とを連通する潤滑用の給油孔を設け、軸受の冷却と潤滑とを同時に行う転がり軸受装置が提案されている。
特開平6−235425号公報 実開平6−37624号公報
In order to solve such problems, for example, as shown in Patent Document 2, an annular groove is provided on one end face of the inner ring for storing lubricating oil ejected from a nozzle, and the bottom of the annular groove is provided. Provided with a plurality of cooling through holes penetrating in the axial direction of the inner ring, providing a lubricating oil supply hole for communicating one of the cooling through holes and the opening on the inner ring raceway surface side, Rolling bearing devices that simultaneously cool and lubricate bearings have been proposed.
JP-A-6-235425 Japanese Utility Model Publication No. 6-37624

しかし、上記特許文献1では、冷却用貫通孔は、冷却に必要な大流量の油を確保しなければならない関係上、比較的大径とされて流れ抵抗が少ないのに対して、冷却用貫通孔の途中部から分岐する潤滑のための給油孔は、その内輪軌道面側の開口部が転動体の存在で絞られており流れ抵抗が大きい。このため、給油孔側へは潤滑油がほとんど流れないという問題がある。   However, in the above-mentioned Patent Document 1, the cooling through-hole has a relatively large diameter and a low flow resistance because of the need to secure a large amount of oil necessary for cooling. The lubrication hole that is branched from the middle part of the hole has a large flow resistance because the opening on the inner ring raceway surface side is narrowed by the presence of rolling elements. For this reason, there is a problem that the lubricating oil hardly flows to the oil supply hole side.

また、内輪に環状溝を形成する場合、この環状溝が形成された側の内輪の一端面と、形成されていない側の他端面との間で、面積が相違するのが普通である。このように面積が相異なる両端面に対して、同時に研磨加工を施す場合を想定すると、面積の広い側の端面(環状溝のない側に端面)での研磨による取り代が不足して研磨不良になる傾向にあり、研磨不良となった端面に対しては再研磨加工を施す必要がある。このため、手間がかかって加工効率が悪いとう問題がある。また、内輪の両端面に対して別々に研磨加工を施す場合を想定しても、内輪を軸方向に押圧する力を各端面の研磨時で異ならせるような手段を特に講じていないときには、同様の問題がある。   When an annular groove is formed in the inner ring, the area is usually different between one end surface of the inner ring on the side where the annular groove is formed and the other end surface on the side where the annular groove is not formed. Assuming that both end surfaces with different areas are polished at the same time, there is insufficient polishing allowance due to polishing on the end surface on the wide area side (the end surface on the side without the annular groove). Therefore, it is necessary to re-grind the end face that is poorly polished. For this reason, there is a problem that it takes time and the processing efficiency is poor. In addition, even if it is assumed that both end faces of the inner ring are separately polished, if there is no particular means to vary the force that presses the inner ring in the axial direction during polishing of each end face, the same applies There is a problem.

ところで、上記のアンダーレース潤滑における潤滑油の供給形態として、近年、オイルミスト方式やオイルエアー方式が多用されている。オイルミスト方式は潤滑油を噴霧する方式であり、オイルエアー方式は所定時間毎に微量の潤滑油をエアーと共に噴出する方式である。これらの供給方式では、比較的少量の潤滑油の使用で潤滑が図れ、また、潤滑油が少量であるがために主軸に余分な慣性負荷を与えないという利点がある一方、潤滑油の供給量がエアーの流れによって大きく左右される結果、安定した潤滑が行えないという欠点がある。   By the way, in recent years, an oil mist method and an oil-air method are frequently used as a supply form of the lubricating oil in the above-described underlace lubrication. The oil mist method is a method in which lubricating oil is sprayed, and the oil air method is a method in which a small amount of lubricating oil is ejected together with air every predetermined time. These supply systems have the advantage that lubrication can be achieved by using a relatively small amount of lubricating oil, and that there is no extra inertia load on the spindle due to the small amount of lubricating oil. However, as a result of being greatly influenced by the air flow, there is a drawback that stable lubrication cannot be performed.

すなわち、上記転がり軸受装置では、潤滑油を噴出する対象である転動体が上記開口部上を通過するときに、当該開口部と転動体との間に殆ど隙間が存在せず、したがって、上記開口部を通してのエアーの流量が殆どなく、転動体にオイルミストやオイルエアーを直接吹き付けることができない結果、潤滑不良を起こすことになる。
本発明は上記課題に鑑みてなされたものであり、本発明の目的は、オイルエアー方式やオイルミスト方式を用いたアンダーレース潤滑において転動体に潤滑油を円滑に供給することができる転がり軸受装置を提供することである。また、本発明の目的は、内輪の端面に環状溝を設けるにもかかわらず、内輪の両端面の研磨工程を簡素化することができる転がり軸受装置を提供することである。
That is, in the rolling bearing device, when the rolling element that is the target for jetting the lubricant passes over the opening, there is almost no gap between the opening and the rolling element, and thus the opening There is almost no air flow rate through the part, and oil mist or oil air cannot be sprayed directly onto the rolling elements, resulting in poor lubrication.
The present invention has been made in view of the above problems, and an object of the present invention is a rolling bearing device capable of smoothly supplying lubricating oil to rolling elements in under-race lubrication using an oil-air system or an oil mist system. Is to provide. Another object of the present invention is to provide a rolling bearing device capable of simplifying the polishing process for both end faces of the inner ring despite the provision of annular grooves on the end face of the inner ring.

上記目的を達成するため、請求項1に係る発明は、圧送される潤滑油によって強制潤滑される転がり軸受装置において、内輪の一端面のみに形成され、圧送される潤滑油を溜める環状溝と、この環状溝の底部と内輪軌道面の近傍に周方向に間隔を隔てて形成された複数の開口部のそれぞれとを連通して転動体に向かう複数の給油孔とを備え、上記開口部の周縁に逃げ部を設けることにより、上記開口部とこの開口部上を通過するときの転動体との間に潤滑油逃がし用の隙間を形成し、上記逃げ部は、内輪軌道面の周方向に沿って形成された断面V字形形状の溝の一方の斜面と他方の斜面からなり、上記一方の斜面は、内輪の軸方向に関して上記内輪軌道面とは反対側に向かうにしたがって拡径し、上記他方の斜面は内輪の軸方向に関して内輪軌道面側に向かうにしたがって拡径し、上記一方の斜面は転動体に対向するとともに上記開口部を備え、上記他方の斜面は内輪軌道面に隣接し、上記他方の斜面における上記一方の斜面と内輪軌道面との間隔が上記一方の斜面における上記開口部の周縁の部分であって上記他方の斜面に最も近接する部分と上記他方の斜面との間隔よりも大きいことを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is a rolling bearing device forcibly lubricated by a lubricating oil that is pumped, an annular groove that is formed only on one end surface of the inner ring and stores the lubricating oil that is pumped. A plurality of oil supply holes that communicate with each of a plurality of openings formed at intervals in the circumferential direction in the vicinity of the bottom of the annular groove and in the vicinity of the inner ring raceway surface; By providing a relief portion, a clearance for lubricating oil escape is formed between the opening and the rolling element when passing over the opening, and the relief portion extends along the circumferential direction of the inner ring raceway surface. The groove is formed with one inclined surface and the other inclined surface of a groove having a V-shaped cross section, and the one inclined surface increases in diameter toward the opposite side to the inner ring raceway surface in the axial direction of the inner ring, and the other The slope of the inner ring in the axial direction of the inner ring The diameter increases toward the road surface side, the one slope faces the rolling elements and includes the opening, the other slope is adjacent to the inner ring raceway surface, and the one slope on the other slope The distance from the inner ring raceway surface is larger than the distance between the portion of the peripheral edge of the opening on the one slope and the portion closest to the other slope and the other slope. .

請求項2に係る発明は、請求項1において、上記給油孔の径dと、上記断面V字形形状の溝の、上記他方の斜面に沿う溝深さDとが、d≦D≦2dの関係であることを特徴とするものである。
請求項3に係る発明は、請求項1または2において、上記一方の斜面は上記給油孔の延びる方向に対して85°〜95°の角度をなすことを特徴とするものである。
According to a second aspect of the present invention, in the first aspect, the diameter d of the oil supply hole and the groove depth D along the other inclined surface of the groove having the V-shaped cross section satisfy the relationship of d ≦ D ≦ 2d. It is characterized by being.
The invention according to claim 3 is characterized in that, in claim 1 or 2, the one inclined surface forms an angle of 85 ° to 95 ° with respect to a direction in which the oil supply hole extends.

請求項4に係る発明は、請求項1ないし3において、上記他方の斜面と内輪の軸方向との形成する角度と、上記給油孔の延びる方向と内輪の軸方向とのなす角度とが同一であることを特徴とするものである。
請求項5に係る発明は、請求項1ないし4の何れか1項において、上記環状溝の底部の外縁の径は内輪軌道面の径よりも小さく、上記給油孔は底部の外縁に開口していることを特徴とするものである。
According to a fourth aspect of the present invention, in the first to third aspects, the angle formed by the other slope and the axial direction of the inner ring is the same as the angle formed by the direction in which the oil supply hole extends and the axial direction of the inner ring. It is characterized by being.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the diameter of the outer edge of the bottom portion of the annular groove is smaller than the diameter of the inner ring raceway surface, and the oil supply hole opens to the outer edge of the bottom portion. It is characterized by being.

請求項6に係る発明は、請求項1ないし5の何れか1項において、上記環状溝は内輪の径方向に対向する一対の内周壁面により区画されており、これら一対の内周壁面のうち、外側の内周壁面の底部側の径は、開口縁部側の径と比較して同等を含む同等以上であることを特徴とするものである。
請求項7に係る発明は、請求項6において、上記外側の内周壁面の径は底部側に近付くにつれて径が大きくなることを特徴とするものである。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the annular groove is defined by a pair of inner peripheral wall surfaces opposed to each other in the radial direction of the inner ring. In addition, the diameter on the bottom side of the outer peripheral wall surface is equal to or greater than the same including the diameter on the opening edge side.
The invention according to a seventh aspect is characterized in that, in the sixth aspect, the diameter of the outer peripheral wall surface of the outer side increases as it approaches the bottom side.

請求項8に係る発明は、請求項1ないし7の何れか1項において、上記内輪の上記一端面と他端面の面積が相等しいことを特徴とするものである。
請求項9に係る発明は、請求項1ないし8の何れか1項において、上記内輪の他端面の外周縁の径が内輪の一端面の外周縁の径よりも小さいことを特徴とするものである。
請求項10に係る発明は、請求項9において、上記内輪の他端面と外周面との間に面取り部が形成され、内輪の他端面の外周縁の径が内輪の一端面の外周縁の径よりも小さいことを特徴とするものである。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the areas of the one end surface and the other end surface of the inner ring are equal.
The invention according to claim 9 is characterized in that, in any one of claims 1 to 8, the diameter of the outer peripheral edge of the other end face of the inner ring is smaller than the diameter of the outer peripheral edge of the one end face of the inner ring. is there.
The invention according to claim 10 is the invention according to claim 9, wherein a chamfered portion is formed between the other end surface of the inner ring and the outer peripheral surface, and the diameter of the outer peripheral edge of the other end surface of the inner ring is the diameter of the outer peripheral edge of the one end surface of the inner ring. It is characterized by being smaller than.

請求項11に係る発明は、請求項1ないし10の何れか1項において、主軸の支持に用いられることを特徴とするものである。
請求項1に係る発明では、環状溝の底部から潤滑専用の給油孔を通して内輪軌道面に潤滑油を供給し、しかも給油孔は複数設けられてその開口部が周方向に間隔を隔てて配置されているので、十分な量の潤滑油を内輪軌道面の全周にわたって均一に供給することが可能となる。
The invention according to an eleventh aspect is characterized in that, in any one of the first to tenth aspects, the invention is used for supporting the main shaft.
In the invention according to claim 1, the lubricating oil is supplied from the bottom of the annular groove to the inner ring raceway surface through a lubricating oil supply hole, and a plurality of the oil supply holes are provided, and the openings are arranged at intervals in the circumferential direction. Therefore, a sufficient amount of lubricating oil can be supplied uniformly over the entire circumference of the inner ring raceway surface.

また、逃げ部によって給油孔の開口部と転動体との間に、潤滑油逃がし用の隙間が形成されるので、上記開口部を通してのエアー流通量を安定して確保できる結果、安定した量の潤滑油を転動体に向けて送給することができる。特に開口部上を通過する転動体にオイルミストをオイルエアーを直接吹き付けることができるので、潤滑効果が非常に高い。
また、内輪軌道面の周方向に沿って溝を形成することにより逃げ部を設けるので、逃げ部の加工が容易である。
In addition, since a clearance for lubricating oil escape is formed between the opening portion of the oil supply hole and the rolling element by the escape portion, the air circulation amount through the opening portion can be secured stably, so that a stable amount of Lubricating oil can be fed toward the rolling elements. In particular, since the oil mist can be directly blown onto the rolling elements that pass over the opening, the lubricating effect is very high.
Further, since the relief portion is provided by forming a groove along the circumferential direction of the inner ring raceway surface, the relief portion can be easily processed.

また、請求項3に係る発明では、転動体に指向する給油孔が断面V字形形状の溝の一方の斜面に対して略直角(具体的には85°〜95°の範囲)となるので、転動体に向けて指向性良く潤滑油を吹き付けることができる。また、略直角であれば、上記一方の斜面に給油孔の孔明け加工を行い易い。
請求項6に係る発明では、下記の利点がある。すなわち、環状溝の外側の内周壁の底部側の径が開口縁部側の径よりも大きい場合には、環状溝に溜められた潤滑油は内輪の回転に伴う遠心力を受けて、環状溝内を径方向外方へと移動し、環状溝の底部の外縁と内輪軌道面とを連通する給油孔を通して内輪軌道面にスムーズに供給されることとなる。また、環状溝の外側の内周壁の底部側の径が開口縁部側の径と等しい場合でも、環状溝内で遠心力を受けて外側の内周壁面に到達した潤滑油が開口縁部側へ逃げてしまうようなことがなく、むしろ潤滑油の環状溝内への供給圧力によって給油孔が設けられている環状溝の底部側へと促される傾向にあるので、潤滑油を内輪軌道面にスムーズに供給することができる。
In the invention according to claim 3, the oil supply hole directed to the rolling element is substantially perpendicular to one slope of the groove having a V-shaped cross section (specifically, a range of 85 ° to 95 °) Lubricating oil can be sprayed toward the rolling elements with good directivity. Moreover, if it is substantially right-angled, it is easy to drill the oil supply hole on the one slope.
The invention according to claim 6 has the following advantages. That is, when the diameter on the bottom side of the inner peripheral wall on the outer side of the annular groove is larger than the diameter on the opening edge side, the lubricating oil stored in the annular groove receives the centrifugal force accompanying the rotation of the inner ring, and the annular groove The inner ring moves outward in the radial direction, and is smoothly supplied to the inner ring raceway surface through an oil supply hole that communicates the outer edge of the bottom portion of the annular groove and the inner ring raceway surface. Further, even when the diameter on the bottom side of the inner peripheral wall on the outer side of the annular groove is equal to the diameter on the opening edge side, the lubricating oil that has received centrifugal force in the annular groove and has reached the outer peripheral wall surface is on the opening edge side. Rather, it tends to be urged to the bottom side of the annular groove where the oil supply hole is provided by the supply pressure of the lubricating oil into the annular groove. It can be supplied smoothly.

以下、添付図面を参照しつつ本発明の好ましい態様についてアンギュラ玉軸受を例にとって説明する。しかし、この発明にかかる転がり軸受はアンギュラ玉軸受に限られるものではなく、他の内輪回転型の転がり軸受にも適用することができる。
図2は本発明の一実施形態にかかる転がり軸受装置の断面図であり、図1は図2の要部拡大図である。図2を参照して、転がり軸受装置Aは、ハウジング6の内側に主軸4を支持するものからなり、接触角の方向を互いに逆方向にした一対のアンギュラ型の転がり軸受1,1の外輪7,7間に外輪間座2を介在し、内輪5,5間に内輪間座3を介在させている。内輪5、内輪間座3と外輪7、外輪間座2の軸方向寸法差(差幅)に基づいて予圧量が設定されている。
Hereinafter, preferred embodiments of the present invention will be described taking an angular ball bearing as an example with reference to the accompanying drawings. However, the rolling bearing according to the present invention is not limited to the angular ball bearing, and can also be applied to other inner ring rotating type rolling bearings.
FIG. 2 is a sectional view of a rolling bearing device according to an embodiment of the present invention, and FIG. 1 is an enlarged view of a main part of FIG. Referring to FIG. 2, the rolling bearing device A is configured to support the main shaft 4 inside the housing 6, and the outer ring 7 of the pair of angular type rolling bearings 1, 1 whose contact angles are opposite to each other. The outer ring spacer 2 is interposed between the inner rings 5 and 5, and the inner ring spacer 3 is interposed between the inner rings 5 and 5. The preload amount is set based on the axial dimensional difference (difference width) between the inner ring 5, the inner ring spacer 3, the outer ring 7, and the outer ring spacer 2.

外輪間座2を挟持した一対の外輪7,7は、両側を一対のスペーサ40,40により挟持されており、さらに、外輪間座2、一対の外輪7,7および一対のスペーサ40,40は、ハウジング6の支持孔6aの内周面6bに形成された段部6cと、支持孔6aの開口部にねじ固定された抑えリング41との間に一括して挟持されて固定されている。
一方、内輪間座3を支持した一対の内輪5,5は、両側を一対のスペーサ42,42により挟持されており、さらに、内輪間座3、一対の内輪5,5および一対のスペーサ41,41は、主軸4の一端の鍔部4aと、主軸4の外周面にねじ結合された抑えナット43との間に挟持されて固定されている。尚、内、外輪のスペーサ40,40は、必ずしも軸方向両端に必要ではなく、どららか一方の端にだけ設けるようにしても良い。
The pair of outer rings 7 and 7 sandwiching the outer ring spacer 2 is sandwiched by a pair of spacers 40 and 40 on both sides, and the outer ring spacer 2, the pair of outer rings 7 and 7, and the pair of spacers 40 and 40 are The step 6c formed on the inner peripheral surface 6b of the support hole 6a of the housing 6 and the holding ring 41 screwed to the opening of the support hole 6a are collectively held and fixed.
On the other hand, the pair of inner rings 5 and 5 that support the inner ring spacer 3 are sandwiched between a pair of spacers 42 and 42, and the inner ring spacer 3, the pair of inner rings 5 and 5, and the pair of spacers 41, 41 is clamped and fixed between the flange 4 a at one end of the main shaft 4 and a holding nut 43 screwed to the outer peripheral surface of the main shaft 4. It should be noted that the inner and outer ring spacers 40 are not necessarily required at both ends in the axial direction, and may be provided only at one end.

外輪間座2は各転がり軸受1,1の内外輪5,7間に支持される転動体10や軌道面に向けてオイルミスト又はオイルエアーを供給するためのノズル27,33および一対の給油孔28を形成した給油部材12を兼用している。44はハウジング6に一対が形成され上記給油孔28,28にそれぞれ連通する給油孔であり、45,46はスペーサ40およびハウジング6にそれぞれ形成された排油孔である。図示しないポンプ等から吐出された潤滑油を含むエアーは、給油孔44、給油孔28からノズル27,33を介して、一端側から軸受1内に噴射された後、他端側から排油孔45および排油孔46を介して例えば潤滑油タンク等に戻されるようになっている。   The outer ring spacer 2 includes rolling elements 10 supported between the inner and outer rings 5 and 7 of the rolling bearings 1 and 1, nozzles 27 and 33 for supplying oil mist or oil air toward the raceway surface, and a pair of oil supply holes. The oil supply member 12 formed with 28 is also used. Reference numeral 44 denotes an oil supply hole that is formed in a pair in the housing 6 and communicates with the oil supply holes 28, 28. 45 and 46 are oil discharge holes formed in the spacer 40 and the housing 6, respectively. Air containing lubricating oil discharged from a pump (not shown) is injected from the one end side into the bearing 1 through the oil supply hole 44 and the oil supply hole 28 through the nozzles 27 and 33, and then the oil discharge hole from the other end side. For example, the oil is returned to the lubricating oil tank or the like via the oil drain hole 45 and the oil drain hole 46.

次いで、図1を参照して、転がり軸受1は、上記した内輪5,外輪7および複数の転動体10の他、転動体10を等間隔で保持するための保持器11を備えている。内輪5は主軸4に所定の嵌め合い精度で固定され、外輪7はハウジング6に固定されている。上記の転動体10は、内輪5のアンギュラ型の内輪軌道面8と外輪7の外輪軌道面9との間に介在されたセラミックス製の玉からなる。この転動体10を構成するセラミックスとしては、窒化ケイ素、炭化ケイ素、チタニア、ムライトおよびジルコニア等を例示することができる。転動体10と内輪軌道面8との接触面8aおよび転動体10と外輪軌道面9との接触面9aとを結ぶ直線aは内輪5の径方向に対して角度θだけ傾斜している。   Next, referring to FIG. 1, the rolling bearing 1 includes a cage 11 for holding the rolling elements 10 at equal intervals, in addition to the inner ring 5, the outer ring 7 and the plurality of rolling elements 10 described above. The inner ring 5 is fixed to the main shaft 4 with a predetermined fitting accuracy, and the outer ring 7 is fixed to the housing 6. The rolling element 10 is made of a ceramic ball interposed between the angular inner ring raceway surface 8 of the inner ring 5 and the outer ring raceway surface 9 of the outer ring 7. Examples of the ceramic constituting the rolling element 10 include silicon nitride, silicon carbide, titania, mullite, and zirconia. A straight line a connecting the contact surface 8 a between the rolling element 10 and the inner ring raceway surface 8 and the contact surface 9 a between the rolling element 10 and the outer ring raceway surface 9 is inclined with respect to the radial direction of the inner ring 5 by an angle θ.

内輪5は潤滑油注入側一端面13に環状溝14を備えている。この環状溝14は一対の内周壁面15、16と底面17とによって区画されている。内周壁面15、16は内輪5の軸心と同心の円筒面からなる。環状溝14の底部18の外縁22は上記内輪軌道面8より径方向内方に位置している。この環状溝14の寸法として、たとえば、環状溝14の軸方向の深さは、内輪5の軸方向の幅の1/4〜1/3程度、また、環状溝14の径方向の幅は、内輪5の潤滑油注入側端面13の径方向の厚みの1/4程度が良く、本実施の形態では、溝幅3mm前後、溝深さ7mm前後となっている。これは、前述の範囲よりも環状溝が大きいと内輪5の強度が維持できず、また前述の範囲よりも小さいと、潤滑性能の向上が望めないためである。なお、底部18とは、底面17とその近傍の内周壁面15、16を指す。   The inner ring 5 includes an annular groove 14 on one end face 13 on the lubricating oil injection side. The annular groove 14 is partitioned by a pair of inner peripheral wall surfaces 15 and 16 and a bottom surface 17. The inner peripheral wall surfaces 15 and 16 are cylindrical surfaces concentric with the axis of the inner ring 5. The outer edge 22 of the bottom 18 of the annular groove 14 is located radially inward from the inner ring raceway surface 8. As the dimensions of the annular groove 14, for example, the axial depth of the annular groove 14 is about ¼ to 3 of the axial width of the inner ring 5, and the radial width of the annular groove 14 is About 1/4 of the radial thickness of the lubricating oil injection side end face 13 of the inner ring 5 is good, and in this embodiment, the groove width is around 3 mm and the groove depth is around 7 mm. This is because if the annular groove is larger than the above range, the strength of the inner ring 5 cannot be maintained, and if it is smaller than the above range, improvement in the lubricating performance cannot be expected. The bottom portion 18 refers to the bottom surface 17 and the inner peripheral wall surfaces 15 and 16 in the vicinity thereof.

内輪5は他端面31側の外周縁部に面取り部32を形成しており、これにより他端面31の面積を減じて、当該他端面31の面積と、環状溝14が設けられている側の一端面13の面積とが相等しくなるようにされている。図3を参照して、アンギュラ玉軸受からなる本転がり軸受1では、その構成上、転動体10と内輪軌道面8とは接触面8aのみで接触している。そして、内輪軌道面8は内輪5の軸方向一方側へ片寄って形成されている。内輪軌道面8の片寄っている側と反対側の周縁部19に沿って、断面V字形形状の溝20(以下、単にV溝20という)が形成されている。このV溝20は内輪軌道面8上の接触面8aを避けて設けられている。   The inner ring 5 is formed with a chamfered portion 32 at the outer peripheral edge portion on the other end surface 31 side, thereby reducing the area of the other end surface 31, the area of the other end surface 31 and the side where the annular groove 14 is provided. The area of the one end face 13 is made equal to each other. Referring to FIG. 3, in the rolling bearing 1 made of an angular ball bearing, the rolling element 10 and the inner ring raceway surface 8 are in contact with each other only by the contact surface 8a. The inner ring raceway surface 8 is formed so as to be offset toward one side in the axial direction of the inner ring 5. A groove 20 having a V-shaped cross section (hereinafter simply referred to as a V groove 20) is formed along a peripheral edge portion 19 on the side opposite to the side where the inner ring raceway surface 8 is offset. The V groove 20 is provided to avoid the contact surface 8a on the inner ring raceway surface 8.

上記V溝20は、転動体10に対向する第1の斜面20aと、内輪軌道面8の周縁部19に接続される第2の斜面20bとにより区画されるものである。第1の斜面20aは、対向する転動体10との間に隙間Sを設けるための逃げ部を構成している。この逃げ部を構成する第1の斜面20aには、環状溝14内の潤滑油を転動体10に向けて送出する複数の給油孔21の開口部25が形成されている。図4を参照して、これらの開口部25は内輪5の周方向に円周等配で配置されている。また、各給油孔21は、環状溝14の底部18の外縁22に開口部24を有している。   The V-groove 20 is defined by a first slope 20 a facing the rolling element 10 and a second slope 20 b connected to the peripheral edge 19 of the inner ring raceway surface 8. The 1st slope 20a comprises the escape part for providing the clearance gap S between the rolling elements 10 which opposes. Openings 25 of a plurality of oil supply holes 21 through which the lubricating oil in the annular groove 14 is sent toward the rolling element 10 are formed on the first inclined surface 20a constituting the escape portion. Referring to FIG. 4, these openings 25 are arranged at equal intervals in the circumferential direction of inner ring 5. Each oil supply hole 21 has an opening 24 at the outer edge 22 of the bottom 18 of the annular groove 14.

図3を参照して、上記の給油孔21は転動体に指向するように内輪5の軸方向に対して傾斜しており、また、給油孔21の延びる方向(向かう方向)は、第1の斜面20aに対して略直角(好ましい角度範囲としては85°〜95°)をなしている。なお、上記隙間Sに略相当する、第2の斜面20bに沿う溝深さDとしては、給油孔21の径dに対して、d≦D≦2dの関係を満たすことが、オイルエアー方式、オイルミスト方式およびオイルジェット方式の各供給方式において良好な潤滑を達成するうえで好ましい。例えば、この給油孔21の径dを1mmとした場合には、隙間Sの量に相当する溝深さDを1〜2mmの範囲に設定すれば良い。   Referring to FIG. 3, the oil supply hole 21 is inclined with respect to the axial direction of the inner ring 5 so as to be directed to the rolling elements, and the direction in which the oil supply hole 21 extends (the direction in which the oil supply hole 21 extends) is the first. It is substantially perpendicular to the inclined surface 20a (preferable angle range is 85 ° to 95 °). Note that the groove depth D along the second inclined surface 20b, which is substantially equivalent to the gap S, satisfies the relationship of d ≦ D ≦ 2d with respect to the diameter d of the oil supply hole 21; The oil mist method and the oil jet method are preferable for achieving good lubrication. For example, when the diameter d of the oil supply hole 21 is 1 mm, the groove depth D corresponding to the amount of the gap S may be set in the range of 1 to 2 mm.

また、実際には、上記V溝20を形成する部分の最大外径としては、転動体10の抜脱を防止するために所定値よりも大きくしなければならない(いわゆるカウンターボアを確保する必要がある)ため、あまり大きなV溝20を形成することができず、したがって、第1の斜面20aをあまり広くできないので、給油孔21の径dとしては、0.5mm〜2mmが好ましい範囲となる。また、隙間量に相当する溝深さDとしては0.5mm〜4mmが好ましい範囲となる。   In practice, the maximum outer diameter of the portion forming the V-groove 20 must be larger than a predetermined value in order to prevent the rolling element 10 from being pulled out (so-called counter bore needs to be secured). Therefore, the V-groove 20 cannot be formed so large, and therefore the first inclined surface 20a cannot be made too wide. Therefore, the diameter d of the oil supply hole 21 is preferably in the range of 0.5 mm to 2 mm. Further, the groove depth D corresponding to the gap amount is preferably in a range of 0.5 mm to 4 mm.

一方、給油部材12には、環状溝14の開口部26に対向する部位にノズル27が設けられると共に、外輪7の内周面と保持器11の外周面との間の隙間に対向する部位にノズル33が設けられており、これらノズル27,33と外部の供給源とを連通する給油孔28が設けられている。この給油孔28を通ってこのノズル27から送出される潤滑油を含む空気(オイルミスト又はオイルエアー)が、環状溝14に溜められるようになっている。また、ノズル33からは外輪7の外輪軌道面9側へ向けて潤滑油を含む空気が噴出されるようになっている。   On the other hand, the oil supply member 12 is provided with a nozzle 27 at a portion facing the opening 26 of the annular groove 14 and at a portion facing the gap between the inner peripheral surface of the outer ring 7 and the outer peripheral surface of the cage 11. A nozzle 33 is provided, and an oil supply hole 28 that communicates the nozzles 27 and 33 with an external supply source is provided. Air (oil mist or oil air) containing lubricating oil delivered from the nozzle 27 through the oil supply hole 28 is stored in the annular groove 14. Further, air containing lubricating oil is ejected from the nozzle 33 toward the outer ring raceway surface 9 side of the outer ring 7.

次いで、本転がり軸受装置の潤滑動作について説明する。ノズル27から環状溝14内に底部18側へ向けて噴出された潤滑油を含む空気流は、底部18に開口する給油孔21を介して転動体10側へ吹き付けられる。このとき、V溝20による逃げ部を設けて、給油孔21の開口部25と転動体10との間に隙間Sを形成してあるので、当該隙間Sを通して十分な空気流通量が安定して確保される。この十分な量の空気流通に伴って、空気に含まれる潤滑油が転動体10に供給されることになる。   Next, the lubricating operation of the rolling bearing device will be described. An air flow including lubricating oil ejected from the nozzle 27 into the annular groove 14 toward the bottom 18 is blown toward the rolling element 10 through an oil supply hole 21 opening in the bottom 18. At this time, since a clearance portion is provided by the V-groove 20 and a gap S is formed between the opening portion 25 of the oil supply hole 21 and the rolling element 10, a sufficient amount of air flow is stabilized through the gap S. Secured. With this sufficient amount of air circulation, the lubricating oil contained in the air is supplied to the rolling elements 10.

なお、潤滑油を含む空気も潤滑油の含有割合に応じた質量を持っている関係上、環状溝14内において遠心力を受けるが、この遠心力を受けて潤滑油を含む空気が外側の内周壁面15に押し付けられたとしても、この外側の内周壁面15が円筒面からなるので、潤滑油を含む空気を環状溝14の開口縁部29側へ押し戻そうとする力は発生しない。特に、潤滑油を含む空気は、ノズル24から底部18側へ向けて圧送されていることから、底部18側へ向けてスムーズに供給される。さらに、内輪軌道面8に開口する複数の給油孔21が環状溝14の底部18に直接連通されているため、環状溝14から十分な量の潤滑油を内輪軌道面8に送ることができる。   Note that the air containing the lubricating oil also has a centrifugal force in the annular groove 14 due to the fact that it has a mass corresponding to the content of the lubricating oil. Even if the outer peripheral wall 15 is pressed against the peripheral wall 15, the outer peripheral wall 15 is made of a cylindrical surface, so that no force is generated to push air containing lubricating oil back toward the opening edge 29 of the annular groove 14. In particular, since the air containing the lubricating oil is pumped from the nozzle 24 toward the bottom 18, the air is smoothly supplied toward the bottom 18. Further, since the plurality of oil supply holes 21 opened in the inner ring raceway surface 8 are directly communicated with the bottom 18 of the annular groove 14, a sufficient amount of lubricating oil can be sent from the annular groove 14 to the inner ring raceway surface 8.

以上説明した本実施形態では、逃げ部を設けて給油孔21の開口部25とこの開口部25上を通過する転動体10との間に潤滑油逃がし用の隙間Sを形成するので、オイルエアー方式やオイルミスト方式等を用いるアンダーレース潤滑において、転動体10の通過にかかわらず、上記隙間Sを介してエアー流通量を安定して確保できる。そして、オイルミストやオイルエアーを転動体10に向けて開口部25から直接吹き付けることができるので、良好な潤滑を達成できる。   In the present embodiment described above, a clearance S is provided between the opening 25 of the oil supply hole 21 and the rolling element 10 passing over the opening 25, so that the oil-air escape gap S is formed. In the underlace lubrication using a method, an oil mist method, or the like, the air circulation amount can be stably secured through the gap S regardless of the passage of the rolling elements 10. And since oil mist and oil air can be sprayed directly from the opening part 25 toward the rolling element 10, favorable lubrication can be achieved.

特に、潤滑専用の給油孔21を複数用いることに加えて、各給油孔21の開口部25が周方向に間隔を隔てて配置されるので、十分な量の潤滑油を内輪軌道面8の全周にわたって均一に供給することが可能となり、一層良好な潤滑を達成できる。また、内輪軌道面8の周方向に沿ってV溝20を形成することにより逃げ部を設けるので、逃げ部の加工が容易である。さらに、転動体10に指向する給油孔21が、転動体10に対向するV溝20の一方の斜面20aに対して略直角となるので、転動体10に向けて指向性良く潤滑油を吹き付けることができる。また、略直角であれば、上記一方の斜面20aに給油孔21を容易に孔明け加工することができる。   In particular, in addition to using a plurality of lubrication dedicated oil holes 21, the openings 25 of the respective oil supply holes 21 are arranged at intervals in the circumferential direction. It becomes possible to supply uniformly over the circumference, and better lubrication can be achieved. Further, since the relief portion is provided by forming the V groove 20 along the circumferential direction of the inner ring raceway surface 8, the relief portion can be easily processed. Furthermore, since the oil supply hole 21 directed to the rolling element 10 is substantially perpendicular to the one inclined surface 20a of the V groove 20 facing the rolling element 10, the lubricating oil is sprayed toward the rolling element 10 with good directivity. Can do. Moreover, if it is substantially right angle, the oil supply hole 21 can be easily drilled in the one inclined surface 20a.

さらに、内輪5の両端面13,31の面積が相等しいので、上記両端面13,31に対して同時に研磨加工を施す場合に、両端面13,31における研磨加工による削り取り代を略相等しくすることができる。その結果、一度の研磨加工で両端面13,31の研磨を達成することができる。しかも、後工程の加工における治具の設定も容易になり、上述のように再研磨加工が不要であることと相まって、加工効率が大幅に向上し、加工時間を大幅に短縮することができる。また、各端面13,31に対して別々に研磨加工を施す場合を想定しても、各端面13,31に対する研磨加工時の軸方向押圧力を変更するというような手段を特に講じることなく、各端面13,31に対してそれぞれ一度の研磨加工で済み、同様にして、加工効率を向上させ加工時間を短縮することができる。   Further, since the areas of both end faces 13 and 31 of the inner ring 5 are equal, when the both end faces 13 and 31 are simultaneously polished, the machining allowances due to the polishing process on both end faces 13 and 31 are made substantially equal. be able to. As a result, the polishing of both end faces 13 and 31 can be achieved by a single polishing process. In addition, the jig can be easily set in the subsequent process, and the re-polishing process is unnecessary as described above, so that the processing efficiency can be greatly improved and the processing time can be greatly shortened. Further, even if it is assumed that the end faces 13 and 31 are separately polished, without particularly taking measures such as changing the axial pressing force during the polishing process on the end faces 13 and 31, Each of the end faces 13 and 31 only needs to be polished once. Similarly, the processing efficiency can be improved and the processing time can be shortened.

また、内輪5の端面13に環状溝14を形成するために、内輪5が従来の軸受の内輪よりも厚肉となり、その結果、PCD(転動体のピッチ円径)を大きくすることを通じて転動体数を増やすことが可能となり負荷荷重を大きくすることができるという副次的効果もある。なお、遠心力を寄与させるためには、外側の内周壁面15の底部19側の径が、開口縁部29側の径と比較して同等以上であれば良く、例えば、図5に示す実施形態のように、上記環状溝14内の外側の内周壁面15を、底部18側に近づくにつれて径が大きくなる円錐面としてもよい。この場合、環状溝14内に注ぎ込まれた潤滑油は遠心力を受けて外側の内周壁面15へ到達した後、さらに給油孔21の開口部24が設けられている外側の内周壁面15の底部18の外縁22側へと遠心力によって促される。   Further, since the annular groove 14 is formed on the end face 13 of the inner ring 5, the inner ring 5 becomes thicker than the inner ring of the conventional bearing, and as a result, the rolling element is increased by increasing the PCD (pitch circle diameter of the rolling element). There is also a secondary effect that the number can be increased and the load can be increased. In order to contribute centrifugal force, the diameter on the bottom 19 side of the outer inner peripheral wall surface 15 only needs to be equal to or larger than the diameter on the opening edge 29 side. For example, the embodiment shown in FIG. As in the form, the inner peripheral wall surface 15 outside the annular groove 14 may be a conical surface whose diameter increases as it approaches the bottom 18 side. In this case, the lubricating oil poured into the annular groove 14 receives centrifugal force and reaches the outer peripheral wall surface 15, and then the outer peripheral wall surface 15 provided with the opening 24 of the oil supply hole 21. It is urged by the centrifugal force toward the outer edge 22 side of the bottom 18.

本実施形態では、逃げ部による隙間Sを設けることよって、図1の実施形態と同様の作用効果を奏することができ、しかも、通気流だけでなく遠心力によっても潤滑油の給油孔21側への移動が促進されるので、給油孔21へ一層スムーズに潤滑油を送ることができ、また、環状溝14の開口部26からの潤滑油の流出が一層起こりにくい。
また、図示していないが、上記環状溝14の外側の内周壁面15を、開口部26側の小径の円筒面と底部18側の大径の円筒面とにより構成しても良い。この場合にも、外側の内周壁面15の底部18側の径が開口縁部29側の径より大きくなるので、図1や図5の実施形態と同様に、環状溝14内の潤滑油が遠心力によっても外側の内周壁面15に沿って底部18側へと促されるので、スムーズな潤滑油の供給が行える。
In the present embodiment, by providing the clearance S by the escape portion, the same effect as that of the embodiment of FIG. 1 can be obtained, and the lubricating oil is supplied not only to the airflow but also to the lubricating oil supply hole 21 side by centrifugal force. Therefore, the lubricating oil can be sent to the oil supply hole 21 more smoothly, and the lubricating oil can hardly flow out from the opening 26 of the annular groove 14.
Although not shown, the inner peripheral wall surface 15 outside the annular groove 14 may be composed of a small-diameter cylindrical surface on the opening 26 side and a large-diameter cylindrical surface on the bottom 18 side. Also in this case, since the diameter on the bottom 18 side of the outer wall surface 15 on the outer side is larger than the diameter on the opening edge 29 side, the lubricating oil in the annular groove 14 is reduced as in the embodiment of FIGS. Since it is also urged | biased by the centrifugal force to the bottom 18 side along the outer peripheral wall surface 15, smooth supply of lubricating oil can be performed.

なお、本発明は上記各実施形態に限定されるものではなく、本発明の範囲内で種々の変更が可能であることはいうまでもない。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる転がり軸受装置の要部断面図である。It is principal part sectional drawing of the rolling bearing apparatus concerning one Embodiment of this invention. 転がり軸受装置の全体を示す概略断面図である。It is a schematic sectional drawing which shows the whole rolling bearing apparatus. 転がり軸受の要部の拡大断面図である。It is an expanded sectional view of the principal part of a rolling bearing. 内輪の要部の側面図である。It is a side view of the principal part of an inner ring. 本発明の他の実施形態にかかる転がり軸受装置の要部断面図である。It is principal part sectional drawing of the rolling bearing apparatus concerning other embodiment of this invention.

符号の説明Explanation of symbols

1…転がり軸受、5…内輪、8…内輪軌道面、10…転動体、13…一端面、14…環状溝、15,16…内周壁面、18…底部、20…V字溝(断面V字形形状の溝)、20a…第1の斜面(一方の斜面。逃げ部)、20b…第2の斜面(他方の斜面)、21…給油孔、22…外縁、25…開口部、26…開口部、29…開口縁部、31…他端面、32…面取り部、S…隙間 DESCRIPTION OF SYMBOLS 1 ... Rolling bearing, 5 ... Inner ring, 8 ... Inner ring raceway surface, 10 ... Rolling body, 13 ... One end surface, 14 ... Annular groove, 15, 16 ... Inner peripheral wall surface, 18 ... Bottom part, 20 ... V-shaped groove (section V) 20a ... first slope (one slope; relief), 20b ... second slope (other slope), 21 ... oil supply hole, 22 ... outer edge, 25 ... opening, 26 ... opening Part, 29 ... opening edge part, 31 ... other end surface, 32 ... chamfered part, S ... gap

Claims (11)

圧送される潤滑油によって強制潤滑される転がり軸受装置において、
内輪の一端面のみに形成され、圧送される潤滑油を溜める環状溝と、
この環状溝の底部と内輪軌道面の近傍に周方向に間隔を隔てて形成された複数の開口部のそれぞれとを連通して転動体に向かう複数の給油孔とを備え、
上記開口部の周縁に逃げ部を設けることにより、上記開口部とこの開口部上を通過するときの転動体との間に潤滑油逃がし用の隙間を形成し、
上記逃げ部は、内輪軌道面の周方向に沿って形成された断面V字形形状の溝の一方の斜面と他方の斜面からなり、
上記一方の斜面は、内輪の軸方向に関して上記内輪軌道面とは反対側に向かうにしたがって拡径し、上記他方の斜面は内輪の軸方向に関して内輪軌道面側に向かうにしたがって拡径し、
上記一方の斜面は転動体に対向するとともに上記開口部を備え、上記他方の斜面は内輪軌道面に隣接し、
上記他方の斜面における上記一方の斜面と内輪軌道面との間隔が上記一方の斜面における上記開口部の周縁の部分であって上記他方の斜面に最も近接する部分と上記他方の斜面との間隔よりも大きいことを特徴とする転がり軸受装置。
In a rolling bearing device that is forcibly lubricated by lubricating oil that is pumped,
An annular groove that is formed only on one end surface of the inner ring and stores lubricating oil to be pumped,
A plurality of oil supply holes that communicate with each of a plurality of openings formed at intervals in the circumferential direction near the bottom of the annular groove and in the vicinity of the inner ring raceway surface, and toward the rolling elements,
By providing a relief portion at the periphery of the opening, a gap for lubricating oil escape is formed between the opening and the rolling element when passing over the opening,
The relief portion is composed of one slope and the other slope of a groove having a V-shaped cross section formed along the circumferential direction of the inner ring raceway surface,
The one inclined surface is increased in diameter toward the opposite side of the inner ring raceway surface with respect to the axial direction of the inner ring, and the other inclined surface is increased in diameter toward the inner ring raceway side with respect to the axial direction of the inner ring,
The one inclined surface is opposed to the rolling element and includes the opening, and the other inclined surface is adjacent to the inner ring raceway surface,
The distance between the one slope on the other slope and the inner ring raceway surface is the peripheral edge of the opening on the one slope and the distance between the part closest to the other slope and the other slope. Rolling bearing device characterized by being large.
上記給油孔の径dと、上記断面V字形形状の溝の、上記他方の斜面に沿う溝深さDとが、d≦D≦2dの関係であることを特徴とする請求項1に記載の転がり軸受装置。   The diameter d of the oil supply hole and the groove depth D along the other inclined surface of the groove having the V-shaped cross section have a relationship of d ≦ D ≦ 2d. Rolling bearing device. 上記一方の斜面は上記給油孔の延びる方向に対して85°〜95°の角度をなすことを特徴とする請求項1または2に記載の転がり軸受装置。   The rolling bearing device according to claim 1 or 2, wherein the one inclined surface forms an angle of 85 ° to 95 ° with respect to a direction in which the oil supply hole extends. 上記他方の斜面と内輪の軸方向との形成する角度と、上記給油孔の延びる方向と内輪の軸方向とのなす角度とが同一であることを特徴とする請求項1ないし3の何れか1項に記載の転がり軸受装置。   The angle formed by the other slope and the axial direction of the inner ring and the angle formed by the extending direction of the oil supply hole and the axial direction of the inner ring are the same. The rolling bearing device according to item. 上記環状溝の底部の外縁の径は内輪軌道面の径よりも小さく、上記給油孔は底部の外縁に開口していることを特徴とする請求項1ないし4の何れか1項に記載の転がり軸受装置。   5. The rolling according to claim 1, wherein a diameter of an outer edge of the bottom portion of the annular groove is smaller than a diameter of an inner ring raceway surface, and the oil supply hole opens at an outer edge of the bottom portion. Bearing device. 上記環状溝は内輪の径方向に対向する一対の内周壁面により区画されており、これら一対の内周壁面のうち、外側の内周壁面の底部側の径は、開口縁部側の径と等しいかまたは開口縁部側の径よりも大きいことを特徴とする請求項1ないし5の何れか1項に記載の転がり軸受装置。   The annular groove is defined by a pair of inner peripheral wall surfaces facing the radial direction of the inner ring. Of these pair of inner peripheral wall surfaces, the diameter of the bottom side of the outer inner peripheral wall surface is equal to the diameter of the opening edge side. The rolling bearing device according to any one of claims 1 to 5, wherein the rolling bearing device is equal to or larger than a diameter on an opening edge side. 上記外側の内周壁面の径は底部側に近付くにつれて径が大きくなることを特徴とする請求項6に記載の転がり軸受装置。   The rolling bearing device according to claim 6, wherein a diameter of the outer peripheral wall surface on the outer side increases as it approaches the bottom side. 上記内輪の上記一端面と他端面の面積が相等しいことを特徴とする請求項1ないし7の何れか1項に記載の転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 7, wherein areas of the one end surface and the other end surface of the inner ring are equal to each other. 上記内輪の他端面の外周縁の径が内輪の一端面の外周縁の径よりも小さいことを特徴とする請求項1ないし8の何れか1項に記載の転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 8, wherein a diameter of an outer peripheral edge of the other end surface of the inner ring is smaller than a diameter of an outer peripheral edge of the one end surface of the inner ring. 上記内輪の他端面と外周面との間に面取り部が形成され、内輪の他端面の外周縁の径が内輪の一端面の外周縁の径よりも小さいことを特徴とする請求項9に記載の転がり軸受装置。   The chamfered portion is formed between the other end surface and the outer peripheral surface of the inner ring, and the diameter of the outer peripheral edge of the other end surface of the inner ring is smaller than the diameter of the outer peripheral edge of the one end surface of the inner ring. Rolling bearing device. 主軸の支持に用いられる請求項1ないし10の何れか1項に記載の転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 10, which is used for supporting a main shaft.
JP2007267499A 2007-10-15 2007-10-15 Rolling bearing device Expired - Fee Related JP4583429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267499A JP4583429B2 (en) 2007-10-15 2007-10-15 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267499A JP4583429B2 (en) 2007-10-15 2007-10-15 Rolling bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006201327A Division JP4045291B2 (en) 2006-07-24 2006-07-24 Rolling bearing device

Publications (2)

Publication Number Publication Date
JP2008025848A JP2008025848A (en) 2008-02-07
JP4583429B2 true JP4583429B2 (en) 2010-11-17

Family

ID=39116662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267499A Expired - Fee Related JP4583429B2 (en) 2007-10-15 2007-10-15 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP4583429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032076A (en) * 2006-07-27 2008-02-14 Ntn Corp Angular ball bearing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144117A (en) * 1989-10-30 1991-06-19 Ntn Corp Lubricating device of angular ball bearing
JPH0484918U (en) * 1990-11-30 1992-07-23
JPH04132220U (en) * 1991-05-24 1992-12-07 エヌテイエヌ株式会社 Angular ball bearing
JPH0530559U (en) * 1991-09-30 1993-04-23 エヌテイエヌ株式会社 Lubricator for cylindrical roller bearing
JPH0637624U (en) * 1992-10-26 1994-05-20 エヌティエヌ株式会社 Bearing lubricator
JPH0645119U (en) * 1992-11-27 1994-06-14 エヌティエヌ株式会社 Lubricator for high-speed rotating bearing
JPH06235425A (en) * 1993-02-08 1994-08-23 Nippon Seiko Kk Bearing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144117A (en) * 1989-10-30 1991-06-19 Ntn Corp Lubricating device of angular ball bearing
JPH0484918U (en) * 1990-11-30 1992-07-23
JPH04132220U (en) * 1991-05-24 1992-12-07 エヌテイエヌ株式会社 Angular ball bearing
JPH0530559U (en) * 1991-09-30 1993-04-23 エヌテイエヌ株式会社 Lubricator for cylindrical roller bearing
JPH0637624U (en) * 1992-10-26 1994-05-20 エヌティエヌ株式会社 Bearing lubricator
JPH0645119U (en) * 1992-11-27 1994-06-14 エヌティエヌ株式会社 Lubricator for high-speed rotating bearing
JPH06235425A (en) * 1993-02-08 1994-08-23 Nippon Seiko Kk Bearing device

Also Published As

Publication number Publication date
JP2008025848A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JPH11182560A (en) Rolling bearing device
JP2006118526A (en) Lubrication device of rolling bearing
JP2008240938A (en) Lubrication device for rolling bearing
JP5183059B2 (en) Multi-row rolling bearing device
JP5675263B2 (en) Rolling bearing
JP2003278773A (en) Air/oil lubricating structure of rolling bearing and spindle device
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
JP4836852B2 (en) Angular contact ball bearing lubrication system
JP2007010017A (en) Air oil lubricating device for ball bearing
JP4045291B2 (en) Rolling bearing device
JP2014062618A (en) Lubricating structure of bearing device
JP4583429B2 (en) Rolling bearing device
JPH11336767A (en) Cylindrical roller bearing
JP2007247784A (en) Lubricating structure of roller bearing
JP2009138896A (en) Rolling bearing and its lubrication method
JP2003207094A (en) Spindle device
JP2005090713A (en) Bearing device
JP2006118525A (en) Lubrication device of rolling bearing
JP2007247783A (en) Lubricating structure of roller bearing
CN114542601A (en) Retainer and bearing
JP2007024252A (en) Lubricating device of rolling bearing
JP2004225807A (en) Lubricating device for rolling bearing
WO2007129441A1 (en) Multi-row rolling bearing device
JP2004100890A (en) Air oil lubricating structure for roller bearing
JP2008082497A (en) Lubricating device of roll bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees